Working Papers and Technical Reports
-
[43] Gorski, J., Klamroth, K., Ruzika, S.:
Connectedness of Efficient Solutions in Multiple Objective
Combinatorial Optimization.
[pdf]
-
[39] Bischoff, M., Fleischmann, T. and Klamroth, K. (2009):
The Multi-Facility Location-Allocation Problem with Barriers.
[pdf]
-
[36] Klamroth, K. and Miettinen, K. (2008):
Integrating Approximation and Interactive Decision
Making in Multicriteria Optimization.
[pdf]
-
[33] Pfeiffer, B. and Klamroth, K. (2008):
A Unified Model for Weber Problems with Continuous and Network Distances.
[pdf]
-
[32] Gorski, J., Pfeuffer, F. and Klamroth, K. (2007):
Biconvex Sets and Optimization with Biconvex Functions
- A Survey and Extensions.
[pdf]
-
[31] Klamroth, K. and Tind, J. (2007):
Constrained Optimization Using Multiple Objective Programming.
[pdf]
-
[30] Bischoff, M. and Klamroth, K. (2007):
An Efficient Solution Method for Weber Problems
with Barriers based on Genetic Algorithms.
[pdf]
-
[28] Pfeiffer, B. and Klamroth, K. (2005):
Bilinear Programming Formulations for Weber Problems
with Continuous and Network Distances.
[pdf]
-
[27] Dearing, P.M., Klamroth, K. and Segars, R., Jr. (2005):
Planar Location Problems with Block Distance and Barriers.
[pdf]
-
[26] Huang, S., Batta, R., Klamroth, K. and Nagi, R. (2005):
K-Connection Location Problem in a Plane.
[pdf]
-
[25] Frieß, L., Klamroth, K. and Sprau, M. (2005):
A Wavefront Approach to Center Location Problems with Barriers.
[ps.gz]
[pdf]
-
[24] Klamroth, K., Tind, J. and Zust, S. (2004):
Integer Programming Duality in Multiple Objective Programming.
[ps]
[pdf]
-
[23] Ehrgott, M., Klamroth, K. and Schwehm, C. (2004):
An MCDM Approach to Portfolio Optimization.
[ps]
[pdf]
-
[22] Klamroth, K. (2004):
Algebraic Properties of Location Problems with one Circular Barrier.
[ps]
[pdf]
-
[21] Klamroth, K., Tind, J. and Wiecek, M. (2002):
Unbiased Approximation in Multicriteria Optimization.
[ps]
[pdf]
-
[20] Schandl, B.; Klamroth, K. and Wiecek, M. (2002):
Norm-Based Approximation in Multicriteria Programming.
[ps]
[pdf]
-
[19] Dearing, P.M., Hamacher, H.W. and Klamroth, K. (2002):
Dominating Sets for Rectilinear Center Location Problems
with Polyhedral Barriers.
[ps]
[pdf]
-
[18] Klamroth, K. and Wiecek, M. (2002):
A Bi-Objective Median Location Problem
with a Line Barrier.
[ps]
[pdf]
-
[17] Schandl, B., Klamroth, K. and Wiecek, M. (2002):
Introducing Oblique Norms into Multiple Criteria Programming.
[ps]
[pdf]
-
[15] Schandl, B.; Klamroth, K. and Wiecek, M. (2001):
Norm-Based Approximation in Bicriteria Programming.
[ps]
[pdf]
-
[14] Klamroth, K. (2001):
Planar Location Problems with Line Barriers.
[ps]
[pdf]
-
[13] Klamroth, K. and Wiecek, M. (2001):
A Time-Dependent Multiple Criteria Single-Machine Scheduling
Problem.
[ps]
[pdf]
-
[12] Schandl, B.; Klamroth, K. and Wiecek, M. (2001):
Norm-Based Approximation in Convex Multicriteria Programming.
[ps]
[pdf]
-
[11] Klamroth, K. (2001):
A Reduction Result for Location Problems with
Polyhedral Barriers.
[ps]
[pdf]
-
[10] Hamacher, H.W. and Klamroth, K. (2000):
Planar Weber Location Problems with Barriers and Block Norms.
[ps]
[pdf]
-
[9] Schandl, B.; Klamroth, K. and Wiecek, M. (2000):
Using Block Norms in Bicriteria Optimization.
[ps]
[pdf]
-
[8] Klamroth, K. and Wiecek, M. (2000):
Time-Dependent Capital Budgeting with Multiple Criteria.
[ps]
[pdf]
-
[7] Klamroth, K. and Wiecek, M. (2000):
Dynamic Programming Approaches to the Multiple Criteria Knapsack Problem.
[ps]
[pdf]
-
[5] Ehrgott, M.; Hamacher, H.W.; Klamroth, K.; Nickel, S.;
Schöbel, A. and Wiecek, M. (1997):
A Note on the Equivalence of Balance Points and
Pareto Solutions in Multiple Objective Programming.
[ps]
[pdf]
-
[4] Ehrgott, M. and Klamroth, K. (1997):
Connectedness of Efficient Solutions in Multiple
Criteria Combinatorial Optimization.
[ps]
[pdf]