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Abstract

In practical applications of mathematical programming it is frequently
observed that the decision maker prefers apparently suboptimal solutions.
A natural explanation for this phenomenon is that the applied mathemat-
ical model was not sufficiently realistic and did not fully represent all the
decision makers criteria and constraints. Since multicriteria optimization
approaches are specifically designed to incorporate such complex prefer-
ence structures, they gain more and more importance in application areas
as, for example, engineering design and capital budgeting.

The aim of this paper is to analyze optimization problems both from
a constrained programming and a multicriteria programming perspective.
It is shown that both formulations share important properties, and that
many classical solution approaches have correspondences in the respective
models. The analysis naturally leads to a discussion of the applicability of
some recent approximation techniques for multicriteria programming prob-
lems for the approximation of optimal solutions and of Lagrange multipliers
in convex constrained programming. Convergence results are proven for
convex and non-convex problems.

Keywords: constrained optimization, multiple objective programming, La-

grange multipliers, convergence

1 Introduction

In many practical applications of constrained programming (CP) the constraints
are based on estimated values like, for example, the amount of resources that
will be available for a production process. A slight violation of one or several
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constraints is often acceptable if this results in a considerable improvement of
the objective function. If, on the other hand, a lower consumption of some of
the resources can be achieved, the overall utility of a solution may be improved
even though this is not reflected in the objective function. Following this line
of thought, some of the constraints of a CP may be interpreted as additional
objective functions on which a minimum requirement was set, but violations as
well as improvements are of interest to the decision maker. This is frequently
the case in engineering design problems where, for example, the stiffness of a
structure should be maximized while minimizing the amount of material used,
and in environmental applications with soft constraints (Wierzbicki et al., 2000).

In the field of evolutionary algorithms, the difficulties in incorporating con-
straints into the fitness function of a genetic algorithm have lead to similar con-
siderations. A recent review on the application of multicriteria approaches to
handle constraints in genetic algorithms, including a numerical comparison of
several such constraint-handling techniques, is contained in Mezura-Montes and
Coello Coello (2002). In this context, Camponogara and Talukdar (1997) and
similarly Osyczka et al. (2000) proposed a bicriterion method for solving CPs.
The method transforms the given CP into a bicriteria problem such that one cri-
terion equals the original objective function, and the other criterion is the sum of
constraint violations. The resulting bicriteria problem can then be solved using
(multicriteria) evolutionary methods that approach the nondominated set with
a whole set of solutions (individuals) containing a good estimate of an optimal
(and thus feasible) solution of the given CP among them. Jiménez et al. (2002)
proposed an algorithm using Pareto dominance inside a preselection scheme to
solve, among others, global optimization problems. In this approach, a given
CP is reformulated as an unconstrained multiobjective optimization problem,
and different priorities are assigned to the objective functions (feasible solutions
with a good original objective value get the highest priority). Surry and Radcliffe
(1997) used a combination of the VEGA method (Vector Evaluated Genetic Algo-
rithm) and Pareto ranking to handle constraints in an approach called COMOGA
(Constrained Optimization by Multi-Objective Genetic Algorithms). Individuals
(corresponding to solutions of a given CP) are ranked depending on their sum
of constraint violations, while fitness evaluations are based on (adaptively cho-
sen) weightings of the two criteria “original objective” and “sum of constraint
violations”. Coello Coello (2000) suggested to use Pareto dominance selection,
ranking feasible individuals higher than infeasible ones and assigning correspond-
ing fitness values, to handle constraints in a genetic algorithm. Moreover, Coello
Coello and Mezura-Montes (2002) developed a Niched-Pareto Genetic Algorithm
(NPGA) to handle constraints in single-objective CPs, in which individuals are
selected through a tournament based on Pareto dominance.

The close relationship between constrained programming and multicriteria op-
timization was also observed in other contexts. Among others, Wierzbicki (1977,
1980) introduced a scalarization method for multicriteria optimization problems
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that was motivated by penalty methods in constrained programming, Fletcher
and Leyffer (2002) considered the objective function and the sum of constraint
violations as two criteria and suggest a filter SQP method for nonlinear program-
ming problems that uses dominance relations with respect to these two criteria,
Carosi et al. (2003) discussed the connections between semidefinite optimization
and vector optimization, and Boyd and Vandenberghe (2004) related Lagrangian
relaxation to multicriteria optimization.

Motivated by these considerations, we can conclude that a given CP can
be interrelated with one or several related multiobjective programming problems
(MOPs), where some (or all) of the constraints of the CP are moved into the set of
objective functions. It is easy to see that an optimal solution of a CP always is an
efficient (or weakly efficient) solution of the related MOP. Consequently, methods
designed for the determination of efficient solutions of MOPs can be adapted to
approximate - or exactly determine - an optimal solution of the underlying CP. As
a matter of fact, we will show that some of the classical approaches for the solution
of CPs are directly related to scalarization approaches applied in MOP and vice
versa. This connection gives rise to a new and surprisingly simple interpretation
of some of the classical results in constrained programming. Moreover, it suggests
the application of a whole range of solution and approximation methods for MOPs
for the solution - or approximation - of CPs.

The remainder of the paper is organized as follows: After a formal statement of
CPs and their associated MOPs in the following section, the relationship between
well-known scalarization approaches for MOPs and problem relaxations for CPs
are analysed in Section 3. Section 4 discusses an approximation approach for
MOPs that appears suitable for the solution of CPs. Interrelations to Lagrangian
relaxation are highlighted for the case of convex problems, and convergence results
are proven for convex as well as non-convex problems. The paper is concluded
with a short summary and some hints to further application areas in Section 5.

2 Problem Formulation

The following notation will be used throughout the paper. Let u, w ∈ Rk be two
vectors. We denote components of vectors by subscripts and enumerate vectors
by superscripts. u > w denotes ui > wi for all i = 1, . . . , k. u ≥ w denotes
ui ≥ wi for all i = 1, . . . , k, but u 6= w. u ≧ w allows equality. The symbols
<,≤, ≦ are used accordingly. Let Rk

≦ := {x ∈ Rk : x ≦ 0}. The set Rk
≧ is defined

accordingly and the set u + Rk
≧ := {(u + x) ∈ Rk : x ∈ Rk

≧}, where u ∈ Rk, is

referred to as a dominating cone at u.
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2.1 Constrained Programming Problems

In this and in the following sections we focus our discussion on inequality con-
strained programming problems. Nevertheless, most of the results immediately
transfer to the general case of inequality and equality constrained problems. We
consider the following constrained programming problem CP:

max f(x)
s.t. gi(x) ≥ 0 ∀i ∈ {1, . . . , k}

x ∈ S,
(1)

where S ⊆ Rn is the feasible set that may, for example, be given by further
equality and / or inequality constraints and that may also include integrality
constraints on some of the variables. We assume that all functions f(x) and
gi(x), i = 1, . . . , k, are real-valued. For simplicity we will assume that an optimal
solution exists for all problems considered. This assumption can of course be
weakened depending on the particular problem formulation.

2.2 Multiple Objective Programming Problems

Relaxing the constraints in the CP (1) and interpreting them as additional ob-
jective functions, we can formulate a related MOP as:

max f(x)
max g1(x)

...
max gk(x)
s.t. x ∈ S.

(2)

We will refer to problem (2) as the MOP associated to the CP (1).
For notational convenience and to facilitate interchanges between objective

functions and constraint functions, we denote a feasible criterion vector by z(x) =
(
z0(x), z1(x), . . . , zk(x)

)T
:=
(
f(x), g1(x), . . . , gk(x)

)T
∈ Rk+1. Using this nota-

tion, the set of all feasible criterion vectors Z, the set of all (globally) nondomi-
nated criterion vectors N and the set of all efficient points E of (2) are defined
as follows:

Z = {z ∈ Rk+1 : z = z(x), x ∈ S}
N = {z ∈ Z : ∄z̃ ∈ Z s.t. z̃ ≥ z}
E = {x ∈ S : z(x) ∈ N}.

We assume that the set Z is bounded and Rk+1
≦

-closed, i.e., the set Z + Rk+1
≦

is

closed, and that the sets N and E are nonempty. A point x̄ ∈ S is called weakly
efficient if there does not exist another point x̂ ∈ S such that z(x̂) > z(x̄). The
point z∗ ∈ Rk+1 with z∗i = max{zi(x) : x ∈ S}, i = 0, . . . , k is called the ideal
criterion vector, and the point z∗∗ ∈ Rk+1 with z∗∗i = z∗i + εi, i = 0, . . . , k, where

4



ε = (ε0, . . . , εk) > 0 are small positive numbers, is called the utopian criterion
vector.

The set of properly nondominated solutions is defined according to Geoffrion
(1968): A point z̄ ∈ N is called properly nondominated, if there exists M > 0
such that for each i = 0, . . . , k and each z ∈ Z satisfying zi > z̄i there exists an
index j 6= i with zj < z̄j and

z̄i − zi

zj − z̄j

≤ M.

Otherwise z̄ ∈ N is called improperly nondominated.

2.3 Interrelating CP and MOP

The following result is an immediate consequence of the application of the e-
constraint approach to the associated MOP which will be described in detail in
Section 3.1. A proof of this result can, for example, be found in Steuer (1986); it
follows also from Theorem 2 below.

Theorem 1. The set of optimal solutions of the CP (1) always contains an ef-
ficient solution of the associated MOP (2), and all optimal solutions of (1) are
weakly efficient for (2).

Consequently, an optimal solution of the CP (1) can be determined as a specific
efficient solution of the associated MOP (2). If the set of all efficient solutions
of the associated MOP was known, that solution with the smallest value of f
satisfying all the constraints in the other objectives could be easily identified.
Clearly, this is in general not an efficient approach for the solution of CP since it
involves the determination of a whole set of solutions rather than just one most
preferred solution. However, if appropriate approximation approaches are used to
approximate the efficient set of the associated MOP, near-optimal solutions of CP
can be found in a very efficient way. How such approaches could be implemented
will be discussed in Section 4. Moreover, as will be discussed in detail in the
following section, Theorem 1 is the basis for an insightful comparison of different
relaxations of a CP and corresponding scalarization approaches for the associated
MOP.

3 Scalarization Approaches for MOPs and their

Relation to Constrained Programming

A common approach for the solution of MOPs is to transform the original mul-
ticriteria problem into a series of scalarized, single criterion subproblems which
are then solved using classical methods from constrained or unconstrained pro-
gramming. Note that this is a principally different approach than the application
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of genetic algorithms for the approximation of the complete nondominated set
of, for example, an associated MOP as mentioned in the introduction. However,
most of the constraint handling techniques applied in the context of genetic algo-
rithms can be interpreted as a combination of scalarization approaches for parts
of the objectives (in this case the constraints which are typically combined in
a weighted-sums scalarization, cf. Section 3.2 below) with an approximation of
the nondominated set of the remaining bi- or multiobjective, then unconstrained
problem.

The aim of this section is to give a consistent review of the similarities and
differences between scalarization approaches for MOPs and (sometimes only par-
tial) relaxations and penalty approaches for CPs. For this purpose, the most
commonly used scalarization approaches for MOPs are reviewed in the light of
a given CP (1) and its associated MOP (2). As may be expected, very sim-
ilar difficulties arise for both ways of interpreting the problem. Nevertheless,
the comparison suggests also alternative relaxation strategies for CPs. One of
them, which has its roots in the relation between weighted-sums scalarizations
and Lagrangian relaxation (cf. Section 3.2 below), is described in detail in Section
4.

3.1 e-Constraint Approach

The e-constraint approach reveals most directly the close relationship between
CP and a scalarization of its associated MOP.

Let i ∈ {0, . . . , k} and ej ∈ R, j ∈ Ji := {0, . . . , k}\{i}. Then the ith objective
e-constraint program introduced in Haimes et al. (1971), see also Chankong and
Haimes (1983), can be formulated as

max zi(x)
s.t. zj(x) ≥ ej ∀j ∈ Ji

x ∈ S.
(3)

We will assume in the following that the lower bounds ej , j ∈ Ji are always
chosen such that (3) is feasible.

The following results on the e-constraint approach are well-known but in-
cluded here for completeness.

Theorem 2 (Chankong and Haimes (1983)).

(i) Every optimal solution of (3) is a weakly efficient solution of (2), and the
set of all optimal solutions of (3) contains at least one efficient solution of
(2).

(ii) If x̄ ∈ S is an efficient solution of (2), then there exists an index i ∈
{0, . . . , k} and lower bounds ej ∈ R, j ∈ Ji such that x̄ is an optimal
solution of (3).
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Theorem 2 can be strengthened in the case of unique optimal solutions:

Corollary 1 (Chankong and Haimes (1983)). If there exists an index i and
lower bounds ej ∈ R, j ∈ Ji such that x̄ is the unique optimal solution of (3),
then x̄ is efficient for (2).

Selecting i = 0 in (3), i.e., zi(x) = f(x), and ej = 0, j = 1, . . . , k, Theorem 1
immediately follows from Theorem 2. In other words, the e-constraint program
(3) for i = 0 and e = 0 is nothing else than the original CP (1).

3.2 Weighted-Sums Approach

The weighted-sums approach was suggested by Gass and Saaty (1955) and is
maybe the most commonly used scalarization technique for MOPs:

Let Λ := {λ ∈ Rk+1 : λ > 0,
∑k

i=0 λi = 1} be the set of all strictly positive

weighting vectors, and let Λ0 := {λ ∈ Rk+1 : λ ≥ 0,
∑k

i=0 λi = 1} be the set of
all nonnegative weighting vectors. Then for a fixed λ̄ in Λ or Λ0, respectively, the
composite or weighted-sums program corresponding to (2) is given by

max λ̄T z(x)
s.t. x ∈ S.

(4)

The following results on the weighted-sums scalarization are well-known:

Theorem 3 (see, e.g., Steuer (1986)).

(i) If λ̄ ∈ Λ0, then an optimal solution x̄ of (4) is weakly efficient for (2), and
if λ̄ ∈ Λ, then an optimal solution x̄ of (4) is efficient for (2).

(ii) If Z is convex and if x̄ is a properly efficient solution of (2), then there
exists λ̄ ∈ Λ such that x̄ is optimal for (4).

As was also observed, for example, in Boyd and Vandenberghe (2004), it is
easy to see that for λ̄ ∈ Λ0 with λ̄0 6= 0, (4) is equivalent to the Lagrangian
relaxation of the original CP (1) given by

max f(x) +
∑k

i=1 λ̃T
i gi(x)

s.t. x ∈ S
(5)

with Lagrange multipliers λ̃ ∈ Rk
≧. The corresponding transformation between

weighting coefficients λ̄ and Lagrange multipliers λ̃ is obtained by setting λ̃ :=
(
λ̄1, . . . , λ̄k

)
/λ̄0 ∈ Rk

≧ in case that λ̄ ∈ Λ0 with λ̄0 6= 0 is given, or, conversely,

by setting λ̄ :=
(
1, λ̃1, . . . , λ̃k

)
/||
(
1, λ̃1, . . . , λ̃k

)
|| ∈ Rk+1

≥ in case that λ̃ ∈ Rk
≧

is given. Consequently, the optimal solution of a Lagrangian relaxation of the
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CP (1) can alternatively be found as the optimal solution of the corresponding
weighted-sums scalarization (4) of the MOP (2).

In case of convex problems we obtain the following necessary optimality con-
dition for CP, see Rockafellar (1970):

Theorem 4. Let f , g1, . . . , gk be convex functions and let S be a convex set. Let
I denote the set of indices for which gi(x) are non-affine functions, and assume
that problem (1) has at least one feasible solution in ri(S) which satisfies with
strict inequality all inequality constraints for i ∈ I, i.e., {x ∈ ri(S) : gi(x) >
0, i ∈ I ∧ gi(x) ≥ 0, i 6∈ I} 6= ∅. Furthermore, let x̄ be an optimal solution of the
CP (1). Then there exist weighting coefficients λ̄ ∈ Λ0 with λ̄0 6= 0 and Lagrange
multipliers λ̃ ∈ Rk

≧, respectively, such that x̄ is optimal for (4) and for (5).

For any choice of weighting coefficients λ̄ ≧ 0 with λ̄0 > 0 and Lagrange
multipliers λ̃ ≧ 0 the optimal objective values of problems (4) and (5) are upper
bounds on the optimal objective value of CP. Hence the weighted sums dual of
CP

min
λ̄≧0, λ̄0>0

max
x∈S

λ̄0f(x) +
∑k

i=1 λ̄T
i gi(x) (6)

is equivalent to the Lagrangean dual of CP

min
λ̃≧0

max
x∈S

f(x) +
∑k

i=1 λ̃T
i gi(x). (7)

In the convex case, Theorem 4 implies that both dual problems yield an optimal
solution of CP.

3.3 Weighted Chebyshev Approach and

Augmented Weighted Chebyshev Approach

Let w ∈ Rk+1
≥ be a set of nonnegative weights and let z∗∗ be the utopian point

of (2). Then the weighted Chebyshev program corresponding to (2), originally
suggested by Bowman Jr. (1976) (see also Lin, 2005, for a recent survey on this
and on related methods), can be written as

min ‖z∗∗ − z(x)‖w
∞

s.t. x ∈ S,
(8)

where ‖z∗∗ − z(x)‖w
∞ = maxi=0,...,k wi(z

∗∗
i − zi(x)) with weights wi > 0, i =

0, . . . , k, is the weighted Chebyshev distance between the utopian point z∗∗ and
the point z(x) ∈ Z. Note that due to the definition of the utopian point we have
z∗∗i − zi(x) > 0 for all x ∈ S, i = 0, . . . , k. The following results on the weighted
Chebyshev scalarization are again well-known:

Theorem 5 (see, e.g., Ehrgott (2000)).
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(i) Every optimal solution of (8) is weakly efficient for (2), and the set of all
optimal solutions of (8) contains at least one efficient solution of (2). If
the optimal solution of (8) is unique, then it is efficient for (2).

(ii) If x̄ is an efficient solution of (2), then there exists w > 0 such that x̄ is
optimal for (8).

Theorem 5 together with Theorem 1 immediately implies the following result
interrelating the CP (1) with the weighted Chebyshev program (8):

Theorem 6. If x̄ is an optimal solution of the CP (1), then there exists a weight-
ing vector w ∈ Rk+1

> such that x̄ is also an optimal solution of the weighted
Chebyshev program (8).

Note that different from the weighted-sums approach, no convexity assumptions
are needed in Theorems 5 and 6.

The relationship between (1) and (8) can be better understood if (8) is rewrit-
ten as

min α
s.t. α ≥ wi(z

∗∗
i − zi(x)) ∀i ∈ {0, . . . , k}

x ∈ S.
(9)

Suppose that (ᾱ, z(x̄)) is an optimal solution of (9). Then there is at least one
index i ∈ {0, . . . , k} such that the constraint α ≥ wi(z

∗∗
i − zi(x)) is binding at

(ᾱ, z(x̄)), and that zi(x̄) is the maximum possible value such that ᾱ ≥ wj(z
∗∗
j −

zj(x̄)) for all j ∈ Ji = {0, . . . , k} \ {i}. Replacing α by ᾱ in (9) and maximizing
over zi(x) hence yields the following problem formulation that has the same
optimal solution x̄ as problem (9):

max zi(x)
s.t. ᾱ ≥ wj(z

∗∗
j − zj(x)) ∀j ∈ Ji

x ∈ S.
(10)

Problem (10) is easily recognized as an e-constraint program with objective zi(x)
and right-hand side values ej := z∗∗j − ᾱ

wj
for j ∈ Ji:

max zi(x)

s.t. zj(x) ≥ z∗∗j −
ᾱ

wj

∀j ∈ Ji

x ∈ S.

(11)

Moreover, if (ᾱ, z(x̄)) is a unique optimal solution of (9), all of the constraints
α ≥ wi(z

∗∗
i − zi(x)) must be binding at (ᾱ, z(x̄)), and for all i ∈ {0, . . . , k}, zi(x̄)

is the maximum possible value such that ᾱ ≥ wj(z
∗∗
j −zj(x̄)), j ∈ Ji. In this case
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an arbitrary index i ∈ {0, . . . , k} can be selected for the reformulations (10) and
(11). Selecting i = 0 yields

max z0(x) = f(x)

s.t. zj(x) ≥ z∗∗j −
ᾱ

wj

∀j ∈ {1, . . . , k}

x ∈ S

(12)

which is equivalent to the original CP (1) if z∗∗j − ᾱ
wj

= 0, j ∈ {1, . . . , k}, i.e., if
ᾱ
wj

= z∗∗j , j ∈ {1, . . . , k}.

The reformulation (12) shows that the optimal solution x̄ of the weighted
Chebyshev problem (8) may yield an upper bound or a lower bound z0(x̄) on
the optimal objective value of CP, depending on the choice of the weights w.
Consequently, the formulation of a corresponding dual of CP is meaningless in
this case.

Another drawback of the weighted Chebyshev approach (8) is that it may
generate weakly efficient solutions. In order to overcome this difficulty, Steuer
and Choo (1983) formulated an augmented weighted Chebyshev program as

min ‖z∗∗ − z(x)‖w
∞ + ρ‖z∗∗ − z(x)‖1

s.t. x ∈ S,
(13)

where ‖z∗∗ − z(x)‖1 =
∑k

i=0(z
∗∗
i − zi(x)) is the l1 distance between the utopian

point z∗∗ and the point z(x) ∈ Z, and ρ ≥ 0 is a (small) nonnegative scalar. As
was shown in Steuer and Choo (1983), if ρ > 0 then every optimal solution of
(13) is properly efficient for (2), and all efficient solutions of (2) can be found for
appropriately selected values of w and ρ. Using the same arguments and notation
as above, (13) has the same optimal solution x̄ as

max zi(x) + ρ

k∑

j=0

zj(x)

s.t. zj(x) ≥ z∗∗j −
ᾱ

wj

∀j ∈ Ji

x ∈ S,

(14)

cf. (11). This analysis shows that the augmented weighted Chebyshev program
(13) corresponds to a relaxation of the CP (1), where a Lagrangian penalty term
is added to the objective function while the constraints are only partially relaxed.
This becomes even more obvious in the case of unique optimal solutions and if
i = 0 is chosen in (14), cf. (12).

3.4 Reference Point Approach

The reference point approach was introduced and discussed in Wierzbicki (1977,
1980, 1986), see also Stewart (1992) for a comparative discussion and Wierzbicki
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et al. (2000) for an application oriented analysis. It is based on the idea that,
intuitively, decision makers may want to attain certain reference levels which can
be used to define a reference point. Such a reference point may in fact be located
anywhere in Rk+1, i.e., it is not necessarily feasible nor infeasible for (2). The
goal is then to minimize measures of under-achievement and to maximize over-
achievement with respect to this reference point as far as possible in a balanced
way.

Let z0 ∈ Rk+1 be such a reference point that could, for example, represent
an aspiration level or desirable goals in the respective objectives. For example,
in relation to the CP (1) a natural choice for z0

1 , . . . , z
0
k could be z0

i = 0, i =
1, . . . , k. A continuous scalarizing function s : Rk+1 → R is called an order-
representing achievement function if it is strictly monotone in z, i.e., if z1 < z2

implies s(z1 − z0) < s(z2 − z0), and if {z ∈ Rk+1 : s(z− z0) > 0} = z0 +Rk+1
> for

any fixed z0 ∈ Rk+1. Analogously, s is called an order-approximating achievement
function if, for any fixed z0 ∈ Rk+1, it is strongly monotone in z, i.e., if z1 ≤ z2

implies s(z1 − z0) < s(z2 − z0), and if for some small ε > ε̄ ≥ 0, z0 + (Rk+1
≧ )ε̄ ⊂

{z ∈ Rk+1 : s(z − z0) ≥ 0} ⊆ z0 + (Rk+1
≧

)ε, where (Rk+1
≧

)ε is an ε-conical

neighborhood of Rk+1
≧ , i.e., (Rk+1

≧ )ε = {z ∈ Rk+1 : dist(z, Rk+1
≧ ) < ε||z||}. As an

example for an order-approximating achievement function, consider

s(z − z0) =

(

min
i=0,...,k

(zi − z0
i )

)

+ α

(
k∑

i=0

(zi − z0
i )

)

(15)

with a scalar α > 0 that is sufficiently small as compared to ε and large as
compared to ε̄. The reference point approach is based on the solution of

max s(z(x) − z0)
s.t. x ∈ S

(16)

with an arbitrary reference point z0 ∈ Rk+1. Note that an advantage of for-
mulation (16) is that it always has a feasible solution if S 6= ∅. Moreover, all
constraints gi(x) ≥ 0, i = 1, . . . , k of the associated CP (1) are relaxed in this
formulation. In case of linear problems, problem (16) with achievement function
(15) can be rewritten as a linear programming problem. In general, however, (15)
must be represented by additional constraints, or nondifferentiable optimization
techniques have to be applied for the solution of (16).

Theorem 7 (Wierzbicki (1986)).

(i) If s : Rk+1 → R is order-representing and if z(x̄) is an optimal solution of
(16), then x̄ is a weakly efficient solution of (2).

If s : Rk+1 → R is order-approximating and if z(x̄) is an optimal solution
of (16), then x̄ is an efficient solution of (2).
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(ii) If x̄ ∈ S is a weakly efficient solution of (2) and if s : Rk+1 → R is order-
representing, then the optimum of (16) with z0 = z(x̄) is attained at z(x̄)
and the optimal objective value is 0.

If x̄ ∈ S is an ε-properly efficient solution of (2) and if s : Rk+1 → R is
order-approximating, then the optimum of (16) with z0 = z(x̄) is attained
at z(x̄) and the optimal objective value is 0.

Combining this result with Theorem 1, we immediately obtain:

Theorem 8. If x̄ is an optimal solution of the CP (1) and if s : Rk+1 → R is
an order-representing achievement function, then there exists a reference point
z0 ∈ Rk+1 such that x̄ is also an optimal solution of the reference point approach
(16).

Note that again no convexity assumptions are needed in Theorems 7 and 8.
The relationship between (16) and penalty methods in constrained optimiza-

tion where all constraints are relaxed and constraint violations are penalized in the
objective function, including the weighted-sums approach (4) and, equivalently,
Lagrangian relaxation (cf. Section 3.2), was already discussed in Wierzbicki (1977,
1980, 1986). Theorem 7 is based on the separation of sets which constitutes the
close relationship to penalty methods, the concrete formulation of which depends
on the concrete choice of an achievement function s : Rk+1 → R. For differen-
tiable, monotone achievement functions, corresponding weighting coefficients at
an optimal solution z(x̄) of (16) can be computed as

λ̄ =
∂s(z(x̄) − z0)

∂z

/ ∥
∥
∥
∥

∂s(z(x̄) − z0)

∂z

∥
∥
∥
∥

1

.

In the case of convex problems, an optimal solution of (4) with this choice of
weights can thus also be found as an optimal solution of (16) and vice versa.

If the utopian point is selected as reference point, i.e., if z0 = z∗∗, then
the objective function of the augmented weighted Chebyshev program (13) is
order-approximating and hence the augmented weighted Chebyshev approach (cf.
Section 3.3) can be interpreted as a special case of the reference point approach.
In fact, (16) with achievement function (15) is in this case equivalent to (13).

Similarly, the direction method (cf. Section 3.5) is based on the selection of
an appropriate starting point (or reference point) z0, starting from which under-
and over-achievement are optimized based on a predefined search direction.

3.5 Direction Method

An early proposal of a direction method goes back to Boldur (1970), see Roy
(1971). He computes a steplength of a direction and a starting point based on
a linear interpolation of two extreme positions of the criteria. Let z0 ∈ Rk+1
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be a given starting point and consider a search direction d ∈ Rk+1. Moreover,
let p ∈ Rk+1

≧
be given penalty parameters. We shall here consider the direction

method as it is presented by Pascoletti and Serafini (1984) (for the case that
p = 0), given by

max α +
k∑

i=0

piqi

s.t. z(x) = z0 + αd + q
q ∈ Rk+1

≧

x ∈ S.

(17)

Note that, depending on the choice of z0 and d, problem (17) may be infeasible or
unbounded. Reasonable choices are to use z0 ∈ Z + Rk+1

≦
as a starting solution,

which in fact requires the a priori knowledge of the feasible set Z, and search
along a direction d ∈ Rk+1 \ Rk+1

≦ . If the penalty term in the objective function

is omitted (i.e., if p = 0), Pascoletti and Serafini (1984) showed that for every
optimal solution (ᾱ, z(x̄), q̄) of (17), x̄ is a weakly efficient solution of (2) (and
an efficient solution in case of uniqueness), and all efficient solutions of (2) can
be generated by appropriate choices for z0 ∈ Z + Rk+1

≦
and d ∈ Rk+1 \ Rk+1

≦
in

(17). As discussed in Schandl et al. (2002b), the generation of weakly efficient
solutions can be avoided if an appropriate penalty term is added in the objective
function, which can, for example, be realized by selecting p > 0 in (17).

Theorem 9 (Pascoletti and Serafini (1984); Schandl et al. (2002b)).

(i) If (ᾱ, z(x̄), q̄) is an optimal solution of (17) with p ∈ Rk+1
> , then x̄ is an

efficient solution of (2). If p ∈ Rk+1
≧

, then x̄ is at least a weakly efficient

solution of (2).

(ii) If x̄ ∈ S is an efficient solution of (2), then there exist penalty coefficients
p ∈ Rk+1

≧
, a starting point z0 ∈ Z + Rk+1

≦
and a search direction d ∈

Rk+1 \ Rk+1
≦

such that x̄ is an optimal solution of (17).

Note that p = 0 is always an appropriate choice in Theorem 9(ii). Theorems
1 and 9 can again be used to derive the following result:

Theorem 10. If x̄ is an optimal solution of the CP (1), then there exists p ∈
Rk+1

≧
, a starting point z0 ∈ Z + Rn

≦ and a search direction d ∈ Rk+1 \ Rk+1
≦

such

that x̄ is also an optimal solution of the direction method (17).

Note that again no convexity assumptions are needed in Theorems 9 and 10.
To analyze the interrelation between (1) and (17), consider the case that

(17) has an optimal solution (ᾱ, z(x̄), q̄) such that x̄ is efficient for (2). Since
(ᾱ, z(x̄), q̄) is feasible for (17) it satisfies zi(x̄) = z0

i + ᾱdi + q̄i for all i = 0, . . . , k.

13



Moreover, the efficiency of x̄ implies that zi(x̄) is maximal with the property that
zj(x̄) = z0

j + ᾱdj + q̄j for all j ∈ Ji = {0, . . . , k} \ {i}. Similar to the case of the
weighted Chebyshev approach this implies that if ᾱ and q̄ are fixed, x̄ also solves
the following problem:

max z0(x) = f(x)
s.t. zj(x) = z0

j + ᾱdj + q̄j ∀j ∈ {1, . . . , k}
x ∈ S.

(18)

This reformulation is equivalent to the original CP (1) if z0
j − ᾱdj + q̄j = 0 for all

j ∈ {1, . . . , k}, and also shows the similarity between the direction method and
the weighted Chebyshev approach, cf. (12).

An alternative reformulation of (17) is obtained by using the equality q =
z(x) − z0 − αd in the objective function:

max (1 −
k∑

i=0

pidi) α +

k∑

i=0

pizi(x) −
k∑

i=0

piz
0
i

︸ ︷︷ ︸

constant

s.t. z(x) − z0 − αd ≧ 0
x ∈ S.

(19)

In this reformulation, similarities are also visible to the weighted sums approach
and hence to a modification of Lagrangian relaxation applied to the original CP
(1).

In this context one may also consider the various interactive trade-off proce-
dures that have been proposed. An early reference along this line is the work of
Geoffrion et al. (1972). In these procedures a vector of trade-offs is constructed
via an interaction with a decision maker or by marginal substitution rates deter-
mined by an implicitly given utility function. This defines a vector of preferred
improvements which could be used as the direction d in the above framework.

3.6 Benson’s Method

Let z0 ∈ Z be a feasible starting point. Benson’s method (Benson, 1978) for the
solution of (2) is based on the maximization of the sum of differences between
objective values of feasible points and the starting point z0:

max

k∑

i=0

εi

s.t. z(x) = z0 + ε
ε ∈ Rk+1

≧

x ∈ S.

(20)
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Note that problem (20) can be viewed as a special case of the direction method
(17) with d = 0 and p = (1, . . . , 1) ∈ Rk+1

> . Therefore the following result is also
a consequence of Theorem 9 above.

Theorem 11 (Benson (1978)).

(i) If (ε̄, z(x̄)) is an optimal solution of (20), then x̄ is efficient for (2).

(ii) If x̄ ∈ S is an efficient solution of (2), then there exists a starting point
z0 ∈ Z such that x̄ is an optimal solution of (20).

As observed in Ehrgott (2006), setting ε := z(x) − z0 in (20) yields the
equivalent formulation

max

k∑

i=0

zi(x)

s.t. zi(x) ≥ z0
i ∀i ∈ {0, . . . , k}

x ∈ S,

(21)

highlighting the fact that (20) is basically a combination of a special weighted-
sums scalarization and the e-constraint approach. In view of the CP (1) Benson’s
method hence corresponds to a modification of a specific Lagrangian relaxation
where the constraints are kept, but with possibly modified right-hand-side values.
Due to these modified and varying constraints, problem (20) does not provide
meaningful bounds for CP and hence dual formulations as for the weighted sums
approach are not useful here.

Nevertheless, Theorem 1 implies that (20) can be used to formulate an opti-
mality condition for CP in the following sense:

Theorem 12. If x̄ is an optimal solution of the CP (1), then there exists a
starting point z0 ∈ Z such that x̄ is an optimal solution of (20).

3.7 Method of Elastic Constraints

Let i ∈ {0, . . . , k}, p ∈ Rk and ej ∈ R, j ∈ Ji := {0, . . . , k} \ {i}. Then the
Method of Elastic Constraints introduced by Ehrgott and Ryan (2003) can be
formulated as

max zi(x) −
∑

j∈Ji

pj slj

s.t. zj(x) + slj − spj
= ej ∀j ∈ Ji

sl, sp ∈ Rk
≧

x ∈ S

(22)

with slack and surplus variables slj and spj
associated with the bound ej on

objective j, j ∈ Ji.
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Theorem 13 (Ehrgott and Ryan (2003)).

(i) If p > 0 and if (z(x̄), s̄l, s̄p) is an optimal solution of (22), then x̄ is an
efficient solution of (2).

(ii) If x̄ ∈ S is an efficient solution of (2), then for each i ∈ {0, . . . , k} there
exist lower bounds ej ∈ R, j ∈ Ji and penalty coefficients pi

j, j ∈ Ji such
that x̄ is an optimal solution of (22) for all penalty vectors p ∈ Rk satisfying
p ≧ pi.

As in the previous sections, Theorem 13 combined with Theorem 1 immediately
implies the following:

Theorem 14. If x̄ is an optimal solution of the CP (1), then there exist lower
bounds ej ∈ R, j ∈ Ji and penalty coefficients pi

j, j ∈ Ji such that x̄ is also an
optimal solution of the method of elastic constraints (22).

The connection between (1) and (22) becomes clear by first noting that for
p > 0, an optimal solution (z(x̄), s̄l, s̄p) of (22) satisfies s̄lj = max{0, ej − zj(x̄)}
and s̄pj

= max{0, zj(x̄) − ej} for all j ∈ Ji. Selecting in addition i = 0 implies
that problem (22) can be written equivalently as

max z0(x) −
k∑

j=1

pj · max{0, ej − zj(x)}

s.t. x ∈ S

(23)

which, for ej = 0, j = 1, . . . , k, corresponds to an exact absolute value penalty
function approach applied to the original CP (1), see, for example, Bazaraa et al.
(1993). Since for any choice of p ∈ Rk

> and ej ≤ 0 for all j = 1, . . . , k the optimal
objective value of (23) is an upper bound on the optimal objective value of CP,
an elastic constraints dual of CP can be formulated as

min
p∈R

k
>, e∈R

k
≦

max
x∈S

z0(x) −
k∑

j=1

pj · max{0, ej − zj(x)}. (24)

From a practical point of view, this dual formulation for CP may be useful since
it has no dualtiy gap while giving more flexibility to the right-hand-sides through
the parameters ej , j ∈ Ji, leading to more flexible and thus easier relaxed sub-
problems of the form (23).

3.8 Comparison

Considering a CP (1) and its associated MOP (2), we have shown that the
most common scalarization approaches applied to (2) yield constrained or uncon-
strained programming problems that are closely related to some of the classical
relaxation approaches applied to (1). The corresponding reformulations of (2)
and their interpretation in view of (1) are summarized in Table 1.
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Objective Constraints

e-constraint approach zi(x) ∈ {f(x), g1(x), . . . , gk(x)}
(one objective or constraint
selected)

zj(x) ≥ ej, j ∈ Ji

(right-hand-sides possibly
modified)

Weighted-sums approach f(x) + λ̃T g(x)
(Lagrangian relaxation of CP)

relaxed

Weighted Chebyshev
approach

zi(x) ∈ {f(x), g1(x), . . . , gk(x)}
(one objective or constraint
selected)

zj(x) ≥ z∗j − ᾱ
wj

, j ∈ Ji

(right-hand-sides possibly
modified)

Augmented weighted
Chebyshev approach

zi(x) + ρ
∑k

j=0
zj(x)

(one objective or constraint
selected plus Lagrangian
penalty term)

zj(x) ≥ z∗j − ᾱ
wj

, j ∈ Ji

(right-hand-sides possibly
modified)

Reference point
approach

s(z(x) − z0)
(penalty function approach)

relaxed

Direction method zi(x) ∈ {f(x), g1(x), . . . , gk(x)}
(one objective or constraint
selected)

zj(x) ≥ z0

j + ᾱdj + q̄j , j ∈ Ji

(right-hand-sides possibly
modified)

Benson’s method f(x) +
∑k

i=1
gi(x)

(specific Lagrangian relaxation
of CP)

zi(x) ≥ z0

i , i ∈ {0, . . . , k}
(right-hand-sides modified
and not relaxed)

Method of elastic
constraints

f(x)−
∑k

i=1
pi max{0, ei−gi(x)}

(exact absolute value penalty
function for CP)

relaxed

Table 1: Comparison of the most common scalarization approaches in multicri-
teria programming and their relation to constrained programming

4 Approximation of the Nondominated Set Ap-

plied to Constrained Programming

In order to iteratively approach an optimal - or most preferred - solution of a CP
(1), nondominated solutions of the associated MOP (2) can be used. Iteratively
improved piecewise linear approximations of the nondominated set of the asso-
ciated MOP can be a powerful tool to simultaneously obtain an overview of the
alternatives and an estimate for the optimal solution value of a CP in an efficient
way.

For this purpose, a variety of different methods could be applied including, for
example, genetic algorithms as described in the introduction. In this section, we
focus on a particular method recently suggested by Klamroth et al. (2002) that
generates such approximations in a deterministic, yet problem-dependent way
by utilizing polyhedral distance functions to construct the approximation and
evaluate its quality. The functions automatically adapt to the problem structure
and scaling which makes the approximation process unbiased and self-driven.
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For the sake of completeness, the basic definitions and results of Klamroth
et al. (2002) are briefly reviewed in Sections 4.1 (for the convex case) and 4.5 (for
the non-convex case). They are supplemented by new and extended convergence
results (Sections 4.2 and 4.5) which have implications also for Langrangian relax-
ation methods in constrained programming (Section 4.4), and they are discussed
with respect to their applicability for the solution of constrained programming
problems in general (Sections 4.3 and 4.5).

4.1 Global Approximation for Convex Problems

Let Z be Rk+1
≦

- convex (i.e., Z + Rk+1
≦

is convex) with intZ 6= ∅, and suppose

that a reference point z0 is given that satisfies N ⊆ z0 + Rk+1
≧

. For a polyhedral

gauge γ : Rk+1 → R, consider the problem

max γ(z(x) − z0)
s.t. z(x) ∈ z0 + Rk+1

≧

x ∈ S.

(25)

If γ is defined by a symmetrical unit ball B centered at the origin that is obtained
by symmetrically extending a given piecewise linear inner approximation of N
in the objective space (see Figure 2 for an example), (25) finds a feasible point
z(x̄) ∈ Z that maximizes the problem-dependent γ-distance from the current
approximation in the objective space. Schandl et al. (2002a) showed that in this
case γ is an oblique norm, i.e., it is absolute (γ(w) = γ(u) ∀w ∈ R(u) := {w ∈
Rk+1 : |wi| = |ui| ∀i = 0, . . . , k}) and it satisfies (z − Rk+1

≧
) ∩ Rk+1

≧
∩ ∂B =

{z} ∀z ∈ (∂B)≧. An example of an oblique norm in R2 is given in Figure 1;
R(z) = {z, z1, z2, z3} in this example.

z

z1z2

z3 (z − Rk+1
≧ ) ∩ Rk+1

≧

Figure 1: Example of the unit ball of an oblique norm

Theorem 15 (Schandl et al. (2002b)).

(i) If γ is an oblique norm then every optimal solution x̄ of (25) is an efficient
solution of the MOP (2).
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(ii) If Z is Rk+1
≦

- convex and if x̄ is a properly efficient solution of (2), then

there exists an oblique norm γ such that x̄ solves (25).

Z∩(z0+R2
≧)

z0

f(x)

g1(x)

z(x̄)

Figure 2: Illustration of a simple oblique norm applied in problem (25) to an
MOP (2) with the two objectives z0(x) = f(x) and z1(x) = g1(x)

Formulation (25) combines ideas from several classical scalarization methods,
among them the weighted-sums approach (Section 3.2), the augmented weighted
Chebyshev approach (Section 3.3) and the reference point approach (Section 3.4).
It is, however, more general than the weighted-sums approach (cf. reformulation
(28) below) and the augmented weighted Chebyshev approach (since it allows
for a larger class of distance measures and applies them, intuitively speaking,
from the opposite side). Moreover, it differs from the reference point approach
by keeping the reference point fixed and requiring its selection such that N ⊆
z0 +Rk+1

≧
, while varying the scalarizing function (which in fact may not be order-

representing nor order-approximating, cf. Section 3.4).
Let d1, . . . , ds ∈ Rk+1 be the normal vectors of the facets of the unit ball B of

a polyhedral gauge γ such that {z ≧ 0 : djz ≤ 1, j = 1, . . . , s} = B ∩ Rk+1
≧ and

{z ≧ 0 : dj(z − z0) ≤ 1, j = 1, . . . , s} ⊆ Z≦ = Z + Rk+1
≦

. Then problem (25)

can be formulated as the following disjunctive programming problem:

max λ
s.t.

∨s

j=1 (dj(z(x) − z0) ≥ λ ∧ x ∈ S)

λ ∈ R.
(26)

Figure 3 shows an example with two facets represented by the normal vectors d1

and d2. The point z(x̄) corresponds to an optimal λ in (26).
Problem (26) may be reconsidered in two directions via alternative formula-

tions. One formulation brings the program (26) into a more conventional setting
by application of the linearizing technique of Balas (1979). When (26) is used in
the approximation procedure the result of (26) will always be positive. Hence we
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z0 g1(x)

f(x)

d1(z−z0)≤1

d2(z−z0)≤1

z(x̄)

Figure 3: Illustration of problem (26) for an MOP (2) with the two objectives
z0(x) = f(x) and z1(x) = g1(x)

may assume that λ is positive. An equivalent problem, although with reciprocal
value, is then

min 1
λ

s.t.
∨s

j=1
1
λ
dj(z(x) − z0) ≥ 1

x ∈ S, λ > 0.

Substituting 1
λ

by µ gives the problem

min µ

s.t.
∨s

j=1 µdj(z(x) − z0) ≥ 1

x ∈ S, µ ≥ 0.

Let µj ∈ R for j = 1, . . . , s. An equivalent formulation is

min
∑s

j=1 µj

s.t. µjd
j(z(x) − z0) ≥ yj ∀j ∈ {1, . . . , s}

∑s

j=1 yj = 1

yj ≥ 0, µj ≥ 0 ∀j ∈ {1, . . . , s}

x ∈ S.

(27)

Problem (26) has in this way been put into a conventional compound form, which
may be best suitable for direct application of a standard optimization routine.

The other formulation decomposes problem (26) into multiple subproblems,
each of a particularly simple structure. For this purpose, let B be the unit ball of
γ and denote by C1, . . . , Cs the fundamental cones of B∩Rk+1

≧
. If dj is the normal

vector of the facet of the cone Cj , j = 1, . . . , s, then (25) can be decomposed into
s subproblems (P j), j = 1, . . . , s, of the form

λj = max dj(z(x) − z0) =
∑k

i=0 dj
i (zi(x) − z0

i )
s.t. x ∈ S

(28)

from which the maximum value of λj, j = 1, . . . , s must be selected to obtain
an overall optimal solution of (26). Note that each subproblem (28) corresponds
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to a weighted-sums scalarization of the MOP (2) (cf. Section 3.2) and thus has
a Lagrangian type objective function and contains only the problem dependent
constraints x ∈ S. If the given problem (2) is the associated MOP of a CP (1),
we can generally assume that all the complicating constraints of (1) are already
contained in the objectives of (2) and that the feasible set S has a very simple
structure, making (28) easily solvable.

The approximation algorithm suggested in Klamroth et al. (2002) now itera-
tively solves problem (25) by computing optimal solutions of all newly generated
subproblems of the form (28), starting from an initial approximation that can be
generated, for example, by solving min{zi(x) : x ∈ S} for all i = 0, . . . , k.

z0

(a)

z0
z(x1)

z(x2)

(b)

z0
z(x1)

z(x3)

z(x2)

(c)

z0
z(x1)

z(x3)

z(x2)

(d)

z0
z(x1)

z(x3)

z(x2) z(x4)

(e)

z0
z(x1)

z(x3)
z(x4)

z(x2)

(f)

Figure 4: Inner approximation algorithm

In each iteration, the point of “worst” approximation is added to the current
approximation which leads to an adaptive update of the polyhedral gauge γ
and thus to the generation of a new set of “active” subproblems (28) in the
updated cones. Figure 4 illustrates the procedure at the example of the inner
approximation for a convex problem. Outer approximations can be constructed
in a similar way.

Note that this approach is related to several other approximation approaches
for convex MOPs, most of all probably to the NISE method (Cohon, 1978) and
to the estimate refinement method (Lotov, 1985; Lotov et al., 2004). The main
difference lies in the fact that the quality of the current approximation is measured
based on the approximation itself and not, for example, by the Hausdorff distance.
Consequently, different approximation results are obtained since different points
may be selected for the addition to the approximation, even if the individual
subproblems solved are of the same or of a similar type as the problems (28)
above. The main advantage of using a problem-dependent distance measure can
be seen in the achieved scale-independence which is particularly important if the
MOP is based on an underlying CP where objective function and constraints may
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model completely different things.
Figure 5 shows the point z(x̃) obtained from the intersection of the piecewise

linear approximation of the nondominated set of (MOP) with the constraint set
gi(x) ≥ 0, i = 1, . . . , k, for an example with k = 1.

z0 g1(x)

f(x) g1(x)≥0

z(x̃)

Figure 5: Inner approximation algorithm applied to a CP (1) with one constraint
g1(x) ≥ 0

Note that in the bicriteria case each iteration of the approximation algorithm
involves the solution of only one weighted-sums scalarization (28) of (2). Partic-
ularly in this case, this approach thus yields an efficient method to approximate
the optimal Lagrange multipliers as well as the optimal solution of constrained
programming problems, see also Sections 4.2 - 4.4 below. Even though the num-
ber of active subproblems per iteration may theoretically be larger for k ≥ 2, it
can be expected not to have a considerable impact on the average time needed to
find the next iterate. Recall also that, as an alternative to the decomposition of
problem (26) into subproblems (28), one compound problem (27) could be solved
in each iteration of the approximation method.

4.2 Convergence Rate for Convex Problems

Based on a result of Rote (1992) on the convergence rate of sandwich approx-
imations of convex functions, Klamroth et al. (2002) showed that for convex
bicriteria problems the approximation error after m iterations of the approxima-
tion algorithm described in Section 4.1 measured by the approximating gauge γ,
decreases by the order of O( 1

m2 ) which is optimal. Using similar relations between
the gauge distances γ and the classical Hausdorff distance as in Klamroth et al.
(2002), combined with more general results of Kamenev (1992), Kamenev (1994)
and Lotov et al. (2004), we will show in the following that a generalization is
possible also for (k + 1)-criteria problems, k + 1 ≥ 2, yielding a convergence rate
of O( 1

m2/k ) in this case.
For this purpose, suppose that the unit ball B of the approximating gauge

γ of a problem in Rk+1 after m iterations of the approximation algorithm is
given by the reflection set of B ∩ Rk+1

≧
, i.e., B = R(B ∩ Rk+1

≧
). Moreover, let

Z̄ be the reflection set of (Z − z0)≦ ∩ Rk+1
≧

, i.e., Z̄ = R((Z − z0)≦ ∩ Rk+1
≧

) is
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the set obtained from Z≦ = Z + Rk+1
≦

by moving its reference point z0 to the

origin and extending the resulting set from Rk+1
≧

symmetrically around the origin.

Then the Hausdorff distance dH(B, Z̄) between the compact convex set Z̄ and its
polyhedral approximation B ⊆ Z̄ is given by

dH(B, Z̄) = sup
z∈Z̄

inf
b∈B

‖z − b‖2,

where ‖ z − b ‖2 denotes the Euclidean distance between the two points b and
z in Rk+1. Let rS be the radius of a sphere S centered at the origin that is
completely contained in B. If we denote the norm with unit ball S by ‖•‖S, we
have ‖u‖2= rS· ‖u‖S for all u ∈ Rk+1. Moreover, ‖u‖S≥ γ(u) for all u ∈ Rk+1

since S ⊆ B, see Figure 6 for an illustration. Hence,

dH(B, Z̄) = rS · sup
z∈Z̄

inf
b∈B

‖z − b‖S ≥ rS · sup
z∈Z̄

inf
b∈B

γ(z − b) = rS · |γ(z̄ − z0) − 1| ,

where z̄ is an optimal solution of (25). Observe that the above relations are
true for the approximating gauge γ and unit ball B at every iteration of the
approximation algorithm following the mth iteration.

Z̄
B

S rS

Figure 6: Comparing the problem dependent gauge distance to the Hausdorff
distance

Kamenev (1992) and Kamenev (1994) (see also Lotov et al., 2004) showed that
if the estimate refinement method is applied to iteratively construct inscribed
polyhedra P m, m ≥ 1, to approximate a compact convex set Z̄ in Rk+1, then
for any 0 < ε < 1 there exists M ∈ N such that for all m ≥ M the Hausdorff
distance between the approximating polyhedron and the set Z̄ after m iterations
can be bounded by

dH(P m, Z̄) ≤ (1 + ε) · 16RZ̄ ·

(
(k + 1)πk+1

πk

) 2
k

· m− 2
k ,

where πk is the volume of the unit sphere in Rk and RZ̄ denotes the radius of a
sphere circumscribed around Z̄.
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Exactly the same points that are also found by solving problem (25) are gener-
ated by the estimate refinement method: New points are found by maximizing the
Euclidean distance between supporting hyperplanes of P m and Z̄, respectively,
over all possible normal directions. Since P m is a polyhedron, this maximum is
attained at a supported point of Z̄ solving (25) in some fundamental cone of P m.
These points are then added to the convex hull of the approximation in a possibly
different order which may be non-optimal with respect to γ, and hence we have

sup
z∈Z̄

inf
b∈B

γ(z − b) ≤ sup
z∈Z̄

inf
p∈P m

γ(z − p).

Thus, the approximation error of the approximation algorithm described in Sec-
tion 4.1 after m iterations, m ≥ M , can be bounded by

|γ(z̄−z0)−1| = sup
z∈Z̄

inf
b∈B

γ(z−b) ≤ sup
z∈Z̄

inf
p∈P m

γ(z−p) ≤
1

rS

dH(P m, Z̄) ≤ Km− 2
k (29)

for some constant K that can be chosen independently of m. (Note that the
radius rS of the sphere inscribed into B at iteration m can be chosen such that
S is already inscribed into the initial approximation, i.e., for m = 0.)

Theorem 16. Consider a CP (1) with k constraints and its associated MOP (2)
with k + 1 criteria, k ≥ 1. Then the approximation error after m iterations of
the approximation algorithm described in Section 4.1, measured by the adaptive
polyhedral gauge γ, decreases by the order of O(m− 2

k ).

Proof. Since the set Z̄ is compact and convex by assumption, the convergence
rate of O(m−

2
k ) follows from Kamenev (1992, 1994) and (29).

2

Note that this convergence rate is in general best possible since, for example,
the unit sphere in Rk+1 can be approximated by an inscribed polyhedron at most
with an accuracy of this order (see, for example, Gruber, 1992).

4.3 Local Approximation for Convex Problems

The method presented in Section 4.1 is designed to generate an approximation of
the complete nondominated set N of the MOP (2). If the MOP associated with
a given CP is considered, one may, however, be interested in an approximation
of only that region of N that contains optimal solutions of the underlying CP
(1). For the problem depicted in Figure 5 this could be realized, for example, by
refining the approximation only in that candidate cone that potentially contains
an optimal solution z̄ = z(x̄) of (1).

To avoid trivial situations we will assume in the following that at least one
constraint is binding at any optimal solution of the given CP (1). Note that
otherwise the problem could be solved by simply solving the relaxed problem
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maxx∈S f(x). (For the associated MOP (2) this would imply that the ideal point
is a feasible solution.)

For CP’s with a single constraint and the associated bicriteria MOP’s, cones
that potentially contain an optimal solution z̄ = z(x̄) of the CP (1) can be
easily identified by checking the constraint g1(x) ≥ 0 for the fundamental vectors
(corresponding to the extreme points of B) that generate the respective cones, see
Figure 5. In fact, we can restrict our search to candidate cones that are generated
by two extreme points z(x) and z(y), one of which satisfies the constraint, i.e.,
g1(x) ≥ 0 while the other violates the constraint, i.e., g1(y) < 0.

For CP’s with two or more constraints and the related multicriteria MOP’s,
the situation is, however, more complicated as the following example with two
constraints shows: Suppose that an approximating polyhedron z0 + B with ref-
erence point z0 = (f(x0), g1(x

0), g2(x
0))T = (0, 0, 0)T is given by the extreme

points z1 = (1.5, 0, 0)T , z2 = (1, 1, 0)T , z3 = (0, 1, 1)T , z4 = (0, 0, 1.5)T and
z5 = (0, 1.5, 0)T , see Figure 7 for an illustration.

z0 g1(x)

f(x)

g2(x)

z1

z2

z5

z3

z4

Figure 7: The cone defined by z1 = z(x1), . . . , z4 = z(x4) may contain solutions
with g1(x) > 1 even though g1(x

i) ≤ 1 ∀i = 1, . . . , 4.

Then the facet of the fundamental cone z0 + C spanned by z1, . . . , z4 has the
normal vector d = (1, 0.5, 1) ≧ 0. If now the bound on g1 is given by g1(x) ≥ 1+ε
where ε > 0 is a sufficiently small number, we can easily construct an example
problem where the intersection of the feasible set Z with the face of the cone C
defined by z2 and z3 (illustrated in bold lines in Figure 7) contains feasible points
z(x) with g1(x) ≥ 1+ε. However, all extreme points defining the considered cone
violate the constraint g1(x) ≥ 1 + ε. Thus, even if all extreme points of a cone
violate one of the constraints, this cone may still contain an optimal solution of
the CP (1).

Unless other constraints on the location of an optimal solution of a CP with
k ≥ 2 are known, the approximation must therefore in general be refined in all
fundamental cones of z0 + B.
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4.4 Application in Lagrangian Relaxation

The convergence rate outlined is Section 4.2 has a useful application in the de-
termination of the optimal Lagrange multipliers associated with the contraints of
CP (1).

As well-known, Lagrange multipliers play a fundamental role in the analysis
and solution of non-linear, in particular convex optimization problems. An impor-
tant class of solution methods fall into the category of subgradient optimization,
where the selection of an efficient updating scheme of the Lagrange multipliers
is important. Thus, the convergence of a subgradient procedure, theoretically
and in practice, depends on the updating scheme. Also, in various decomposition
procedures the updates of Lagrange multipliers are important. In addition to the
classical Dantzig-Wolfe decomposition other schemes have been successful, for
example methods based on interior point algorithms (see Elhedhli et al., 2001),
or mixed schemes like the mean value methods (see Holmberg, 1997). Some of
the schemes have known convergence rates, others have not.

The approximation method presented here can be viewed as a specific up-
dating procedure of the Lagrange multipliers. In each iteration the vector dj of
the fundamental cone containing the optimal solution is an approximation of the
optimal Lagrange multipliers (upon normalization, in which the first component
corresponding to the objective function is set to 1).

Note, that this immediately gives us a procedure for the determination of
the Lagrange multipliers with a prescribed (and in a worst case sense the best
possible) convergence rate as given by Theorem 16.

4.5 Non-convex Problems

Consider a CP (1) and its associated MOP (2) with a non-convex feasible set
Z. We assume that Z ⊆ Rk+1 is Rk+1

≦ - closed with int(Z) 6= ∅, and that a

reference point z0 ∈ Z≦ = Z +Rk+1
≦

is given. Since the nondominated set N may

be non-connected in general, a piecewise linear approximation can only aim at
approximating the set Nc := {z ∈ Z≦ : ∄ z̃∈Z≦ s.t. z̃ ≥ z}, see Figure 8 for an
illustration.

In order to extend the ideas from Section 4 to the non-convex case, Klamroth
et al. (2002) suggested to replace the convex unit ball of a distance measuring
gauge γ by a non-convex set B that is constructed from the intersection of domi-
nating cones. B is then used as a unit set to define a distance measuring function
γ as γ(z) := min{λ : z ∈ λB}.

The basic idea for an approximation procedure is - similar to the convex case
- to minimize the maximum γ-distance between a nondominated point in Z and
the boundary of B. However, since the weighted sums method is in general
not suitable for non-convex problems, in this case variants of the Chebyshev
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z0 g1(x)

f(x)

Z

Nc

N

Figure 8: Connected extension Nc of the components of N for a non-convex
example problem.

method (cf. Section 3.3) are used for the generation of candidate points which
are iteratively added to the approximation.

Let d1, . . . , ds ∈ Rk+1
≧

be a nonempty and finite set of vectors spanning the

nonnegative orthant, and let B be defined by B = cl(Rk+1
≧

\
⋃

j=1,...,s(d
j +Rk+1

≧
)).

We assume that B is bounded, has nonempty interior and that B ⊆ ((Z −z0)≦∩

Rk+1
≧

). As in the convex case, B could be symmetrically extended to all orthants

of the coordinate system, yielding a compact set B̂ that contains the origin in its
interior.

If we interpret the vectors z0+d1, . . . , z0+ds as local nadir points, they define
a corresponding set of local ideal points z0+v1, . . . , z0+vs which can be computed
by

z0
i +vj

i = max
{
zi : zl = z0

l +dj
l ∀l 6= i, l∈{0, . . . , k}; z∈Z≦

}
, i = 0, . . . , k.

Each pair (z0+dj, z0+vj), j = 1, . . . , s in the initial approximation is assumed to
generate a (k + 1)-dimensional axis-parallel rectangular box which can be used
to define the weights for a local application of the Chebyshev method, see Figure
9 for an illustration. As candidates for the extension of the approximation we
consider those points that are generated by the corresponding local Chebyshev
method in these boxes, and a resulting point v ∈ Nc that is currently worst
approximated with respect to the distance measure γ is added to the approxima-
tion. Consequently, v can be generated by solving the disjunctive programming
problem

max γ(v − z0)

s.t.
∨s

j=1 ((z0+dj)+λj(v
j−dj)=v ∧ λj ≥0 ∧ v≦z(x) ∧ x∈S) .

(30)

Note that within a cone (z0 +dj) + Rk+1
≧

with dj < vj, j ∈ {1, . . . , s}, solving

(30) is equivalent to an application of the weighted Chebyshev method (8) with
the ideal point z0+vj and with the weights wj

i := 1

v
j
i −d

j
i

, i = 0, . . . , k. Moreover,
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problem (30) can be simplified to

max λ

s.t.
∨s

j=1

(

(z0+dj) + λ · vj−dj

γ(vj )−γ(dj )
≦ z(x) ∧ x∈S

)

λ ≥ 0.

(31)

In this formulation, the distance information between the current approximation
(given by B) and a point (z0+dj)+λ · vj−dj

γ(vj )−γ(dj )
is captured in the value of λ. In

particular, the optimal solutions v̄ of (30) and λ̄ of (31) satisfy γ(v̄ − z0) = 1 + λ̄
(see Klamroth et al., 2002). Figure 9 illustrates problem (31) and its optimal
solution.

z0 g1(x)

f(x)

z0+d3

z0+d2

z0+d1
z0+v1

z0+v2

z0+v3z̄2

Figure 9: Approximation in the non-convex case. The optimal solution of (31) is
attained at z̄2 where (z0+d2) + λ̄ · v2−d2

γ(v2)−γ(d2)
= z̄2.

Theorem 17 (Klamroth et al. (2002)). Let λ̄ be an optimal solution of (31),
let J be the index set of all constraints of (31) that are satisfied and binding at

optimality, and let v̄j := dj + λ̄ · vj−dj

γ(vj )−γ(dj )
, j ∈ J .

(i) The set B′ defined as

B′ :=

(

B ∪
⋃

j∈J

(v̄j − Rk+1
≧

)

)

∩ Rk+1
≧

satisfies B ⊆ B′ ⊆ ((Z−z0)≦∩Rk+1
≧

), i.e., the set B′ yields again an inner

approximation of the set Nc.

(ii) If z0 + v̄j ≦ z̄j ∈ Z, then z̄j is weakly nondominated. Moreover, if Z is
strictly intRk+1

≦
- convex, then the solution z̄j is properly nondominated.

In Section 4.1 the disjunctive problem (26) was converted into the compound
form (27). Similarly, (31) can be converted into a compound form. Let λj ∈ R
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for j = 1 . . . s and consider

max
∑s

j=1 λj

s.t. λj ·
vj−dj

γ(vj )−γ(dj )
≦ yj(z(x) − (z0+dj)) ∀j ∈ {1, . . . , s}

∑s

j=1 yj = 1

yj ≥ 0, λj ≥ 0 ∀j ∈ {1, . . . , s}

x ∈ S.

(32)

From an algorithmic point of view we would like to iteratively solve problem
(31) and include the resulting solution into the approximation as indicated in
Theorem 17(i). Note that, if for some j ∈ J an optimal solution v̄j of problem
(31) satisfies v̄j = dj, the approximation in the corresponding box is tight and
it can be discarded in further iterations. Otherwise, i.e., if v̄j > dj (and λ̄ >
0), the point v̄j lies on the diagonal of the jth local Chebyshev box, and the
k + 1 sub-boxes obtained from computing B′ = (B ∪ (v̄j − Rk+1

≧
)) ∩ Rk+1

≧
are

again (k + 1)-dimensional. Using similar ideas as in Hamacher et al. (2006),
who suggested a similar approximation algorithm for discrete problems based on
repetitive applications of the e-constraint approach (see Section 3.1) rather than
local applications of the weighted Chebyshev method, the sum of the volumes V ′

of these sub-boxes can be computed as

V ′ = V j −
k∏

i=0

λ̄(vj
i − dj

i ) −
k∏

i=0

(1 − λ̄)(vj
i − dj

i )

= V j − λ̄k+1V j − (1 − λ̄)k+1V j,

where V j =
∏k

i=0(v
j
i − dj

i ) denotes the volume of the original box before its
partition (see Figure 10, (b) and (c) for an illustration where v̄1 = z̄1). Since
V ′ is maximal if λ̄ = 1

2
, we obtain the following bound on the rate at which the

volume of the local Chebyshev boxes used for the approximation decreases:

Theorem 18. Consider a non-convex CP (1) with k constraints and its associ-
ated MOP (2) with k + 1 criteria, k ≥ 1. In each iteration of the approximation
algorithm for non-convex problems described in this section, the volume V of at
least one local Chebyshev box is decreased at least by an amount of (1

2
)k V .

As an alternative to a repeated solution of (31) or of its reformulation (32), the
problem can be decomposed into subproblems (P j), j = 1, . . . , s, that resemble
individual applications of the direction method (17) and that can be formulated
as

δj = max λ

s.t. (z0+dj) + λ · vj−dj

γ(vj )−γ(dj )
≦ z(x)

λ ∈ R, x ∈ S.

(33)

29



The optimal λ̄ of (33) determines the vector

v̄ = (z0+dj) + λ̄ ·
vj − dj

γ(vj) − γ(dj)
.

Then the optimal solution value of (31) equals the maximum value of δj , j =
1, . . . , s which also yields the related vector v̄ as indicated above. The resulting
approximation algorithm for non-convex problems is illustrated in Figure 10.

z0+d1

z0+v1

(a)

z0

z̄1

(b)

z0
z0+d2

z0+d1 z0+v2

z0+v1

(c)

z0

z̄1

(d)

z0
z0+d3

z0+d2

z0+d1

z0+v3

z0+v2
z0+v1

(e)

z0

z̄3

(f)

Figure 10: Inner approximation algorithm for general non-convex problems: (a)-
(b) generation of an initial approximation, (c)-(f) iterations.

Note that, as in the convex case, each update of the set B generates a new
set of active subproblems (33) in the modified local Chebyshev boxes, while the
subproblems remain unchanged in the remaining boxes.

Theorem 19. Consider a non-convex CP (1) with k constraints and its asso-
ciated MOP (2) with k + 1 criteria, k ≥ 1. Then the approximation error of
the approximation algorithm outlined in this section, measured by the adaptive
distance measuring function γ, converges to zero.

Proof. According to Theorems 17 and 18, the adaptively generated unit sets Bm,
m ≥ 1, of the distance measuring function γm satisfy Bm ⊆ Bm+1 and Bm ⊆
((Z − z0)≦ ∩ Rk+1

≧
) for all m ≥ 1. Consequently, the sequence of approximating

sets (Bm)m≥1 is convergent to some limiting set B̄ which satisfies B̄ ⊆ ((Z−z0)≦∩

Rk+1
≧

), i.e., z0 + B̄ is an inner approximation of the set Z≦∩Rk+1
≧

. Moreover, for

all stages of the approximation, all parts of the set Nc ⊆ ∂(Z≦) (which is to be
approximated) are contained in the union of the local Chebyshev boxes given by
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the pairs of local nadir and local ideal points (z0+dj,m, z0+vj,m), j = 1, . . . , sm,
induced by the approximation Bm in iteration m, m ≥ 1.

Similarly, (λ̄m)m≥1 is a sequence with 0 ≤ λ̄m ≤ maxj=1,...,sm{γm(vj,m) −
γm(dj,m)} ≤ maxj=1,...,s1{γ1(v

j,1) − γ1(d
j,1)} =: K for all m ≥ 1. Thus, (λ̄m) has

a subsequence (λ̄ml
) that is convergent to some value λ̄ ≥ 0.

The boundary of the limiting set B̄ may consist of parts where it coincides
with the set Nc (i.e., the volume

∏k

i=0(v
j
i − dj

i ) of the corresponding Chebyshev
boxes has converged to zero and we thus have the desired convergence in these
areas) and other parts where the corresponding Chebyshev boxes still satisfy
∏k

i=0(v
j
i − dj

i ) ≥ δ > 0. Note that there may only be finitely many such boxes,
and denote their local nadir and local ideal points by (z0+dj, z0+vj), j = 1, . . . , s̄.

Now suppose that λ̄ > 0. Since liml→∞ λ̄ml
= λ̄ and liml→∞ Bml

= B̄, we
have that the optimal solution of

max γB̄(v − z0)

s.t.
∨s̄

j=1 ((z0+dj)+λj(v
j−dj)=v ∧ λj ≥0 ∧ v≦z(x) ∧ x∈S)

is γB̄(v̄−z0) = 1+λ̄ > 1, where γB̄(z) = min{λ : z ∈ λB̄}, cf. problem (30). Con-
sequently, there exists a local Chebyshev box defined by (dl, vl), l ∈ {1, . . . , s̄}
such that (z0 + dl) + λ̄(vl − dl) = v̄. Since the volume

∏k

i=0(v
l
i − dl

i) of the
corresponding box is non-zero, we have that vl

i > dl
i for all i ∈ {0, . . . , k},

and thus v̄i > (z0 + dl)i for all i ∈ {0, . . . , k}. But then the corresponding
Chebyshev box should have been split at some stage of the approximation pro-
cedure, contradicting the fact that liml→∞ Bml

= B̄. We can conclude that
liml→∞ Bml

= ((Z − z0)≦ ∩ Rk+1
≧

) = limm→∞ Bm, and thus limm→∞ λ̄m = 0.
2

Intersecting the final approximation with the constraint set gi(x) ≧ 0, i =
1, . . . , k, yields an approximation of the optimal solution of the original CP (1)
the quality of which can be estimated through the value of γ, see Figure 11 for an
example with k = 1. In the light of Sections 3.3, 3.5 and 4.4, an application of this
approximation method to non-convex CPs could be interpreted as an adaptive
scheme for the update of partial problem relaxations (or bound modifications),
or for the adaptation of search directions (line searches) in the objective space of
the associated MOP.

Theorem 18 also suggests a simple, non-adaptive way of selecting the next
subproblem (33) and the next local Chebyshev box that is split in the approxi-
mation procedure: If always a box with maximal volume among all active boxes
is chosen, then the expected volume reduction according to Theorem 18 is maxi-
mized. Using again a similar analysis as Hamacher et al. (2006), a bound on the
convergence rate can be derived also for this method:

Starting with an initial approximation consisting of one single box (see Figure
10 (a)) with volume V 0, after one iteration of the procedure the total volume of
the at most k + 1 resulting active boxes is reduced to an amount of at most
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z0 g1(x)

f(x) g1(x)≥0

z(x̃)

Figure 11: Approximation of an optimal solution of the CP (1) for k = 1.

V 1 ≤ V 0(1−(1
2
)k) . After k+1 further iterations, either each of these k+1 boxes

has been split one more time, yielding an active volume of at most V 1+(k+1) ≤
V 1(1 − (1

2
)k), or an even better reduction could be achieved by selecting other

boxes with larger volumes. In general, after mq =
∑q

r=0(k + 1)r = (k+1)q+1−1
k

iterations, q ≥ 0, we have

V mq ≤ V mq−1

(

1 −

(
1

2

)k
)

≤ V 0

(

1 −

(
1

2

)k
)q+1

= V 0

(

1 −

(
1

2

)k
) ln(kmq+1)

ln(k+1)

= V 0 · C
logC (kmq+1)

logC(k+1) = V 0 · (kmq + 1)
1

logC (k+1) = V 0 · (kmq + 1)
ln(C)

ln(k+1)

with C := 2k−1
2k < 1. Thus, also for this selection rule, the sequence of approxi-

mating sets (Bm)m≥1 converges to ((Z − z0)≦ ∩ Rk+1
≧

) for all k ≥ 1. Some values

of ln(C)
ln(k+1)

for small k are given in Table 2. In particular, for bicriteria problems

(i.e., k = 1), we obtain a convergence rate of O( 1
m

).

k 1 2 3 4 5 6
ln(C)

ln(k+1)
−1 −0.2619 −0.0963 −0.0401 −0.0177 −0.0081

Table 2: Approximate values of ln(C)
ln(k+1)

for k = 1, . . . , 6.

5 Conclusions

Multicriteria optimization is most often considered as a generalization of single
criterion optimization, and at least historically single criterion optimization has
been the basis for the development of multicriteria optimization. However, with
the vast increase over the last years of research in multicriteria optimization some
feedback can be gained into single criterion optimization.
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The purpose of the current paper is to point out the intimate link between
some classical and non-classical procedures in the two areas, even though they
have been conceptually developed independently of each other.

Emphasis has been put on the comparison of some approximation schemes
in multicriteria optimization and iterative solution methods in non-linear, and in
particular convex programming.

An approximation procedure for the analysis of multicriteria problems is
shown to have intimate links to similar approximation methods for the deter-
mination of Lagrange multipliers in convex programming. A convergence result
has been obtained for the suggested approximation scheme and an application of
this result has been discussed and transferred into the determination of optimal
Lagrange multipliers.

A discussion of the non-convex case has been carried out as well and, as may be
expected, with somewhat weaker results. However, approximation methods based
on the Chebyshev approach have appeared useful in the multicriteria context,
and more interesting results could be expected to be obtained in single criterion
optimization by transfer of results obtained in the multicriteria setting.

Perhaps a final comment could be made here with respect to the class of
optimization problems developed in data envelopment analysis, Cooper et al.
(2000). This class of problems lie in some sense between single and multicriteria
optimization. On one side the goal is to find, in a multicriteria sense, an efficient
solution, and on the other side to optimize a certain real value (the so-called
efficiency score). The problems are constructed in a technical, non-biased way
based on direct information about known data (for production and consumption).
No preferences are built into the modelling. Moreover, in the present context it
should be noted that the models themselves are polyhedral approximations.

Similarly, the approximation procedure presented here gives a polyhedral and
non-biased description. The procedure iteratively improves the determination of
the set of feasible solutions and values without any prior knowledge about pref-
erences. Some assumptions about convexity are usually done for the models used
in data envelopment analysis. However, these assumption may not be fulfilled in
practice. Further studies of non-convex approximation procedures should open
up for some interesting results in this and other areas.
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