
Connectedness of Efficient Solutions in Multiple

Objective Combinatorial Optimization∗

Jochen Gorski† Kathrin Klamroth†⋆ Stefan Ruzika‡

Communicated by H. Benson

Abstract

Connectedness of efficient solutions is a powerful property in multiple objective combinatorial op-

timization since it allows the construction of the complete efficient set using neighborhood search

techniques. However, we show that many classical multiple objective combinatorial optimization

problems do not possess the connectedness property in general, including, among others, knapsack

problems (and even several special cases) and linear assignment problems. We also extend known

non-connectedness results for several optimization problems on graphs like shortest path, spanning
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1 Introduction

Typical examples of multiple criteria combinatorial optimization problems are multiple criteria

knapsack problems with applications, among others, in capital budgeting, and optimization prob-

lems on networks like multiple criteria shortest path and minimum spanning tree problems, used,

for example, within navigation systems and in supply chain management applications. Most of

these problems are NP hard and intractable in the sense that the number of efficient solutions may

grow exponentially with the size of the problem data; see, for example, [1] for a recent survey.

Structural properties of the efficient set of multiple criteria combinatorial optimization problems

are of utmost importance for the development of efficient solution methods. In particular, the

existence of a neighborhood structure between efficient solutions that would allow the generation of

the complete efficient set by a simple neighborhood search would provide a theoretical justification

for the application of fast neighborhood search methods. This paper provides answers to many

open questions regarding the connectedness of the efficient set with respect to reasonable concepts

of adjacency and for most of the classical problems in multiple criteria combinatorial optimization.

The literature on the connectedness of the set of efficient solutions in multiple objective opti-

mization is scarce. The first publications appeared in the seventies together with the development

of the multiple objective simplex method [2], see also [3] and [4] for general convex and locally con-

vex problems. Later, research on the connectedness of efficient solutions of MOCO problems was

coined by assertions and falsifications. [5] claimed that there always exists a sequence of adjacent

efficient paths connecting two arbitrary efficient paths for MOSP. However, [6] demonstrated the

incorrectness of the connectedness conjecture for MOSP and MOST problems by a counterexample.

In [7], the example of [6] was used to show the incorrectness of the algorithm of [8] for biobjective

network flow problems. Some comments on the connectedness of efficient solutions for biobjective

multimodal assignment problems are also contained, but not further persued, in [9].

Positive connectedness results were so far only proven for some highly structured special cases.

[10] show connectedness for biobjective {0, 1}-knapsack problems with equal sums of coefficients,

and [11] consider biobjective optimization problems on matroids where one objective is based on

{0, 1}-coefficients. Nevertheless, neighborhood search algorithms were applied and tested numer-

ically by several authors also for other problems, for example, for different variants of bicriteria

knapsack problems [12, 13] and for the bicriteria and multicriteria TSP [14, 15].
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2 Problem Formulation

Multiple objective combinatorial optimization (MOCO) has become a quickly growing research

topic, and has recently attracted the attention of researchers both from the fields of multiple

objective and from single objective combinatorial optimization [1].

Formally, a general MOCO problem can be stated as

min f(x) = (f1(x), . . . , fp(x))

s.t. x ∈ X,

where the decision space X is a given feasible set with some additional combinatorial structure.

The vector-valued objective function f : X −→ Zp maps the set of feasible solutions into the image

space. Y := f(X) denotes the image of the feasible set in the image space.

The Pareto concept of optimality for MOCO problems is based on the componentwise ordering

of Zp defined for y1, y2 ∈ Zp by

y1 ≤ y2 :⇔ y1k ≤ y2k, k = 1, . . . , p and y1 ̸= y2,

y1 < y2 :⇔ y1k < y2k, k = 1, . . . , p.

A point y2 ∈ Zp is called dominated by y1 ∈ Zp iff y1 ≤ y2, and it is called strongly dominated by

y1 iff y1 < y2. The efficient set XE and the weakly efficient set XwE are defined by

XE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) ≤ f(x)}

XwE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) < f(x)}.

The images YN := f(XE) and YwN := f(XwE) of these sets under the vector-valued mapping f are

called the nondominated set and the weakly nondominated set, respectively. The task in MOCO is

to find YN and for every y ∈ YN at least one x ∈ XE with f(x) = y.

Structural properties of the efficient set of MOCO problems play a crucial role for the develop-

ment of efficient solution methods. A central question relates to the connectedness of the efficient

set with respect to combinatorially or topologically motivated neighborhood structures. A positive

answer to this question would provide a theoretical justification for the application of fast neigh-

borhood search techniques, not only for multiple objective but also for appropriate formulations of

single objective problems.

Following the literature (see [6], [15]), we next introduce a graph theoretical definition of adja-

cency of efficient solutions MOCO problems.
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Definition 2.1 For a given MOCO problem the adjacency graph of efficient solutions G = (V,A)

of the MOCO problem is defined as follows: V consists of all efficient solutions of the given MOCO

problem. An (undirected) edge is introduced between all pairs of nodes which are adjacent with

respect to the considered definition of adjacency for the given MOCO problem. These edges form

the set A.

The connectedness of XE is now defined via the connectedness of an undirected graph. An undi-

rected graph G is said to be connected if every pair of nodes is connected by a path.

Definition 2.2 The set XE of all efficient solutions of a given MOCO problem is said to be con-

nected iff its corresponding adjacency graph G is connected.

The remainder of this article is organized as follows. In Section 3, we discuss different defi-

nitions of adjacency of feasible solutions of a MOCO problem. On one hand, adjacency may be

defined based on appropriate Integer Programming (IP-) formulations of a given problem and using

the natural neighborhood of basic feasible solutions of linear programming. For many problems,

however, it appears to be more convenient to consider a combinatorial neighborhood. In Section 4

we discuss and extend existing results for the multiple objective shortest path and spanning tree

problem and present new results for other major classes of MOCO problems like the knapsack

and the assignment problem with multiple objectives in Section 5. We report numerical tests on

adjacency of efficient solutions for the binary multiple objective knapsack problem with bounded

cardinalities and the binary multiple choice multiple objective knapsack problem in Section 6. Fi-

nally, we conclude the paper in Section 7 with a summary table of the state-of-the-art and with

current and future research ideas.

3 Defining Adjacency

We distinguish two different classes of adjacency definitions: definitions based on combinatorial

structures and linear programming based definitions.

Combinatorial definitions of adjacency are problem-dependent and usually based on simple

operations which transform one feasible solution into another, say “adjacent” feasible solution. We

call such operations elementary moves. An elementary move is called efficient, if it leads from

one efficient solution of the problem to another efficient solution. Two efficient solutions are called

adjacent, if one can be obtained from the other by one efficient move. Examples for elementary
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moves for specific problem classes are the insertion and deletion of edges in a spanning tree, the

modification of a matching along an alternating cycle, or simply the swap of two bits in a binary

solution vector. In single objective optimization such elementary moves are frequently used in exact

algorithms (e.g., the negative dicycle algorithm for the minimum cost flow problem) as well as in

heuristic algorithms (e.g., the two-exchange heuristic for the traveling salesman problem).

We call an elementary move for a given problem class canonical iff the set of optimal solutions

of the corresponding single objective problem is connected with respect to this elementary move for

all problem instances. Although non-canonical moves immediately imply non-connectedness results

also in the multiple objective case, they are used in heuristic methods based on neighborhood search

[15].

For some classes of combinatorial problems, an elementary move corresponds to a move from one

extreme point to another adjacent extreme point along an edge of the polytope which is obtained

by the Linear Programming (LP) relaxation of a Mixed Integer Linear Programming (MILP) for-

mulation of the given combinatorial problem. If the given MILP formulation represents the MOCO

problem sufficiently well, a property which we will call appropriate representation in Definition 3.1

below, the corresponding elementary move is always canonical.

This observation motivates a more universal and less problem dependent adjacency concept

which utilizes MILP formulations of MOCO problems and which is based on the topologically

motivated adjacency of basic feasible solutions according to [2]. In order to define an LP-based defi-

nition of adjacency in a more general setting, the underlying MILP formulations of a given MOCO

problem have to be selected carefully. In particular, a one-to-one correspondence between feasible

solutions of the MOCO problem and basic feasible solutions of the LP relaxation of the MILP

formulation used for the adjacency definition is required. Note that otherwise, the neighborhood

structure induced by pivot operations on basic feasible solutions of the LP relaxation of the MILP

cannot be transferred to the feasible solutions of the MOCO problem.

Definition 3.1 An MILP formulation of a MOCO problem is called appropriate iff its LP relax-

ation, after transformation into standard form, has the following two properties:

(M1) Every basic feasible solution corresponds to a feasible solution of the MOCO problem.

(M2) For every feasible solution of the MOCO problem there exists at least one basis such that the

solution of the MOCO problem is equal to the corresponding basic feasible solution of the above

LP relaxation of the MILP problem in standard form.

5



Properties (M1) and (M2) characterize MILP formulations of MOCO problems that are suitable

for the definition of an LP-based concept of adjacency for these problems. In this context, two bases

of an LP are called adjacent iff they can be obtained from each other by one pivot operation.

Definition 3.2 Let an appropriate MILP formulation of a MOCO problem be given. Two feasible

solutions x1 and x2 of the MOCO problem are called adjacent with respect to the given MILP

formulation iff there exist two adjacent bases of the LP relaxation of the MILP problem (after

transformation into standard form) corresponding to x1 and x2, respectively.

In [16] it is shown that the efficient basic feasible solutions of the LP relaxation of the MILP

problem in standard form are connected. Any of them can be obtained by the solution of some

weighted sum problem and thus they are supported efficient solutions (see [17]). Thus, we can

conclude that the adjacency graph of efficient solutions of a MOCO problem (with respect to an

LP-based definition of adjacency) always contains a connected subgraph, the subgraph of supported

efficient solutions.

Moreover, the set of optimal solutions of a corresponding single objective combinatorial opti-

mization problem is always connected (or even unique) under this definition. Therefore, the ques-

tion whether the corresponding multiple objective optimization problem has a connected adjacency

graph is non-trivial.

The above definition of adjacency (and hence the resulting adjacency graph) depends on the

chosen appropriate MILP formulation of the given MOCO problem, which is in general not unique.

If different appropriate MILP formulations are used to model the same MOCO problem, we can

expect different results concerning the connectedness of efficient solutions of the problem. In this

context, Definitions 2.1 and 2.2 must always be understood with respect to the chosen appropriate

MILP formulation of a MOCO problem.

Polyhedral theory implies that the transformation into standard form can be omitted in the

case of bounded polyhedra. For more details we refer to [18].

4 Extensions of Known Results

In this section, we employ the classification of adjacency concepts developed in Section 3 to catego-

rize definitions of adjacency used in the literature. Existing non-connectedness results are extended

to the set of weakly efficient solutions and new results are derived.
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In the following we refer to a graph with node set V and edge set A by G = (V,A). Let n := |V |

and m := |A| and let s ∈ V and t ∈ V .

Let G be directed. For c1, . . . , cp : A → R+ the multiple objective shortest path problem can be

formulated as

min (c1x, . . . , cpx)T

s.t.
n∑

j=1

xij −
n∑

j=1

xji =


1, if i = s,

0, if i ∈ {1, . . . , n} \ {s, t},

−1, if i = t,

xij ∈ {0, 1} ∀ (i, j) ∈ A.

(1)

According to [6] two efficient paths are called adjacent iff they correspond to two adjacent basic

feasible solutions of the linear programming relaxation of (1). Obviously this definition of adjacency

corresponds to an MILP-based definition in the sense of Section 3. In [18] it is shown that this

MILP formulation is appropriate in the sense of Definition 3.1.

For this problem, a combinatorial definition of adjacency can be derived which is equivalent to the

MILP-based definition. Paths are associated with flows and the residual flow of two paths is used

to decide whether they are adjacent. A shortest path P1 is adjacent to a shortest path P2 iff the

symmetric difference of their edge set in the residual graph corresponds to a single cycle. Note that

these definitions are canonical extensions of the single objective case in the sense of Section 3.

Ehrgott and Klamroth [6] showed that the adjacency graphs of efficient shortest paths are non-

connected in general. However, the weakly efficient set in their counter-example turns out to be

connected. A modification of the cost vectors in the counter-example of Ehrgott and Klamroth [6],

depicted in Figure 1, proves that this set is in general also not connected.

Theorem 4.1 The adjacency graphs of weakly efficient shortest paths are non-connected in general.

Proof: The graph depicted in Figure 1 has twelve weakly efficient paths listed in Table 1.

It is easy to verify that the Path P8 is not adjacent to any other weakly efficient shortest path

since at least two of its intermediate nodes do not coincide with intermediate nodes of the other

weakly efficient paths. Hence, the corresponding adjacency graph is non-connected.

�

In all examples described in the literature, only two connected components of the adjacency

graphs exist. One of them consists of a single element, while the second comprises all other (weakly)
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s1 s12 s2 s22 s3 s32 s4

s11 s21 s31

s13 s23 s33
R R R

- - - - - -
R R R

� � �

(0, 0) (0, 0) (0, 0)(71, 11) (1, 71) (201, 61)

(0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0)

(90, 0) (100, 0) (0, 190)

(10, 20) (70, 10) (10, 150)

Figure 1: Modified digraph from [6]

efficient solutions. Yet, we can derive the following structural property.

Theorem 4.2 In general, the number of connected components and the cardinality of the compo-

nents are exponentially large in the size of the input data.

Proof: Suppose we have k copies of the graph shown in Figure 1. The cost vectors of copy k

are multiplied by the factor 1000k. These k copies are connected sequentially by connecting node

s4 of copy i, i = 1, . . . , k − 1, with node s1 of copy i + 1 using an edge with costs (0, 0). The

resulting graph has (19 ·k−1) edges and the corresponding adjacency graph consists of 2k different

connected components. The largest component subsumes 11k efficient solutions, the second largest

11k−1 efficient solutions, and so on. �

Since the multiple objective shortest path problem is a special case of the multiple objective

minimum cost flow problem, the results obtained above are also valid for the more general problem.

Let us now consider an undirected graph G = (V,A). Let A(S) := {a = [i, j] ∈ A : i, j ∈ S}

denote the subset of edges in the subgraph of G induced by S ⊆ V . The multiple objective spanning
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Efficient Path Interm. Nodes Objective Vector

P1 s13 s22 s31 (11, 281)

P2 s13 s22 s33 (21, 241)

P3 s13 s23 s31 (80, 220)

P4 s13 s23 s33 (90, 180)

P5 s13 s21 s33 (120, 170)

P6 s11 s23 s33 (170, 160)

P7 s11 s21 s33 (200, 150)

P8 s12 s22 s32 (273, 143)

P9 s13 s23 s32 (281, 91)

P10 s13 s21 s32 (311, 81)

P11 s11 s23 s32 (361, 71)

P12 s11 s21 s32 (391, 61)

Table 1: All weakly efficient paths of the graph depicted in Figure 1. The paths {P1, . . . , P12}\{P8}

form a connected component in the adjacency graph G of the weakly efficient set and {P8} is an

isolated node in G.

tree problem can be formulated as

min (c1x, . . . , cpx)T

s.t.
∑
a∈A

xa = n− 1,∑
a∈A(S)

xa ≤ |S| − 1 ∀S ⊆ V,

xa ∈ {0, 1} ∀ a ∈ A.

(2)

[6] consider a combinatorial definition of adjacency: Two spanning trees are adjacent iff they have

n − 2 edges in common. They prove that there is a one-to-one correspondence between efficient

shortest paths and efficient spanning trees for the graph in Figure 1. Hence, also the adjacency

graph of weakly efficient spanning trees based on the combinatorial definition of adjacency is non-

connected in general.

It can be shown that the MILP formulation (2) is appropriate in the sense of Definition 3.1 (see

[18]). Moreover, it is easy to see that any graph containing a single cycle has a connected adjacency

graph.

The multiple objective spanning tree problem is an optimization problem on matroids. A

natural, combinatorial definition of adjacency for bases of matroids is to call two bases (of rank

n) adjacent iff they have n − 1 elements in common. Again, based on our findings for multiple
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objective spanning tree problem problems, we can conclude that the adjacency graph of the more

general problem is in general non-connected. Our observations are summarized in the following

corollary.

Corollary 4.1 The adjacency graphs of (weakly) efficient spanning trees, cost flows and bases of

matroids are non-connected in general. The number of connected components and the number of

nodes in these components can grow exponentially wrt. the problem size.

5 New Results for Special Classes of MOCO Problems

In this section we focus on (binary) knapsack, unconstrained binary optimization, linear assign-

ment and traveling salesman problems. Using suitable combinatorial or MILP-based definitions

of adjacency in the sense of Section 3, we show that all problems mentioned have non-connected

adjacency graphs in general.

5.1 Binary Knapsack Problems

We examine two types of binary knapsack problems, the binary multiple choice knapsack problem

with equal weights and the binary knapsack problem with bounded cardinality. While the inves-

tigation of the former problem is motivated by structural similarities to the counter-example in

[6] and was thus expected to have a non-connected adjacency graph in general, the latter can be

regarded as weakly structured MOCO since each combination of items is allowed as long as the

cardinality constraint is met. Hence it was long conjectured that this problem has a connected

adjacency graph.

The multiple objective binary multiple choice knapsack problem with equal weights is defined by

max

(
n∑

i=1

ki∑
j=1

c1ijxij , . . . ,
n∑

i=1

ki∑
j=1

cpijxij

)T

s.t.
ki∑
j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ki,

(3)

where c1ij , . . . , c
p
ij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , ki.

This problem can be interpreted as follows: Given n disjoint baskets B1, . . . , Bn each having exactly

ki items, i = 1, . . . , n, the objective is to maximize the overall profit with the restriction that exactly

one item is chosen from each basket. Problem (3) is well structured since items cannot be combined

arbitrarily.
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Definition 5.1 Two (weakly) efficient solutions x and x′ of the binary multiple choice knapsack

problem with equal weights are called adjacent iff x′ and x differ in one item in exactly one basket

Bi for an i ∈ {1, . . . , n}.

This definition of adjacency is canonical: For single objective problems, any optimal solution must

contain an item of maximum profit from each basket. Alternative optimal solutions may exist if at

least one basket contains more than one item of maximum profit. All these optimal solutions are

adjacent in the sense of Definition 5.1.

In the multiple objective case the situation is, however, different. The counter-example in [6]

and its modification in Section 4 can be used to establish the following non-connectedness result.

Theorem 5.1 The adjacency graph of a binary multiple choice knapsack problem with equal

weights, where adjacency of two efficient solutions is defined according to Definition 5.1, is non-

connected in general.

Proof: In the counter-example for the multiple objective shortest path problem given in the proof of

Theorem 4.1 we redefine the cost vectors cij of the three paths from node si to node si+1, i = 1, 2, 3,

via sij , j = 1, 2, 3, by setting

c̃qij = max{cqij : i, j = 1, 2, 3; q = 1, 2} − cqij

for i, j = 1, 2, 3 and q = 1, 2 and interpret the resulting vectors of the three paths from the node si

to node si+1 as profit vectors for basket Bi, i = 1, 2, 3. Since we have transformed the minimization

problem into a maximization problem by taking the negative value of each cost vector followed by a

shift of these vectors by an amount of max{cqij} = 201, there is a one-to-one correspondence between

the efficient solutions of the modified problem and the efficient solutions of the counter-example

considered in Theorem 4.1. The profit vectors of the resulting solutions K1, . . . ,K12 are given by

(603, 603)T − c(Pi) where c(Pi) corresponds to the cost vector of Pi in Table 1 for i = 1, . . . , 12.

Items in at least two baskets have to be exchanged when transforming K8 into Kj , j ̸= 8 by

elementary moves. Hence, K8 is not adjacent to any other (weakly) efficient solution in the sense

of Definition 5.1. �

Note that, since there is a one-to-one correspondence between the example used in the proof of

Theorem 5.1 and the example given in Theorem 4.1, the above result can be generalized similar to

Theorem 4.2 using the same extension of the original example:
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Corollary 5.1 In general, the number of connected components and the cardinality of the compo-

nents in the adjacency graph of a binary multiple choice knapsack problem with equal weights, where

adjacency of two efficient solutions is defined according to Definition 5.1, can grow exponentially

in the size of the input data.

In Section 6.2 we investigate empirically the frequency with which non-connected adjacency

graphs for problem (3) occur in randomly generated instances.

In the following we consider binary knapsack problems where the number of items in each solu-

tion is fixed to a constant. The multiple objective binary knapsack problem with bounded cardinality

is formally given by

max (c1x, . . . , cpx)T

s.t.
n∑

i=1

xi = k,

xi ∈ {0, 1}, i = 1 . . . , n,

(4)

where c1i , . . . , c
p
i ≥ 0 for all i = 1, . . . , n. LetKP (n, k) denote an instance of Problem (4). According

to [10], the problem formulation can also be relaxed to the case that at most k items have to

be chosen. Since all item values are non-negative, every efficient solution will have maximum

cardinality.

For this kind of problem few results concerning the connectedness of the set of efficient solutions

can be found in the recent literature. In [10], three different models of binary knapsack problems

were studied and some connectedness results using an MILP-based definition of adjacency were

presented for very specific problem classes. In [12] two algorithms for solving Problem (4) in the

biobjective case using a combinatorial definition of adjacency are proposed. These algorithms

are only guaranteed to find the set of all efficient solutions under the assumption that this set is

connected. Based on the categorization for the definition of adjacency of efficient solutions given

in Section 3, we renew the ideas of the above mentioned papers and show that the set of efficient

solutions is in general non-connected in both cases.

We start our analysis with the combinatorial definition of adjacency which is also used in [12].

Definition 5.2 Two efficient solutions x = (x1, . . . , xn)
T and x′ = (x′

1, . . . , x
′
n)

T of KP (n, k) are

called adjacent iff x′ can be obtained from x by replacing one item in x with one item of x′ which

is not contained in x.

Note that this kind of elementary move is canonical. Two efficient solutions x and x′ are adjacent
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if and only if
n∑

i=1

|xi − x′
i|=2, i.e., if their Hamming distance is 2. For n ∈ {1, 2, 3, 4} or k ∈

{0, 1, n− 1, n} it is easy to verify that KP (n, k) has a connected adjacency graph.

Theorem 5.2 The adjacency graph of KP (n, k) is connected for n ∈ {1, 2, 3, 4} or k ∈ {0, 1, n −

1, n}.

In [10] another sufficient condition yielding a connected adjacency graph is specified.

Theorem 5.3 ([10]) Let an instance KP (n, k) be given such that c1i + c2i = α for all i = 1, . . . , n

and for some α ∈ N. Then all
(
n
k

)
feasible solutions are efficient solutions of (4) and hence, the

adjacency graph of the problem is connected.

Unfortunately, this connectedness result is no longer valid for the general case.

Theorem 5.4 The adjacency graph of a binary knapsack problem of the form (4) with adjacency

defined as in Definition 5.2 is non-connected in general.

Proof: Consider KP (9, 3) with the objective function vectors

(
c1

c2

)
=

 44 36 27 10 8 5 3 1 0

0 8 9 21 23 29 31 32 34

 .

The problem has 84 feasible and 38 efficient solutions. All efficient solutions S1, . . . , S38 and their

corresponding objective function vectors are listed in Table 2. Using the plotted boxes it is easy to

verify that the efficient solution S11 is not adjacent to any other solution in the sense of Definition

5.2. Consequently, the adjacency graph of the given problem is non-connected. �

Note that the given counter-example in Theorem 5.4 is minimal in the sense that deleting

any combination of profit vectors from the problem always leads to a connected adjacency graph,

assuming that k = 3.

As a direct consequence of Theorem 5.4, the algorithms proposed in [12] fail to compute the

complete set of efficient solutions in general.

In Section 6, we report about numerical results indicating the likelihood that a non-connected

adjacency graph of problem (4) appears in randomly generated instances. Note that for these inves-

tigations problems KP (n, k) with k > n
2 are not of separate interest since they can be transformed

into equivalent knapsack problems KP (n, k̃) with k̃ := n − k ≤ n
2 where the objective is to select

k̃ items that are left out of the original knapsack.
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C x x S

4 97 0 0 0 0 0 0 1 1 1 S1

6 95 0 0 0 0 0 1 0 1 1 S2

8 94 0 0 0 0 0 1 1 0 1 S3

9 92 0 0 0 0 0 1 1 1 0 S4

11 88 0 0 0 0 1 0 1 0 1 S5

13 86 0 0 0 1 0 0 1 0 1 S6

13 86 0 0 0 0 1 1 0 0 1 S7

15 84 0 0 0 1 0 1 0 0 1 S8

16 83 0 0 0 0 1 1 1 0 0 S9

18 81 0 0 0 1 0 1 1 0 0 S10

19 76 0 0 0 1 1 0 0 1 0 S11

28 75 0 0 1 0 0 0 0 1 1 S12

37 74 0 1 0 0 0 0 0 1 1 S13

39 73 0 1 0 0 0 0 1 0 1 S14

41 71 0 1 0 0 0 1 0 0 1 S15

42 69 0 1 0 0 0 1 0 1 0 S16

44 68 0 1 0 0 0 1 1 0 0 S17

45 66 1 0 0 0 0 0 0 1 1 S18

47 65 1 0 0 0 0 0 1 0 1 S19

49 63 1 0 0 0 0 1 0 0 1 S20

50 61 1 0 0 0 0 1 0 1 0 S21

52 60 1 0 0 0 0 1 1 0 0 S22

54 55 1 0 0 1 0 0 0 0 1 S23

55 54 1 0 0 0 1 0 1 0 0 S24

57 52 1 0 0 1 0 0 1 0 0 S25

57 52 1 0 0 0 1 1 0 0 0 S26

63 51 0 1 1 0 0 0 0 0 1 S27

64 49 0 1 1 0 0 0 0 1 0 S28

66 48 0 1 1 0 0 0 1 0 0 S29

68 46 0 1 1 0 0 1 0 0 0 S30

71 43 1 0 1 0 0 0 0 0 1 S31

80 42 1 1 0 0 0 0 0 0 1 S32

81 40 1 1 0 0 0 0 0 1 0 S33

83 39 1 1 0 0 0 0 1 0 0 S34

85 37 1 1 0 0 0 1 0 0 0 S35

88 31 1 1 0 0 1 0 0 0 0 S36

90 29 1 1 0 1 0 0 0 0 0 S37

107 17 1 1 1 0 0 0 0 0 0 S38

Table 2: All efficient solutions of the example used in the proof of Theorem 5.4.

Next, we concentrate on the MILP-based definition of adjacency which is considered in [10].

Let P := {x ∈ [0, 1]n :
∑n

i=1 xi = k} denote the feasible set of the LP relaxation of (4). Since P is

a subset of the unit cube [0, 1]n, the MILP formulation (4) is appropriate in the sense of Definition

3.1. To decide whether two basic feasible solutions of the LP relaxation of (4) are adjacent, we

state a necessary and sufficient condition for two extreme points of P being connected by an edge

for n ≥ 5. According to [19] two extreme points u and v of P are connected by an edge if and

only if there do not exist two other extreme points w1 and w2 of P , i.e., other feasible solutions of

KP (n, k), such that

1

2
(w1 + w2) =

1

2
(u+ v). (5)
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Using (5) it is easy to verify the following result:

Lemma 5.1 Let n ≥ 5. Two extreme points u and v of the binary knapsack polytope P = {x ∈

[0, 1]n :
∑n

i=1 xi = k} are connected by an edge if and only if u and v are adjacent in the sense of

Definition 5.2.

According to Lemma 5.1, the adjacency structure of the efficient extreme points of P coincides with

the adjacency structure induced by Definition 5.2. Hence, the adjacency graph with respect to the

appropriate MILP formulation based on (4) and the adjacency graph resulting from Definition 5.2

are the same. Thus, Theorem 5.4 immediately implies the following result.

Corollary 5.2 In general, the set of efficient solutions of KP (n, k) is non-connected with respect

to the appropriate MILP formulation based on (4).

Since the general knapsack problem subsumes the binary case with bounded cardinality, we

have also shown the non-connectedness for the general knapsack problem, if adjacency of efficient

solutions for general knapsack problems is defined, for example, based on elementary moves similar

to Definition 5.2. Note that the MILP-based definition of adjacency cannot be applied (directly)

to general knapsack problems since a one-to-one correspondence between feasible solutions of the

MOCO problem and basic feasible solutions of the LP relaxation of the MILP formulation (in

standard form) cannot be guaranteed. Since the same reasoning also applies to integer programming

problems with fixed (or bounded) cardinalities, the non-connectedness results are also valid for these

types of problems.

5.2 Unconstrained Binary Optimization Problems

The unconstrained binary problem which we are going to study in this subsection possesses even

less structure than all problems considered before. Formally, a multiple objective unconstrained

binary problem is defined by

max
(
c1x, . . . , cpx

)T
s.t. xi ∈ {0, 1}, i = 1, . . . , n.

(6)

We concentrate on the case that p = 2 and we assume without loss of generality that c1i · c2i < 0

(but not necessarily c1i < 0 and c2i > 0) for all i = 1, . . . , n. Otherwise, either xi = 0 or xi = 1 in

every efficient solution.
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In problem (6) the number of variables set equal to one is not fixed. Consequently, an appropriate

notion of adjacency is not evident. Nevertheless, Definition 5.1 can be transferred to this problem.

For this purpose, consider the following modification of (6):

max
(
c1x, c2x

)T
s.t. xi + yi = 1, i = 1, . . . , n

xi, yi ∈ {0, 1}, i = 1, . . . , n.

(7)

By introducing additional zero cost vectors for each yi, i = 1, . . . , n, (7) can be interpreted as a

binary multiple choice knapsack problem with equal weights consisting of n baskets where either

xi or yi has to be included in the knapsack for i ∈ {1, . . . , n}. Hence, Definition 5.1 can be directly

applied to (7) and induces a single ‘1-to-0’ or a single ‘0-to-1’ swap in exactly one xi for adjacent

solutions of (6). Hence we define:

Definition 5.3 Two efficient solutions x and x′ of the unconstrained binary problem are called

adjacent iff they differ in exactly one component, i.e., if
n∑

i=1

|xi − x′
i| = 1.

If we extend the last definition to all 2n feasible solutions of the problem which can be identified

with the set of all extreme points of the n-dimensional unit cube W := [0, 1]n, two feasible (efficient)

solutions are adjacent if and only if they are connected by an edge in W . Since W in combination

with (6) can be easily modeled by an appropriate MILP formulation, the adjacency graph which

results from Definition 5.3 coincides with the adjacency graph of this appropriate MILP formulation.

Theorem 5.5 The adjacency graph of an unconstrained binary problem (6), where adjacency is

defined according to Definition 5.3, is non-connected in general.

Proof: Consider the following unconstrained binary problem with objective matrix

C =

 −126 −121 −120 −103 −100 −97 −17 −13

100 94 90 74 73 68 23 7

 .

The set of all efficient solutions of this problem consists of 110 vectors. It can be shown that the

efficient solution x = (0, 1, 0, 1, 1, 1, 0, 1)T with objective value Cx = (−434, 316)T is not adjacent

to any other efficient solution in the sense of Definition 5.3. �

The counter-example of Theorem 5.5 is minimal in the sense that deleting any combination of

profit vectors from the problem always leads to a connected adjacency graph.
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5.3 Linear Assignment Problems

The multiple objective linear assignment problem can be formulated as

min

 n∑
i,j=1

c1ijxij , . . . ,
n∑

i,j=1

cpijxij

T

s.t.

n∑
i=1

xij = 1, j = 1, . . . , n,

n∑
j=1

xij = 1, i = 1, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n,

(8)

with objective coefficients c1ij , . . . , c
p
ij ≥ 0 for all i, j = 1, . . . , n. We discuss a combinatorial defini-

tion based on swapping rows in the assignment matrix, and an MILP-based definition of adjacency.

We first investigate adjacency based on a simple swap of two rows of the assignment matrix.

Unfortunately, this definition of adjacency is not canonical, i.e., it does not yield a connected graph

of optimal solutions for the single objective version of the problem.

Theorem 5.6 Swapping two rows of the assignment matrix of a single objective linear assignment

problem does in general not permit to construct the complete set of optimal solutions starting from

an arbitrary optimal solution.

Proof: Consider a single objective linear assignment problem with n = 4 and cost matrix

C = (c1ij)i,j=1,...,n =



1 ∞ 1 ∞

1 1 ∞ ∞

∞ ∞ 1 1

∞ 1 ∞ 1


.

This problem has two optimal assignments with value 4:

Assignment 1: x11 = x22 = x33 = x44 = 1 and xij = 0 otherwise.

Assignment 2: x13 = x21 = x34 = x42 = 1 and xij = 0 otherwise.

Clearly, these assignments cannot be obtained from each other by a single row swap. �

Looking at the MILP-based definition of adjacency based on formulation (8), we observe that the

biobjective linear assignment problem is a special case of the minimum cost flow problem (cf. Section

4). Since the matrix describing the assignment polytope Pas is totally unimodular, formulation (8)

is appropriate in the sense of Definition 3.1. Due to a result in [20], the MILP-based definition of

adjacency induced by Pas corresponds to the following combinatorial definition of adjacency:
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Definition 5.4 Let G = (V1 ∪ V2, A) with |V1| = |V2| = n be a bipartite graph with edge costs

c1, c2 : A → R, representing an instance of the biobjective linear assignment problem. Let A1 and

A2 be the edges corresponding to two different assignments. Two solutions A1 and A2 are adjacent

iff the graph induced by A1 ∪A2 in G contains exactly one cycle.

Equivalently, two assignments A1 and A2 are adjacent if and only if their symmetric difference

A1△A2 := (A1 ∪A2) \ (A1 ∩A2) consists of exactly one cycle the edges of which alternately belong

to A1 and A2, respectively [21].

Theorem 5.7 The adjacency graph G of the biobjective linear assignment problem using Definition

5.4 for characterizing adjacent assignments is not connected in general.

Proof: We restructure the counter-example for the multiple objective shortest path problem given

in the proof of Theorem 4.1. Consider the six cost-submatrices of a (9 × 9) biobjective linear

assignment problem given by

C1
(1:3,1:3) =


0 0 ∞

10 71 0

∞ 90 0

 , C1
(4:6,4:6) =


0 0 ∞

70 1 0

∞ 100 0

 , C1
(7:9,7:9) =


0 0 ∞

10 201 0

∞ 0 0

 ,

C2
(1:3,1:3) =


0 0 ∞

20 11 0

∞ 0 0

 , C2
(4:6,4:6) =


0 0 ∞

10 71 0

∞ 0 0

 , C2
(7:9,7:9) =


0 0 ∞

150 61 0

∞ 190 0

 .

Let all remaining cost coefficients be set to infinity. This problem decomposes into three (3× 3)-

subproblems denoted by S1, S2, and S3, where each subproblem Si has three solutions G1, G2,

and G3 that have finite costs in both objectives. These three solutions have the same structure

for all three subproblems and are depicted in Figure 2. Note that the cost vector of each solution

Gj of subproblem Si is chosen such that it corresponds to the cost vector of the path connecting

node si with node si+1 via node sij in Figure 1. Consequently, there is a one-to-one correspondence

between the (weakly) efficient solutions of this instance of the biobjective linear assignment problem

and the (weakly) efficient solutions listed in Table 1.

From Figure 2 it can be seen that the pairwise union of two subgraphs Gi and Gj , i ̸= j,

contains exactly one cycle. According to Definition 5.4, two (weakly) efficient assignments of the

overall problem are thus adjacent if they differ in exactly one subproblem Si, i ∈ {1, 2, 3}. Since

the (weakly) efficient path P8 in Table 1 differs from all other (weakly) efficient paths in at least
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G1 G2 G3 G1 ∪G2 G1 ∪G3 G2 ∪G3

Figure 2: All feasible assignments with finite costs for the subproblems Si in the proof of Theorem

5.7 and their pairwise union.

two connections, the corresponding assignment (consisting of G2 in all three subproblems) differs

from all other efficient assignments in at least two subproblems and is thus not adjacent to any

other (weakly) efficient assignment. �

Note that according to [20] and [21] any pair of nodes of the assignment polytope is connected by

a path of length at most 2. Hence any extension of the definition of adjacency for efficient solutions

to a 2-neighborhood, based on Definition 5.4, trivially yields a connected adjacency graph.

Since the linear assignment problem is a special class of transportation and transshipment prob-

lems (see, for example, [1]), respectively, the non-connectedness results also apply to these two more

general problems.

Note also that, similar to the case of the binary multiple choice knapsack problem with equal

weights, the fact that there is a one-to-one correspondence between the example used in Theorem

5.7 and the example given in Theorem 4.1 can be used to generalize the above result similar to

Theorem 4.2, using again the same extension of the original example.

Corollary 5.3 In general, the number of connected components and the cardinality of the compo-

nents in the adjacency graph of the biobjective linear assignment problem, where adjacency of two

efficient solutions is defined according to Definition 5.4, grow exponentially in the size of the input

data.

We conclude this section with a comment regarding a large class of other problems. If the

definition of adjacency considered for some problem is not canonical, then the corresponding adja-

cency graph of efficient solutions is non-connected. This is for example the case for the traveling

salesperson problem and the 2-edge-exchange neighborhood (see [14] and [15]).

19



10/5/10 20/10/10 30/15/10 40/20/10 60/30/10 80/40/20 100/50/20

Method 1 0 / 50000 0 / 20000 0 / 1000 2 / 1000 - - -

Method 2 0 / 50000 2 / 20000 1 / 1000 1 / 1000 - - -

Method 3 0 / 50000 2 / 20000 0 / 1000 0 / 1000 - - -

Method 4 0 / 50000 1 / 20000 0 / 1000 0 / 1000 - - -

Method 5 0 / 50000 1 / 20000 1 / 1000 0 / 1000 - - -

Method 6 0 / 50000 0 / 50000 0 / 50000 0 / 10000 0 / 10000 1 / 10000 0 / 1000

Table 3: Setup of computational experiments for the biobjective binary knapsack problem with

bounded cardinality and frequencies of instances with a non-connected adjacency graph

6 Numerical Results

The results in the previous sections are obtained from a worst-case perspective. Therefore, it is an

interesting question how frequently the phenomenon “non-connected adjacency graph” occurs in

numerical examples. We exemplarily conduct numerical studies for the biobjective binary knapsack

problem with bounded cardinality and the biobjective binary multiple choice knapsack problem

introduced in Section 5.1. All in all, more than six million randomly generated problem instances

have been analyzed.

6.1 Biobjective Binary Knapsack Problems with Bounded Cardinality

For the computation of the efficient set of the biobjective binary knapsack problem with bounded

cardinality KP (n, k) we used a dynamic programming approach for general multiple objective

knapsack problems developed in [22]. Recent numerical tests in [23] on a slightly extended version

of this approach proved its efficiency for solving even large scale bi- and multiple objective binary

knapsack problems.

We generated seven problem setups and for each setup we used six different methods to generate

the objective coefficients. In the first row of Table 3, we use a scheme of the form Pos1/Pos2/Pos3

to code these seven setups. Pos1 specifies the total number n of items. The upper bound k for the

right hand side parameter of the knapsack constraint is specified under Pos2. For each problem

instance, we determined the adjacency graph for all possible right hand sides i ∈ {1, . . . , Pos2}.

Finally, the coefficients of the first objective c1 were chosen in the interval [0, r], where r = Pos1 ·

Pos3. The coefficients of the second objective c2 were chosen according to six different methods

motivated by the study in [24]:
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Method 1: c1 was sorted in decreasing, c2 in increasing order to obtain pairwise non-dominated

profit vectors. Weakly-dominated vectors were omitted.

Method 2: The profit vectors p1 := (c11, c
2
1)

T = (r, 0)T and pn := (c1n, c
2
n)

T = (0, r)T were fixed

at the beginning. The remaining vectors were chosen within the triangle (0, 0)T , p1 and pn.

Note that a small number of the generated profit vectors were dominated (approx. 5 % on

average over all examples).

Method 3: The profit vectors were generated as in Method 2, but now within the triangle (r, r)T ,

p1 and pn.

Method 4: The profit vectors p1 and pn were fixed like in Method 2. The remaining vectors were

generated spread around the concave part of the half circle with midpoint (0, 0)T connecting

the points p1 and pn. Note that a small number of the generated profit vectors were dominated

(approx. 10 % on average over all examples).

Method 5: The profit vectors were generated as in Method 4, but now spread around the convex

half circle with midpoint (r, r)T connecting p1 and pn.

Method 6: The entries of the profit matrix were generated uniformly at random.

The two numbers in each entry of Table 3 correspond to the number of instances possessing a

nonconnected adjacency graph and the total number of processed instances for each of the setups,

respectively. A dash indicates that this setup was not tested due to its numerical difficulty.

For the generated instances, only very few adjacency graphs are non-connected. Nevertheless, we

found for each of the six data generation methods at least one instance possessing a non-connected

adjacency graph. Based on the small number of components, there do not seem to exist significant

trends - neither with respect to increasing k or n nor with respect to some particular generation

method for the data. For the case of randomly generated profit matrices (Method 6), non-connected

adjacency graphs seem to occur extremely rarely. As mentioned in [10], an item xi corresponding

to a dominated profit vector pi can only be contained in an efficient knapsack if at least one of the

items xj corresponding to profit vectors pj dominating pi is also contained in the knapsack. The

set of all efficient solutions of such a problem consists of a few number of elements and is more

structured than in the case when only pairwise non-dominated profit vectors are considered. For

the problem size (40/20/10), the maximum number of elements of an efficient set for a problem

instance generated by Method 6 is given by 290 while for the other methods the maximum number
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Setup of test instances 20/5/10 20/10/10 20/15/10

Number of instances generated 10000 5000 1000

Number of instances having a non-connected adjacency graph 118 295 111

Table 4: Setup of computational experiments for the biobjective binary multiple choice knapsack

problem with uniform weights and number of instances with a non-connected adjacency graph

does not fall below 1392 and has a maximum value of over 5300 elements for a problem instance

generated by Method 2. Unfortunately, Method 6 seems to be the “standard” way to generate data

when testing an algorithm numerically. Yet, for algorithms based on neighborhood search, this

problem class seems to be quite uninteresting.

6.2 Biobjective Binary Multiple Choice Knapsack Problems

The biobjective binary multiple choice knapsack problem (see Section 5.1) is closely related to the

biobjective binary knapsack problem with bounded cardinality. Yet, it behaves quite differently

with respect to adjacency issues.

Consider a biobjective binary multiple choice knapsack problem with n baskets and k possible

items per basket. To obtain the set of efficient solutions XE , we use a simple dynamic programming

scheme. In the i-th step, i = 1, . . . , n, we combine every solution being efficient for the problem with

baskets B1, . . . , Bi−1, with the items in basket i. Dominated solutions are deleted. The remaining

solutions form the set of efficient solutions for the problem with baskets B1, . . . , Bi. Note that the

items in each basket should be pairwise nondominated since dominated items are never included

in an efficient solution. We study the frequency of problems with non-connected adjacency graphs

when the number of baskets increases from 1 to n, and the (fixed) number of items per basket

increases. As in Section 6.1, we use a scheme Pos1/Pos2/Pos3 coding the setup of the instances.

Pos1 stands for the number of baskets while the number of items per basket is given in Pos2. The

integer cost coefficients are taken from the interval [1, Pos1 ·Pos3] according to Method 1 in Section

6.1. Table 4 reports the setups and the number of instances we have tested.

For each of the setups, Table 4 contains the number of instances possessing a non-connected

adjacency graph cumulated over all i = 1, . . . , 20 baskets. One obvious difference to the results

obtained in Section 6.1 is that non-connected adjacency graphs occur far more often for multiple

choice knapsack problems. Figure 3 shows the number of instances with non-connected adjacency

graph per thousand instances tested. Detailed results for each problem with i baskets, i = 1, . . . , 20,
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6 8 10 12 14 16 18 20

Figure 3: Number of instances per thousand (y-axis) with non-connected adjacency graph for

i = 1, . . . , 20 baskets (x-axis) for 5 (dotted line), 10 (dashed line), and 15 (solid line) items per

basket

are reported. The dotted line, the dashed line, and the solid line correspond to the setups with 5, 10,

and 15 items per basket, respectively. All curves are (slightly) increasing, i.e., “non-connectedness”

happens more often with an increasing number of baskets. Furthermore, the more items per basket,

the higher the likelihood for having a non-connected adjacency graph.

Table 5 provides more details about the character of the clusters. Among those instances with non-

connected adjacency graphs, two clusters appear more often than three clusters. However, with

increasing number of items per basket three clusters are getting more likely. Interestingly, we never

generated an example where the maximum distance between clusters of instances with two clusters

is greater than 2. The maximum (pairwise) distance between three clusters, however, happened to

be as much as 8.

Setup of test instances 20/5/10 20/10/10 20/15/10

Instances with one cluster 199882 99705 19889

Instances with two clusters 115 282 100

Instances with three clusters 3 13 11

Maximal distance between two clusters 2 2 2

Maximal distance between three clusters 3 4 8

Table 5: Number of connected components (clusters) in the adjacency graph and maximum distance

between two components for the biobjective binary multiple choice knapsack problem
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Problem Adjacency Definition Connected

Shortest paths, Minimum cost flows LP & CD No

Spanning trees LP & CD No

Matroids CD No

Binary multiple choice knapsacks CD No

Binary knapsacks with bounded cardinality LP & CD No

Bin. knapsacks, bounded card., constant cost sum LP & CD Yes

Unconstrained binary optimization LP & CD No

Linear assignments LP & CD No

Table 6: Overview of connectedness results for MOCO problems. CD: Combinatorial definition of

adjacency; LP: LP-based definition of adjacency (see Section 3).

7 Conclusions

As in the case of single objective combinatorial optimization, the question of adjacency of solutions

is one of the core aspects in multiple objective combinatorial optimization (MOCO). The concept of

adjacency of optimal solutions in multiple objective problems certainly exceeds its single criterion

analogon in terms of complexity because of a more involved optimality concept. Maybe it is due

to this increased complexity that research on this subject has widely been neglected. To the best

of our knowledge there do not exist (correct) exact algorithms for computing the set of efficient

solutions based on neighborhood structures, nor does the literature formalize different notions of

adjacency.

The aim of our work is threefold. First, we formally introduce two different concepts of ad-

jacency. One class of adjacency concepts relies on problem-dependent combinatorial structures,

while the other one is based on appropriate models for the problem and, ultimately, goes back to

the definition of adjacency for multiple objective linear programs. Second, we survey the current

state of the art and supplement it with our own findings. As a result, we list eleven combinatorial

optimization problems and discuss their adjacency properties, see Table 6 for an overview of these

results. Third, we conduct numerical experiments to analyze the adjacency structure of two special

types of bi-objective knapsack problems. Although being structurally related and possessing a non-

connected adjacency graph in general, these knapsack problems differ significantly in the practical

occurrence of adjacency.

Our work should be understood as a first step towards an in-depth investigation of adjacency
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in MOCO problems.

Although we prove the non-connectedness of many fundamental MOCO problems in general,

special variants of these problems might possess a connected adjacency graph (cf. [10]). Further

explorations of the structure of counter-examples as well as of the structure, the size and the

geometry of connected components and especially their dependencies on the choice of the problem

data should be in the main focus.

Another interesting stream of research is the development of new definitions of adjacency pos-

sibly yielding connected adjacency graphs for a wider class of MOCO problems. Especially, the

ordered generation of the set of nondominated solutions for problems with two objective functions

seems to be an appealing stream of research.

The structural results presented in Section 4 are based on a worst-case analysis. Studying

theoretically the average case gives detailed information about the expected occurrence of adjacency

in practical problems and might justify the application of adjacency-based algorithms even for

problems having non-connected adjacency graphs in general.
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[15] Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinato-

rial optimization. 7th International Conference on Multi-Objective Programming and Goal

Programming, Tours, France (2006)

[16] Steuer, R.: Multiple Criteria Optimization. Theory, Computation, and Application. John Wi-

ley & Sons, Inc., New York (1985)

[17] Ehrgott, M.: Multicriteria Optimization. Springer, Berlin, Heidelberg (2005)

26



[18] Gorski, J.: Analysis of the connectedness of Pareto-optimal solutions in multiple criteria com-

binatorial optimization. M.S. Thesis, University of Erlangen-Nuremberg, Germany (2004)

[19] Geist, D., Rodin, E.Y.: Adjacency of the 0-1 knapsack problem. Comput. Oper. Res. 19, No. 8,

797-800 (1992)

[20] Balinski, M. L., Russakoff, A.: On the assignment polytope. SIAM Review 16, 516-525 (1974)

[21] Hausmann, D.: Adjacency on Polytopes in Combinatorial Optimization. Verlag Anton Hain,

Königstein/Ts. (1980)

[22] Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple criteria knap-

sack problem, Nav. Res. Logist. 47, No.1, 57-76 (2000)

[23] Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0-1 multi-objective knapsack

problem. Comput. Oper. Res. 36, No. 1, 260-279 (2009)

[24] Pedersen, C.R., and Nielsen, L.R. and Andersen, K.A.: On the bicriterion multi modal assign-

ment problem. Working paper WP-2005-3, Department of Operations Research, University of

Aarhus (2005)

27


