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Abstract

We propose a model for portfolio optimization extending the Markowitz mean-variance
model. Based on cooperation with Standard & Poor's we use �ve speci�c objectives re-
lated to risk and return and allow consideration of individual preferences through the
construction of decision-maker speci�c utility functions and an additive global utility func-
tion. Numerical results using customized local search, simulated annealing, tabu search
and genetic algorithm heuristics show that problems of practically relevant size can be
solved quickly.



1 Portfolio Optimization

The Markowitz covariance model (Markowitz, 1952, 1959), the classical approach to port-
folio optimization, is based on two conicting optimization criteria: On one hand, the risk
of a portfolio, represented by its variance, is to be minimized, while on the other hand the
expected return of the portfolio is to be maximized. This naturally leads to the following
bicriteria formulation of the problem:

max
MP
i=1

�ixi

min
MP
i=1

MP
j=1

�ijxixj

s:t:
MP
i=1

xi = 1

xi � 0 i = 1; : : : ;M:

(1)

Here,
M denotes the number of available assets;
xi represents the investment portion in asset i 2 f1; : : : ;Mg,

where x = [x1; : : : ; xM ]T 2 IRM is the M -dimensional solution vector;
�i denotes the expected return of asset i 2 f1; : : : ;Mg;
�ij denotes the covariance between the returns of assets i; j 2 f1; : : : ;Mg,

and � = (�ij) i=1;:::;M

j=1;:::;M

denotes the corresponding M �M covariance matrix.

To simplify further notation, we will often replace the minimization of the variance in (1)
by the equivalent maximization of the negative variance, using the equivalence

min xT�x = �max
�
�xT�x

�
:

Note that the �rst objective, f1(x) =
PM

i=1 �ixi, is a linear function while the second
objective, f2(x) = �xT�x, is a quadratic function of x.

In the context of multicriteria programming, solving (1) is understood as generating its
Pareto optimal (eÆcient) solutions. If X = fx 2 IRM :

PM
i=1 xi = 1; xi � 0 8i = 1; : : : ;Mg

denotes the set of feasible solutions of (1), a portfolio xe 2 X is said to be a Pareto optimal
solution (an eÆcient portfolio) if there is no other solution x 2 X such that f(x) < f(xe),
i.e. f1(x) < f1(xe) and f2(x) � f2(xe) or f1(x) � f1(xe) and f2(x) < f2(xe). In other
words, Pareto optimal solutions are those solutions for which none of the criteria can be
improved without deterioration of the other criterion.
Let Xe denote the set of eÆcient solutions of (1) and let Ye denote the image of Xe in the
objective space, that is Ye = f(Xe), where f = [f1; f2]

T . Ye is referred to as the set of
eÆcient points or the eÆcient frontier of (1).

Figure 1 illustrates the shape of the eÆcient frontier of (1) for an example problem based
on data for 40 investment funds (Standard & Poor's Funds Services Database (1999), see
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also Schwehm (2000)). The same data was used in the small real case studied in Section
6. Objective function f1 represents the expected return and objective function f2 models
the variance of the portfolio.
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Figure 1: Approximation of the nondominated frontier of (1) for data consisting of 40
di�erent investment funds. The piecewise linear approximation was constructed using the
norm-based algorithm of Schandl et al. (2001).

The tool proposed in Markowitz (1959) to �nd eÆcient portfolios is the critical line algo-
rithm. Basically, it solves a parametric quadratic programming reformulation

minxT�x� ��x

of (1) using Karush-Kuhn-Tucker optimality conditions. The main drawback of that orig-
inal method was the time needed to compute the covariance matrix from historical data
and the diÆculty of solving the large scale quadratic programming problems. Of course,
with modern soft- and hardware this is not an issue anymore.
Nevertheless, various authors have proposed models which do not imply these problems.
Konno (1990) formulated a piecewise risk function to replace the covariance, thus reducing
the problem to a linear programming one. He could prove that his model is equivalent
to the Markowitz model, when the vector of returns is multivariate normally distributed.
Markowitz et al. (1994) later described a method which avoids actual computation of the
covariance matrix, and Morita et al. (1989) applied a stochastic linear knapsack model to
the portfolio selection model.
In recent years, criticism of the basic model has been increasing because of its disregard
for individual investors' preferences. Konno (1990) observed that most investors do not
actually buy eÆcient portfolios, but rather those behind the eÆcient frontier. Ballestero
and Romero (1996) �rst proposed a compromise programming model for an 'average' in-
vestor, which was modi�ed to approximate the optimum portfolio of an individual investor

2



(Ballestero, 1998). A di�erent approach was described in Arthur and Ghandforoush (1987),
who propose the use of objective and subjective measures for assets. Their idea leads to a
simple linear programming model. Hallerbach and Spronk (1997) argue that most models
do not incorporate the multidimensional nature of the problem and outline a framework
for such a view on portfolio management. For further references on the use of optimization
models for portfolio selection the reader is referred to Pardalos et al. (1994).
The rest of the paper is organized as follows. In Section 2 we present an objective hierarchy
and formulate a multicriteria optimization model which uses �ve objective functions. In
Section 3 we show how to construct decision maker speci�c utility functions using interpo-
lation methods. The �nal model is described in Section 4 as a mixed integer programming
model. Section 5 gives an overview of the algorithms implemented. Finally, in Section 6
we present numerical results on some test problems.

2 Multicriteria Model and Objective Hierarchy

As discussed in Section 1 it is often found in portfolio optimization that investors prefer
portfolios that lie behind the nondominated frontier of the Markowitz model (1) even
though they are dominated by other portfolios with respect to the two criteria expected
return and risk. This observation can be explained by the fact that not all the relevant
information for an investment decision can be captured in terms of explicit return and
risk (see, for example, Hallerbach and Spronk, 1997). By considering additional and/or
alternative decision criteria, a portfolio that is dominated with respect to expected return
and risk may make up for the de�cit in these two criteria by a very good performance in
one or several other criteria and thus be nondominated in a multicriteria setting. Moreover,
investors may di�er signi�cantly in their perception of the relative importance of di�erent
attributes like dividends, �nancial stability or future growth expectations.

As a result, a multicriteria model based on more than two objective functions allows for a
higher exibility in modeling the objectives of investors, and, combined with an appropriate
utility approach, is likely to lead to better representations of their preferences. Figure 2
shows an example of an objective hierarchy extending the classical Markowitz model in
the sense that the two classical criteria risk and return are replaced by �ve more speci�c
objective functions.
The model was found after several discussions with investors as well as analysts from
Standard & Poor's Funds Services GmbH, Germany (see Schwehm, 2000). It was indicated
that the expected return as used in the Markowitz model should be broken down into the
criteria 12-month performance, 3-year performance and annual dividend in order to improve
the possibilities of the individual investor to articulate subjective preferences. This gain of
exibility seems to outweigh the additional time required for the consideration of further
objectives. The fourth objective, the Standard & Poor's star ranking, describes to what
extent an investment fund follows a speci�c market index and is applied particularly in
the case that a portfolio consists exclusively of investment funds. It evaluates the over-
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Figure 2: Example for an objective hierarchy based on the Markowitz model. The arcs
indicate relations between the di�erent criteria.

or under-performance and rewards funds that closely follow the market index. The �fth
attribute, the 12-month volatility, is used as a measure of the risk of a portfolio.

The resulting model with the �ve objective functions f1; : : : ; f5 as speci�ed above can be
formulated as follows:

max [f1(x); : : : ; f5(x)]
T

s:t:
MP
i=1

xi = 1

xi � 0 i = 1; : : : ;M:

(2)

Based on the available data, the following implementations of the �ve objective functions
were used (see, for example, Gouri�eroux, 1997, for a more detailed discussion of alternative
implementations).
Let pt;i denote the price (value) of asset i in period t, for i = 1; : : : ;M and t = 1; : : : ; T;
where T denotes the present.

� 12-month Performance

The 12-month performance r12i of an individual asset i 2 f1; : : : ;Mg measures the
relative change of the price of the asset over the last twelve months (in percent) and
is therefore a measure for the short term expected return. In particular,

r12i =
pT;i � pT�1;i

pT�1;i
:

We assume that the returns follow some statistical distribution, so that the expected
return (12-month performance of a portfolio) can be obtained as a weighted sum of
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the expected return of the individual assets in the portfolio. Thus we obtain objective
function f1 as

f1(x) =
MX
i=1

r12i xi:

� 3-year Performance

The long term performance (expected return) r36i of an asset is calculated, similarly
to the 12-month performance, as:

r36i =
pT;i � pT�3;i

pT�3;i
:

Consequently, the 3-year performance of a portfolio is given by

f2(x) =
MX
i=1

r36i xi;

again assuming a statistical distribution of the r36i values.

� Annual Dividend

Objective function f3 represents the relative annual dividend of a portfolio. It is
calculated as the weighted sum of the relative annual dividends di of the individual
assets in the portfolio, where the total dividend of an asset is set in relation to its
highest sales price during the last twelve months. Alternatively, the lowest price of an
asset during the last twelve months or its current value could be used as a reference
value. We decided to use the highest price of an asset here since this approach,
in general, underestimates the relative annual dividend and is therefore a cautious
value. Hence,

di =
dai
phi
;

where dai denotes the nominal annual revenue of asset i in the last year and phi denotes
the highest price (value) of asset i in the last year. The dividend of a portfolio is the
weighted sum of dividends of individual assets. Overall, we obtain

f3(x) =
MX
i=1

dixi:

� Standard & Poor's Star Ranking

The Standard & Poor's Fund Services GmbH evaluates the performance of most
investment funds contained in their data base on an annual basis which results in a
performance ranking (star ranking). The ranking is based on the performance of an
investment fund in comparison to the sector index and assigns between one star (for
a relatively poor performance) and up to �ve stars (for a very good performance).

5



We will assume in the following that the ranking is additive in the sense that the
ranking of a portfolio of investment funds can be obtained as the weighted sum of
the rankings of the individual investment funds in the portfolio. Consequently, the
fourth objective function can be written as

f4(x) =
MX
i=1

srixi

where sri denotes the number of stars assigned to investment fund i.

� Volatility

The risk associated to a certain investment is often measured in terms of the standard
deviation of the time series reecting the price of an asset in the past. The volatility
of a portfolio can be found as the square root of its variance which is given by xT�x,
cf. (1). It relies on the length of the underlying time series and can be calculated in
various ways, yielding, for example, a 12-month volatility or a 3-year volatility. In
the following, a 12-month volatility is used to formulate the �fth objective function.
The resulting value is multiplied by (-1) to �t into the maximization framework of
problem (2):

f5(x) = �
p
xT�x = �

vuuut MX
i=1

MX
j=1

�ijxixj:

As in the Markowitz model, �ij denotes the covariance between the returns of assets
i; j 2 f1; : : : ;Mg, based on observations over the last twelve months and summarized
in the covariance matrix �.

It should be noted that the simultaneous consideration of highly correlated criteria like
the 12-month performance and the 3-year performance of an investment entails the risk of
double counting, see, for example, Jenkins and Anderson (2001) and Jenkins and Anderson
(2002). This has to be taken into account when deriving utility functions and an overall
preference structure which will be discussed in detail in Section 3

Moreover, many alternative objective hierarchies, incorporating other criteria like, for ex-
ample, the social responsibility of an investment fund, the number of securities in a portfolio
or the mean absolute deviation as an alternative measure of risk, can be formulated. While
the models and methods discussed in the following focus on the objective hierarchy speci-
�ed in Figure 2, the results directly transfer to other choices of criteria and can be easily
adapted to the preferences of the individual decision situation.

3 Utility Functions and Multi-Attribute Utility The-

ory

In Section 2 we introduced the �ve attributes by which we measure the performance of a
portfolio. We will combine these objectives using DM-speci�c utility functions for each of
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the attributes (see Section 3.1) and an additive global utility function to derive our �nal
model (see Section 4).
Keeney and Rai�a (1993) state that the set of attributes in an objective hierarchy should
be complete, operational, decomposable, non-redundant, and minimal. In this regard our
hierarchy might be criticized for not being non-redundant (as we have the correlated criteria
of 1- and 3-year performance) and not being completely decomposable, as the S&P star
ranking is a measure relevant for both risk and return. We felt, however, that this is
justi�ed, as the issue was discussed with the project partner and inclusion of all these
measures was considered important.
The other issue is the existence of an additive value (or utility function). Theoretically, the
condition for its existence is that the attributes are mutually preferentially independent
(see Keeney and Rai�a, 1993, page 111, for a formal de�nition). Again, due to correlation
among some of the attributes, this condition is not completely satis�ed. Nevertheless,
the project partner accepted the assumption of the existence of an additive global utility
function.

3.1 Generation of DM-speci�c Utility Functions

Since generally neither utility functions for the di�erent decision criteria nor a global utility
function are known explicitly, pointwise representations of the utility functions for the
individual criteria or of the global utility function are used to generate approximations of
the respective utility functions. Utility points can be either speci�ed for the global utility
function, thus combining all the individual decision criteria into a single function, or an
additive approach could be used in which utility points are given for all individual decision
criteria, yielding one utility function per criterion. In the latter case, the resulting utility
functions are combined into a global utility based on a weighting of the criteria according
to their relative importance for the decision maker, cf. Section 3.
While the knowledge of a global utility function would have many advantages, its generation
and, in particular, the speci�cation of an appropriate number of utility points by the
decision maker taking into account all criteria and their interrelations, is very diÆcult in
practice (see, for example, Keeney and Rai�a, 1993). Tangian (2001) (see also Tangian
and Gruber, 1997) tries to overcome these diÆculties by generating a quadratic function
representing level sets (i.e., sets of equally preferred solutions) of the global utility function.
Even though this leads to a relatively simple representation of the preference structure,
utility points interrelating all considered criteria are needed also in this model. Moreover,
due to the simple structure of the function (if more data points are given than needed to
de�ne the functional coeÆcients, an approximating quadratic function is constructed using
a least squares method) valuable preference information may be lost.

In the following we will focus on additive models since they can be viewed as a compromise
between the time required by the decision maker, the achieved accuracy and the simplicity
of the model (see, for example, Hallerbach and Spronk, 1997).
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Given a �nite set of n pairwise di�erent utility points (data points) D = fD1; : : : ; Dng with
coordinates Di = (si; ti), i = 1; : : : ; n satisfying �1 < s1 < : : : < sn < 1 for each of the
considered objective functions (these points have to be provided by the decision maker),
various di�erent interpolation techniques can be used to generate an approximation of the
underlying utility functions. We will concentrate on piecewise linear, piecewise quadratic
and cubic spline interpolations since they appear to combine several desirable properties
like an easy representation and a suÆciently good approximation of the (unknown) correct
utility functions.

3.2 Interpolation Methods

Perhaps the easiest way to combine a set of utility points D is by determining a piecewise
linear function with break points exactly at the utility points. This yields a utility function
upl : [s1; sn]! IR which can be piecewise de�ned as

upli (s) = ti +
ti+1 � ti
si+1 � si

(s� si); s 2 [si; si+1); i 2 f1; : : : ; n� 1g:

Edwards and Barron (1994) have classi�ed di�erent types of functions encountered in prac-
tical applications. In many of these cases piecewise linear utility functions are convenient.
However, a relatively high curvature of the utility function and/or a relatively small number
of utility points may result in large approximation errors.
To account for the curvature of the approximated utility functions, piecewise quadratic
functions may be utilized. This approach can be additionally motivated by a general
property of many utility functions, that is, that the marginal utility is decreasing (see, for
example, Keeney and Rai�a, 1993).
Let Di�1 = (si�1; ti�1), Di = (si; ti) and Di+1 = (si+1; ti+1) be three consecutive utility
points. Then a piecewise quadratic interpolating function upq : [s1; sn] ! IR consists of
segments

upqi (s) = ti
(s� si+1)(s� si+2)

(si � si+1)(si � si+2)
+ ti+1

(s� si)(s� si+2)

(si+1 � si)(si+1 � si+2)
+ ti+2

(s� si)(s� si+1)

(si+2 � si)(si+2 � si+1)

for s 2 [si; si+1); i 2 f1; : : : ; n� 2g; and upq(s) = upqn�1(s) for s 2 [sn�1; sn]:

One drawback of piecewise quadratic interpolations is that even if the set of utility points
represents a monotone (strictly increasing or strictly decreasing) function, the resulting
piecewise quadratic approximation may fail to have the same monotonicity property (see,
for example, Figure 4). To overcome this diÆculty, non-monotone quadratic segments may
be replaced by linear segments to obtain a combined piecewise linear and quadratic, but
monotone function.

The interpolation schemes above are relatively simple and allow for an easy implementation.
A major drawback, however, is that the approximations are in general not di�erentiable at
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the interpolation nodes, whereas utility functions are often assumed to be di�erentiable.
To obtain smooth approximating functions, polynomials of higher order are needed which
immediately leads to polynomial spline functions. To keep the model simple, we will
concentrate on cubic splines in the following, that is, on spline functions of degree r = 3.
For a more detailed introduction to spline functions we refer, for example, to Boor (1978)
or Shikin and Plis (1995).
Cubic splines u : [s1; sn] ! IR consist of cubic polynomials pieced together in such a way
that their values and those of their �rst two derivatives coincide at the knots s1; : : : ; sn,
and that one of the following additional constraints at the boundaries are satis�ed:

(a) u00(s1) = u00(sn) = 0 (u is called natural),

(b) u(k)(s1) = u(k)(sn) for k = 0; 1; 2 (u is called periodic),

(c) u0(s1) = t01, u
0(sn) = t0n for given numbers t01 and t0n (u has the Hermite property).

Using condition (c) seems to be appropriate in the context of utility functions since it
allows for a linear continuation of the approximation outside the interval [s1; sn] by setting

t01 :=
t2 � t1
s2 � s1

and t0n :=
tn � tn�1
sn � sn�1

:

At this point the cubic spline function approximating the utility function as ucs(s) := u(s)
is completely determined and can be piecewise described as

ucsi (s) = ai(s� si)
3 + bi(s� si)

2 + ci(s� si) + di; s 2 [si; si+1); i 2 f1; : : : ; n� 1g
with real coeÆcients ai; bi; ci; di, i = 1; : : : ; n � 1. The explicit computation of these
coeÆcients remains a technical task and is described in detail, for example, in Stoer and
Bulirsch (1993).
Note that, while the resulting function ucs is di�erentiable throughout its domain, the same
problems as in the case of the piecewise quadratic interpolation may be encountered with
respect to the monotonicity of the approximation.

3.3 Comparison of the Interpolation Methods

We consider the following two sets of utility points to compare the interpolation methods
discussed in the previous sections:

objective value (si) utility (ti)

D1 0 100

D2 2 80

D3 6 70

D4 12 40

D5 20 15

D6 30 10

D7 50 5

objective value (si) utility (ti)

D1 0 100

D2 2 80

D3 6 78

D4 12 40

D5 20 15

D6 30 10

D7 50 5
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Note that the two data sets di�er only in the coordinates of the point D3. Even though
both data sets are monotone in the sense that a higher objective value always results in a
lower utility, the second data set contains two points, namely the points D2 and D3, with
only slightly di�erent utility values. While all three interpolation methods yield monotone
functions if applied to the �rst data set (see Figure 3), the piecewise quadratic as well as
the cubic spline interpolation yield non-monotone functions in case of the second data set
which is an unwanted property in most practical applications (see Figure 4).

0

20

40

60

80

100

t

10 20 30 40 50
s

0

20

40

60

80

100

t

10 20 30 40 50
s

0

20

40

60

80

100

t

10 20 30 40 50
s

Figure 3: The di�erent interpolation methods applied to the �rst data set. The �rst graph
shows a piecewise linear interpolation, the second graph shows the piecewise quadratic
interpolation and the third graph shows the cubic spline interpolation.
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Figure 4: The three interpolation methods applied to the second data set. The piecewise
linear interpolation shown is the �rst graph is monotone while the piecewise quadratic
interpolation and the cubic spline interpolation shown in the second and third graph are
non-monotone.

These simple examples show that no general preference can be given to any of the described
methods, but that an appropriate interpolation method should be selected according to
the data set at hand. However, since the cubic spline interpolation has several desirable
properties and, in particular, since it yields a continuously di�erentiable, smooth function,
this approach will be used in the following to approximate the utility functions for the
portfolio optimization problem. If a non-monotone utility function is obtained with the
cubic spline interpolation, this can be viewed as an indication that the selection of the
utility points needs further consideration. In any case, non-monotone segments can be
replaced by linear segments to obtain a monotone utility function.
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4 The MAUT Model

Based on the objective hierarchy developed in Section 2 and on the utility theory discussed
in Section 3 we use an objective function to maximize the overall (individual) utility of
the investor. In this way a single criterion optimization problem is obtained, and a unique
optimal objective value is generated according to the preferences speci�ed by the decision
maker. The complete decision making phase is thus incorporated into the development
of the utility function while the Markowitz model (1) generates an eÆcient frontier from
which a preferred solution yet has to be selected (cf. Figure 1).
Using positive weights wq > 0 for the �ve decision maker speci�c utility functions uq(fq(x)),
where fq(x) are the �ve objective functions described in Section 2 we obtain the following
MAUT model for portfolio optimization.

max
5X

q=1

wquq(fq(x))

MX
i=1

xi = 1 (3)

xi � 0 8i = 1; : : : ;M

We now include further constraints in our model which extend the constraints of the
Markowitz model (1) in that they allow to specify both the number of assets to be included
in the portfolio as well as lower and upper bounds on the percentage of those assets selected
to be included in the portfolio. Such constraints were proposed in the context of the
standard mean-variance model by Chang et al. (2000) to avoid impractical solutions that
contain many assets with a very small percentage of the portfolio, a situation that occurs
frequently in the classical mean-variance model.
In order to accommodate the additional constraints, we use the binary variables

yi =

(
1 asset i is included in the portfolio
0 otherwise.

We obtain the following nonlinear mixed integer programming model for the portfolio
optimization problem.

max U(x) =
5X

j=1

wjuj(x) (4)

MX
i=1

xi = 1 (5)

xi � liyi � 0 i = 1; : : : ;M (6)

xi � riyi � 0 i = 1; : : : ;M (7)
MX
i=1

yi = m (8)
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xi � 0 i = 1; : : : ;M

yi 2 f0; 1g i = 1; : : : ;M;

where the weights w1; : : : ; w5 of the global utility function (4) are speci�ed by the decision
maker such that

P5
j=1wj = 1. In the case study discussed in Sections 2 and 6.1, these

weights were chosen as w1 = 0:12, w2 = 0:24, w3 = 0:04, w4 = 0:4 and w5 = 0:2.
Moreover,

u1(x) = ucs1 (f1(x)) = ucs1 (
PM

i=1 r
12
i xi)

u2(x) = ucs2 (f2(x)) = ucs2 (
PM

i=1 r
36
i xi)

u3(x) = ucs3 (f3(x)) = ucs3 (
PM

i=1 dixi)

u4(x) = ucs4 (f4(x)) = ucs4 (
PM

i=1 srixi)

u5(x) = ucs5 (f5(x)) = ucs5 (�
p
xT�x):

See Sections 2 and 3.2 for the details of the implementation.
Constraint (5) in the above model corresponds to the general knapsack constraint (cf. prob-
lem (1)). Constraints (6) through (8) are optional and can be added or dropped according
to decision makers preferences. In particular, constraints (6) and (7) can be used to in-
corporate lower bounds li and upper bounds ri on the investment in individual assets
(0 � li; ri � 1 and li � ri, i = 1; : : : ;M). In most applications, all lower bounds (up-
per bounds, respectively) will be equal, i.e., li = l and ri = r, i = 1; : : : ;M with �xed
values 0 � l � r � 1. Implementing these bounds avoids large numbers of very small
investments (lower bounds) and at the same time ensures a suÆcient diversi�cation of the
investment (upper bounds). Additionally, constraint (8) can be used to specify the total
number m 2 IN of assets in a portfolio. Other constraints may be added as necessary, to
ensure, for example, that a certain asset is part of the portfolio, or that certain segments
of the market are covered. Note that lower and upper bounds have to be chosen carefully
so that feasible solutions exist (e.g. li can be positive for at most m assets,

PM
i=1 li � 1).

For a similar discrete model where xi are integer variables and represent numbers of lots
of an asset bought, Mansini and Speranza (1999) proved that �nding a feasible solution is
NP-hard.
It is also important to remark that the global objective function can be non-convex in
general. With the combination of continuous and binary variables the resulting problem
will usually be a very diÆcult non-convex mixed integer programming problem. Even if the
utility functions uq are monotone (as was the case in our case study), which implies U(x)
to be quasi-convex, the cardinality constraints (6) and lower and upper bounds (7) and
(8) imply that the feasible set of the problem is not connected, and the problem remains
a non-convex optimization problem on the boundary of the feasible set.

5 Solution Methods

Since the model formulated in Section 4 is a generally very complex, non-convex optimiza-
tion problem in a large number of variables, exact solution methods seem to be inapplicable.
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Moreover, due to the fuzziness of input parameters like, for example, the utility points and
the approximated utility functions as well as their respective weighting, the notion of an
\exact optimum" appears to be inadequate.
Consequently, four di�erent heuristic solution methods, including a local search approach
(particularly designed for the given problem context) and three metaheuristics (simulated
annealing, tabu search and an implementation of a genetic algorithm) were applied to the
problem and compared on di�erent classes of problem instances.
All methods are based on two neighborhood structures of a given portfolio, which we
describe in the context of the local search algorithm.

5.1 Two Phase Local Search Algorithm

The two phase local search algorithm is based on a local improvement method that searches
for the best alternative to a given portfolio x within a certain neighborhood of x. We used
two neighborhood structures based on the following de�nitions.

� The member neighborhood N1(x) of a portfolio x including m di�erent assets is the
set of all portfolios consisting of the same percentage distribution of assets and dif-
fering in at most one asset (one member) from the portfolio x. This is essentially a
neighborhood based on the 0-1 variables yi.

� The percentage neighborhood N2(x) of a portfolio x including m di�erent assets is the
set of all those portfolios that consist of the same assets and di�er in at most two
percentage values from the portfolio x. Here, the di�ering percentage values may be
one unit higher or one unit lower than those in x. This neighborhood is based on
changing the xi variables, whereas yi variables are kept constant. (Note that this
de�nition leads to a discretization of the solution set.)

Using these neighborhood structures facilitates both the control over lower and upper
bounds on the investments in individual assets (constraints (6) and (7)) and over the total
number of assets in a portfolio (constraint (8)). Furthermore, due to its simplicity it
supports eÆcient implementations.

The basic steps of the algorithm can be described as follows: Starting from an initial
portfolio x, the neighborhood of x is searched for that portfolio yielding the maximal
improvement. This process is then repeated until no further improvement is possible.
During the iterations, on one hand the set of assets in the portfolio and on the other hand
their percentage values are adapted by alternately exploring the neighborhoods N1(x) and
N2(x) of the current portfolio P . As these changes alternate, we call the algorithm Two
Phase Local Search.
Since both improvement processes only lead to small changes in the portfolio, the search
procedure is restricted to a relatively small neighborhood of the current portfolio. To avoid
an early termination of the procedure at a local maximum, an additional searching process
is incorporated that allows the exchange of more than one asset at a time. In this process
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a subset of assets from the current portfolio is randomly selected and removed from the
portfolio. Then new assets are successively added in a greedy fashion, and the modi�ed
portfolio is accepted if it yields a higher global utility value. Even though this extended
search procedure is rather time consuming, it turns out to lead to signi�cant improvements
of the achieved solutions.
The initial portfolio may be found either by a deterministic approach, where new assets
are successively added to the portfolio following a greedy strategy until the number of
assets m is reached, or in a random approach which randomly selects an initial portfolio
in accordance with the problem constraints.

5.2 Metaheuristics

In addition to the two phase local search discussed in the previous section, three meta-
heuristics were implemented and compared in the context of the portfolio optimization
problem. We refer for example, to the texts by Reeves (1993), Rayward-Smith et al.

(1996) or, Aarts and Lenstra (1997) for details on metaheuristics.
For the simulated annealing algorithm as well as the tabu search algorithm, the same
neighborhood structures were used as for the two phase local search.

� Simulated Annealing. The simulated annealing algorithm starts from a randomly
generated feasible solution. In each iteration a random member of the portfolio is
exchanged. If this change deteriorates the objective value, it is accepted with a certain
probability depending on the state of the process, represented by a parameter ci. In
particular, ci is the expected value of accepted deteriorations and is reduced after a
prede�ned number of nl iterations following a standard cooling scheme (c.f. Section
6 for the speci�cation of the parameters).

The corresponding parameter for acceptance of deteriorations due to percentage
changes is set to 0.1ci. If a change is accepted, the percentages of two assets in
the portfolio are changed by one percentage point.

� Tabu Search. The tabu search algorithm uses two tabu lists Tn of length tn and To
of length to. These contain the assets most recently added respectively removed from
the portfolio. The member neighborhood N1(x) is searched repeatedly, allowing for a
maximum of nmd (a prede�ned number) deteriorations of the objective value during
the search procedure. Starting from the best solution found during this search pro-
cess, the percentage neighborhood N2(x) is searched as in the local search algorithm.
The algorithm iterates by alternately using these two neighborhood structures.

As a way of diversi�cation, the second best solution found in each search of the
membership neighborhood is stored, and a new search process is started from there.
In this diversi�cation phase nmd is set to zero. The initial (feasible) solution is chosen
randomly.
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� Genetic Algorithm. The genetic algorithm creates an initial population of g fea-
sible portfolios randomly. In every one of a �xed number of iterations, the g� r best
members of the population survive. For the remaining r, one parent is chosen from
the total population, the other from among the g � r surviving individuals. Then
m assets present in the parents are chosen randomly for the o�spring. In addition
to that, a mutation process slightly perturbing the percentages of the funds in the
new solution can be applied: A mutation operator multiplies the percentage of a
randomly chosen asset by a �xed value < 1 or > 1 (or 1 if no mutation is desired).

Note that, in order to obtain feasibility of the newly generated portfolios, the per-
centage values of the individual assets may have to be adapted and normalized.

Metaheuristics have also been used in Chang et al. (2000) to generate the eÆcient frontier of
cardinality constrained portfolio optimization problems (in fact, this study also considered
a tabu search, a simulated annealing, and a genetic algorithm implementation). With the
constraints of our MAUT model of Section 4 being the same as those in Chang et al. (2000)
these could also be adapted for use with our model by including our objective function.

6 Computational Results

The performance of the algorithms described in Section 5 was tested on two di�erent
problem classes. In the �rst, we used data from the Standard & Poor's database of 1,108
funds of which we selected 190 nondominated assets. Dominance of assets is understood
as dominance of single asset portfolios. A nondominated asset is therefore not dominated
by any other asset with respect to all �ve criteria, where criterion f5 in the case of a
single asset portfolio is only based on the variance of this asset. Even though an optimal
portfolio of (3) may contain dominated assets due to the nonlinearity of the volatility
(objective f5), this approach is based on the wish for a portfolio consisting of assets that
are also individually strong. For evaluation we used decision maker speci�c utility functions
and the �ve objective functions described in Section 2.
To compare the performance of the di�erent algorithms on other and more general prob-
lem instances, we additionally generated 10,000 assets with uniformly distributed random
values for seven (linear) objective values. Of those, the 1,416 nondominated assets were
selected. The utility functions used in this case were monotone or random (non-monotone)
and equal weights wq = 1=7 were applied to get the global utility function. Because in the
randomly generated problem instances we exclusively work with additive (linear) criteria
dominated assets can be ignored without changing the optimal solution value in the case
of monotone utility functions.
The main attributes of the problem instances are summarized in the table below:
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Partially approx-

imated large real

case

Small real case Large monotone

case

Large random

case

# of assets M = 190 M = 40 M = 1; 416 M = 1; 416
# of criteria 5 5 7 7

generation

method

S&P database

(with incom-

plete covariance

matrix)

S&P database

(with com-

plete covariance

matrix)

uniformly ran-

dom in the set

f0; 1; : : : ; 1000g

uniformly ran-

dom in the set

f0; 1; : : : ; 1000g

utility func-

tions

Section 6.1 Section 6.1 monotone, cubic

splines

random, piece-

wise linear

weighting of
the criteria

Section 6.1 Section 6.1 wq = 1=7 wq = 1=7

bounds

(constr. (6,7))

li = 4, ri = 30 li = 4, ri = 30 li = 4, ri = 30 li = 4, ri = 30

# of assets

(constr. (8))

m = 10 m = 10 m = 10 m = 10

Since some of the internal parameters of the implemented algorithms have a considerable
impact on the quality of the generated solutions and at the same time their optimal choice
depends on the given problem instance, di�erent program speci�cations were compared.
These include:

(1) For the two phase local search heuristic:

nmc, the number of consecutive iterations based on the member neighborhood,
npc, the number of consecutive iterations based on the percentage neighborhood,
nsmc, the number of consecutive iterations based on the extended neighborhood,

and the procedure used for the generation of the initial solution.

(2) For the simulated annealing algorithm:

The cooling schedule of the algorithm is controlled by the parameters b1 and b3
where b1 determines the probability of accepting deteriorating objective values and
b3 inuences the speed of the cooling process. Moreover, the termination of the
algorithm is controlled by the speci�cation of the total number of iterations.

(3) For the tabu search algorithm:

tn, the length of the tabu list Tn containing assets added to the portfolio in the
preceding iterations,

to, the length of the tabu list To containing assets removed from the portfolio
in the previous iterations, and

nmd, the maximal number of consecutive deteriorations of the objective value.

(4) For the genetic algorithm:
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The performance of the genetic algorithm depends on the number of genotypes g in
the initial population, on the number of replaced genotypes r per iteration, and on
the total number of iterations (or generations) gen.

All experiments were run on an Intel Pentium III PC with 600 MHz. In the following
sections we summarize the best results obtained by each of the algorithms for the four test
problems. Each run was repeated ten times. Here, 2PLS = 2 Phase Local Search, SA =
Simulated Annealing, TS = Tabu Search, GA = Genetic Algorithm. Below we report the
results of our tests.

6.1 Results on Fund Database

Investors were asked to specify utility points for the �ve criteria 12-month performance,
3-year performance, annual dividend, Standard & Poor's star ranking and volatility. The
resulting utility values were normalized to lie in the interval [0; 100]. We used the cubic
spline interpolation described in Section 3.2. The utility points and corresponding functions
are shown below.

12-month performance assigned utility
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20 80
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40
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3-year performance assigned utility
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annual dividend (in %) assigned utility

0 0

0.5 5

1 10

2 20
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6 100
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S&P star ranking assigned utility

(# of stars)

1 0

2 20

3 40

4 75
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0
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12-month volatility assigned utility

0 100
2 80
5 65
10 45
20 15
30 10
50 5

0

20

40

60

80

100

10 20 30 40 50

Note that the �rst four utility functions are strictly increasing while the last one, modeling
the volatility, is strictly decreasing, i.e here we consider objective function �f5(x) which
is to be minimized. All generated functions are monotone.
In addition to the speci�cation of the �ve utility functions, a relative weighting of the
criteria is needed accounting for their relative importance to the decision maker (cf. Section

18



3). In the case study, the relative weight of the 12-month performance (objective function
f1) was set to w1 = 0:12 while the 3-year performance (objective function f2) was considered
more relevant and was assigned a weight of w2 = 0:24. This yields a total weight of
w1 + w2 = 0:36 for these two closely related criteria. The relative weight for the annual
dividend (objective function f3) was set to w3 = 0:04.
Moreover, the Standard & Poor's star ranking (objective f4) was assigned a relatively high
weight of w4 = 0:4. Since part of the risk associated with a portfolio is already captured
by the Standard & Poor's star ranking, the relative weight of the volatility (objective f5)
was set to a comparably low value of w5 = 0:2, yielding an overall weight of w4+w5 = 0:6
for these risk-related criteria.
It was not possible to obtain a full covariance matrix for the 190 nondominated funds in
this example due to limited capabilities of the S&P database. We used covariance values
randomly generated in the interval [�0:4; 1].

Algorithm U(x) standard function CPU Parameters
deviation evaluations time

2PLS 91.197 0.127 105,000 1.291 npc = 30; nmc = 60; nsmc = 25
initial solution random

SA 91.413 0.093 282,800 7.226 b1 = 0:25; b3 = 0:25
100,000 iterations

TS 90.399 1.504 151,100 3.932 tn = 8; to = 2; nmd = 3
GA 92.336 0.002 150,500 7.124 g = 500; r = 300; gen = 500

Table 1: Results for the Partially Approximated Large Real Case

Table 1 shows that the two phase local search heuristic has a good and stable performance,
yielding satisfactory solution values. The simulated annealing algorithm produces stable
results which are slightly better than those of the two phase local search. The tabu search
algorithm appears to be less stable on this problem class than the other three algorithms.
A long tabu-list appears to be advantageous particularly for the newly added assets in a
portfolio. The genetic algorithm seems to have the least diÆculties with this problem class
and produces the best results and runs most stable.

For a smaller data set containing only 40 funds, all of which where non-dominated, we had
a complete covariance matrix available.
Obviously, the smaller size of the problem leads to a reduction in computational e�ort, see
Table 2. The lower utility values might be partly due to the fact, that for this problem
we had a complete covariance matrix and did not have to rely on randomly generated
covariances, and partly due to the smaller feasible set.
The two phase local search heuristic and the simulated annealing algorithm lead to similar
results that appear to be good and suÆciently stable. Di�erent from the partially approx-
imated real case, tabu search produces satisfying results for the small data set, however, it
is still outperformed by the other three methods. The genetic algorithm performs nearly as
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Algorithm U(x) standard function CPU Parameters
deviation evaluations time

2PLS 86.870 0.325 20,400 0.363 npc = 25; nmc = 50; nsmc = 20
initial solution random

SA 86.841 0.242 56,500 1.417 b1 = 1; b3 = 1
20,000 iterations

TS 86.353 0.664 41,900 1.027 tn = 8; to = 8; nmd = 3
GA 86.787 0.102 75,200 3.367 g = 200; r = 150; gen = 500

Table 2: Results for the Small Real Case

well as the two phase local search and the simulated annealing method, and the standard
deviation of the achieved results is smaller than for the other two procedures.

6.2 Results on Randomly Generated Instances

The six utility points (si; ti) for each objective in the large monotone case were selected to
represent a monotone sequence ti < ti+1, with si = 200(i � 1); i = 1; : : : ; 6. We used the
cubic spline interpolation described in Section 3.2 to compute the seven utility functions.

Algorithm U(x) standard function CPU Parameters
deviation evaluations time

2PLS 84.909 0.001 344,000 5.180 npc = 20; nmc = 60; nsmc = 10
initial solution greedy

SA 84.501 0.808 126,200 2.016 b1 = 0:25; b3 = 1
50,000 iterations

TS 83.906 0.923 797,000 11.897 tn = 8; to = 2; nmd = 2
GA 84.204 0.895 81,000 5.333 g = 1000; r = 400; gen = 200

Table 3: Results for the Large Monotone Case

The utility points for the large random case were randomly generated (the objective val-
ues si are uniformly distributed in the set f0; 1; : : : ; 1000g while the utility values ti are
uniformly randomly distributed in the set f0; 1; : : : ; 100g). A piecewise linear interpola-
tion seems most suitable for this data set (cf. Section 3.2). It yields seven non monotone
piecewise linear utility functions.
As might be expected from the more diÆcult (highly non-convex) structure of this instance,
in general computation times, variability of results, and function evaluations increased
whereas U(x) values decreased, see Tables 3 and 4.
The two phase local search heuristic performs well also on the randomly generated problem
instances. The high standard deviation particularly in the second case indicates multiple
restarts from di�erent starting solutions.
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Algorithm U(x) standard function CPU Parameters
deviation evaluations time

2PLS 86.914 1.077 926,600 11.073 npc = 30; nmc = 60; nsmc = 30
initial solution greedy

SA 80.720 2.342 680,200 8.723 b1 = 0:5; b3 = 0:5
200,000 iterations

TS 80.111 2.771 676,500 7.783 tn = 2; to = 2; nmd = 2
GA 86.083 0.349 241,000 7.904 g = 1000; r = 800; gen = 300

Table 4: Results for the Large Random Case

Maybe due to the relatively narrow neighborhood structure, the simulated annealing and
tabu search algorithms do not produce as good results for this hard problem instance.
The strength of the genetic algorithmmay be seen in the fact that solutions in very di�erent
parts of the solution space are generated in each iteration of the procedure, thus allowing
a much broader view of the solution space. This observation is in accordance with results
of Deb (2001) who describes very successful applications of evolutionary algorithms to
multicriteria optimization problems.

7 Conclusions

In this paper we propose a model for portfolio optimization based on multi-attribute utility
theory and the classical mean-variance model of Markowitz. We address criticism of the
Markowitz model and extend it by formulating a hierarchy of objectives, which decomposes
risk and return into �ve sub-objectives. For each of the �ve objectives, decision-maker
speci�c utility functions are generated from utility values speci�ed by the user. Various
methods for interpolation are used, depending on the nature of the points speci�ed. In
this way, we allow individual investors preferences to be taken into account.
Our �nal model also includes constraints on lower and upper bounds on percentages of
assets included in the portfolio as well as a speci�cation of the number of assets. Conse-
quently, we formulate a non-convex mixed-integer programming model. We implemented
several heuristics to solve this problem. Numerical results show, that good solutions can
be obtained for problem sizes relevant in practical applications in just a few seconds of
CPU time.
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