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Abstract

The multiple objective median problem (MOMP) involves locat-

ing a new facility with respect to a given set of existing facilities so

that a vector of performance criteria is optimized. A variation of

this problem is obtained if the existing facilities are situated on two

sides of a linear barrier. Such barriers like rivers, highways, borders,

or mountain ranges are frequently encountered in practice. In this

paper, theory of an MOMP with line barriers is developed. As this

problem is non-convex but specially-structured, a reduction to a series

of convex optimization problems is proposed. The general results lead

to a polynomial algorithm for �nding the set of eÆcient solutions. The

algorithm is proposed for bi-criteria problems with di�erent measures
of distance.

1 Introduction

Planar location problems have been intensively studied over the last two
decades due to their increasing importance in modern life. Growing popu-
lation and increased economic demand gave rise to studies on choosing an
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optimal site for such facilities as shopping centers, schools, �re stations, etc.
Development of personal computers required higher integration of electronic
circuits which led to a similar problem of optimal locating of electronic el-
ements. In a major part of these applications, especially in regional and
social planning, several decision makers with di�erent priorities are involved
in the locational decision which causes a growing need for eÆcient solution
strategies for location models including multiple objective functions. The
median problem is one of the most extensively studied problems in the loca-
tion literature due to a variety of applications. For an overview on location
models with a single performance criterion as well as with multiple criteria
see e.g. [6, 8, 23, 31].

However, as modern life encounters an ever growing concentration in
many areas and aspects, more recent location models often deal with obsta-
cles or barriers. Consider various applications with areas where positioning
of a new facility is not allowed (see e.g. [5, 11, 12]) or with regions where
trespassing is prohibited. Such barriers may be for example determined by
buildings, lakes, or mountain ranges. The idealized case that the barriers
are linear and have only a �nite set of passages is a special case frequently
encountered in practice. Line barriers with passages may be rivers, border
lines, highways, mountain ranges or, on a smaller scale, conveyer belts in an
industrial plant.

In this paper, the multiple objective median problem (MOMP) is ex-
tended by the concept of line barriers, which signi�cantly increases the com-
plexity of the problem but makes the model a more realistic representation
for many applications. An example of a concrete application of this model
can be found in the city of Halle in Germany where the location of a day
care facility for children was sought in a neighborhood divided by a two lane
highway with only two bridges for pedestrians (see [20]). The city council
decision makers modeled the problem with respect to two conicting criteria
the �rst of which was based on the accessibility of the day care facility to the
children in the neighborhood itself whereas the second criterion modeled the
accessibility of the facility to children using public transportation.

The literature on restricted location problems is very limited and focused
on some particular types of distance metrics and barrier shapes, all considered
for the single criterion case. See e.g. [26] for an introduction to location
problems with barriers. One circle as a barrier and the Euclidean distance
were studied in [18] while closed polyhedra as barriers and the lp-metric were
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examined in [1, 4]. Line barriers with passages have been treated in the case
of the Manhattan metric l1 [21, 2] for which arbitrarily shaped barriers can
be handled, and for arbitrary metrics induced by norms in [19].

The authors believe that this paper is the �rst to study multiple objective
restricted location problems.

The problem we consider is based on the MOMP, also referred to as the
multiple objective Weber problem or the multiple objective mini-sum problem.
It can be formulated as

vminX2F [f1(X); : : : ; fQ(X)] (Q � 2) (1)

where the variable X denotes the location of a new facility in the feasible
region F � IR2. The Q individual criteria measure the performance of a
locational decision in F with respect to a �nite set of existing facilities Ex =
fEx1; Ex2; : : : ; ExMg represented by points in IR2. Each objective is given
as a median function, i.e. the weighted sum of distances from the new facility
to the existing facilities in Ex. Thus

fq(X) =
MX
m=1

wq;mdq(X;Exm); q = 1; : : : ; Q; (2)

with positive weights wq;m, q = 1; : : : ; Q, m = 1; : : : ;M . As each decision
maker may consider di�erent ways of transportation, distances may be mea-
sured di�erently in each objective. Thus for each criterion q 2 f1; : : : ; Qg,
dq is an arbitrary distance function induced by a norm.

Solving (1) is understood as generating its eÆcient (Pareto) solutions. A
feasible point XE 2 F is said to be an eÆcient solution of (1) if there is no
other point X 2 F such that f(X) � f(XE), i.e.:

8q 2 f1; : : : ; Qg fq(X) � fq(XE)

and 9q 2 f1; : : : ; Qg s:t: fq(X) < fq(XE):
(3)

Let XE denote the set of eÆcient solutions of (1) and let YE denote
the image of XE in the objective space, that is YE = f(XE), where f =
[f1; : : : ; fQ]. YE is referred to as the set of nondominated solutions of (1).

When each objective function of (2) is minimized individually over F , the
set of optimal solutions, denoted by Xq, is found:

Xq = fargmin
X2F

fq(X)g; q = 1; : : : ; Q:
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We also de�ne the utopia point U = [U1; : : : ; UQ], where Uq = minX2F fq(X),
i.e. Uq = fq(Xq), q = 1; : : : ; Q.

With respect to the classi�cation scheme for location problems proposed
in [8, 13] this problem has the classi�cation 1=P=�=d=Q�

P
. This is the clas-

si�cation of a single-facility location problem (1 in the �rst position) in the
plane (P in the second position) with no special assumptions and constraints
(� in the third position), d as a vector of distance functions d1; : : : ; dQ (d in
the fourth position) and Q criteria which can all be given as median functions
(Q �

P
in the �fth position). We will use this classi�cation scheme in the

following to achieve a simple description of the di�erent problems mentioned.

The MOMP with barriers is a special case of (1) where the travel distances
dq (compare (2)) are lengthened due to one or several barriers in the plane.
For a given �nite set of closed polyhedral barrier sets

B = fB1; B2; : : : ; Bbg � IR2

we de�ne the feasible region F := IR2 n int(
Sb
i=1Bi) as that region where new

facilities can be located. Furthermore we denote by dB(X; Y ) the length of
a shortest path (with respect to d) from X to Y not crossing a barrier.

Thus the MOMP can now be restated as the multiple objective median
problem with barriers 1=P=B=dB=Q�

P
:

vmin [f1(X); : : : ; fQ(X)]

s:t: X 2 F
(4)

with the individual objective functions given by

fq(X) =
MX
m=1

wq;m dq;B(X;Exm); q = 1; : : : ; Q; (5)

where

dq;B(X; Y ) := inf
r2IN

T1;:::;Tr2F

r�1X
i=1

dq(Ti; Ti+1); X; Y 2 F; (6)

with T1 = X, Tr = Y and r intermediate points Ti 2 F (i = 1; : : : ; r) such
that there exists a feasible path (not crossing B) from Ti to Ti+1 with length
dq(Ti; Ti+1).
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The set of eÆcient solutions of (4) is denoted by XE;B and the set of
nondominated solutions of (4) is denoted by YE;B.

Note that 1=P=B=dB=Q �
P

has a solution only if all existing facilities
are located in the same connected component of F .

Observe that the objective functions of (4) may not be convex since in
general the distance measures dq;B are not positively homogeneous (q 2
f1; : : : ; Qg). Consequently, the multiple objective problem may not have
features possessed by convex multiple objective programs. In general, the
eÆcient set XE;B may not be connected, and the set YE;B + IR2

� may be nei-
ther convex (that is, one may encounter nondominated solutions in a duality
gap) nor the set YE;B may be connected. Here connectedness of the set is
understood as de�ned in [3].

As (4) is a non-convex multiple objective program, it may feature globally
as well as locally eÆcient solutions that can be found by means of some suit-
able scalarizations specially developed to handle non-convexity. All the glob-
ally eÆcient solutions can be found by means of the lexicographic weighted
Tchebyche� approach (see [27]) while the locally eÆcient solutions can be
generated using the augmented Lagrangian approach (see [28]). In order to
avoid treating (4) in this general methodological framework and to obtain
speci�c and more e�ective approaches, we focus on the special case of line
barriers with passages but still consider a large class of metrics including the
class of lp metrics, which transforms (4) to problem 1=P=BL=dBL=Q�

P
. In

Section 2, we show that 1=P=BL=dBL=Q�
P

has a special structure that allows
to develop conceptual results and speci�c approaches to �nding the eÆcient
solutions. In Section 3, an algorithm is proposed for the bi-objective case,
i.e. for the problem 1=P=BL=dBL=2 �

P
and the algorithm components are

discussed for di�erent measures of distance. Section 4 includes an illustrative
example and the paper is concluded in Section 5.

2 General Results

The following mathematical model will be used for the MOMP with line
barriers 1=P=BL=dBL=Q�

P
:

Let L := f(x; y) 2 IR2 j y = ax + bg be a linear barrier and let fPn 2
L j n 2 N := f1; : : : ; Ngg be a set of points on L, i.e. the set of passages
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through L. Then
BL := L n fP1; : : : ; PNg

is called a line barrier with passages or shortly line barrier. (The case that
the barrier is a vertical line, which is not included in this description, can be
easily transformed to this de�nition.)

The feasible region F for new locations is de�ned as the union of the
two closed half-planes F 1 and F 2 on both sides of BL. Here F

1 [ F 2 = IR2

because the line y = ax + b belongs to both half-planes F 1 and F 2. As all
results can be easily transferred to the case that the line barrier has a �nite
width, for simpli�cation, this model will be used in the following although a
new location placed directly on the barrier is not allowed in reality.

Furthermore, a �nite number of existing facilities Exim 2 F i, m 2 Mi :=
f1; : : : ;M ig are given in each half-plane F i, i = 1; 2, represented by points
in IR2. A vector of positive weights wi

q;m := wq(Ex
i
m) 2 IR+, q = 1; : : : ; Q, is

associated with each existing facility Exim representing the demand of Exim
in the individual criterion. As in the more general problem formulation (4),
di�erent distance functions induced by norms are permitted for the individual
criteria.

Given a distance function dq (for criterion q) and the barrier model as
above, the distance function dq;BL results from (6), where the in�mum can
be replaced by the minimum.

dq;BL(X; Y ) := min
r2IN

T1;:::;Tr2F

r�1X
i=1

dq(Ti; Ti+1); X; Y 2 F; (7)

with intermediate points Ti, i = 1; : : : ; r de�ned as in case of (6). This leads
immediately to the following description of dq;BL (compare [19]):

Lemma 1 Let dq be a metric induced by a norm and i; j 2 f1; 2g, i 6= j.
Then for every q 2 f1; : : : ; Qg

dq;BL(X; Y ) =

(
dq(X; Y ) if X; Y 2 F i

dq(X;Pn(q;X;Y )) + dq(Pn(q;X;Y ); Y ) if X 2 F i; Y 2 F j;

where n(q;X; Y ) denotes the index of a passage located on a shortest path
from X to Y with respect to criterion q.
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Note that the triangle inequality holds for dq;BL even though dq;BL is not
positively homogeneous. Consequently, in general dq;BL is not a distance
function induced by a norm.

As shown in [19] for the corresponding single objective problem, Lemma
1 can be used to rewrite the vector objective function evaluated at a point
X 2 F i with respect to each criterion q 2 f1; : : : ; Qg:

Lemma 2 Let d = [d1; : : : ; dQ] be a vector of metrics induced by norms,
X 2 F i and i; j 2 f1; 2g, i 6= j. Then for each existing facility Exjm there
exist passages P

n(q;X;Exjm) such that

0
BB@

f1(X)
...

fQ(X)

1
CCA =

0
BB@

f i1;X(X)
...

f iQ;X(X)

1
CCA+

0
BB@

gj1;X
...

gjQ;X

1
CCA ; (8)

where

f iq;X(Y ) =
M iX
m=1

wi
q;mdq(Y;Ex

i
m) +

MjX
m=1

wj
q;mdq(Y; Pn(q;X;Exjm)); Y 2 F i; (9)

gjq;X =
MjX
m=1

wj
q;mdq(Pn(q;X;Exjm); Ex

j
m) (10)

for q = 1; : : : ; Q.

Lemma 2 reveals that the MOMP with line barriers 1=P=BL=dBL=Q�
P

is closely related to the unrestricted MOMP. Observe also that the right hand
side of (8) takes on di�erent values depending on what passage points have
been used to evaluate the distance from a point X to the existing facilities
located in the opposite half-plane while passing through those passage points.
Due to the de�nition of n(q;X;Exjm), we have that f

i
q;Y (Y )+g

j
q;Y � f iq;X(Y )+

gjq;X for all X; Y 2 F i and q = 1; : : : ; Q.

Consequently, the MOMP with line barriers can be decomposed into a
�nite series of unrestricted MOMPs with respect to the facilities in one half-
plane and the passage points connecting the two half-planes. Note that the
second term in the right-hand-side of (8) denoted by [gj1;X ; : : : ; g

j
Q;X] is only

implicitly dependent on the location of a new facility and does not directly
inuence the minimization of the objective [f1; : : : ; fQ].
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Let the unrestricted MOMPs be denoted by(P i
k) (i 2 f1; 2g, k 2 IN) and

have the following form:

vmin [f1(X); : : : ; fQ(X)]

s:t: X 2 F i
k;

(11)

where F i
k is a part of the half-plane F i (i; j 2 f1; 2g, i 6= j) such that the

passage points P
n(q;X;Exjm) located on a shortest path from a point X 2 F i

k

to a facility Exjm 2 F j are the same for all points X 2 F i
k (q = 1; : : : ; Q,

m = 1; : : : ;M j). Observe that the objective functions of problem (11) are
identical with those of problem (4), however the feasible set F i

k may not be
convex.

De�ning n(q; k; Exjm) to be n(q;X;Exjm) where X is an arbitrary point
in F i

k, we observe that there exist passages Pn(q;k;Exjm) depending only on F i
k

such that for all X 2 F i
k

dq;BL(X;Ex
j
m) = dq(X;Pn(q;k;Exjm)) + dq(Pn(q;k;Exjm); Ex

j
m);

q = 1; : : : ; Q; m = 1; : : : ;M j:

Consequently, the term [gj1;k; : : : ; g
j
Q;k] := [gj1;X ; : : : ; g

j
Q;X] (with an arbitrary

point X 2 F i
k) is constant for all X 2 F i

k. Furthermore we have thatS
k F

i
k = F i. Note that the number of regions F i

k is �nite because there exists
only a �nite number of possible combinations of passage points P

n(q;�;Exjm) as

we have that n(q; �; Exjm) 2 f1; : : : ; Ng (q = 1; : : : ; Q, m = 1; : : : ;M j).
Using this decomposition of the feasible region F , the vector objective

function of (11) is given by

[f1(X); : : : ; fQ(X)] = [f i1;k(X) + gj1;k; : : : ; f
i
Q;k(X) + gjQ;k]; X 2 F i

k; (12)

where for q = 1; : : : ; Q

f iq;k(X) =
M iX
m=1

wi
q;mdq(X;Ex

i
m) +

MjX
m=1

wj
q;mdq(X;Pn(q;k;Exjm)); X 2 F i

k;(13)

gjq;k =
MjX
m=1

wj
q;mdq(Pn(q;k;Exjm); Ex

j
m): (14)

Solving problem (11) is still a complex task since �nding the feasible sets
F i
k is computationally expensive. Therefore we relax the constraint X 2 F i

k
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to X 2 F i which makes every subproblem (P i
k) a convex constrained multiple

objective problem for which connectedness of its eÆcient set is a well known
result from the literature [29].

In fact, the constraint X 2 F i can be completely omitted for a large class
of distance functions since it is automatically satis�ed if the set of eÆcient
solutions of a corresponding unconstrained problem always lies within the
convex hull of the existing facilities, or, less restrictively, within their smallest
enclosing axis-parallel rectangle if L is an axis-parallel line. The former is
for example satis�ed for all lp distance functions with p 2 (0;1) whereas
the latter holds for the l1 distance function. Note that the case of the l1
distance function can be transformed to the case of l1 distances by using a
linear transformation of the problem. In these cases, every subproblem (P i

k)
becomes a convex unconstrained multiple objective problem.

Let X i
E;k and Y

i
E;k denote the set of eÆcient solutions and nondominated

solutions of the relaxed problem (P i
k), respectively.

Individual minimization of each objective function f iq;k(X) over the fea-
sible set F i produces the set of optimal solutions:

X i
q;k := farg min

X2F i
f iq;k(X)g; q = 1; : : : ; Q;

and the optimal solution value:

yiq;k = min
X2F i

f iq;k(X) + gjq;k; q = 1; : : : ; Q:

Having the eÆcient set of each convex subproblem available, we can spec-
ify their relationship with the eÆcient set of the non-convex problem (4)
with line barriers. Similarly, the nondominated set of this problem can be
described by means of the nondominated set of the convex problems.

Theorem 1

(i)
XE;BL �

[
i=1;2;

k

X i
E;k

(ii)
YE;BL = vmin

[
i=1;2;

k

Y i
E;k:
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Proof:

(i) Let X� 2 F i (i; j 2 f1; 2g, i 6= j) be an eÆcient solution of
1=P=BL=dBL=Q �

P
. From Lemma 2 and (12) we have that there

exists a k 2 IN such that

[f1(X
�); : : : ; fQ(X

�)] = [f i1;k(X
�) + gj1;k; : : : ; f

i
Q;k(X

�) + gjQ;k]:

Assume that X� 62 X i
E;k. Then there is a point XÆ 2 X i

E;k, X
Æ 6= X�,

such that

[f i1;k(X
Æ); : : : ; f iQ;k(X

Æ)] � [f i1;k(X
�); : : : ; f iQ;k(X

�)]:

Adding [gj1;k; : : : ; g
j
Q;k] to both sides of this inequality we therefore ob-

tain
[f1(X

Æ); : : : ; fQ(X
Æ)] � [f1(X

�); : : : ; fQ(X
�)];

contradicting that X� 2 XE;BL.

(ii) Part (ii) results from part (i) and the de�nition of eÆcient solutions.

2

Theorem 1 provides the new information about the eÆcient sets and non-
dominated sets of problem (4) with line barriers and of the subproblems (P i

k),
which will be used in the next section in the development of an algorithm
for �nding these sets in the bi-objective case.

3 Methodology for the case of two criteria

In this section we study the bi-objective median problem with a line barrier
which we formulate as

vminX2F [f1(X); f2(X)]; (15)

where f1 and f2 are de�ned by (5). Furthermore the distance functions of
both criteria are identical throughout this section, i.e. d1 = d2.

Using Theorem 1, a straightforward algorithm to �nd the eÆcient set
XE;BL can be proposed. The algorithm �rst checks for all existing facilities in
either half-plane F i and for all possible passages to the opposite half-plane
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F j, and then determines the set of eÆcient solutions of the corresponding
relaxed problems (P i

k). From the union of all the eÆcient sets X i
E;k of the

subproblems (P i
k), the eÆcient solutions of the original problem, referred

to as globally eÆcient solutions, have to be determined. This can be done
by constructing the lower envelope of all the nondominated solutions of the
subproblems in the objective space.

However, a polynomial algorithm for 1=P=BL=dBL=2�
P

can be proposed
if the idea of reducing this non-convex problem to a �nite set of the relaxed
problems (P i

k) is used more eÆciently. Due to the de�nition of the relaxed
problems (P i

k), their number depends upon the number of the passages and
existing facilities and in total there are O(NM) subproblems, where M :=
M1+M2. We will show that considering a smaller number of the subproblems
is suÆcient to �nd the globally eÆcient set XE;BL. This smaller number
will be additionally reduced by applying a reduction procedure eliminating
subproblems whose nondominated sets are dominated by nondominated sets
of other subproblems. We now discuss the details of this approach.

Without loss of generality we assume that the passages are in consecutive
order, i.e. there is no passage between Pn and Pn+1 for 1 � n � N � 1.
Let Dj

n(m) denote the di�erence of distances between an existing facility
Exjm and every two adjacent passages Pn and Pn+1 de�ned as follows: for
j 2 f1; 2g and n = 1; : : : ; N � 1:

Dj
n(m) := d(Exjm; Pn)� d(Exjm; Pn+1); m 2 Mj:

Since d is a metric induced by a norm, a shortest path SP from an existing
facility Exjm 2 F j to a point X 2 F i has to pass through one of the passages
P1; : : : ; PN depending on the following condition:

P1 2 SP ( Dj
1(m) < d(P2; X)� d(P1; X)

Pn 2 SP ( (d(Pn; X)� d(Pn�1; X) < Dj
n�1(m))

^ (Dj
n(m) < d(Pn+1; X)� d(Pn; X)); n = 2; : : : ; N � 1;

PN 2 SP ( d(PN ; X)� d(PN�1; X) < Dj
N�1(m):

This condition must be satis�ed for all X 2 F i since d is a metric induced
by a norm and thus d(Exjm; P ) and d(X;P ) are convex functions of a passage
P 2 L, moving on the line L, for all Exjm 2 F j. Therefore the problem

min d(Exjm; P ) + d(P;X)

s:t: P 2 fP1; : : : ; PNg
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either has a unique minimum, or two or more adjacent passages achieve the
same minimum value.

This analysis leads to the following observations. If a shortest path from
a point X 2 F i to an existing facility Exjm 2 F j passes through the passage
point Pn, then for the shortest path from any existing facility Exj�m to X
with Dj

n�1( �m) � Dj
n�1(m) a passage P�n with �n < n cannot be optimal.

Analogously, the shortest path from any existing facility Exjm̂ to X with
Dj

n(m̂) � Dj
n(m) through a passage Pn̂ with n̂ > n cannot be optimal.

We conclude that not all of the O(NM) possible combinations of existing
facilities and passage points have to be considered because a majority of
these combinations will not lead to eÆcient solutions. In fact, the number
of subproblems (P i

k) can be reduced to O(
�
M+N�1
N�1

�
). This is polynomial in

the number of existing facilities M if the number N of passage points is
constant, which is a realistic assumption. The resulting selection procedure
was developed for a single objective median problem in [19] and can also be
applied to the discussed bi-objective case.

After the selection of an appropriate set of subproblems (P i
k) is completed,

the set of globally eÆcient solutions has to be determined from the sets XE;k

of eÆcient solutions of the selected subproblems.
Let List(P i

k) be a list of all currently selected subproblems. If M is the
overall number of existing facilities, and N is the total number of passages,
then List(P i

k) contains not more than L :=
�
M+N�1
N�1

�
selected subproblems.

Since only a small number of these subproblems contribute to the globally
nondominated solutions, a reduction procedure is developed which reduces
the number of subproblems a second time before the globally nondominated
solutions are �nally determined as the lower envelope of the remaining sets
Y i
E;k. We now turn our attention to the reduction procedure.

Consider a problem (P i
k) and its eÆcient and nondominated sets X i

E;k,
Y i
E;k. Since (P i

k) is a convex problem, Y i
E;k is a curve spanned between the

points Ai
k and Bi

k where

Ai
k = (ai1;k; a

i
2;k) and Bi

k = (bi1;k; b
i
2;k)

and
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ai1;k = min
X2F i

f1(X)

ai2;k = f2

�
arg

�
lex min

X2F i
[f1(X); f2(X)]

��

bi2;k = min
X2F i

f2(X)

bi1;k = f1

�
arg

�
lex min

X2F i
[f2(X); f1(X)]

��
:

Y

a

a b

b

A

B
C

f

f
1,k 1,k

2,k

2,k

E,k

k
k

k

1

2

i

i

i i

i

i
i

i

Figure 1: The nondominated set Y i
E;k of a convex problem (P i

k).

As illustrated in Figure 1, the nondominated curve is contained in the
triangle T i

k with vertices Ai
k, B

i
k, C

i
k, where C

i
k = (ai1;k; b

i
2;k). Observe that

the examination of the mutual location of the triangles T i
k will help eliminate

those problems (P i
k) whose nondominated sets are dominated by nondomi-

nated sets of other subproblems.
Figure 2 shows four of many possible locations of the nondominated curves

for two arbitrary problems (P i
k) and (P

�i
�k), i;

�i 2 f1; 2g. In particular, Figure
2a shows that one of the two problems can be eliminated while Figure 2b
presents an irreducible case. Figure 2c and d show that only subsets of the
two nondominated sets may be in the globally nondominated set.
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(a) (b)

(c) (d)

Figure 2: Some examples for possible locations of the triangles Ai
k; B

i
k; C

i
k and

A
�i
�k; B

�i
�k; C

�i
�k for two di�erent subproblems (P i

k) and (P
�i
�k) in the objective space

(i;�i 2 f1; 2g). The bold curves represent the sets of globally nondominated
solutions, respectively.

These observations will be incorporated into the reduction procedure as
follows:

In the �rst part of the procedure, the Hershberger algorithm [16], that
�nds the lower envelope of a collection of line segments in linear time, is used
to determine the lower envelope of the segments Ai

kB
i
k of all subproblems in

List(P i
k). Since our goal is to �nd a superset of the nondominated sets of the

subproblems, we add an auxiliary horizontal line at point Bi
k and an auxiliary

vertical line at point Ai
k (this is equivalent to �nding @(A

i
kB

i
k+ IR2

�)) of each

individual segment Ai
kB

i
k to eliminate points coming from other subproblems

but dominated by the points of subproblem (P i
k).

After the lower envelope is found, all the subproblems contributing to it
are selected and stored in a second list List(P i

k).

14



In the second step of the procedure all those subproblems (P i
k) are added

to the list List(P i
k) for which at least one point (i.e. the point Ci

k) is not
dominated by the lower envelope.

Summarizing, the following procedure is obtained:

Reduction Procedure:

Let IR2
� := f(x; y) 2 IR2 : x � 0; y � 0g.

Input: List(P i
k), Segments Ai

kB
i
k.

Step 1 Construct @(Ai
kB

i
k + IR2

�) for all subproblems in List(P i
k).

Step 2 Apply the Hershberger algorithm to �nd the lower envelope of these
line segments and half-lines.

Step 3 Identify those subproblems in List(P i
k) whose corresponding segments

Ai
kB

i
k contribute to the lower envelope. Let List(P

i
k) be the list of these

subproblems and remove them from List(P i
k).

Step 4 For every remaining subproblem (P i
k) 2 List(P i

k) check whether Ci
k is

dominated by the lower envelope. If it is not dominated, add (P i
k) to

List(P i
k).

Output: Reduced list of subproblems List(P i
k).

The time complexity of the reduction procedure is O(r) = O(L logL)
which is the complexity of the Hershberger algorithm. For many location
problems the savings resulting from the reduction procedure will be substan-
tial, however they cannot be theoretically guaranteed.

The reduction procedure eliminates only those subproblems (P i
k) whose

nondominated sets are entirely dominated by the nondominated set of an-
other subproblem (P i

k) (see Figure 2a). Cases with partial reductions (see
Figure 2c, d) are subject to further investigation.

Theorem 2

YE;BL = vmin
[

List(P i
k
)

Y i
E;k:

15



Proof: Assume that there exists a subproblem (P
�i
�k) 2 List(P i

k) such

that Y
�i
E;�k is globally nondominated, but Y

�i
E;�k 62

S
List(P i

k
) Y

i
E;k.

Since Y
�i
E;�k 62

S
List(P i

k
) Y

i
E;k, the corresponding point C

�i
�k of the triangle

T
�i
�k of this subproblem is dominated by some point D in the lower envelope

found by the Hershberger algorithm. Therefore there exists a point Y î

E;k̂
2S

List(P i
k
) Y

i
E;k, Y

î

E;k̂
6= Y

�i
E;�k, dominating D and thus dominating Y

�i
E;�k, which

contradicts the assumption. This proves that YE;BL �
S
List(P i

k
) Y

i
E;k which

implies the desired result.
2

Recall that our ultimate goal is to determine the set of globally eÆcient
and globally nondominated solutions XE;BL and YE;BL from the solutions
X i
E;k and Y

i
E;k of the individual subproblems. For this purpose the sets X i

E;k

and Y i
E;k have to be found by available algorithms for the corresponding sub-

problems (P i
k) 2 List(P i

k) (for example, see [14]). Clearly, as the bi-objective
median problem with a line barrier is a generalization of the corresponding
unrestricted subproblems, we cannot expect to �nd better solution techniques
for that problem than those known for the unrestricted problem.

We �rst discuss solution approaches for the case when distances are mea-
sured by the l1-distance function or by more general block norms. In this
case, each problem (P i

k) involves two piece-wise linear objective functions and
its nondominated set Y i

E;k is a piece-wise linear curve. The problem (P i
k) can

be converted into a bi-objective linear problem and the parametric cost sim-
plex method (see Geo�rion [7]) can be then applied to exactly determine the
nondominated set. Equivalently, the procedure of Nickel and Wiecek ([24])
specially designed for bi-objective piece-wise linear programs can be used.

Given the nondominated sets of all the problems (P i
k) 2 List(P i

k), we can
determine the globally nondominated points, as proposed in [10], by means
of the Hershberger algorithm [16]. As this algorithm �nds a lower envelope
of a collection of line segments, we again add an auxiliary horizontal line at
point Bi

k and a vertical line at point Ai
k of every triangle T i

k to eliminate
points coming from other subproblems but dominated by the points of the
subproblem (P i

k). After the lower envelope has been found, these auxiliary
lines are eliminated. The resulting lower envelope of the sets Y i

E;k of all
the subproblems (P i

k) 2 List(P i
k) equals the set of globally nondominated

solutions YE;BL.
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For other distance functions (such as lp-distance functions, p 2 (1;1))
only approximation algorithms are known even in the unrestricted single cri-
terion case and consequently the nondominated sets Y i

E;k can be only approx-
imated with a prescribed accuracy ". The block sandwich method proposed
by Yang and Goh [32] can produce piece-wise linear upper and lower approx-
imations of the nondominated sets. The method requires to (approximately)
solve scalarizations of the subproblems of the type

min �(f i1;k(X) + gj1;k) + (1� �)(f i2;k(X) + gj2;k)

s:t: X 2 F i
(16)

with weights � 2 [0; 1]. A quadratic convergence property of this algorithm
is established in [32], that is, the total number of optimization problems
required to attain a prescribed approximation error is less than a constant
multiple of the square root of the inverse of the given error.

The respective scalarized subproblems (16) can be solved by applying
the Weiszfeld algorithm [30] in the case of lp-distances, p 2 (0;1). For an
overview of solution procedures for various kinds of single objective planar
median problems we refer to [6]. In particular, the points Ak

i and B
k
i can be

found by solving the corresponding single objective median problems.

Alternatively, in order to approximate the nondominated sets of the sub-
problems for nonlinear distance functions one can use methods developed
for general bi-objective problems which produce discrete approximating sets
of points (see Jahn and Merkel [17], Payne [25], and Helbig [15]). When
connected, those points can become the input to the Hershberger algorithm
[16]. As the nondominated sets are convex curves, one can also use the hyper-
ellipse approach of Li et al. [22] specially designed for convex bi-objective
problems. This approach produces a hyper-ellipse whose equation analyti-
cally represents the nondominated set.

Whatever the method to approximate the nondominated sets of the sub-
problems is, these sets become again the input to the Hershberger algorithm
[16] as this algorithm also �nds a lower envelope of a collection of segments
of more general curves in the plane.

The discussion above leads to a polynomial algorithm for solving the bi-
objective median problem with a line barrier:

17



Algorithm for solving 1=P=BL=dBL=2�
P
:

Step 1 Apply the selection procedure and create a list List(P i
k) of selected

subproblems (P i
k).

Step 2 For every subproblem (P i
k) 2 List(P i

k): �nd the triangle T i
k.

Step 3 Apply the reduction procedure and create a reduced list of subproblems
List(P i

k).

Step 4 Construct the lower envelope of the sets Y i
E;k corresponding to the

subproblems (P i
k) 2 List(P i

k) or of their (piece-wise linear or convex)
approximations determined with a prescribed error ".

Output: The lower envelope is an exact representation of the set YE;BL or
an approximation of the set YE;BL with error ", depending on the available
solution procedures for the corresponding unrestricted median subproblems.

If M is the number of existing facilities, N is the number of passages,
L =

�
M+N�1
N�1

�
is an upper bound on the number of subproblems in List(P i

k)
after the application of the selection procedure, and the overall complexity
of the proposed algorithm is O(s+ r + h) where

O(s) = O (NM logM + L) is the complexity of the selection procedure,
O(r) = O(L logL) is the complexity of the reduction procedure

and
O(h) is the complexity of the solution of the sub-

problems and of the subsequent application of
the Hershberger algorithm.

4 Example

In the following example we consider a location problem with the classi�ca-
tion 1=P=BL=(l1)BL=2�

P
as given in Figure 3, where distances are measured

according to the Manhattan metric l1.
For the analogous unrestricted median problem of type 1=P= � =l1=2�

P
exact algorithms are given in [14]. These algorithms are implemented in
LOLA, the Library of Location Algorithms [9], which will be used to �nd the
exact eÆcient and nondominated sets of 1=P=BL=(l1)BL=2�

P
.
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Figure 3: The example problem with the classi�cation 1=P=BL=(l1)BL=2�
P
.

Let the line barrier

BL := f(x; y) 2 IR2 j y = 5g n fP1 = (4; 5); P2 = (9; 5)g

divide the plane into the two half-planes F1 and F2. Furthermore four existing
facilities are given on both sides of BL with coordinates and weights as listed
in Table 1. Thus M1 =M2 = f1; 2g and M1 =M2 = 2.

Existing facility Exim wi
1;m wi

2;m Di
1(m)

Ex11 (5; 7) 8 2 -3

Ex12 (10; 8) 5 6 5

Ex21 (6; 1) 10 1 -1

Ex22 (8; 4) 7 4 3

Table 1: Existing facilities with their weights and the values of Di
1(m) =

d(Exim; P1)� d(Exim; P2).

In step 1 of the algorithm presented above, the selection procedure is
applied and List(P i

k) includes six subproblems (P i
k) listed in Table 2 that are

further investigated. At the end of step 3, the reduced list List(P i
k) includes

(P 1
0 ), (P

2
0 ), (P

2
1 ).
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Weights of

(P i
k) P1 P2 Weights of existing facilities

~w1 ~w2 ~w1 ~w2

(P 1
0 ) 0 0 17 5 ~wq(Ex

1
m) := wq(Ex

1
m); q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := 0; q 2 f1; 2g; m 2 M2

(P 1
1 ) 10 1 7 4 ~wq(Ex

1
m) := wq(Ex

1
m); q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := 0; q 2 f1; 2g; m 2 M2

(P 1
2 ) 17 5 0 0 ~wq(Ex

1
m) := wq(Ex

1
m); q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := 0; q 2 f1; 2g; m 2 M2

(P 2
0 ) 0 0 13 8 ~wq(Ex

1
m) := 0; q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := wq(Ex

2
m); q 2 f1; 2g; m 2 M2

(P 2
1 ) 8 2 5 6 ~wq(Ex

1
m) := 0; q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := wq(Ex

2
m); q 2 f1; 2g; m 2 M2

(P 2
2 ) 13 8 0 0 ~wq(Ex

1
m) := 0; q 2 f1; 2g; m 2 M1,

~wq(Ex
2
m) := wq(Ex

2
m); q 2 f1; 2g; m 2 M2

Table 2: Weights of the existing facilities Ex = fEx11; Ex
1
2; Ex

2
1; Ex

2
2; P1; P2g

of the six selected subproblems (P i
k) of type 1=P= � =l1=2�

P
.

Sub-
problem

EÆcient solutions of the subproblems X i
E;k

(P 1
0 ) f(x; y) 2 IR2 j (x = 9) ^ (5 � y � 7)g

(P 1
1 ) f(x; y) 2 IR2 j (5 � x � 9) ^ (y = 5)g

[ f(x; y) 2 IR2 j (x = 9) ^ (5 � y � 7)g

(P 1
2 ) f(x; y) 2 IR2 j (4 � x � 5) ^ (5 � y � 7)g

(P 2
0 ) f(x; y) 2 IR2 j (8 � x � 9) ^ (4 � y � 5)g

(P 2
1 ) f(x; y) 2 IR2 j (6 � x � 8) ^ (y = 4)g

[ f(x; y) 2 IR2 j (x = 8) ^ (4 � y � 5)g

(P 2
2 ) f(x; y) 2 IR2 j (4 � x � 6) ^ (4 � y � 5)g

Table 3: EÆcient solutions of the six subproblems in List(P i
k).
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For illustrative reasons, we include the sets of eÆcient solutions (see Ta-
ble 3) and nondominated solutions (see Figure 4) of all the subproblems in
List(P i

k) which were determined using LOLA [9].
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Figure 4: Nondominated solutions of the six subproblems in List(P i
k).

Step 4 yields the set of globally nondominated solutions YE and the set
of globally eÆcient solutions XE of this example problem:

YE = Y1
E;0 [ Y2

E;0 [ Y2
E;1

XE = X 1
E;0 [ X 2

E;0 [ X 2
E;1

= f(x; y) 2 IR2 j ((x = 9) ^ (5 � y � 7))

_ ((8 � x � 9) ^ (4 � y � 5))

_ ((6 � x � 8) ^ (y = 4))g:

The set of globally eÆcient solutions XE is graphed in Figure 5.
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Figure 5: EÆcient solution XE of the example problem of type
1=P=BL=(l1)BL=2�

P
.

5 Conclusions

This paper studies the multiple objective median problem with a line barrier.
The primary goal of this pioneering research is the analytical determination
of the eÆcient set of the problem. The structure of the eÆcient set is �rst
examined in order to motivate the design of special algorithms. The theoret-
ical analysis shows that the original non-convex problem can be decomposed
to a series of multiple objective convex subproblems.

An algorithm for solving the bi-criteria median problem with a line barrier
and di�erent distance measures is developed. The nondominated set or an
approximation of the nondominated set of the original problem is determined
as the lower envelope of the nondominated sets of the subproblems, depending
on the given distance function. The complexity of the algorithm depends on
the complexity of the methods used to solve the subproblems but if the chosen
method has polynomial complexity (such as the block sandwich method of
Yang and Goh ([32]), then the algorithm is also polynomial. An illustrative
example is included.

The proposed methodology produces solution approaches to the bi-criteria
restricted median problem as good as they can be for the corresponding single
criterion unrestricted problem. The algorithm gives exact solutions (i.e. �nds
all eÆcient/nondominated points) for problems with linear measures of dis-
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tance whose nondominated set is piece-wise linear but may be non-convex.
The authors are not aware of another algorithm in the literature producing
exact solutions for non-convex bi-objective problems.

More research is needed to eÆciently design the reduction procedure elim-
inating some of the subproblems. Currently, the procedure checks only for
the nondominated sets that are entirely dominated by nondominated sets of
other subproblems. Cases with partial domination should also be considered.

Clearly, other location problems with barriers should be studied in the
multiple objective framework. Complexity of those problems, however, may
heavily a�ect the ability to approximate their eÆcient sets. In this case,
one may be interested in obtaining partial information about the eÆcient
solutions and in designing tools for choosing a most preferred solution as the
optimal one.

Furthermore, not only location problems can lead to non-convex multiple
objective problems decomposable to a series of convex problems. This class
of non-convex multiple objective problems should be explored independently
of their applications.
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