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Abstract

In multiple criteria optimization an important research topic is the topological structure

of the set Xe of e�cient solutions. Of major interest is the connectedness of Xe, since

it would allow the determination of Xe without considering non-e�cient solutions in the

process. We review general results on the subject, including the connectedness result for

e�cient solutions in multiple criteria linear programming. This result can be used to derive a

de�nition of connectedness for discrete optimization problems. We present a counterexample

to a previously stated result in this area, namely that the set of e�cient solutions of the

shortest path problem is connected. We will also show that connectedness does not hold

for another important problem in discrete multiple criteria optimization: the spanning tree

problem.

1 Introduction and General Results

In this paper we consider multiple criteria optimization problems of the form

min f(x)

s.t. x 2 X

where f : IRn ! IRQ and X � IRn. Although we assume familiarity with the basic concepts of
multicriteria optimization we will brie
y give the most important de�nitions.
In the general case IRQ is ordered by a cone K (see [15] for general results on orders de�ned by
cones). In multiple criteria optimization the notion of optimality is usually replaced by e�ciency,
since in general di�erent solution values in IRQ exist which can be considered as \best" solutions
of the problem in the sense that they cannot be improved. xe 2 X is called e�cient solution
if (ff(xe)g �K) \ f(X) = ff(xe)g: Note that for Y;K � IRQ the set Y � K is de�ned to be
fy � k j y 2 Y; k 2 Kg. The set of all e�cient solutions is denoted by Xe. Most of the research

in this area has been devoted to the case where K = IRQ
+ . Then the ordering de�ned by K is the

componentwise order and xe 2 X is e�cient if there is no x 2 X dominating xe, i.e. there is no
x 2 X such that fq(x) � fq(xe); q = 1; : : : ; Q and strict inequality holds in at least one case.
The topic of this paper will be connectedness ofXe. Although of great importance for the construc-
tion of algorithms there is not much work done in that �eld. For general \continuous" problems
we are dealing with the question: Is Xe connected in the topological sense? In order to state a
general result providing the answer to this question, we de�ne a set Y � IRQ to be K�compact
if (fyg �K) \ Y is compact for all y 2 Y .

Theorem 1 ([13]) If K is a closed, convex, pointed (i.e. x 2 K ) �x =2 K) cone such that
int(K) 6= ; and Y = f(X) is closed, convex and K�compact, then Xe is connected.
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Algorithmically this result can be applied to determine the set Xe by local search methods, i.e.
given any e�cient solution x 2 Xe we can search locally to �nd e�cient solutions in the neigh-
bourhood of x until eventually the whole set Xe is determined.
The result of Theorem 1 has been generalized in [8] to the case where IRn and IRQ are replaced by
locally convex spaces. Several authors proved connectedness of Xe for special types of functions
[14, 2]. Also several results on the connectedness of the set of weakly e�cient solutions are known
[14], where xwe 2 X is said to be weakly e�cient if (f(xwe)� int(K))\f(X) = ;. In the following

we will only consider the case K = IRQ
+ . In this case e�cient solutions are often called pareto

optimal solutions.
For combinatorial optimization problems, however, this result is not applicable. In this case we will
use the concept of connectedness of a graph rather than the topological connectedness of Theorem
1. We de�ne a graph, the nodes of which represent the e�cient solutions of the combinatorial
problem. Edges are introduced between all pairs of nodes which are \adjacent" in some sense. If
the resulting graph is connected this fact will allow the development of algorithms to �nd Xe by
search among adjacent solutions.
The most promising de�nition of adjacency seems to be by using the link between these two
concepts of connectedness, which is provided by linear programming. A multiple criteria linear
program (MCLP) is de�ned as

min(c1x; : : : ; cQx) where cq 2 IRn; q = 1; : : : ; Q

s.t. x 2 X =
�
x 2 IRn jx � 0; akx � bk; k = 1; : : : ;m

	

Obviously Theorem 1 immediately implies that Xe is connected in this special case. Before the
general result of Theorem 1 was known the connectedness result for MCLP had been proved by
various authors [3, 5, 16].
The most important solutions in linear programming are basic solutions which correspond to
extreme points of the polyhedral feasible set X, and fundamental solutions which correspond
to extreme rays of X, if X is unbounded. Let B and F denote the sets of basic feasible and
fundamental solutions, respectively. Then x1e; x

2
e 2 Xe \ B are said to be adjacent if they have

m � 1 basic variables in common and �x1e + (1 � �)x2e is e�cient for all � 2 [0; 1]: Furthermore
xe 2 B \X and xf 2 F \X are said to be adjacent if xe+�xf is e�cient for all � � 0. Now let B
be the index set of all e�cient basic feasible solutions and let F be the index set of all fundamental
solutions which are adjacent to an e�cient basic feasible solution. The main result in [9] is the
following:

Theorem 2 ([9]) De�ne a graph G = (V;E) by introducing a node for each index in B [ F and
an edge between two nodes if the corresponding solutions are adjacent. Then G is connected.

Theorem 2 is used in MCLP simplex-algorithms: The set of all e�cient extreme points of X is
determined by pivoting among e�cient bases only, i.e. by moving from e�cient extreme point to
adjacent e�cient extreme point.
Thus in this paper we will restrict ourselves to combinatorial optimization problems which have a
linear programming formulation, s.t. feasible solutions of the combinatorial problem correspond to
basic feasible solutions of the associated linear program. Two feasible solutions of the combinatorial
problem are then called adjacent if the corresponding basic feasible solutions of the associated LP
are adjacent.

2 Combinatorial Problems

2.1 The Shortest Path Problem

In [12] a multiple criteria dynamic programming algorithm for the shortest path problem is derived.
This algorithm allows �nding all e�cient paths from node s to node t in a given directed graph
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G = (V;A). The multiple criteria shortest path problem can be formulated as a linear program
by

min(c1x; : : : ; cQx)

s.t.
X
j

xij �
X
j

xji =

8<
:

1 i = s
0 i 62 fs; tg

�1 i = t

According to the de�nitions in Section 1 two paths from s to t are adjacent if they correspond
to two adjacent basic feasible solutions of the above LP. These basic feasible solutions represent
spanning trees of the underlying directed graph G. From the algorithm and the connectedness
result for MCLP the author concludes that the following result holds:

Theorem 3 ([12]) Let p; p0 be two e�cient s� t�paths. Then there exists a sequence of adjacent
e�cient s� t�paths (p; p1; : : : ; pk; p0).

In the sense of Theorem 2 this means that the graph de�ned by adjacency of e�cient s� t�paths
is connected. But this conclusion is not true in general, see Theorem 4.

2.2 The Spanning Tree Problem

Another important discrete optimization problem is the spanning tree problem: Given an undirec-
ted graph G = (V;E), �nd min(c1(T ); : : : ; cQ(T )) such that T is a spanning tree of G. The linear
programming formulation of this problem is:

min(c1x; : : : ; cQx)

s.t.
X
e2E

xe = n� 1

X
e2E(S)

xe � jSj � 1 8S � V

where E(S) = fe = [i; j] 2 E j i; j 2 Sg

xe � 0

Again according to Section 1 two (e�cient) spanning trees are adjacent if they have n � 2 edges
in common. We will now formally introduce the e�ciency graph corresponding to a spanning tree
problem and a shortest path problem, which has been introduced as Pareto graph in [4].

De�nition 1 Let G = (V;E) with edge costs c1; : : : ; cQ : E ! IR be a given graph. The e�ciency
graph EGT (G) for the spanning tree problem on G is de�ned as follows: Its node set is the set of
e�cient spanning trees of G. Two nodes are joined by an edge if the corresponding spanning trees
are adjacent. Analogously the e�ciency graph EGP (s;t)(G) for the shortest path problem on G with
end nodes s and t is de�ned: Its node set is the set of e�cient paths from s to t. Two nodes are
joined by an edge if the corresponding paths are adjacent, where adjacency is de�ned as in Section
2.1.

Connectivity Conjecture: EGT (G) and EGP (s;t)(G) are connected.

The connectivity conjecture has been stated in [4] and [6] for the general matroid optimization
problem and the matroid intersection problem, respectively. Also Theorem 3 is a reformulation
of the connectivity conjecture for the shortest path problem. The important implication is that if
the conjecture were true it would be possible to �nd all e�cient solutions of the spanning tree and
shortest path problem by neighbourhood search, i.e. by exchanges of one edge in the trees which
correspond to e�cient basic feasible solutions of the linear programming formulations of the two
problems. In particular the approximation algorithms stated in [7] or [11] would �nd all e�cient
spanning trees and thus be exact.
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2.3 A Counterexample to the Connectivity Conjecture

Theorem 4 EGT (G) and EGP (s;t)(G) are not connected in general.

The proof is provided by Example 1 and Lemma 1.

Example 1 Consider the graph G1 = (V;E) given in Figure 1. There are 12 e�cient spanning
trees of G1, listed in Table 1. Obviously each e�cient spanning tree contains all edges with cost
(0; 0). Therefore in Table 1 we only list edges with positive costs.

n n n nnnn

n

n

n n

n n

s1 s12

s13

s11

s2

s21

s22

s23

s3

s31

s32

s33

s4

(0; 0)

(0; 0) (1; 2)

(9; 0) (0; 0)

(0; 0) (7; 1)

(10; 0) (0; 0)

(0; 0) (1; 15)

(0; 19)

(0; 0) (7; 1) (0; 0) (0; 7) (0; 0) (20; 6)

Figure 1: Graph G1 has nonadjacent e�cient spanning trees

E�cient Tree Edges Cost

T1 [s13; s2][s22; s3][s31; s4] (1,28)
T2 [s13; s2][s22; s3][s33; s4] (2,24)
T3 [s13; s2][s23; s3][s31; s4] (8,22)
T4 [s13; s2][s23; s3][s33; s4] (9,18)
T5 [s13; s2][s21; s3][s33; s4] (12,17)
T6 [s11; s2][s23; s3][s33; s4] (17,16)
T7 [s11; s2][s21; s3][s33; s4] (20,15)
T8 [s12; s2][s22; s3][s31; s4] (27,14)
T9 [s13; s2][s23; s3][s31; s4] (28,9)
T10 [s13; s2][s21; s3][s31; s4] (31,8)
T11 [s11; s2][s23; s3][s31; s4] (36,7)
T12 [s11; s2][s21; s3][s31; s4] (39,6)

Table 1: E�cient spanning trees of G1

It is easy to see that T8 is not adjacent to any other e�cient spanning tree.

We will now look at the problem of �nding e�cient paths from s1 to s4 in the same graph of
Figure 1. Clearly if EGP (s1;s4)(G1) is not connected, the same holds in the directed case: G1 can
be made directed by just orienting each arc from left to right in Figure 1. Lemma 1 then provides
the counterexample to Theorem 2.

Lemma 1 In Example 1, EGP (s1;s4)(G) and EGT (G) are isomorphic.

Proof:
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Every tree Ti 2 V (EGT (G)) must contain exactly one of the edges [sj1; sj+1], [sj2; sj+1], [sj3; sj+1]

for each j = 1; 2; 3, respectively. Analogously every path Pi 2 V (EGP (s1 ;s4)(G)) contains exactly

one of these three edges for each j = 1; 2; 3. Now let f : V (EGT (G)) ! V (EGP (s1;s4)(G)) be
de�ned by f(Ti) = Pl if and only if 8j; k = 1; 2; 3 [sjk; sj+1] 2 Ti ) [sjk; sj+1] 2 Pl. It is easy

to see that f is bijective. Thus it remains to check whether Ti is adjacent to Tj in EGT (G) if

and only if f(Ti) is adjacent to f(Tj ) in EG
P (s1;s4)(G). If Ti is adjacent to Tj in EG

T (G) by the
de�nition of adjacency of paths it follows immediately that f(Ti) is adjacent to f(Tj). On the
other hand, if Ti is not adjacent to Tj then f(Ti) and f(Tj) di�er in at least two of the three

subpaths (s1; s2); (s2; s3) and (s3; s4). Thus there can't exist two spanning trees ~T1 and ~T2 with
f(T1) � ~T1, f(T2) � ~T2 and ~T1; ~T2 being adjacent, i.e. having 11 edges in common.

2

2.4 Generalization

A disconnected e�ciency graph may also occur in more general situations and not only in the
example presented above. We will show that it is possible to extend any graph in such a way that
the e�ciency graph for the problem on the extended graph is not connected. This holds for both
the spanning tree and the shortest path problem.
Let G = (V;E) be an arbitrary given (connected) graph. We construct a graph ~G containing G
as a subgraph such that EGT ( ~G) is not connected.

Let c : E ! IRQ
+ be the cost-function on the edges of G. For simplicity we restrict ourselves to the

case Q = 2. Note that the results also hold for Q > 2.
First we consider a subset of the e�cient spanning trees of G, the so called extremal e�cient
spanning trees:

De�nition 2 A spanning tree T � of G is an extremal e�cient spanning tree if there exist
0 < � < 1 such that T � 2 argmin f

P
e2E(T ) �c

1(e) + (1 � �)c2(e) jT is spanning tree of Gg.

Notice that despite Theorem 4 it is known that the set of extremal e�cient spanning trees is
connected, see [4].
Some further de�nitions are required to facilitate notation in the following .

De�nition 3 1. A spanning tree T of G is a lexicographic minimal spanning tree w.r.t. (c1; c2)
if there exists no other tree T 0 such that (c1(T 0); c2(T 0)) <L (c1(T ); c2(T )) where <L denotes
the \lexicographical smaller" relation on IR2. The set of all such trees is denoted by T1.
Analogously T is lexicographically minimal w.r.t. (c2; c1) if there is no tree T 0 such that
(c2(T 0); c1(T 0)) <L (c2(T ); c1(T )) . These trees are denoted by T2.

2. Let T1; T2 be spanning trees of G. T1 dominates T2 if ci(T1) � ci(T2); i = 1; 2 with strict
inequality in at least one case.

3. For a graph G and v 2 V (G) let dG(v) denote the degree of v, i.e. the number of edges
incident to v. Let V � � V . Then �V �(G) := minv2V nV � dG(v) denotes the minimal degree
of nodes not in V �.

We will assume that G has at least one e�cient spanning tree which is not contained in T1 [ T2,
and henceforth exclude this case, which is trivial from a multiple objective point of view.
In the following we will construct a graph G0 containing G as a subgraph such that, in the
corresponding e�ciency graph, �T1[T2 (EG

T (G0)) < �T1[T2(EG
T (G)): Thus applying the proced-

ure of constructing G0 iteratively we will be able to �nd a graph ~G containing G such that
�T1[T2 (EG

T ( ~G)) = 0, implying that the e�ciency graph of ~G is disconnected.
Let T1; : : : ; Tm be the set of e�cient spanning trees of G. Furthermore let Tk 2 fT1; : : : ; Tmg n
(T1 [ T2) such that dEGT (G)(Tk) = �T1[T2(EG

T (G)). We denote the costs of Ti by (ai; bi) and
will use (x; y) = (ak; bk) for easier distinction. We assume that the numbering of e�cient trees
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is such that the costs are ordered lexicographically, i.e. a1 � : : : � x � : : : � al � : : :am and
b1 � : : : � y � : : : � bl � : : : � bm. Furthermore let Tl 2 fTk+1; : : : ; Tmg such that Tk and Tl are
connected by an edge in EGT (G).
We distinguish two cases and extend G in two di�erent ways:

Extension 1:
First let us assume that there exist n 2 IN and 0 < � < minfx� a1; al � xg such that

x >
1

n
al +

n � 1

n
(a1 + �) (1)

y >
1

n
bl +

n � 1

n
(b1 + �) (2)

Then G0 = (V (G) [ fv0g [ fv0; : : : ; vng; E(G) [ f[v; v0]; : : : ; [v; vn]g [ f[v0; v0]; : : : ; [vn; v0]) (where
v is an arbitrary node of V (G)).
Let C = �(n � 1)(y � b1 � �) and assign the following costs to the additional edges:

c(v; vi) = (0; 0); i 2 f0; : : : ; ng

c(v0; v
0) = (a1 � x� �; C + b1 � bl + �)

c(vi; v
0) = ((i � 1)(x� a1 � �); C + (i � 1)(y � b1 � �)); i 2 f1; : : : ; ng

Lemma 2 If conditions (1) and (2) hold, then �T1[T2 (EG
T (G0)) < �T1[T2 (EG

T (G)).

Proof:
It is obvious that any e�cient spanning tree of G0 must contain exactly one edge [vi; v0] and all
of the edges [v; vi] together with an e�cient spanning tree of G. Therefore we consider the set
fTijji 2 f0; : : : ; ng; j 2 f1; : : : ;mgg of spanning trees, where E(Tij) = E(Tj) [ [vi; v

0][ f[v; vl]jl =
0; : : : ; ng:
Below we list their costs:

c(T01) = (2a1 � x� �; C + 2b1 � bl + �)

c(T0k) = (a1 � �; C + y + b1 � bl + �)

c(T0l) = (a1 + al � x� �; C + b1 + �)

c(T0m) = (a1 + am � x� �; C + b1 + bm � bl + �)

c(T11) = (a1; C + b1)

c(T1k) = (x;C + y)

c(T1l) = (al; C + bl)

c(T1m) = (am; C + bm)

c(T21) = (x� �; C + y � �)

c(T2k) = (x+ (x� a1 � �); C + y + (y � b1 � �))

c(T2l) = (al + (x� a1 � �); C + bl + (y � b1 � �))

c(T2m) = (am + (x� a1 � �); C + bm + (y � b1 � �))

� � �

c(Tn1) = (a1 + (n� 1)(x� a1 � �); C + b1 + (n � 1)(y � b1 � �))

c(Tnk) = (x+ (n� 1)(x� a1 � �); C + y + (n� 1)(y � b1 � �))

c(Tnl) = (al + (n� 1)(x� a1 � �); C + bl + (n� 1)(y � b1 � �))

c(Tnm) = (am + (n� 1)(x� a1 � �); C + bm + (n � 1)(y � b1 � �))
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We omitted all trees Tij ; i 2 f3; : : : ; n � 1g; j 62 f1; k; l;mg. Then we observe that [Ti1;j; Ti2;j] 2
E(EGT (G0)) for i1; i2 2 f0; : : : ; ng; j 2 f1; : : : ;mg if i1 6= i2 and that [Ti;j1 ; Ti;j2] 2 E(EGT (G0)) if

[Tj1 ; Tj2 ] 2 E(EGT (G). It is easy to see that

� Tik is dominated by Ti+1;1; i 2 f1; : : : ; n� 1g

� Tnk is dominated by T1l due to (1) and (2)

� T0k is e�cient, since � < x� a1

� T0l is dominated by T11 since � < x� al

It follows that T0k is not connected to any Tik; i 2 f1; : : : ; ng and thus there are only edges
[T0k; T0j] in EGT (G0) if [Tk; Tj] 2 E(EGT (G)) and T0j is e�cient. Therefore dEGT (G0)(T0k) is at
least one less than dEGT (G)(Tk).

2

Extension 2:
In the second case we consider the situation that (1) or (2) do not hold. Then let G� = (V (G) [
fv�; v1; v2g; E(G) [ f[v; v1]; [v; v2]; [v1; v

�]; [v2; v
�]g) where v is an arbitrary node of V (G). We

assign the following costs to the additional edges:

c(v; vi) = (0; 0); i = 1; 2

c(v1; v
�) = (0; �)

c(v2; v
�) = (al � a1 � �; 0)

where � � maxfx+al�2a1��
x�a1

; b1 � blg and � > 0 is su�ciently small. Then we can argue as before
that all e�cient spanning trees of G� must be contained in fTij ji 2 f1; 2g; j 2 f1; : : :mgg where
E(Tij) = E(Tj) [ f[v; v1]; [v; v2]; [vi; v�]g. The costs of these trees are listed below:

c(T11) = (a1; b1 + �) c(T21) = (al � �; b1)

: : : : : :

c(T1k) = (x; y + �) c(T2k) = (x+ al � a1 � �; y)

: : : : : :

c(T1l) = (al; bl + �) c(T2l) = (2al � a1 � �; bl)

: : : : : :

c(T1m) = (am; bm + �) c(T2m) = (am + (al � a1 � �); bm)

We observe that:

� By the choice of �, T1l is dominated by T21

� T1k and T11 are e�cient.

Then if T2k is dominated by some other e�cient spanning tree of G� we have the same result as
in the �rst case: dEGT (G�)(T1k) is at least one less than dEGT (G)(Tk). Otherwise we consider the
edge [T1k; T2k] and check conditions (1) and (2):

x >
1

n
(x+ (al � a1 � �)) +

n� 1

n
(a1 + �)

, n >
x+ al � 2a1 � � � �

x� a1 � �

y + � >
1

n
y +

n � 1

n
(b1 + � + �)

, � > (n� 1)(b1 � y + �)
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If we choose n = bx+al�2a1����
x�a1��

c + 1 and � > 0 small enough, conditions (1) and (2) hold. Hence
after appropriate renumbering of the e�cient trees we have exactly the situation of the �rst case
with T1k in the place of Tk and T2k in the place of Tl.

Analogously to Example 1 Extension 1 and Extension 2 can be easily transfered to the shortest
path problem by replacing \spanning tree" by \s� v�path" respectively \s� v0�path" and T by
P in De�nition 2 and in Extensions 1 and 2. Then Lemma 2 can be reformulated as follows:

Lemma 3 If conditions (1) and (2) hold, then �P1[P2
(EGP (s;v

0)(G0)) < �P1[P2
(EGP (s;v)(G)).

Theorem 5 For a given graph G = (V;E) and costs c1; : : : ; cQ : E ! IR+ there exists a graph
~GT and costs ~c1; : : : ; ~cQ : E( ~GT ) ! IR+ containing G as a subgraph such that EGT ( ~GT ) is not
connected.
Analogously, for a given graph G = (V;E), vertices s; v 2 V (G) and costs c1; : : : ; cQ : E ! IR+

there exists a graph ~GP and costs ~c1; : : : ; ~cQ : E( ~GP )! IR+ containing G as a subgraph such that

EGP (s;~v)( ~GP ) is not connected.

Proof:
We apply Extension 1 and, if necessary, Extension 2 iteratively. By Lemma 2 (Lemma 3) it

is clear that �T1[T2 (EG
T (G0)) (�P1[P2

(EGP (s;v
0)(G0))) decreases at least in every second step.

After �nitely many steps we have constructed a graph ~G such that EGT ( ~G) (EGP (s;~v)( ~G)) is
disconnected.
It should be noted that after application of Extension 1 or 2 T0k(P0k) is still not lexicographically
minimal, i.e. not contained in T1 [ T2(P1 [ P2) . The ordering of the spanning trees is without
loss of generality, since it is always possible to interchange the �rst and the second cost function.
Thus the assumptions of Extensions 1 and 2 are still ful�lled after each iteration.

2

3 Conclusions and Future Research

First let us note that shortest path and spanning tree problems are not the only discrete multiple
criteria problems for which the set of e�cient solutions is not connected in general. The method
described in Section 2.4 can also be applied to construct examples of nonconnected e�ciency graphs
for multiple criteria matroid optimization problems, where the matroid is either a partition or a
transversal matroid.
Despite the negative results of Theorem 4 and Theorem 5 we remark that according to our ex-
perience a disconnected graph EGT (G) appears only very rarely. We carried out computational
tests together with M. Lind from Aarhus University, Denmark [10]. He implemented a program
for �nding e�cient spanning trees based on the connectedness hypothesis. The approach is as
follows: First all extremal e�cient spanning trees are found. Then a neighbourhood search is used
to �nd non-extremal e�cient spanning trees.
A total of 50 randomly generated graphs with 10 to 50 nodes was tested and no example of a
disconnected e�ciency graph was found. In these tests we compared the e�cient solutions found
under the hypothesis of connectedness with all e�cient solutions calculated by an enumeration
approach.
Therefore we conclude that, although the e�ciency graph is not connected in general, a procedure
based on the connectedness hypothesis, as proposed in [7] and [11, 1], yields a very good approx-
imation of the set of e�cient spanning trees. In many cases all e�cient spanning trees will be
found and in many others only few will be missing. On the other hand the approach implemented
in [10] is much faster than an enumeration approach to �nd all e�cient solutions. Running times
were within minutes of CPU-time even for larger graphs of 50 nodes, whereas for some graphs
with 50 nodes and even for dense graphs with 20 nodes we were not able to �nd the set of all
e�cient spanning trees using the enumeration method within 10 hours of computing time.
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With respect to future research topics, we shall focus on two main directions. The �rst concerns
the concept of connectivity. By now we do not know any combinatorial problem for which the
connectivity conjecture is true, if the current de�nition is used. Hence it should be investigated if
there exist other concepts of connectivity, by introducing other de�nitions of adjacency of e�cient
solutions, e.g. of the spanning tree or shortest path problem, such that the corresponding e�ciency
graph is connected. Such a concept would then have all the advantages pointed out in Section 1.
The second direction of research is related to the question: Do there exist combinatorial optim-
ization problems such that their e�cient solutions are \connected"? This holds e.g. for special
cases of the spanning tree problem, namely if G contains only one cycle. Then any two spanning
trees di�er by only one edge and hence EGT (G) is connected. But obviously we are interested in
problems where the connectivity conjecture is true for every instance.
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