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Abstract

An algorithm to approximate the nondominated set of continuous

and discrete bicriteria programs is proposed. The algorithm employs

block norms to �nd an approximation and evaluate its quality. By

automatically adapting to the problem's structure and scaling, the ap-

proximation is constructed objectively without interaction with the

decision maker. Examples and case studies are included.
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1 Introduction

In view of increased computational power and enhanced graphic capabilities

of computers, approximation of the solution set for bicriteria programming

has been a research topic of special interest. Since bicriteria programs fea-

ture only two criteria, their solution set can be visualized graphically which

signi�cantly faciliates decision making. In this vein, researchers have given
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special attention to developing approximation methods that yield a repre-

sentation or description of the solution set rather than to further studying

scalarization approaches that had been extensively examined earlier.

Below we review approximation approaches speci�cally developed for bi-

criteria programs. We focus on methods that are based on exact algorithms

for the solution of scalarization problems and were applied to example prob-

lems.

Cohon (1978) and Poli�s�cuk (1979) independently develop similar approx-

imation approaches for linear and convex bicriteria problems, respectively.

The weighted-sum scalarization is employed to �nd nondominated points

and the l2 norm is used as an estimate of the accuracy of the approxima-

tion. Fruhwirth et al. (1989) propose a sandwich algorithm to approximate

a convex curve in IR2 and apply it to the bicriteria minimum cost ow

problem. The curve is approximated by two piecewise linear functions, one

above and one below the curve. The curve's derivative is used to partition

a coordinate axis. Yang and Goh (1997) use the derivative of the upper ap-

proximation instead. For both algorithms the approximation error decreases

quadratically with the number of approximation points. Jahn and Merkel

(1992) propose a reference-point-approach for general bicriteria programs

and give attention to avoid �nding local optima. The approach produces

a piecewise linear approximation of the nondominated set. Payne (1993)

proposes to approximate the nondominated set of a general bicriteria prob-

lem by rectangles, each de�ned by two nondominated points. Das (1999)

briey discusses an approach based on the Normal-Boundary Intersection

technique. A direction orthogonal to a line de�ned by two nondominated

points is used to �nd a new nondominated point. The identi�ed point has

the maximal l1 distance from the approximation in the considered region.

The following two approaches are, to our knowledge, the only ones that

give a closed-form formula for an approximating function of the nondom-

inated set rather than a set of approximating points or a piecewise linear

approximation of the nondominated set. Approximating the nondominated

set of a convex bicriteria problem by a hyper-ellipse is proposed in Li et al.

(1998) and Li (1999). The technique requires three nondominated points
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and their choice a�ects the quality of approximation. In Chen et al. (1999)

and Zhang et al. (1999), quadratic functions are used to locally approximate

the nondominated set of a general bicriteria problem in a neighborhood of

a nondominated point of interest. By performing the procedure for several

nondominated points, a piecewise quadratic approximation of the whole

nondominated set can be generated.

In this paper, we propose to approximate the solution set of bicriteria

programs by means of block norms. Using block norms to generate nondom-

inated points has several implications: the norm's unit ball approximates

the nondominated set and, at the same time, the norm evaluates the feasible

points as well as the quality of the current approximation.

Let x 5 y denote xi � yi for i = 1; 2, and x � y denote x 5 y and x 6= y.

We consider the following general bicriteria program:

min fz1 = f1(x)g

min fz2 = f2(x)g

s. t. x 2 X;

(1)

where X � IRm is the feasible set and f1(x) and f2(x) are real-valued func-

tions. We de�ne the set of all feasible criterion vectors Z and the set of all

globally nondominated criterion vectors N of (1) as follows

Z = fz 2 IR2 : z = f(x); x 2 Xg = f(X)

N = fz 2 Z : @~z 2 Z s. t. ~z � zg;

where f(x) =
�
f1(x); f2(x)

�T
. We assume that the set Z is closed and

nonempty, and that there exists a point u 2 IR2 so that Z � u+ IR2
= where

IR2
= := fx 2 IR2 : x = 0g. It follows that the set N is nonempty, see, for

example, Sawaragi et al. (1985, pp. 50{51).

The point z� 2 IR2 with

z�i = minffi(x) : x 2 Xg � �i i = 1; 2

is called the utopia (ideal) criterion vector where the components of � =
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(�1; �2) 2 IR2 are small positive numbers.

The point z� 2 IR2 with

z�i = min
n
fi(�x) : fj(�x) = min

x2X
fj(x); j 6= i

o
i = 1; 2

is called the nadir point.

In Section 2, we present the methodological tools we use to construct the

approximation. Section 3 contains the approximation algorithm featuring

speci�c procedures depending on the structure of the problem. Examples

and case studies illustrating the performance of the algorithm are presented

in Section 4, and Section 5 concludes the paper.

2 Methodological Tools

In this section, we discuss approaches to generating nondominated points

used in the proposed approximation algorithm. Furthermore, the algorithm

relies on the usage of block norms, a well-known concept in convex analysis.

Block norms are norms with a polyhedral unit ball. A cone generated by

two neighboring extreme points of a unit ball is called a fundamental cone.

The partition of the unit ball into fundamental cones is used extensively in

our methodology.

Let  : IR2 ! IR be an oblique norm5 with the unit ball B. Given a

reference point z0 (without loss of generality z0 = 0 2 Z+IR2
=), the following

program yields a globally nondominated point, see Schandl (1999):

max (z)

s. t. z 2 Z \ (z0 � IR2
=):

(2)

In the algorithm, the norm  with the center at z0, as used in (2), is being

constructed and used to generate new nondominated points.

Solving (2) requires a calculation of the norm . As shown in Hamacher

and Klamroth (1997), it is suÆcient to know in which fundamental cone

5An oblique norm is a block norm where no facet of the unit ball is parallel to any
coordinate axis. For details see Schandl (1999).

4



a point z is located to calculate its norm (z). Let  be a polyhedral

norm with the unit ball B � IR2. Let z 2 C where C = cone(vi; vj) is

a fundamental cone, that is, C is generated by the two extreme points vi

and vj . If z = �iv
i + �jv

j , where �i; �j � 0, is the unique representation

of z in terms of vi and vj then

(z) = �i + �j: (3)

Let zi and zj be two nondominated points in z0 � IR2
=. To guarantee that

a point z is in the cone C = cone(zi; zj), it is suÆcient to require z =

�iz
i + �jz

j where �i; �j � 0.

Using (3), the general norm problem (2) restricted to a cone can be

formulated as:

max �i + �j

s. t. z = �iz
i + �jz

j

�i; �j � 0

z 2 Z:

(4)

Given an optimal solution (��; �z) of (4), �z is globally nondominated. Ob-

serve that problem (4) generates a nondominated point independently of

the existence of a norm.

Besides the norm-based approach described above, we use two other

techniques to generate globally nondominated solutions. Following Steuer

and Choo (1983), we reformulate the lexicographic Tchebyche� method for

the cone C = cone(zi; zj):

lexmin
�
kz � ~z�kw

1
; kz � ~z�k

1

�
s. t. z = �iz

i + �jz
j

�i; �j � 0

z 2 Z;

(5)

where ~z� is the local utopia point for the cone, see Section 3.4. We �rst

minimize the weighted Tchebyche� norm between the local utopia point
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and a feasible point. If there is no unique solution in this �rst step, we

minimize the l1 distance among all the solutions of the �rst step. Given

an optimal solution (��; �z) of (5), �z is globally nondominated, see Schandl

(1999).

A direction method introduced in Pascoletti and Sera�ni (1984) is mod-

i�ed in Schandl (1999). We use this method to search for globally nondom-

inated points in the entire set Z. Let z0 2 Z + IR2
=, d 2 IR2 n IR2

= and

1 � p <1. Then the problem

lexmax (�; kqkp)

s. t. z = z0 + �d+ q

q 2 �IRn=

z 2 Z;

(6)

has a �nite solution (��; �z; �q), where �z is a globally nondominated point.

3 Approximation Algorithm

In this section, the algorithms for an IR2
=-convex

6, IR2
=-nonconvex and dis-

crete feasible set Z are proposed. The algorithms in all three cases are very

similar, so we �rst present the general algorithm and then point out special

features of the di�erent cases.

3.1 General Strategy

The approximation algorithm is based on the successive generation of non-

dominated points using the methods described in Section 2. The basic idea

is to generate points in the areas where the nondominated set is not yet well

approximated. The approximation quality is evaluated using the approxi-

mation itself by interpreting it as part of the unit ball of a block norm.

We explain the algorithm for the IR2
=-convex case using Figure 1. To

start, we need a reference point z0 2 Z + IR2
=. This might be a currently

implemented (not nondominated) solution or just a (not necessarily feasible)

6A set Z is called IR2

=-convex if Z + IR2

= is convex.
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guess. Without loss of generality, we assume throughout the section that

the reference point is located at the origin.

z0

(a)

z0z1

z2

(b)

z0z1

z3

z2

(c)

z0z1

z3

z2

(d)

z0z1

z3

z2
z4

(e)

z0z1

z3

z4
z2

(f)

Figure 1: The steps of the approximation algorithm

To approximate the nondominated set in z0 � IR2
=, we �rst explore the

feasible set along the directions (�1; 0) and (0;�1) to �nd z1 and z2 using the

direction method (6). These two points together with the reference point z0

are used to de�ne a cone and a �rst approximation, see Figure 1(b).

In a cone we search for a new candidate point to add to the approxima-

tion. Constructing new cones within the �rst cone, we get a �ner approxi-

mation of the nondominated set while generating nondominated points and
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updating the norm. Depending on the structure of the feasible set Z (IR2
=-

convex, IR2
=-nonconvex, discrete), we use the norm method (4) and/or the

lexicographic Tchebyche� method (5). For more details see Sections 3.3,

3.4 and 3.5. Interpreting the approximation as the lower left part of the

unit ball of a norm with z0 as its center, we can calculate the distance of a

point �z from the current approximation as dev(�z) := j(�z)� 1j, which we

call the deviation of �z. Whenever possible, we add a point of worst approx-

imation by substituting two new cones for the cone in which this new point

is located.

3.2 Description of the Algorithm

The algorithm accepts the following input.

1. A reference point z0 2 Z +IR2
= can be speci�ed. If it is not given then

z0 := z� is used as a default.

2. Initial search directions can be given. There are three possibilities:

(a) At least two directions di 2 �IR2
= are given.

(b) An integer randDirNo � 2 is given, which de�nes the number of

random directions in �IR2
= which are generated.

(c) No directions are given; then the default directions d1 := (�1; 0)

and d2 := (0;�1) are used.

The directions are sorted in counterclockwise order. Let the number

of directions be k � 2.

3. There are two possible stopping criteria; usually, at least one of them

must be given. The �rst one is an upper bound � > 0 on the maximal

deviation. As soon as we get dev(�z) < � for a point that should be

added next, the algorithm stops. The other possibility is to give an

integer maxConeNo � 1, which speci�es the maximum number of cones

to be generated.
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The algorithm starts by solving the direction method (6) for all direc-

tions di and de�ning l initial cones. Note that l is not necessarily equal

to k�1 because two directions may generate the same nondominated point.

Now we �nd a candidate to add in each cone, each having a deviation

from the current approximation associated with it. How this candidate is

found di�ers for the three types of problems and is described in the subsec-

tions below.

Finally the main loop of the algorithm starts. If the maximum number

of cones maxConeNo was already constructed, the loop stops. Otherwise, the

candidate �z with the maximum deviation is considered. If this deviation is

smaller than �, the loop stops. Otherwise, two new cones are constructed in

place of the cone containing �z, candidate points for the new cones together

with their deviations are calculated and the points are added to the list of

candidates.

At the end of the loop the sorted list of r nondominated points is printed

and can be used to visualize the approximated nondominated set. In the

IR2
=-convex case, the approximation is in the form of an oblique norm's unit

ball with an algebraic description Az 5 e, where A is an (r � 1)� n matrix

and e is the vector of ones.

The algorithm is summarized in Figure 2. The procedure Calculate

Candidate depends on the structure of the feasible set. Suitable proce-

dures for IR2
=-convex, IR

2
=-nonconvex and discrete feasible sets are given in

Figures 3 and 5.

3.3 Convex Case

For the IR2
=-convex case, the candidate in a cone is found by the norm

method (4). By taking the candidate with the maximal deviation, we glob-

ally maximize the norm and the resulting point is guaranteed to be globally

nondominated. Note that the deviation is implicitly given by the solution

of (4) because, due to (3), the optimal objective value of (4) is equal to the

candidate's norm, that is, (�z) = ��i + ��j where �z = ��iz
i + ��jz

j .

Given the set of extreme points of the approximation, we can easily �nd
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Procedure: Bicriteria Approximation

Read/generate z0, di, �, maxConeNo
for all di do

Solve direction method
end for

Construct cones
for all cones do
Call Calculate Candidate

end for

while #cones < maxConeNo and dev(next point) � � do

Add next point
Construct new cones
for all new cones do
Call Calculate Candidate

end for

end while

Output approximation

Figure 2: Pseudo code of the approximation algorithm

a representation of the approximation in the form Az 5 e. Since z0 = 0, no

line connecting two neighboring extreme points includes the origin. Given

two points zi and zi+1, we calculate row i of the matrix A as follows:

ai1 =
zi+12 � zi2

zi
1
zi+1
2

� zi
2
zi+1
1

and ai2 =
zi1 � zi+11

zi
1
zi+1
2

� zi
2
zi+1
1

:

The procedure to calculate a candidate is summarized in Figure 3.

Procedure: Calculate Candidate

Solve norm method to �nd �z and dev(�z)

Figure 3: Finding a candidate in a cone for an IR2
=-convex problem

Setting the stopping criteria to � = 0 and maxConeNo =1 can lead to an

in�nite running time for a general IR2
=-convex set (not considering numerical

problems). On the other hand, these settings can be useful for the special

case of a polyhedral set Z, since in this case our algorithm is able to �nd
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the exact nondominated set.

Consider a polyhedral feasible set Z. There are two cases for the location

of the points zi and zj when solving (4). Either both extreme points of the

approximation are on the same facet or they are on di�erent (not necessarily

neighboring) facets.

Since (4) is a linear program if Z is polyhedral, its optimal solution is an

extreme point or a facet of the feasible set. We thus either �nd a new point to

add to the approximation or the identi�ed point has a deviation of 0 in which

case the cone is not considered anymore. The necessary number of iterations

is O(k) where k is the number of extreme points of the nondominated set

because in each iteration we either �nd an extreme point or we eliminate a

cone from further consideration.

3.4 Nonconvex Case

Finding a candidate in a cone for an IR2
=-nonconvex feasible set is a two-

stage procedure. We �rst try to �nd a candidate \outside" the approxima-

tion; if this fails, we look for a candidate \inside". Thus we give a priority

to constructing the convex hull of the nondominated set before we further

investigate nonconvex areas.

Finding a candidate \outside" is done with the same method as for

IR2
=-convex sets, that is, we use problem (4) exercising its applicability in

the absence of a norm. If the deviation of the candidate found by this

method is too small, that is, smaller than �, we switch to a method using

the Tchebyche� norm in order to investigate whether the nondominated set

is IR2
=-convex in this cone and its approximation is already good enough or

whether the nondominated set is IR2
=-nonconvex and a candidate has to be

found in the interior of the approximation. For a cone de�ned by the two

points zi and zi+1, we �rst calculate the local utopia and the local nadir

point:

~z� = (zi1; z
i+1
2 ) and ~z� = (zi+11 ; zi2):

Using these two points, we calculate the weights for a Tchebyche� norm
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whose unit ball's center is ~z� and whose upper right corner is ~z�, see Figure 4.

The weights thus are

wi =
1

~z�i � ~z�i
i = 1; 2:

z0

zi

zi+1~z�

~z�

Figure 4: The Tchebyche� norm for a nonconvex area

We then use the lexicographic Tchebyche� method (5) to �nd a candi-

date for this cone. Having found a candidate �z, its deviation is calculated

using (3). The norm can also be calculated using the equality constraint

of (5) because (�z) = ��i + ��j where �z = ��iz
i + ��jz

j .

Note that the candidate found using this two-stage procedure is not

necessarily the point of worst approximation. If the candidate has already

been found using program (4), it is the point of worst approximation among

all points \outside" the current approximation in this cone. Finding a point

with the lexicographic Tchebyche� method|that is, in the second stage|

does not imply anything about how well this point is currently approximated

in comparison with other points. So it might happen that we miss a point

with a larger deviation than the candidate �z we are considering. But unless

the deviation of �z is so small that the cone is not further considered, there

is a good chance that the point with the larger deviation is found in a later

iteration. The procedure to calculate a candidate is summarized in Figure 5.
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Procedure: Calculate Candidate

Solve norm method to �nd �z and dev(�z)
if dev(�z) < � then

Calculate ~z� and ~z�

Use lexicographic Tchebyche� method to �nd �z
Calculate dev(�z)

end if

Figure 5: Finding a candidate in a cone for an IR2
=-nonconvex problem

3.5 Discrete Case

The approach for the discrete case is exactly the same as for the IR2
=-

nonconvex case, that is, we �rst use the norm method to search for a candi-

date \outside" the approximation; if we �nd none (or only one with a small

deviation), we search \inside" using the Tchebyche� method.

Since using the Tchebyche� method might lead to NP-hard problems,

see, for example, Warburton (1987) or Murthy and Her (1992), we develop an

alternative approach for the discrete case that uses cutting planes and does

not need two stages. Since this approach is not used in our implementation,

we only give a brief outline and refer the reader to Schandl (1999) for more

details. This approach might lead to NP-hard problems as well but there

are cases where the Tchebyche� method leads to NP-hard problems while

the approach based on cutting planes does not.

The idea of the cutting-plane-approach is to restrict the feasible region

to an open rectangle de�ned by the two generators of the cone because this

is the only area within this cone where nondominated points can be located.

Then the norm method (4) is used to identify a candidate for this cone. If we

�nd a candidate \outside" the current approximation, that is, a candidate

with a deviation large enough, we have a point of worst approximation and a

suitable point to add to the approximation. But if a point is found \inside"

the approximation, it is actually a point of best approximation. Therefore it

may happen quite often that a cone is excluded from further consideration

too early.

Independently of the choice of an approach to examine the interior of
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the approximation, the algorithm enumerates all nondominated points if we

use the stopping criteria � = 0 and maxConeNo =1.

The procedure to calculate a candidate using the Tchebyche� method is

the same as for the IR2
=-nonconvex case, see Figure 5.

3.6 A Note on Connectedness

While the nondominated set of an IR2
=-convex set is always connected, see

Bitran and Magnanti (1979) or Luc (1989), the nondominated set of an

IR2
=-nonconvex problem might be disconnected. An indicator for discon-

nectedness is the fact that we do not �nd any new nondominated point in a

cone, neither in the interior nor in the exterior of the approximation. Since

we are able to identify disconnectedness in this way, we can remove such a

cone so that the resulting �nal approximation is a disconnected set as well.

Thus our approximation is suitable for problems with connected and with

disconnected nondominated sets.

3.7 Properties of the Algorithm

The approximation algorithm for general bicriteria problems presented in

this section has many desirable properties some of which are, to our knowl-

edge, not available in any other approximation approach.

In each iteration, the subproblems (4) and/or (5) are only solved in

two new cones. Thus results from previous iterations are reused and no

optimization over the whole approximated region is necessary. Instead of

adding an arbitrary point in each iteration, our goal is to add the point of

worst approximation and to maximize the improvement in each iteration.

While this property does not always hold in the IR2
=-nonconvex and discrete

cases, it always holds in the IR2
=-convex case. If the algorithm is interrupted

or stopped at a particular point (for example because the maximum allowed

number of cones has been constructed), the approximation has a similar

quality for the whole nondominated set.

While the points of the approximation are in general not nondominated

or even not feasible, all extreme points of the approximation are nondom-
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inated. Even in the IR2
=-convex case, points of the approximation may be

infeasible if the feasible set Z is \very thin" or even only a line. If all points

of the approximation are feasible though, we have constructed an inner ap-

proximation of the nondominated set.

Using a norm induced by the problem (or, more precisely, by the ap-

proximation of its nondominated set) avoids the necessity to choose, for

example, an appropriate norm, weights or directions to evaluate or esti-

mate the quality of the current approximation. The induced norm evaluates

the approximation quality and simultaneously generates suitable additional

points to improve the approximation. Since the quality of the approximation

is evaluated by the norm, the stopping criterion � for the maximal deviation

is independent of the scaling. Indeed, the norm automatically adapts to the

given problem and yields a scaling-independent approximation.

Additionally, the constructed norm can be used to evaluate and compare

feasible points in z0 � IR2
=. A nondominated point has a norm greater or

equal 1 while a norm between 0 and 1 for a point �z indicates that there is

a \better" point in the direction from z0 to �z. The norm of a point �z can

be interpreted as a measure of quality relative to the maximal achievable

quality in the direction of �z.

While it is often convenient to have the reference point generated by

the algorithm, which is then the nadir point, choosing a speci�c reference

point can be used to closely explore a particular region of the nondominated

set. The automatically generated reference point can be used to construct

a global approximation of the entire nondominated set while a manually

chosen reference point helps to examine the structure and trade-o�s of the

nondominated set in a speci�c region. Thus the choice of the reference point

can be used to \zoom into" regions of interest. For examples see Section 4.

Finally, the algorithm works essentially in the same way for IR2
=-convex

and IR2
=-nonconvex problems. If the structure of the feasible set Z is un-

known, we can apply the algorithm described in Section 3.4. However, if the

problem is in fact IR2
=-convex, some additional (unnecessary) computation

have to be performed. Not �nding a candidate with a large enough deviation

in the exterior of the approximation in the IR2
=-convex case is an indicator
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that the approximation is already good enough in the corresponding cone.

In the IR2
=-nonconvex case though, the Tchebyche� method is used to search

for a candidate in the interior of the approximation which is unnecessary in

the IR2
=-convex case because there cannot be a nondominated point in the

interior of the approximation. But the disadvantage of performing some

additional calculations is clearly outweighed by the fact that no information

concerning the structure of the feasible set Z is necessary. If the informa-

tion that the feasible set is IR2
=-convex is available, the specialized algorithm

presented in Section 3.3 should be used of course.

4 Examples and Case Studies

The approximation algorithm presented in Section 3 was implemented using

C++, AMPL, CPLEX, MINOS and gnuplot. The C++ program keeps lists of

points and cones and formulates mathematical programs which are solved

by AMPL, CPLEX and MINOS. Finally, the results are written to text �les

which gnuplot uses to create two-dimensional plots.

4.1 Convex Example

Consider the following IR2
=-convex example:

max x1 + x2

max 10x1 � x21 + 4x2 � x22

s. t. 3x1 + x2 � 12 � 0

2x1 + x2 � 9 � 0

x1 + 2x2 � 12 � 0

x 2 IR2
=:

(7)

The solutions for 10 and 40 cones are shown in Figure 6. The approximation

is already very good for 10 cones and improves only slightly for 40 cones.

A small cusp can be seen at f(3; 3) = (6; 24) in both �gures. At this point,

the �rst two constraints hold with equality. The �rst constraint de�nes the

nondominated set to the left of the cusp, the second one to the right of the
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cusp.

The corresponding matrix for 10 cones, rounded to two decimals, looks

as follows:

AT =

 
0:49 0:48 0:463 0:45 0:42 0:39 0:25 0:19 0:12 0:04

0:03 0:03 0:04 0:04 0:04 0:05 0:06 0:06 0:06 0:06

!
:

All entries are positive, because A de�nes the oblique norm in the quad-

rant IR2
=. The rows of A de�ne the facets of the approximation from the

right to the left.
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(a) 10 cones
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f1

z0

(b) 40 cones

Figure 6: Approximation of (7)

4.2 Nonconvex Example

We present an IR2
=-nonconvex example taken from Zhang (1999):

min 10(x1 � 2)4 + 10(x1 � 2)3 + 10(x2 � 2)4 + 10(x2 � 2)3 + 10

min (x1 � 3)2 + (x2 � 3)2 + 10

s. t. �x1 � x2 + 0:1 � 0

0 � x1 � 10

0 � x2 � 10

x 2 IR2:

(8)
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Two interesting properties of our approximation algorithm can be seen in

Figure 7, depicting the approximation for di�erent numbers of cones.

The approximation �rst constructed by the algorithm is similar to the

convex hull of the nondominated set. Even when using 30 cones for the

approximation it is not yet apparent that the problem is IR2
=-nonconvex.

The reason is that the algorithm uses only the norm method as long as it

�nds candidates with a deviation larger than � (which was set to 0:0001 in

this example). When it does not �nd such a candidate in a cone, it switches

to the Tchebyche� method to examine the interior of the approximation

and \discovers" the nonconvexity in the big cone, see Figures 7(c) and 7(d).

This illustrates that the choice of � can inuence the approximation process.

As in the IR2
=-convex example above, we see that areas with a big cur-

vature induce numerous cones so that the linear approximation adapts to

the nonlinear nondominated set. Our results agree with those obtained by

Zhang (1999) using the Tchebyche� scalarization.

4.3 Case Study: Evaluation of Aircraft Technologies

We now present a bicriteria model to evaluate aircraft technologies for a

new aircraft. The model was proposed in Mavris and Kirby (1999) and the

data was provided by the Aerospace Systems Design Laboratory at Georgia

Institute of Technology. They can be found in Schandl (1999).

The model is a bicriteria problem of the form

min f1(x)

min �f2(x)

s. t. �1 � xi � 1 i = 1; : : : ; 9:

(9)

The functions f1(x) and f2(x) are modeled as Response Surface Equations:

b0 +
9X
i=1

bixi +
9X
i=1

biix
2
i +

8X
i=1

9X
j=i+1

bijxixj;

where the coeÆcients bi and bij are found by regression. The Hessian of
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Figure 7: Approximation of (8)
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neither of the functions f1(x) and f2(x) is positive or negative (semi)de�nite.

The decision variable in the problem is a vector of nine so-called \k" fac-

tors. The impact of a technology is mapped to such a vector, so every

technology has a speci�c vector assigned to it. Not all technologies a�ect

all components of the vector. While the problem is thus discrete, the goal

of this model is to identify the values of \k" factors that are bene�cial for

the objective functions. Then technologies with corresponding vectors can

be further investigated. All \k" factors are normalized to the range [�1; 1]

and represent a change from the value of the currently used technologies.

The two criteria are the life cycle cost (including research cost, produc-

tion cost, and support cost) to be minimized and the speci�c express power

(measure of maneuverability) to be maximized.

The results of the approximation algorithm for 10 and 29 cones are shown

in Figure 8. Our approximation agrees with the simulation results obtained

at the Aerospace Systems Design Laboratory, see Schandl (1999).
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(b) 29 cones

Figure 8: Approximation of (9)

There are two areas with an accumulation of constructed points in Fig-

ure 8(b). We examine these areas more closely by manually setting the

reference point to (0:671;�728) and (0:652;�683), respectively. The corre-

sponding approximations are shown in Figures 9(a) and 9(b). In Figure 9(a),

no reason for the accumulation of constructed points is apparent. Figure 9(b)

on the other hand shows a small nonconvex area of the nondominated set.
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Figure 9: Approximation of (9)

Being able to choose the reference point in this way demonstrates a

strength of our approximation approach. By simply resetting this point, we

are able to closely examine \suspicious" areas or areas of special interest.

Thus the approximation approach can be used both to get a general im-

pression of the entire nondominated set and to \zoom into" areas of interest

without changing the underlying algorithm.

An extended model includes a constraint and is discussed in Schandl

(1999).

4.4 Case Study: Choosing A�ordable Projects

We now consider the problem of selecting the most a�ordable portfolio of

projects so that two criteria are maximized subject to a budgetary con-

straint. The model and data were taken from Adams et al. (1998) and

Hartman (1999).

There are 24 projects in which the decision maker can invest. Depending

on the model, the decision maker can invest in each project exactly once

(binary variables) or a positive number of times (integer variables). The goal

is to maximize the net present value (NPV) of investment and to maximize

the joint application or dual use (JA/DU) potential of the chosen projects.

The latter is a score assigned to each project by an expert. The investment
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has to be made with respect to a budgetary constraint. The problem is

formulated as a bicriteria knapsack problem:

max
24P
i=1

c1ixi

max
24P
i=1

c2ixi

s. t.
24P
i=1

aixi � b

x binary or nonnegative integer,

(10)

where the parameters are explained in Table 1. The values of the parameters

are given in Schandl (1999).

Parameter Explanation

c1i NPV of investment for project i in millions of dollars,
i = 1; : : : ; 24

c2i JA/DU score for project i, i = 1; : : : ; 24
ai Total cost of project i over three years in hundreds of

thousands dollars, i = 1; : : : ; 24
b Total budget in hundreds of thousands of dollars

Table 1: Explanation of parameters in (10)

The approximation for the binary variable x is shown in Figure 10(a).

Our approximation algorithm �nds all twelve nondominated solutions given

in Hartman (1999).

Allowing the variable x to be a nonnegative integer instead of binary

yields many more solutions. The approximation of (10) for the nonnegative

integer variable x is shown in Figure 10(b). In fact, the approximation �nds

all 54 nondominated solutions that, according to personal communications,

Hartman found using her implementation of a dynamic-programming-based

algorithm generating all nondominated points.
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Figure 10: Approximation of (10)

5 Conclusions

In this paper we introduced a new approximation approach for bicriteria pro-

grams. Block norms are used to construct the approximation and evaluate

its quality.

The algorithm combines several desirable properties. Whenever possi-

ble, the approximation is improved in the area where \it is needed most"

because in each iteration, a point of worst approximation is added. The

algorithm is applicable even if the structure and convexity of the feasible

set is unknown. Given this knowledge though, more eÆcient versions can

be applied. Using the approximation or a norm induced by it to improve

the approximation releases the decision maker from specifying preferences

(in the form of weights, norms, or directions) to evaluate the quality of the

approximation.

The algorithm yields a global piecewise linear approximation of the non-

dominated set which can easily be visualized. For IR2
=-convex problems,

a closed-form description of the approximation can be calculated. For all

problems, the trade-o� information provided by the approximation can be

used in the decision-making process. While the approximation is carried out

objectively, the subjective preferences must be (and should be) applied to

single out one (or several) �nal result(s).
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In the future, we plan to employ global optimization techniques for the

single objective subproblems in order to handle problems with disconnected

nondominated set and/or local minima.
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