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Abstract

Continuous location problems and network location problems are generally viewed as

completely different classes of problems. We will show in this paper that despite the

classical distinction between continuous and discrete optimization, there are many

similarities that can be exploited both for the development of new location models and

for the derivation of theoretical properties and solution methods. This interrelation

gives rise to a new line of research combining ideas from the fields of continuous and

network location.
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1 Introduction

Characteristic for location problems is that the objective function depends on the distances
between new and existing facilities. It models, for example, the travel cost between existing
and new facilities, or the general accessibility of the new facilities. Two classical approaches
can be distinguished:

Continuous Models assume that existing as well as new facilities can be represented by
points in the Euclidean plane R

2 (or — as needed, for example, if antennas are to
be located — in the three dimensional space R

3). The new location can be placed
anywhere in some specified feasible region which often coincides with the complete
plane. Travel costs are commonly modeled by some distance metric like the Euclidean
metric or the Manhattan metric.

Network Models are based on a given transportation network. The existing facilities
are represented by nodes of this network, and new facilities can be placed either only
on the nodes or on nodes and edges of the network. A cost value can be associated
with every edge of the network modeling, for example, the travel time between the
respective nodes. Accordingly, shortest paths in the network serve as a network
distance function for network location problems.
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The need for realistic representations of distance measures in location problems is reflected
in the recent literature. Continuous models have been extended by various types of re-
strictions and constraints in order to better incorporate the geographic reality into the
geometric representation. Location problems with forbidden regions have been extensively
studied and can be considered relatively well-solved (for an overview, see Hamacher and
Nickel, 1995). On the other hand, problems involving physical barriers or congestions still
give rise to many open questions that are caused by the non-convexity of the objective
function (see Sarkar et al. (2004) for problems with congestions and Klamroth (2002) for
a detailed survey on location problems with barriers).

If on the other hand a road or transportation network serves as the basis for a (network
or discrete) location model, a balance between the size of the network (and the resulting
computational complexity) and the accuracy of the model has to be found (see, for example
Drezner and Hamacher, 2002). Moreover, the topology of the underlying network has a
profound impact on the optimal facility locations.

Very little has been done to include continuities and/or additional modeling parameters
in network location models. Batta and Palekar (1988) extended a network location model
by adding so-called mega nodes which can be entered and left only at a finite set of access
points. Inside a (not necessarily convex) mega node distances are measured based on
rectilinear paths while network distances are used outside the mega nodes. It is shown that
this problem can be reduced to a 1-median or p-median problem, respectively, on a suitably
extended network. Erkut (1992) added a finite candidate set for new locations outside
a given transportation network. Travel distances are measured partly on the network,
but — in order to model continuous propagations, for example, of polluted air from an
industrial plant — continuous metrics are used in addition to the network metric in the
objective function. Blanquero et al. (2000) further extended this model by defining a
convex feasible region for new locations replacing the finite candidate set. The focus in
both papers is mainly on model formulations and on existence results. Similarly, Berman
et al. (2000) consider a transportation network together with a set of points of potential
hazards which may be located either on or off the network. Eight different routing and
location problems are modeled and solved. In the two comprised location problems, the
new location is restricted to the network while the distance to the points of hazard is
measured using squared Euclidean (continuous) distances. Drezner and Wesolowsky (1996)
present an obnoxious facility location problem where one new facility is to be located in the
(continuous) convex hull of a planar network such that the weighted Euclidean distance
to any node or arc of the network is maximized. A graphical solution approach based
on growing forbidden regions around arcs and nodes of the network is presented, and
implemented in the framework of a bisection search algorithm.

A continuous location problem based on the superposition of a (polyhedral) gauge
distance function and a finite set of so-called rapid transit lines modeling, for example, a
high-speed transportation network, is suggested by Carrizosa and Rodriguez-Chia (1997)
who derive a mixed integer programming formulation for the problem; see Section 1.2 for
a more detailed review of this approach.
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In this paper, we survey the main properties of continuous location problems with added
discontinuities (barriers) on one hand, and of network location problems (rapid transit
lines) with added continuities on the other hand. Based on the representation of both
problem classes as mixed integer programming problems, a unified problem formulation
is suggested that can be viewed as a unifying umbrella under which continuous location
models and network location models can be described.

In the following section, we will first review some useful results for Weber problems with
barriers. Based on mixed integer programming formulations for problems with polyhedral
barriers and making use of the visibility graph of the problem, we will then span the
bridge to generalized network location models as suggested by Carrizosa and Rodriguez-
Chia (1997) where continuous choices for new facility locations also outside the underlying
transportation network are allowed, leading to the formulation of a unified model for both
problems. Section 2 is devoted to the analysis of theoretical properties of the unified
model. Special attention is given to the case that continuous distances are measured by
block norms since in this case further simplifications of the mathematical formulation are
possible that facilitate the development of exact solution approaches.

1.1 The Weber problem with polyhedral barriers

Given a finite set of existing facilities A = {a1, . . . , an} ⊂ R
2 with positive weights

w1, . . . , wn ∈ R, the classical, continuous Weber problem is to find one new facility x ∈ R
2

such that the weighted sum of distances between x and the existing facilities at a1, . . . , an

is minimized:

min f(x) =
n∑

m=1

wmd(x, am)

s.t. x ∈ R
2.

(1)

In order to obtain a realistic estimate for the distances between the new location and
the existing facilities, we assume that a finite set of polyhedral barriers is given in R

2

and that traveling is prohibited in the interior of these barriers. Barriers may model, for
example, rivers, lakes, mountain ranges, or, on a smaller scale, conveyor belts or large
machines in an industrial plant.

Let {B1, . . . , Bb} denote a finite set of pairwise disjoint polyhedral barrier sets with a
finite number of extreme points in R

2, and let B =
⋃b

i=1 Bi be the union of these barriers.
The feasible region is given by F := R

n \ int(B). To avoid infeasible cases we assume
that F is connected and that all existing facilities a1, . . . , an are in F . Moreover, let d be
a metric which is induced by a norm ‖ · ‖d : R

2 → R . Then the barrier distance dB(x, y)
between two points x, y ∈ F is defined as the length of a shortest path between x and y

which does not intersect the interior of B. Formally, let P be a permitted x-y-path in F ,
i.e., a curve connecting x and y and not intersecting the interior of a barrier. Let p be a
piecewise continuous differentiable parameterization of P , with p : [a, b] → R

2, a, b ∈ R,

3



a < b, p(a) = x, p(b) = y and p([a, b]) ∩ B = ∅. Then dB is given by

dB(x, y) := min







b∫

a

‖p′(t)‖ddt : P permitted x-y-path







A permitted x-y-path with length dB(x, y) is called a d-shortest permitted x-y-path. It can
be shown (see, for example, Klamroth, 2001) that dB is a metric on the feasible region F ,
and that there always exists a d-shortest permitted x-y-path with the following property:

Barrier Touching Property (BTP):
There always exists a d-shortest permitted path connecting x and y that is a piecewise
linear path with breaking points only in extreme points of barriers.

Two points x and y in F are called d-visible if they satisfy dB(x, y) = d(x, y). The set
of points y ∈ F that are not d-visible from a point x ∈ F is called the shadow of x with
respect to d, i.e.,

shadowd(x) := {y ∈ F : dB(x, y) > d(x, y)}.

Using barrier distances in the problem formulation of the Weber problem (1), we can
now formulate the Weber problem with polyhedral barriers:

min fB(x) =
n∑

m=1

wmdB(x, am)

s.t. x ∈ F .
(2)

Note that while the objective function of the unconstrained Weber problem (1) is convex,
the Weber problem with barriers (2) is a non-convex problem.

Based on the barrier touching property, Klamroth (2001) developed a reduction result
for Weber problems with polyhedral barriers that decomposes the feasible region into
subregions based on visibility properties:

Definition 1.1 Let x ∈ F be a candidate site for the new facility location and let am ∈ A
be one of the existing facilities. An intermediate point ix,am

is a point different from x that
is an existing facility or an extreme point of a barrier that lies on a d-shortest permitted
x-am-path with the barrier touching property and that is d-visible from x.

If x and am are d-visible, the intermediate point ix,am
can be chosen as am. If am = x,

then ix,am
:= am.

Intermediate points are not necessarily unique and depend on the prescribed metric. Con-
sider the example of one triangular barrier illustrated in Figure 1 for two different metrics,
namely the Manhattan metric, i.e., d(x, y) = l1(x, y) = |y1−x1|+ |y2−x2|, and the Euclid-
ean metric, i.e., d(x, y) = l2(x, y) =

√

(y1 − x1)2 + (y2 − x2)2. The dotted x-am-path is an
l1-shortest as well as an l2-shortest permitted x-am-path with the barrier touching prop-
erty. With respect to the Manhattan metric, i1x,am

and i2x,am
are candidates for intermediate
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i1x,am

i2x,am

x

am

Figure 1: Intermediate points for a triangular barrier with respect to different metrics.

points since they are both l1-visible from x, whereas i2x,am
is the unique intermediate point

on an l2-shortest permitted x-am-path.
We say that an intermediate point ix,am

is assigned to am if a d-shortest permitted
x-am-path with the barrier touching property passes through ix,am

.
Definition 1.1 implies that

dB(x, am) = d(x, ix,am
) + dB(ix,am

, am). (3)

Since only existing facilities and extreme points of barriers are candidates for intermediate
points, the constant distances dB(ix,am

, am) can be computed in a preprocessing phase and
stored in a distance matrix D. If now the feasible region F is decomposed into a finite
number of subregions such that the same subset of candidates for intermediate points is
d-visible from a complete subregion, subproblems are obtained that consist of the selection
of a new facility location x in one subregion and the assignment of appropriate (visible)
intermediate points to this facility. A subdivision of the feasible region F with the desired
property is obtained by introducing a grid Gd ⊂ R

2 that is composed of the boundaries of
the shadows of all existing facilities in A and of all points in the set P(B) of the extreme
points of the barrier regions plus the facets of the barrier regions F(B):

Definition 1.2 The grid

Gd :=

(
⋃

x∈A∪P(B)

∂
(
shadowd(x)

)

)

∪ F(B)

is called the visibility grid with respect to A and B. The set of cells of Gd, i.e., the set of
all polyhedra with nonempty interior in F induced by Gd, that are not intersected by a line
segment in Gd, is denoted by C(Gd).

As was shown in Klamroth (2001), the Weber problem with polyhedral barriers can
be formulated as a mixed integer programming problem for each of the cells C ∈ C(Gd).
Within a cell C ∈ C(Gd) the corresponding subproblem consists of finding an optimal
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location for the new facility and assigning the optimal intermediate points to the existing
facilities a1, . . . , an:

Let C ∈ C(Gd) be a given cell and let I := {i1, . . . , ik} ⊆ A ∪ P(B) be that subset
of candidates for intermediate points that are d-visible from all points in C. The binary
variables yrm, r = 1, . . . , k, m = 1, . . . , n, are defined as

yrm =

{
1, ir is used as intermediate point ix,am

,

0, ir is not used as intermediate point ix,am
,

r = 1, . . . , k, m = 1, . . . , n.

Then the Weber problem with barriers restricted to C can be written as

min
n∑

m=1

wm

(
k∑

r=1

yrm

(
d(x, ir) + dB(ir, am)

)
)

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ C,

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n,

(B)

where the barrier distances dB(ir, am) are constant for each pair (ir, am) ∈ I × A.
An optimal solution x∗

B ∈ C of problem (2) is an optimal solution of problem (B)
(Klamroth, 2001). Hence, problems of type (2) can be represented by |C(Gd)| mixed integer
programming problems, each of them restricted to a cell C ∈ C(Gd). The optimal solution
of (2) is the minimum of the optimal solutions of these mixed integer problems.

1.2 The Weber problem with embedded networks

In order to formulate a unified model for Weber problems with polyhedral barriers on
the one hand and for Weber problems with embedded networks on the other hand, we
will review the model and extend the problem formulation introduced by Carrizosa and
Rodriguez-Chia (1997). It will be shown that the Weber problem with embedded networks
can be formulated as a problem of the same mathematical structure as the Weber problem
with polyhedral barriers as described in Section 1.1.

The Weber problem with embedded networks introduced by Carrizosa and Rodriguez-
Chia (1997) extends the classical Weber problem (1) by allowing traveling in the plane R

2

as well as on an embedded transportation network. The network may be used to represent
rapid transit lines as given, for example, by a subway system. If a network connection
is used whenever this improves the overall travel time, the resulting distance measure
is a mixture of a metric d induced by a norm in R

2 and the network distance on the
transportation network. The objective is to place one new facility (or several new facilities)
in the plane such that the sum of transportation costs is minimized.

More formally, let A = {a1, . . . , an} ⊆ R
2 be the set of existing facilities, x ∈ R

2

the new facility and let d be a metric induced by a norm in R
2. The embedded network

G(N , E) is given by a finite set of nodes N = {n1, . . . , no} ⊆ R
2 and undirected edges

(np, nq) ∈ E, np, nq ∈ N . The cost of an edge (np, nq) ∈ E is given by k(np, nq). Note
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that the embedding of G in the plane R
2 and in particular the coordinates of the nodes

in N play a central role for the computation of the overall distance function. Different
from Carrizosa and Rodriguez-Chia (1997) we do not assume that G is a complete graph,
or even a connected graph.

Let dG denote the network distance in G, i.e., dG(np, nq) is the cost of a minimum cost
network path between two nodes np and nq in G. We set dG(np, nq) = ∞ whenever np

and nq are nodes from two disconnected components of G. Not only in the case that G

is disconnected we may encounter practical situations where traveling between two nodes
np, nq ∈ N is faster if the network connection is not used, i.e.,

dG(np, nq) ≷ d(np, nq), np, nq ∈ N . (4)

This assumption, that extends the model of Carrizosa and Rodriguez-Chia (1997), seems
to be realistic since, for example, a public transportation network may not directly connect
each station with every other station and sometimes it is faster to walk between two subway
stations rather than taking the corresponding subway line.

For convenience we suppose that the metric d and the cost function on the edges in E

are given in the same units. Then the direct transportation cost c between two points
x, y ∈ R

2 can be defined as

c(x, y) :=







d(x, y) if x 6∈ N ∨ y 6∈ N ,

dG(x, y) if x, y ∈ N and dG(x, y) ≤ d(x, y),
d(x, y) if x, y ∈ N and dG(x, y) > d(x, y).

(5)

Consequently, the minimum transportation cost dG between two points x, y ∈ R
2 that

allows multiple changes between network travel and continuous travel is given by

dG(x, y) := inf
t1,...,tr∈R2: r finite

c(x, t1) + c(t1, t2) + · · ·+ c(tr−1, tr) + c(tr, y). (6)

It is easy to see that dG defines a metric on R
2.

Based on this definition of a distance function, the Weber problem with embedded net-
works can be formulated as

min fG(x) =
n∑

m=1

wmdG(x, am)

s.t. x ∈ R
2.

(7)

As in the case of the Weber problem with polyhedral barriers (2), the objective function
of problem (7) is non-convex since the distance function dG is non-convex. The problem
is further complicated by the fact that, due to (4), there may exist minimum cost paths
with more than two transshipment points between network travel and continuous travel.
To overcome this difficulty and to simplify the evaluation of the distance function dG we
introduce an extended network G′ that yields the same overall distance function:
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Definition 1.3 Let d be a metric induced by a norm in R
2, let G = (N , E) be an embedded

transportation network, and let dG be the minimum transportation cost in R
2 according to

(6). Then the extended transportation network G′ = (I, E ′) consists of

(a) the node set I := N ∪A, i.e., all existing facilities are included in I,

(b) edges (am, np) of cost d(am, np) for all am ∈ A\N , np ∈ N , i.e., each existing facility
that is not in N is connected to all nodes in N ,

(c) edges (np, nq) of cost k(np, nq) for all (np, nq) ∈ E with d(np, nq) ≥ k(np, nq),

(d) edges (np, nq) of cost d(np, nq) for all np, nq ∈ N with d(np, nq) < dG(np, nq), i.e., if
traveling between two nodes is faster if the transportation network G is not used, the
corresponding edge length is set to d(np, nq). (If the edge (np, nq) is contained in E

its edge length is only updated, otherwise a new edge with this length is added to E ′.)

Observe that G′ is a connected graph. Moreover, the network distance dG′ in G′ that
assigns the cost of a minimum cost network path in G′ to each pair of nodes in G′ satisfies

dG′(x, y) ≤ d(x, y) ∀ x ∈ N , y ∈ I. (8)

It is easy to see that the network distance dG′ has all properties of a metric in G′.
The following lemma shows that G′ can indeed be used to represent minimum trans-

portation costs between nodes in N and I, respectively:

Lemma 1.1 Let x ∈ N and y ∈ I. Then dG′(x, y) = dG(x, y).

Proof. Let x ∈ N and y ∈ I. The definition of the extended transportation network
immediately implies that dG′(x, y) ≥ dG(x, y).

To show that also dG′(x, y) ≤ dG(x, y), let t0 := x, tr+1 := y, and let t1, . . . , tr ∈ R
2 be

a set of transshipment points on a minimum cost path with respect to dG (c.f. (6)), i.e.,

dG(x, y) = c(x, t1) + c(t1, t2) + · · ·+ c(tr−1, tr) + c(tr, y),

where c(ti, ti+1) denotes the direct transportation cost according to (5), i = 0, . . . , r.
Case 1: t1, . . . , tr ∈ N . Then (5) and Definition 1.3 (b), (c) and (d) directly imply that
c(ti, ti+1) = dG′(ti, ti+1), i = 0, . . . , r, and hence dG′(x, y) ≤ dG(x, y).
Case 2: ∃s ∈ {1, . . . , r} : ts 6∈ N . Then (5) together with the fact that d satisfies the
triangle inequality in R

2 yield

c(ts−1, ts) + c(ts, ts+1) = d(ts−1, ts) + d(ts, ts+1) ≥ d(ts−1, ts+1) ≥ c(ts−1, ts+1),

and hence

dG(x, y) ≥ c(x, t1) + · · · + c(ts−2, ts−1) + c(ts−1, ts+1) + c(ts+1, ts+2) + · · ·+ c(tr, y).

After finitely many iterations of this procedure we obtain Case 1. 2
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Consequently, the minimum transportation cost from an arbitrary point x ∈ R
2 to

an existing facility am ∈ A ⊆ I can be represented by a minimum transportation cost
path that enters the network G′ at an access node denoted by ix,am

∈ I and continues on
the network G′ until it reaches the existing facility am. This access node is not necessarily
unique, and it may coincide with the existing facility am if no edge of the network G is used
on the minimum cost path from x to am. Carrizosa and Rodriguez-Chia (1997) showed a
similar result for the original transportation network G.

Lemma 1.2 The minimum transportation cost from x ∈ R
2 to any existing facility am ∈ A

can be computed as
dG(x, am) = d(x, ix,am

) + dG′(ix,am
, am), (9)

where ix,am
∈ I is the first node of a minimum cost path from x to am that is a node of G′

and that does not leave G′ between ix,am
and am.

Proof. Since am ∈ I, every path from x to am enters G′ at some point. Let ix,am
∈ I be

the first node of a minimum transportation cost path from x to am that is a node of G′

and that does not leave G′ between ix,am
and am.

Case 1: ix,am
= am. Then dG(x, am) = dG(x, ix,am

) + 0 = d(x, ix,am
) + dG′(ix,am

, am).
Case 2: ix,am

∈ N . Using Lemma 1.1 we obtain

dG(x, am) = dG(x, ix,am
) + dG(ix,am

, am) = d(x, ix,am
) + dG′(ix,am

, am).

Case 3: ix,am
∈ I \ N , ix,am

6= am. In this case, the choice of the access node implies that
the next node on the corresponding minimum cost path to am is another node of G′, say
node ni. Since according to Definition 1.3 all existing facilities in I \N are only connected
to nodes in N , we have ni ∈ N and, using again Lemma 1.1,

dG(x, am) = dG(x, ix,am
) + dG(ix,am

, ni) + dG(ni, am)

= d(x, ix,am
) + dG′(ix,am

, ni) + dG′(ni, am)
︸ ︷︷ ︸

≥dG′ (ix,am ,am)

≥ d(x, ix,am
) + dG′(ix,am

, am).

From the definition of the minimum transportation cost dG given by (6) follows

dG(x, am) ≤ d(x, ix,am
) + dG′(ix,am

, am)

and combining both inequalities yields

dG(x, am) = d(x, ix,am
) + dG′(ix,am

, am). 2

Lemma 1.2 implies that minimum transportation cost distances can be decomposed
into a continuous part d(x, ix,am

) and a constant part dG′(ix,am
, am) similar to the case

of barrier distances, c.f. (3). The constant distances dG′(ix,am
, am) can be computed in a
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preprocessing phase and stored in a distance matrix D. Consequently, the Weber problem
with embedded networks can be formulated as a mixed integer programming problem
with continuous location variables x ∈ R

2 and binary decision variables yrm ∈ {0, 1},
r = 1, . . . , k := |I| and m = 1, . . . , n, assigning an optimal access node to each x-am-path:

yrm =

{
1, ir is used as access node ix,am

,

0, ir is not used as access node ix,am
,

r = 1 . . . , k, m = 1, . . . , n.

This yields the following formulation for the Weber problem with embedded networks:

min
n∑

m=1

wm

(
k∑

r=1

yrm

(
d(x, ir) + dG′(ir, am)

)
)

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ R
2,

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n.

(N)

Note that in this problem formulation the number of binary variables was reduced by
a factor of |N | as compared to the formulation given in Carrizosa and Rodriguez-Chia
(1997). This reduction was possible due to the definition of the extended network G′

(Definition 1.3) and the fact, that only one access node onto G′ has to be considered for
paths from a new location at x to an existing facility at am ∈ A (Lemma 1.2).

1.3 A unified model

The mathematical structure of problems (B) and (N) is very similar. Using this similarity
both problems can be represented by the same, unified model:

min
n∑

m=1

wm

(
k∑

r=1

yrm

(
d(x, ir) + αrm

)
)

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ X,

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n,

(U)

where αrm ∈ R, r = 1 . . . , k, m = 1, . . . , n, are given constants, and X ⊆ R
2, X 6= ∅, is a

closed set, the feasible region for new location. The set I = {i1, . . . , ik} ⊂ R
2 is a finite set

of given facilities.
If model (U) represents one of the problems (B) or (N), respectively, then I contains

the candidates for the intermediate points with respect to the cell C or for the access
nodes onto the extended network G′, respectively, and αrm and X are defined in a problem
dependent way as specified in Table 1.
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Table 1: The definition of αrm and X depends on the problem.

(B) (N)

αrm dB(ir, am) dG′(ir, am)

X C ∈ C(Gd) R
2

Theorem 1.3 The Weber problem with polyhedral barriers (B) and the Weber problem
with embedded networks (N) can be represented by the unified model (U).

Proof. Follows immediately from the definition of problems (B), (N), and (U), respectively.
2

In addition to problems (B) and (N), the unified model (U) can also be used to represent
other, structurally different, types of location problems. One example is the concentrator
location problem with storage costs (C): Let n commodities and k warehouses ir be given
in the plane R

2. Then the objective is to optimally locate a distribution center, and to
optimally assign warehouses to which the commodities are distributed from this center.
In addition to the transportation cost between the center and the respective warehouses
measured by a prescribed metric d, the storage of commodity m in warehouse ir causes a
fixed cost of αrm ≥ 0. The total cost is given by the sum of all transportation and storage
costs. Note that concentrator location problems (C) differ from barrier problems (B) and
embedded network problems (N) in the sense that the transit costs αrm do not represent
any distances.

The unified model is particularly interesting since it combines features from continuous
and network location models. Since most practical applications are neither exclusively
continuous nor discrete, it facilitates both the modeling of location problems as well as their
solution since algorithms developed for the unified model are widely applicable. Examples
for possible solution strategies for the unified model are given in Section 2.

In order to represent the different problem types (B), (N), or (C) by the unified model
(U), the problem specific characteristics have to be incorporated into the specification of
the sets I and X and of the parameters αrm in (U). The main difference between problem
(B) on one hand and problems (N) and (C) on the other hand can be seen in the fact that
in the presence of barriers traveling is not permitted everywhere in R

2. This is reflected
in the respective definition of the feasible region X for new location, see item 3. below. In
the following a summary of the respective differences and similarities between the three
problem types is given.

1. (B) d(x, y) ≤ dB(x, y) ∀ x, y ∈ R
2,

(N) d(x, y) ≷ dG(x, y) ∀ x, y ∈ R
2,

i.e., barriers can only increase the length of a shortest x-y-path, whereas embedded
networks can increase or reduce the transportation cost between x and y.

(C) The distance measure d and the transit costs αrm are not correlated.
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2. (B) ir ∈ I ⊆ P(B) ∪ A,
i.e., not necessarily all existing facilities and barrier extreme points are contained in
the set of intermediate points I that are visible from a point x ∈ R

2.

(N) ir ∈ I = N ∪A,
i.e., all existing facilities and all nodes of G are contained in the set of possible access
nodes I, independently of the location of x ∈ R

2.

(C) ir ∈ I ⊆ R
2.

3. (B) x ∈ C,
i.e., x is restricted to lie in a bounded polyhedron C ⊆ R

2. Therefore, an optimal
solution of (B) is in general only a local optimal solution of the Weber problem
with polyhedral barriers (2). A global optimal solution of the Weber problem with
polyhedral barriers can be generated by solving problem (B) for all cells C ∈ (Gd).

(N) x ∈ R
2,

i.e., an optimal solution of (N) is a global optimal solution of the Weber problem
with embedded networks (7).

(C) x ∈ R
2,

i.e., an optimal solution of (C) is a global optimal solution of the concentrator problem
with storage costs.

2 Properties of the unified model

The main difficulty of the Weber problem with barriers and of the Weber problem with
embedded networks is the non-convexity of the objective function. To overcome this dif-
ficulty this section is devoted to the derivation of general properties of the unified model
(U) that facilitate the development of solution methods for both problems.

2.1 Relation to classical Weber problems

Even though the unified model (U) is more general than the Weber problem with polyhedral
barriers (B) and the Weber problem with embedded networks (N) in the sense that not
every problem instance of (U) originates from a problem of type (B) or (N), the unified
model (U) shares one of the central properties of these two original models: An optimal
solution of any instance of problem (U) can be found by solving a finite series of Weber
problems (1) with some constraints on the feasible region for new location:

Theorem 2.1 Any problem of type (U) can be solved by solving a finite series of Weber
problems (1) with a finite set of existing facilities A ⊆ {i1, . . . , ik}, |A| ≤ k, and with the
additional constraint that x is restricted to the feasible region for new location X.

Proof. For any feasible assignment ȳ of binary values to the variables y with
∑k

r=1 ȳrm = 1,
m = 1, . . . , n, the optimal values of x can be found by solving a Weber problem (1)
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with existing facilities at ir, r = 1, . . . , k, and weights w̄r :=
∑n

m=1 ȳrmwm, and with the
additional constraint x ∈ X. Since only finitely many feasible assignments for y exist, the
result follows. 2

Note that w̄r may be zero for some values of r. Then the corresponding existing
facilities ir have no impact on the solution of the related Weber problem (1) and can be
omitted.

Theorem 2.1 relates the unified model (U) to the classical Weber problem (1) with a
feasible region or, as better known from the literature, to the Weber problem with forbidden
regions, see Hamacher and Nickel (1995). This relation will be used in the following sections
to transfer properties of the classical Weber problem (1) to the unified model (U).

2.2 Convex hull properties

Particularly, if general solution methods are applied to problem (U), a reduction of the set
of optimal locations to a smaller subset of R

2 can significantly improve the computational
efficiency. Corresponding results for problems (B) and (N), respectively, are based on the
convex hull of the set I (see Klamroth, 2001; Carrizosa and Rodriguez-Chia, 1997) and
can be extended to the unified model (U).

Theorem 2.2 Let conv(I) ⊆ X and let d be a metric induced by a norm such that the
unconstrained Weber problem (1) has the convex hull property, i.e., the set of optimal
solutions of (1) is contained in the convex hull conv(A) of the existing facilities. Then
every optimal solution of problem (U) is contained in the convex hull conv(I) of I.

Proof. According to Theorem 2.1, the solution of problem (U) can be reduced to the
solution of a finite number of Weber problems (1) with the feasible set X and with exist-
ing facilities that form different subsets of the set I. Hence, the result follows from the
assumption. 2

The assumption of Theorem 2.2 is satisfied for a large class of metrics. A well-known
example is the class of lp metrics with 1 < p < ∞, see Juel and Love (1983). On the other
hand there exist some metrics as for example the l1 and the l∞ metric for which only a
weaker convex hull property holds. However, a similar result to that given in Theorem 2.2
can be proven in this case:

Theorem 2.3 Let conv(I) ⊆ X and let d be a metric induced by a norm such that the
unconstrained Weber problem (1) has the weak convex hull property, i.e., at least one
optimal solution of (1) is contained in the convex hull conv(A) of the existing facilities.
Then at least one optimal solution of problem (U) is contained in the convex hull conv(I)
of I.

Proof. Analogous to Theorem 2.2. 2

Note that Juel and Love (1983) and Wendell and Hurter (1973) showed that at least the
weak convex hull property is satisfied for all Weber problems (1) with a metric d induced
by a norm.
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2.3 Integrality of the solution

Besides the non-convexity of the objective function, a further difficulty of the unified model
(U) are the integrality constraints on the variables yrm, r = 1, . . . , k, m = 1, . . . , n. We
will show in this section that the integrality constraints yrm ∈ {0, 1} can be relaxed to
0 ≤ yrm ≤ 1 for all r = 1, . . . , k, m = 1, . . . , n.

For this purpose consider the continuous relaxation of the unified model (U):

min
n∑

m=1

(
k∑

r=1

yrmwm

(
d(x, ir) + αrm

)
)

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ X,

0 ≤ yrm ≤ 1, r = 1, . . . , k, m = 1, . . . , n.

(10)

Theorem 2.4 If the set of optimal solutions of (10) is nonempty, then there exists at least
one optimal solution x∗, y∗ of (10) which satisfies

y∗
rm ∈ {0, 1}, r = 1, . . ., k, m = 1, . . ., n.

Proof. Let x∗, y∗ be an optimal solution of (10). Suppose that y∗ is not integer, i.e.,

∃ t ∈ {1, . . . , n}, j, l ∈ {1, . . . , k} : 0 < y∗
jt < 1, 0 < y∗

lt < 1 and y∗
jt + y∗

lt ≤ 1.

Hence the objective value of x∗, y∗ can be computed as

y∗
jtwt

(
d(x∗, ij) + αjt

)
+ y∗

ltwt

(
d(x∗, il) + αlt

)

+
n∑

m=1

m6=t

k∑

r=1

y∗
rmwm

(
d(x∗, ir) + αrm

)
+

k∑

r=1

r 6=j,l

y∗
rtwt

(
d(x∗, ir) + αrt

)

︸ ︷︷ ︸

=:C

Case 1: One of the paths from x∗ and at through the intermediate points ij and il, respec-
tively, is shorter/cheaper than the other. Without loss of generality suppose that

d(x∗, ij) + αjt < d(x∗, il) + αlt.

Inserting this inequality into the objective function leads to

y∗
jtwt

(
d(x∗, ij) + αjt

)
+ y∗

ltwt

(
d(x∗, il) + αlt

)
+ C > (y∗

jt + y∗
lt)

︸ ︷︷ ︸

=:ȳjt

wt

(
d(x∗, ij) + αjt

)
+ C.

Since the solution x̄, ȳ with x̄ := x∗, ȳrm := y∗
rm ∀(r, m) 6∈ {(j, t), (l, t)}, ȳjt := y∗

jt + y∗
lt and

ȳlt := 0 is feasible for (10), this contradicts the optimality of x∗, y∗.

14



Case 2: Both paths from x∗ to at through the intermediate points ij and it, respectively,
have the same length:

d(x∗, ij) + αjt = d(x∗, il) + αlt.

Define a new solution x̄, ȳ of (10) as x̄ := x∗, ȳrm := y∗
rm ∀(r, m) 6∈ {(j, t), (l, t)}, ȳjt :=

y∗
jt + y∗

lt and ȳlt := 0. The objective value of x̄, ȳ is the same as of x∗, y∗, and ȳ has at least
one more integer component. After finitely many iterations of this procedure either Case
1 or an integer optimal solution is obtained. 2

2.4 The case of block norms

If the prescribed metric d is induced by a block norm, then the piecewise linearity of the
resulting distance function allows for further simplifications of the objective function of
the unified model (U). We consider a block norm ‖ · ‖S whose unit ball S is a polytope
with extreme points vg ∈ R

2, g = 1, . . . , s. Following the definition of Ward and Wendell
(1985), block norm distances are given by

d(x, ir) = min

{ s∑

g=1

βgr : ir − x =

s∑

g=1

βgrvg, βgr ≥ 0

}

. (11)

Using (11) yields the following formulation of (U):

min
n∑

m=1

wm

(
k∑

r=1

yrm

(
s∑

g=1

βgr + αrm

))

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ X,

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n,

irp − xp =
s∑

g=1

βgrvgp, r = 1, . . . , k, p = 1, 2,

βgr ≥ 0, g = 1, . . . , s, r = 1, . . . , k,

(UB)

where ir = (ir1, ir2)
T , ir ∈ I, are the candidates for the intermediate points with respect

to the cell C or for the access nodes onto the extended network G′, respectively, and
vg = (vg1, vg2)

T , g = 1, . . . , s, are the fundamental directions of the prescribed block norm.
If we additionally assume that the feasible set X for new location is a bounded poly-

hedron, (UB) is a mixed integer bilinear programming problem with linear constraints.
Note that this assumption is not very restrictive even though it is not explicitly contained
in the formulation of (U). If X = R

2, Theorems 2.2 and 2.3 imply that the (redundant)
constraint x ∈ conv(I) can be added to the model without changing the optimal objective
value. According to Theorem 2.4, the binary constraints on y can be omitted such that a
bilinear programming problem is obtained.

There are several methods to generate exact solutions of problem (UB). One is geomet-
rically motivated and based on discretization due to the construction line grid (see Pfeiffer
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and Klamroth, 2005, for details). Another approach is to linearize the bilinear objective
function and then to solve the resulting mixed integer linear programming problem. We
have applied two different linearization methods to problem (UB). A first approach using
the Reformulation Linearization Technique (RLT) introduced by Sherali and Adams (1998)
is discussed by Pfeiffer and Klamroth (2005). This transformation results in a mixed integer
linear programming problem with O(kn) binary variables, O(k2ns) continuous variables
and O(k2ns) linear constraints.

A second approach that is based on the linearization technique proposed by Chang and
Chang (2000) is presented in the following. It turns out to be well-suited for problem (UB)
since the assignment constraints on the binary variables

∑k

r=1 yrm = 1, m = 1, . . . , n, can
be incorporated in order to generate a more compact linearized problem. The transforma-
tion yields the following problem

min
n∑

m=1

wmzm

s.t. zm ≥

(

αrm +
s∑

g=1

βgr

)

− M(1 − yrm), r = 1, . . . , k, m = 1, . . . , n, (i)

k∑

r=1

yrm = 1, m = 1, . . . , n,

x ∈ X,

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n,

irp − xp =
s∑

g=1

βgrvgp, r = 1, . . . , k, p = 1, 2,

βgr ≥ 0, g = 1, . . . , s, r = 1, . . . , k,

zm ≥ 0, m = 1, . . . , n, (ii)

(UBL)

with a constant M chosen sufficiently large, e.g.,

M = max
m=1,...,n

r=1,...,k

x∈X

{
αrm + d(x, ir)

}
.

The formulation (UBL) contains a set of n additional continuous variables zm, m =
1, . . . , n, together with n corresponding nonnegative constraints, see (ii) in (UBL). The
additional k · n constraints (i) guarantee the equivalence between (UB) and (UBL). For
fixed m, exactly one binary variable yrm out of the group of k variables is equal to one.
For this pair (r, m) constraint (i) is active and forces zm to be greater than or equal to
the composed distance between the new facility x and the existing facility am related to
the intermediate point ir. Since the objective is to minimize over the weighted sum of
the variables zm, this yields an equivalent representation. (UBL) is a mixed integer linear
programming problem with O(kn) binary variables, O(n + ks) continuous variables and
O(kn) linear constraints. Both linearization techniques, the RLT and formulation (2.4),
are applied to an illustrative example.
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2.4.1 Example

The following example problem shows a location problem in the city of Nuremberg, Ger-
many, with two different sets of existing facilities, where one new location according to the
Weber objective has to be found. Walking distances in the inner part of the city can be
well approximated by the rectilinear distance function l1. Since in addition the subway
system provides an alternative mode of transportation, the location problem can be well
represented by a Weber problem with embedded networks (N).

a5

a1

a4

a2

a3

Figure 2: Example for a Weber problem with embedded networks in the city of Nuremberg,
Germany.

The network G of the example problem shown in Figure 2 consists of the main lines
of the public transportation system in the city of Nuremberg, Germany, with estimated
edge costs of one third of the (Euclidean) track length. Distances outside the network are
measured by the l1-metric, i.e., d(x, y) = l1(x, y) ∀x, y ∈ R

2. For five existing facilities
a1, . . . , a5 with equal demand wm = 1, m = 1, . . . , 5, the extended network G′ is illustrated
in Figure 2, where only those edges that are relevant for the computation of the distance
matrix DG′ (solid and dotted lines) are shown.

An optimal solution for this example problem is generated by solving the linearized
problem obtained by using RLT as well as formulation (UBL) derived in Section 2.4 with
CPLEX 9.1, see Figure 3. The solution of the problem with six existing facilities a1, . . . , a6

with equal demand wm = 1, m = 1, . . . , 6, is shown in Figure 4. The optimal paths are
represented by dashed lines. The computational time for the problem with five existing
facilities is in the case of the problem linearized by RLT 254 seconds and for formulation
(UBL) 10.1 seconds. The problem with six existing facilities is solved in the RLT case in
912 seconds and using model (UBL) in 119 seconds. We can conclude that in this example,
the linearization technique of Chang and Chang (2000) requires significantly fewer variables
and constraints, and hence computational time.
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a5

a1

a4

a2

a3

xopt

Figure 3: Optimal solution xopt for the example problem from Figure 3.

a6

a1

a4

a2

a3

xopt

a5

Figure 4: Optimal solution xopt for the example with six existing facilities.

3 Conclusions and future research

In this paper we have discussed a unified model for Weber problems with distance measures
that combine continuous and network distances in a very general way. Two special cases
of this model are Weber problems with polyhedral barriers which fall under the class
of continuous location problems, and Weber problems with embedded networks which
are closely related to network location problems. Using the same problem formulation
for continuous problems on one hand and network problems on the other hand opens
up new possibilities for model development as well as solution techniques. We derive
theoretical properties of the unified model and suggest algorithmic approaches for the case
that continuous distances are measured by block norms.

The solution methods presented in this paper are exact solution methods and applica-
ble only to small problem instances. This is caused by the fact that problem (UBL) is in
general strongly non-convex and mixed integer. Therefore, future research should focus on
modeling issues, including the derivation of further theoretical properties, stronger problem
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formulations and valid inequalities, as well as heuristic approaches as, for example, iter-
ative location-allocation heuristics (see, for example, Fleischmann, 2004), decomposition
methods (Plastria, 1992) or evolutionary algorithms (Bischoff and Klamroth, 2005).

Different transformations of the ideas presented in this paper to objective functions
other than the Weber objective suggest themselves. One example are multifacility location
problems as discussed in the case of Weber problems with embedded networks by Carrizosa
and Rodriguez-Chia (1997). Other examples include the center objective as well as ordered
Weber functions and multicriteria models.
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