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Abstract

The Weber problem for a given �nite set of existing facilities Ex = fEx1; Ex2; : : : ;
ExMg � IR2 with positive weights wm (m = 1; : : : ;M) is to �nd a new facility

X� 2 IR2 such that
PM

m=1 wmd(X;Exm) is minimized for some distance function d.

In this paper we consider distances de�ned by block norms.

A variation of this problem is obtained if barriers are introduced which are convex

polyhedral subsets of the plane where neither location of new facilities nor traveling

is allowed. Such barriers like lakes, military regions, national parks or mountains are

frequently encountered in practice.

From a mathematical point of view barrier problems are diÆcult, since the pres-

ence of barriers destroys the convexity of the objective function. Nevertheless, this

paper establishes a discretization result: One of the grid points in the grid de�ned
by the existing facilities and the fundamental directions of the polyhedral distances

can be proved to be an optimal location. Thus the barrier problem can be solved

with a polynomial algorithm.

1 Introduction

Location Theory, like many other branches of Operations Research, is driven by two forces:
On one hand decisions in management, economy, production planning etc. contain many
facets which are related to "locating facilities". On the other hand location theory is by
its own right an interesting and challenging part of mathematics with an ever increasing
set of problems which may or may not have a real-world background.

In this paper we develop some results which seem to be both of theoretical and practical
importance: We use block norms (polyhedral norms, symmetric polyhedral gauges) to
evaluate distances and we introduce barriers which restrict the available area for locating
facilities and cannot be crossed while going from one facility to some other ("no trespassing"
property).

�Partially supported by grant Ha 1795/4-2 of the Deutsche Forschungsgemeinschaft
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Gauge distances have been introduced by Minkowski 1967 [16]. Within location theory
Durier and Michelot 1985 [6] showed a discretization result for location problems with
polyhedral gauges which will be reviewed later on. Nickel 1995 [18] showed that also
location problems with restrictions (i.e. regions which can be crossed but cannot be used
for placement of new facilities) can be discretized. The importance of polyhedral gauges
and, in particular, block norms, in evaluating distances in real-world contexts was pointed
out by Ward and Wendell 1985 [20] and Brimberg and Love 1996 [3].

Restrictions are part of virtually all real-world location problems, since there are in general
regions to exclude from placement of new facilities. In most cases these regions can also
not be used for transportation such that barrier problems are realistic models for location
problems occurring in practice. They have been considered by Katz and Cooper 1981 [13]
if the barrier is a single circular region and distances are measured with the Euclidean
distance function, and by Klamroth 1996 [14] for the case that the barrier is a line with
passages and the distance function is derived from a norm. Aneja and Parlar 1994 [1]
and recently Butt and Cavalier 1996 [4] developed heuristics for the case that the barriers
are closed polyhedra and the distance is given by the lp-metric. In the special case of the
Manhattan metric l1 discretization results where proved by Larson and Sadiq 1983 [15]
and by Batta, Ghose and Palekar 1989 [2] for arbitrarily shaped barriers.
In this paper upper bounds for location problems with barriers are provided. Furthermore,
planar location problems with poluhedral barriers and block norms are studied and a
discretization result similar to those given in [2, 15] is developed.

In the following section we will show how to compute lower and upper bounds for barrier
problems. The bounds are obtained from the solution of restricted problems which use the
barrier as restricting set but allow trespassing (Section 3). In Section 4 it is shown that the
barrier problem can be reduced to a discrete location problem (i.e. a location problem with
a discrete set of possible locations). In the next section we start with a formal introduction
of the problem.
Throughout the paper we use the classi�cation Pos1=Pos2=Pos3=Pos4=Pos5 of location
problems as introduced in Hamacher 1995 [8] or Hamacher and Nickel 1996 [11] (see
Hamacher and Nickel 1999 [12] for an overview). In this classi�cation scheme, Pos1 in-
dicates the number of new facilities (e.g. 1 in the case of a single-facility problem), Pos2
gives the type of the location problem (e.g. P in the case of planar location problems),
Pos3 contains special assumptions (e.g. forbidden regions R or barriers B in the planar
case or a � if no special assumptions are to be made), Pos4 gives the distance function in
the planar case (e.g. l1 or l2) and Pos5 indicates the objective function (e.g.

P
for Median

problems and max for Center problems). As an example, the unrestricted Weber problem
with Euclidean distances will be classi�ed as 1=P= � =l2=

P
.
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2 Location problems with block norms and barriers

Let B = fB1; : : : ; BNg be a set of convex, closed and pairwise disjoint barriers in the plane,
i.e. regions where neither trespassing nor location of new facilities is allowed. Note that
boundedness of the barrier regions is not required in this de�nition. Unbounded barriers
may occur for example in the modeling of oceans and rivers, or, on a msaller scale, in the
case that a large barrier region intersects a small modeling horizon.
The feasible region F for new locations is given by

F := IR2 n int(B):

Furthermore a �nite number of existing facilities Exm 2 F , m 2 M = f1; : : : ;Mg is given
in a connected subset of the feasible region F . With each existing facility a positive weight
wm := w(Exm) is associated representing the demand of facility Exm.
The major di�erence to unrestricted planar location problems becomes clear in the de�-
nition of the distance measure: Let the given distance function d be derived from a norm
k � k. Then the distance dB(X; Y ) between two points X; Y 2 F is de�ned as the length
of a shortest path (with respect to the given distance function d) from X to Y not cross-
ing a barrier. Formally, let p be a piecewise continuous di�erentiable parametrization
p : [a; b] ! IR2, a; b 2 IR, a < b, of a permitted path connecting X and Y , i.e. a curve not
intersecting the interior of a barrier, p([a; b]) \ int(B) = ;, with p(a) = X and p(b) = Y .
Then dB is given by

dB(X; Y ) := min

(Z b

a
kp0(t)k dt : p permitted path connecting X and Y

)
:

Any path connecting X and Y with length dB(X; Y ) not intersecting the interior of B is
called a d-shortest permitted path connecting X and Y .
Note that for dB the triangle inequality is satis�ed (provided it holds for the original
distance function d), but that dB is in general not positively homogeneous.

Using this problem formulation the Weber problem can be restated: While the unre-
stricted Weber problem 1=P= � =d=

P
is to �nd a new facility X 2 IR2 minimizing f(X) =PM

i=1 wmd(X;Exm), the Weber problem with barriers 1=P=B=dB=
P

is to �nd a new facility
X�
B 2 F such that

fB(X) :=
MX
i=1

wmdB(X;Exm)

is minimized.

From the de�nition of dB follows that fB is in general not convex. Due to this basic
di�erence to unrestricted planar location problems most of the methods developed in planar
location theory cannot be used to handle problems of the type 1=P=B=dB=

P
in general.

(It should be noted, that in a correct classi�cation of this problem the properties of B
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stated at the beginning of this section could be speci�ed. We will not do this to simplify
the denotation.)

As already mentioned our main purpose will be to develop concepts for the case that
distances are measured by block norms.
A block norm (polyhedral norm, symmetric polyhedral gauge) is given by a symmetric
convex polyhedron P in the plane IR2 containing the origin 0 = (0; 0) in its interior. It is
well known [16] that P de�nes a norm k�k given by

kX k:= min
�2IR+

f� : X 2 �Pg:

With d1; : : : ; dÆ we denote the extreme points of P and call them fundamental directions
(see Figure 1). If X is in the cone C(di; di+1) spanned by di and di+1, then X =kX k Z,
where Z is the intersection point of the boundary @P of P with the line segment connecting
0 and X. Hence with � 2 [0; 1] we get

Z = �di + (1� �)di+1

and thus

1

kX k
�X = �di + (1� �)di+1

) X = � kX k di + (1� �) kX k di+1:

On the other hand X 2 C(di; di+1) implies

X = �idi + �i+1di+1

for two scalars �i; �i+1 2 IR+. Since the representation of X in terms of di and di+1 is
unique, we have

� kX k = �i and

(1� �) kX k = �i+1;

which implies kX k= �i + �i+1. Thus only the two fundamental directions di and di+1

need to be used to determine kX k for any point X 2 C(di; di+1).
Obviously, we can interpret kX k as the distance 
(0; X) between 0 and X and extend this
de�nition to de�ne the gauge distance


(X; Y ) := 
(0; Y �X) =kY �X k

between any two points X; Y 2 IR2. Due to the preceding discussion the gauge distance
can be represented by a (di; di+1)-staircase path using only the two fundamental directions
di and di+1 with Euclidean length �i k di k2 and �i+1 k di+1 k2 in direction di and di+1,
respectively (see Figure 2).
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Figure 1: A block norm with six fundamental directions

0

di

di+1

X

C(di,di+1)

Figure 2: Two possible (di; di+1)-staircase paths representing 
(0; X)

Next, we consider the situation, where a barrier B is given which cannot be trespassed,
i.e. the set of permitted paths between two points X and Y in F consists only of those
paths not intersecting the interior of B. A shortest permitted path (connecting X and Y )
is one whose length is equal to the barrier-gauge distance 
B(X; Y ) � 
(X; Y ) for some
points X; Y 2 F . We restrict ourselves to barriers which are convex closed subsets of
IR2. In this situation we consider X 2 C(di; di+1) and distinguish three cases in which
B \ C(di; di+1) 6= ; (see Figure 3):

Case a: The lines Li := f�di : � � 0g and Li+1 := f�di+1 : � � 0g both contain points
of B.

Case b: Only one of the lines, say Li+1, contains a point of B.

Case c: Neither Li nor Li+1 contain points of B.

In all cases B separates C(di; di+1) into two parts: One part in which there exists a permit-
ted path from 0 to X, i.e. a path not intersecting the interior of B, with length 
(0; X) and
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C(di,di+1)
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di

0
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Figure 3: Three cases in which a barrier B changes the distance between 0 and X. The
shaded area is the set of points for which 
B(0; X) > 
(0; X).

one part where this is not true. We call the latter part the non 
-visible part or 
-shadow
of C(di; di+1) while the former is the 
-visible part of C(di; di+1). It should be noted that
this visibility concept needs to refer to the underlying distance 
: Some 
-visible points
are obviously non-visible in the usual sense (i.e. non l2-visible).

In all three cases the non 
-visible part of C(di; di+1) has to be determined di�erently. The
non 
-visible part of C(di; di+1) in case (a) equals the non l2-visible part of C(di; di+1). In
case (b) let wlog B \ di+1 6= ;. Then the non 
-visible part of C(di; di+1) is a subset of the
non l2-visible part of C(di; di+1). It is the region bounded by @B, di+1 and the tangent on
B in C(di; di+1) parallel to di+1. Analogously, in case (c) the non 
-visible points are non
l2-visible and the corresponding subset of C(di; di+1) is bounded by @B and two tangents
on @B parallel to di and di+1, respectively.
In all cases the set of non 
-visible points is also non l2-visible, and it can be easily shown
that this is also true in general:

Corollary 1 Every point that is l2-visible from the origin is also 
-visible from the origin.
Furthermore in this case the straight line segment connecting the origin and X is a shortest
permitted path from the origin to X with respect to 
.

Proof: Let X be a point that is l2-visible from the origin with 
(0; X) = �i + �i+1. Then
the straight-line segment connecting the origin and the point X is a permitted path from
the origin to X given by p : [0; 1]! IR2, p(0) = 0, p(1) = X and p(t) = tX, t 2 [0; 1]. The
length of this path is given byZ 1

0
kp0(T )k dt = lim

n!1

nX
k=1


(
k � 1

n
X;

k

n
X) = lim

n!1

nX
k=1

1

n

(0; X) = 
(0; X):

2

In the special case that all barriers are convex polyhedra, the relation between 
-visibility
and l2-visibility can be used to obtain a simpler description of 
B. The following lemma
is a generalization of a result of Viegas and Hansen 1985 [19] for the rectilinear distance
function:
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Lemma 1 Let X; Y 2 IR2 n int(B) where B is a �nite set of polyhedral barriers. Then
there exists a 
-shortest permitted path SP from X to Y with the following property:

SP is a piecewise linear path with breakpoints only in extreme points of barriers. (1)

Proof: Let, therefore, SP be a piecewise linear path from X to Y which is a 
-shortest
permitted path connecting X and Y , for which (1) is not true. Note that such a path
always exists since any 
-shortest permitted path between X and Y can be partitioned by
a �nite set of points such that two consecutive points are l2-visible and since Corollary 1
therefore implies that the straight line segment connecting two consecutive points is a 
-
shortest path. Then a 
-shortest permitted path SP 0 with property (1) can be constructed
in the following way:
Let [Ti�1; Ti] and [Ti; Ti+1] be two consecutive straight line segments of SP . If Ti�1 and
Ti+1 are l2-visible, [Ti�1; Ti] and [Ti; Ti+1] can be replaced by [Ti�1; Ti+1] without increasing
the length of SP . If Ti�1 and Ti+1 are not l2-visible, the breakpoint Ti can be moved along
[Ti�1; Ti] or along [Ti; Ti+1] towards Ti�1 or Ti+1, respectively, without increasing the length
of SP , until one of these line segments becomes tangent of a barrier. Due to the triangle
inequality for 
 this change does not increase the length of SP .
While iterating both operations every extreme point of a barrier located on SP is inter-
preted as a breakpoint Ti even if [Ti�1; Ti+1] is a straight line segment. Thus the iteration
of both operations yields a path SP 0 with the desired property since every breakpoint of
SP which is no extreme point of a barrier can be moved towards X, Y or an extreme point
of a barrier, respectively.

2

3 Bounds for barrier problems

In order to obtain bounds for the barrier problem 1=P=B=
B=
P

it is relaxed to a restricted
location problem: While it is still forbidden to place a new facility in int(B) trespassing
is allowed. This problem, classi�ed as 1=P=R = B=
=

P
can be solved by an algorithm

developed in Hamacher and Nickel 1994,1995 [9, 10] for the special case of 
 = l1 and

 = l1 and in Nickel 1995 [17] for general polyhedral gauges. An optimal location X�

R of
the restricted problem is obtained by solving �rst the unrestricted problem 1=P= � =
=

P
.

If an optimal location X� of the unrestricted problem is feasible, i.e., X� 6� int(B), then
X�
R = X� (see Figure 4, B = fBag). Otherwise it can be shown that X�

R is the best of the
at most ÆM many intersection points of fundamental directions with the boundary @B of
B (see Figure 4, B = fBbg).

Lemma 2 Let z�B be the optimal objective value of the barrier problem 1=P=B=
B=
P

and
let X�

R be an optimal solution of the restricted problem 1=P=R = B=
=
P
. Then

f(X�

R) =
MX
i=1

wi
(Exi; X
�

R) � z�B �
MX
i=1

wi
B(Exi; X
�

R) = fB(X
�

R):
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Ex2

Ex1

Ex3

Ex4

X*

Ba

Bb

Figure 4: In 1=P=R = fBag=
=
P

we have X�
R = X�. In 1=P=R = fBbg=
=

P
one of the

intersection points marked by stars is the optimal solution X�
R.

Proof: The second inequality is trivial. For the �rst one let X�
B be an optimal solution of

the barrier problem. Since X�
R is an optimal solution of the restricted problem and since

f(X) � fB(X) for all X 2 F we have

f(X�

R) � f(X�

B)

� fB(X
�

B)

= z�B:

2

An immediate consequence of the preceding lemma is the next result.

Corollary 2 Let X�
R be an optimal solution of the restricted problem 1=P=R = B=
=

P
.

If 
(Exi; X
�
R) = 
B(Exi; X

�
R) for all i = 1; : : : ;M , then X�

R = X�
B is an optimal solution

of 1=P=B=
B=
P
.

In the example given in Figure 4 optimality cannot be shown for the problem 1=P=R =
fBag=
=

P
since X�

R = X� and 
(Ex1; X
�
R) < 
Ba(Ex1; X

�
R).

A di�erent approach to derive bounds for the barrier problem makes use of the visibility
graph of the problem to interrelate the barrier problem with a network location problem.
For this purpose let the set of barriers be a set of polyhedra with extreme points P(B) :=
fpi : i = 1; : : : ; Pg. Then the embedded visibility graph is de�ned by G = (V;E) with
node set V (G) = Ex [ P(B) and weights w(v) = 0 if v = p 2 P(B) and w(v) = w(Exm)
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if v = Exm 2 Ex. Any two nodes vi; vj 2 V (G) which are 
-visible in the embedding of
G in F are connected by an edge of length 
(vi; vj). With d(u; v) the length of a shortest
network path between u and v is denoted. Then the node network location problem
1=G= � =d(V; V )=

P
on G is de�ned by minv2V (G) fG(v) with

fG(v) =
X

u2V (G)

w(v)d(u; v):

Lemma 3 Let polyhedra with extreme points P(B) := fpi : i = 1; : : : ; Pg be given as
barriers and let Ex be a set of existing facilities in the feasible region. Furthermore let G be
the visibility graph of the existing facilities and the extreme points of the barriers as de�ned
above. If X�

G is an optimal solution of the node network location problem 1=G=�=d(V; V )=
P

on G, then the corresponding point X�
G of the embedding of G in the plane is feasible for

1=P=B=
B=
P

and
fB(X

�

B) � fG(X
�

G):

Proof: The feasibility of X�
G is trivial because X�

G 2 V (G) = Ex[P(B). The upper bound
on the optimal objective value of the barrier problem follows from

fB(X
�

B) = min
X2F

MX
m=1

wm
B(Exm; X)

� min
X2Ex[P(B)

MX
m=1

wm
B(Exm; X)

= min
X2V (G)

X
v2V (G)

w(v)d(v;X)

= fG(X
�

G):

2

An example for the application of Lemma 3 is given in Figure 5.

Even though the bounds derived above may lead to good approximations or even to opti-
mal solutions in many applications, a solution with proven quality can in general not be
expected. In fact, examples can be constructed for which these bounds become arbitrarily
bad with respect to the optimal solution of the problem:
For the upper bound based on the relaxation to restricted location problems 1=P=R =
B=
=

P
, consider an arbitrarily long but narrow barrier region and three existing facilities

with equal weights, two of which are located on the same side of the barrier. Obviously,
an optimal solution of 1=P=B=
B=

P
would then be located on the same side of the barrier

as the two existing facilities, whereas the barrier may be placed so that the solution of
1=P=R = B=
=

P
is located on the opposite side of the barrier. Since increasing the

length of the barrier increases the error of the approximation, the corresponding bound
may become arbitrarily weak.
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1.3
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Figure 5: The visibility graph G for a barrier problem with the block norm introduced in
Figure 1. If the weights of all existing facilities are equal to one, the optimal solution of
the node network location problem on G is X�

G = p2 with objective value fG(X
�
G) = 5:3.

For the upper bound based on the visibility graph of the problem, an example with similar
properties can be constructed even without introducing a barrier region. Let three existing
facilities with equal weights be located on the corner points of a triangle with equal side
lengths. Then the optimal solution of 1=P=� =
=

P
is located at the center of the triangle,

whereas any solution of 1=G= � =d(V; V )=
P

is located in a corner point of the triangle.
Increasing the size of the triangle again leads to an arbitrarily bad bound.

However, location problems with barriers are in general hard, nonconvex optimization
problems for which bounds are crucial in order to develop eÆcient solution procedures.
Since the bounds given in this section can be easily calculated and since they perform well
in practice, their application can signi�cantly facilitate the solution of problems of the type
1=P=B=
B=

P
.

4 A �nite dominating set for barrier problems with

block norms

Discretization of planar location problems with polyhedral gauges, a special case of which
are block norms, to discrete location problems was already successful for di�erent kinds of
problems. Durier and Michelot 1985 [6] showed that in the case of the unrestricted Weber
problem with polyhedral gauges 1=P= � =
=

P
the fundamental directions rooted at the

existing facilities EXm, m 2 M, (construction lines) de�ne a grid tessalation of the plane
such that the set of optimal locations is a cell, a line connecting two adjacent grid points of
a cell or a single grid point. If none of these optimal locations is feasible for the restricted
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Weber problem with convex forbidden regions and polyhedral gauges 1=P=R=
=
P

then
Nickel 1995 [17] showed that it is suÆcient to consider only the intersection points of
construction lines and the boundary @R of the forbidden set R. Both results are heavily
based on the fact that the objective function is convex and linear in each cell.

Although both of these properties are in general not satis�ed in the barrier problem
1=P=B=
B=

P
we will show in this section that, nevertheless, a tessalation of the plane

yielding an optimal grid point for 1=P=B=
B=
P

can be found. This can be done in poly-
nomial time.

With P(B) and F(B) we denote the set of extreme points and facettes of the convex
barrier polyhedra, respectively. Moreover let Ex be the set of existing facilities. For any
X 2 Ex [ P(B) and for any fundamental direction di (i = 1; : : : ; Æ) let

(X + di)B := fX + �di : � 2 IR+; (X + �di) \ int(B) = ; 80 � � � �g

be the set of points in the plane which are l2-visible from X in the fundamental direction
di. Then

G :=

0
@ [
X2Ex[P(B)

Æ[
i=1

(X + di)B

1
A [ F(B)

de�nes a grid in IR2. The intersection points of lines in G de�ne the set P(G) of grid points
and C(G) is the set of resulting cells in F , i.e. the set of smallest convex polyhedra with
extreme points in P(G) (see Figure 6).

Ex2

Ex3

Ex4

Ex1

B
p1 p2

p3

a cell C

Figure 6: The grid G for the barrier problem introduced in Figure 5.
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Note that G is constructed such that each existing facility in Ex and each extreme point
in P of a barrier, which is 
-visible from any point in the interior of a cell C, is 
-visible
from all points of C.

Theorem 1 One of the grid points of G is optimal for 1=P=B=
B=
P
.

Proof: Let C 2 C(G) be a cell and let X 2 C such that X is not a grid point. For any
Exm 2 Ex we know by Lemma 1 that there exists a 
-shortest path SP fromX to Exm with
property (1), i.e. SP is a piecewise linear path SP = (X = T0; T1; : : : ; Tk�1; Tk = Exm)
with breakpoints Ti (i = 1; : : : ; k � 1) only in extreme points of a barrier.
Let Im := T1 where Im = Exm if k = 1 (and, consequently, if SP is a straight line) and
Im 2 P(B) otherwise. By de�nition of SP the grid point Im is l2-visible as well as 
-visible
from X (see Figure 7). Since 
B(X;Exm) = 
(X; Im)+
B(Im; Exm) the objective function
for X can be written as

fB(X) =
X
m2M

wm
(X; Im)| {z }
=:fX(X)

+
X
m2M

wm
B(Im; Exm):| {z }
=:K (constant for �xed X)

(2)

For any other points Y 2 C we have 
B(Y;Exm) � 
(Y; Im) + 
B(Im; Exm) since Im is

-visible from any point of the cell C and thus

fB(Y ) � fX(Y ) +K 8Y 2 C;

where equality holds for X = Y . Here fX(Y ) is the objective function of an unrestricted
Weber problem 1=P= � =
=

P
with existing facilities fIm : m 2 Mg.

Ward and Wendell 1985 [20] proved for this problem 1=P= � =
=
P

that the level curves
L=(z; fX ; C) := fY 2 C : fX(Y ) = zg are linear in the cell C. (Note that the cell C of
the grid G is contained in a cell CX of the analogous grid GX of this unrestricted Weber
problem 1=P= � =
=

P
.) From the convexity of C it follows that there must exist a grid

point I� 2 P(G) of C such that fX(I
�) � fX(X). Hence

fB(I
�) � fX(I

�) +K

� fX(X) +K

= fB(X)

proving the result of Theorem 1.
2

It should be noted that this result is known (Larson and Sadiq 1983 [15]) for rectilinear
distances (
 = l1). Their proof heavily relies on the fact that the objective function is
convex within each cell, a fact which is not needed in the preceding proof. Moreover,
Larson and Sadiq 1983 [15] proved in the rectilinear case that for any point X in a cell C
there exists an l1-shortest path from X to Exm passing through a corner point of C which
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Ex2

Ex3=I3

Ex4=I4

Ex1=I1

B

p1=I2

p2

p3

XC

I*

Figure 7: For a point X 2 C the corresponding intersection points Im, m = 1; : : : ; 4 and
I� are marked by stars.

is not true in general for block norms. In Figure 7 there exists for example no 
-shortest
path from X to Ex3 passing through a corner point of C.
The methods used in the proof of Theorem 1 will be generalized in the following to derive
a stronger result for the set of optimal solutions of 1=P=B=
B=

P
.

Corollary 3 The set X �
B of optimal solutions of 1=P=B=
B=

P
can be partitioned into

subsets that are either

� grid points of G,

� facets of cells of G or

� complete cells of G.

Proof: Using the same decomposition of the objective function as in the proof of Theorem
1 and using the linearity of the objective function of the corresponding unrestricted Weber
problem, this result can be proven analogous to Theorem 1.

2

Theorem 1 leads to the formulation of a simple and eÆcient algorithm that computes at
least one optimal solution of the barrier problem 1=P=B=
B=

P
. The algorithm is based

on the discretization of the problem to the set of grid points P(G).

Construction Line Algorithm for 1=P=B=
B=
P
:
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1. Compute the grid G.

2. Determine the set of all grid points P(G).

3. Output: X�
B 2 argminffB(I) : I 2 P(G)g.

The size of the candidate set P(G) constructed during this algorithm is bounded by the
number of intersection points of construction lines in G. Since the total number of con-
struction lines is bounded by O((M + P )Æ) and since each construction line may intersect
every other construction line at most once, the size of the candidate set is bounded by
jP(G)j � O((M + P )2Æ2). This implies that the construction line algorithm solves prob-
lems of the type 1=P=B=
B=

P
in polynomial time.

We will show in the following that the size of the candidate set can be reduced by omitting
a large set of points which cannot be optimal. This will be done by restricting the optimal
solution to a subset FB of the feasible region F .

Theorem 2 Let FB be the smallest closed convex subset of F such that Ex � FB and
@FB \ int(B) = ;. Then there exists at least one optimal solution of the barrier problem
1=P=B=
B=

P
in a grid point in FB.

Proof: Let X �
B be the set of optimal locations of 1=P=B=
B=

P
. Suppose that (X �

B\FB) = ;
and choose some X� 2 X �

B with fB(X
�) = z�. Wlog we assume that there exists no barrier

in IR2 nFB (this assumption cannot increase the objective value of any point X 2 IR2 nFB).
For each existing facility Exm 2 Ex there exists a 
-shortest path to X� that intersects
the boundary @(FB) of FB in a �rst point Im such that Im is l2-visible from X� (Lemma
1). All these intermediate points Im, m 2 M, are therefore located on those faces F i(FB)
(i = 1; : : : ; k) of @(FB) that are l2-visible from X� (see Figure 8).
As FB is the convex hull of a set of points and a set of convex polyhedra, FB itself is also
a convex polyhedron. Furthermore X� 62 FB and the supporting hyperplanes hi de�ning
the faces f i divide IR2 into two halfplanes H i

1 and H i
2 such that X� 2 H i

1 and FB � H i
2

(i = 1; : : : ; k). Hence for each existing facility Exm (m 2 M) the straight line connecting
X� and Im intersects hi in a point I im (see Figure 8).
The objective function value fB(X

�) can therefore be determined as

fB(X
�) =

MX
m=1

wm
(X
�; I im)| {z }

=:f i(X�)

+
MX
m=1

wm
B(I
i
m; Exm);| {z }

=:�i (constant for each i)

i 2 f1; : : : ; kg:

For i 2 f1; : : : ; kg �i is constant and f i is the objective function of an unrestricted Weber
problem 1=P= � =
=

P
with existing facilities I im, m 2 M, which has at least one optimal

solution in convfI im : m 2 Mg (see Durier and Michelot 1985 [6]).
Now consider the node network location problem 1=T i=�=d(V; V )=

P
on the tree T i de�ned

by the node set V (T i) = fI im : m 2 Mg and weights w(v) = w(Exm) if v = I im, m 2 M.

14



Ex3

Ex1

B

X*

FB

Ex4=I4

I3

h
i

Ex2=I2=I2
i

I1=I1
i

i
I3

i
I4

Figure 8: The intermediate points Im and I im for point X� 62 FB in the example problem.

Two nodes I im; I
i
n 2 V (T i) are connected by an edge of length 
(I im; I

i
n) if the corresponding

points I im and I in of the planar embedding of T i on hi are consecutive points on hi.
The optimal solution X i of this node network location problem is also optimal for the
unrestricted Weber problem with objective function f i and satis�es

fB(X
i) � fG(X

i) + �i = f i(X i) + �i � fB(X
�):

Furthermore Goldman 1971 [7] proved that a node X i 2 V (T i) is an optimal solution of
the node network location problem on a tree network T i if and only if it has both of the
following properties: X

v2V i

w(v) + w(X i) �
1

2

X
v2V (T i)

w(v)

X
v2 �V i

w(v) + w(X i) �
1

2

X
v2V (T i)

w(v);

where V i and �V i are the two disjoint connected components of V (T i) resulting from the
removal of node X i. These two properties only depend on the weights of the nodes and on
their order on hi which is identical for all i 2 f1; : : : ; kg. Thus there exists an indexm 2 M
such that X i = I im is an optimal solution of 1=T i= � =d(V; V )=

P
for all i 2 f1; : : : ; kg and

fB(I
i
m) � fB(X

�); i 2 f1; : : : ; kg:

As the point I im has to be located on the boundary of @(FB) for at least one index i 2
f1; : : : ; kg, this fact is contradicting the assumption (X �

B \ FB) = ;. Thus using Corollary
3 it can be concluded that there exists at least one optimal grid point in FB.

2
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The set FB of Theorem 2 can be found by the following algorithm:

Algorithm to construct FB:

1. Let F := conv(Ex).

2. While there exists a barrier Bi 2 B such that @F \ int(Bi) 6= ; set F := conv(F;Bi).

3. Output: FB := F .

Figure 9 indicates the reduced number of points that have to be investigated during the
construction line algorithm if Theorem 2 is applied. However, the theoretical bound on
the size of the candidate set P(G) is not a�ected by Theorem 2 since e.g. in the case of
unbounded barriers a reduction may not be possible.

Ex2

Ex3

Ex4

Ex1

B
p1 p2

p3

Figure 9: Applying Theorem 2, the candidate set of the example problem can be reduced
from 83 candidate points to only 35 candidate points in the set FB.

5 Conclusion and future research

In this paper we proved a discretization result for location problems with barriers and
block norms. This result implies a polynomial algorithm to solve this problem.

If the summation of the weighted distances in this paper is replaced by the maximization
we obtain a class of problems which has so far been unsolved. In [5] we deal with this
barrier center problem of the type 1=P=B=(l1)B=max. Other research topics include the
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analysis of level curves for barrier problems which will be used to tackle multi-criteria
location problems with barriers and block norms.

Even though we mainly focused on block norms in this paper the results can be generalized
to the more general class of polyhedral gauges. In Figure 10 a), an example of a polyhedral
gauge is given that is not a block norm.

0
d1

d2

d3

0
d1

d2

d3

d2

d3

d1

b)a)

Figure 10: a) A polyhedral gauge with three fundamental directions, and b) its symmetric
extension.

However, since polyhedral gauges may be nonsymmetric, some additional considerations
have to be made. In Figure 11 the grid as de�ned in Section 4 is shown, using the three
fundamental directions d1; d2; d3 from Figure 10 a).

Ex2

Ex3

Ex4

Ex1

B

p1

p2

p3

C

X2

X1

Figure 11: The grid G for the example problem with the polyhedral gauge given in Figure
10 a).
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As illustrated by the shaded region in Figure 11, this construction implies that an existing
facility may be 
-visible only from parts of a cell and not from the complete cell. Consider
for example the existing facility Ex1, the cell C and the two points X1; X2 in C. Then the
shortest distance from X2 to Ex1 is lengthened by the barrier B, i.e. Ex1 is not 
-visible
from X2, whereas the same existing facility, Ex1, is 
-visible from the point X1. (Note
that, in the case of nonsymmetric distance functions, the distance from a point X to a
point Y may be di�erent from the distance from Y to X.)

In order to overcome this diÆculty which becomes relevant in the proof of Theorem 1,
the symmetric extension of a given nonsymmetric polyhedral gauge as shown in Figure
10 b) can be used. The basic idea is to introduce the redundant fundamental directions
d1; d2 and d3 pointing in the opposite directions of the given fundamental directions d1; d2
and d3. These additional fundamental directions do not in
uence the distance measure
with respect to the given polyhedral gauge 
. But their existence implies a �ner grid G
in which every existing facility that is 
-visible from some point in the interior of a cell is
also 
-visible from every other point in the same cell.
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