
A Reduction Result for Location Problems

with Polyhedral Barriers

K. Klamroth
�

Department of Mathematics, University of Kaiserslautern, 67653 Kaiserslautern, Germany

Abstract

In this paper we consider the problem of locating one new facility in the plane
with respect to a given set of existing facilities where a set of polyhedral barriers
restricts traveling. This non-convex optimization problem can be reduced to a �nite
set of convex subproblems if the objective function is a convex function of the travel
distances between the new and the existing facilities (like e.g. the median and center
objective functions). An exact Algorithm and a heuristic solution procedure based
on this reduction result are developed.
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1 Introduction

In times of increasing transportation costs and just-in-time delivery schedules, good loc-
ational decisions are needed in many di�erent �elds. The location of a warehouse with
respect to a given set of customers or the location of an emergency facility in an expanding
neighborhood are only two examples for a wide range of applications.
The development of realistic location models is a crucial step in every locational decision
process. Especially in the case of planar location models we deal with a geometric rep-
resentation of the problem, and the geographical reality has to be incorporated into this
representation. Restrictions of di�erent types occur in almost every real-world location
problem since there are in general regions to exclude from placement of new facilities.
These regions can also often not be used for transportation which can be modeled by the
introduction of barrier regions in the plane IR2. To give only some examples of possible
barrier regions, consider military regions, mountain ranges, lakes, big rivers or highways,
or, on a smaller scale, conveyor belts in an industrial plant.
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The increasing interest in location models incorporating restrictions and barrier regions is
reected in the recent literature. Katz and Cooper 1981 [11] developed a heuristic for the
median problem in case that one circular barrier is given and distances are measured with
the Euclidean distance function.
Likewise for the median problem Aneja and Parlar 1994 [1] and more recently Butt and
Cavalier 1996 [3] developed heuristics for the case that the barriers are closed polyhedra
and the distance is given by the lp-metric. In the special case of the Manhattan metric
l1 discretization results were proven by Larson and Sadiq 1983 [15] and by Batta, Ghose
and Palekar 1989 [2] for arbitrarily shaped barriers. A similar discretization was derived
for a more general class of distance functions in Hamacher and Klamroth 1997 [6], namely
the class of block norms. Related results and a short summary on the subject can also
be found in the book edited by Drezner 1995 [4] and in particular in the survey on global
optimization in location by Hansen, Jaumard and Tuy 1995 [9].
Klamroth 1996 [12] considered the median problem for the case that the barrier is a line
with a �nite number of passages. A reduction of the non-convex original problem to a
polynomial number of unrestricted median problems was given for any metric induced by
a norm. This approach was extended to the multiple criteria case in Klamroth and Wiecek
1998 [14].

In this paper we develop a reduction result that implies a general solution strategy for
location problems with polyhedral barriers. We consider objective functions that are convex
functions of distances between a set of existing facilities and one new facility. This de�nition
of the objective function includes for example the well known median (Weber) and center
objective functions as well as ordered Weber objective functions.

Let a �nite set of convex, closed, polyhedral and pairwise disjoint barriers fB1; : : : ; BNg be
given in IR2, representing those regions in the plane where neither trespassing nor location
of new facilities is allowed. We denote the union of these barrier regions by B :=

SN
i=1Bi

and the �nite sets of extreme points and facets of B by P(B) and F(B), respectively. The
feasible region F for new locations is given by

F := IR2 n int(B):

A �nite set of existing facilities Ex := fExm 2 F : m 2 Mg,M = f1; : : : ;Mg is given in
a connected subset of the feasible region F .
Furthermore we assume that a distance measure d induced by a norm k � kd is given by
d(X;Y ) =kY � X kd for all X;Y 2 IR2. Taking the restriction due to the barrier regions
into account, we can �nd the corresponding barrier distance function dB(X;Y ) for two
points X;Y 2 F as the length of a shortest path between X and Y not intersecting the
interior of a barrier. More formally, let P be a permitted X-Y -path in F , i.e. a curve
connecting X and Y not intersecting the interior of a barrier. Furthermore, let p be a
piecewise continuous di�erentiable parameterization of P , p : [a; b] ! IR2 with a; b 2 IR,
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a < b, p(a) = X, p(b) = Y and p([a; b])\ int(B) = ;. Then dB(X;Y ) can be de�ned as

dB(X;Y ) := min

(Z b

a
kp0(t)kd dt : P permitted X-Y -path

)
: (1)

A permittedX-Y -path with length dB(X;Y ) will be called a d-shortest permittedX-Y -path.
Additionally, we call two points X and Y in F d-visible if they satisfy dB(X;Y ) = d(X;Y ),
i.e. the distance between X and Y is not lengthened by the barrier regions.
Note that for dB the triangle inequality is satis�ed (provided it holds for the original
distance function d, which is guaranteed by the fact that d is induced by a norm), but that
dB is in general not positively homogeneous.

Using the distance measure dB as de�ned in (1), we consider the following general location
problem:

min fB(X) = f(dB(X;Ex1); : : : ; dB(X;ExM ))

s:t: X 2 F;
(2)

where f is any convex and nondecreasing function of the barrier distance dB between
the new facility X and the existing facilities in Ex. Well known examples are the me-
dian objective function fB(X) =

P
m2MwmdB(X;Exm) and the center objective function

gB(X) = maxm2MwmdB(X;Exm) where the positive weights wm represent the demand of
the facility Exm, m 2 M.
Note that the barrier distance dB is in general not convex and that therefore fB is also in
general not convex.

To simplify further notation we will use the classi�cation (Pos1=Pos2=Pos3=P os4=Pos5)
of location problems as introduced in Hamacher 1995 [5] or Hamacher and Nickel 1996 [7]
(see Hamacher and Nickel 1999 [8] for an overview). Following their notation, problem
(2) is classi�ed as (1=P=B=dB=f convex), where Pos1 gives the number of new facilities
sought (1 for a single-facility problem), Pos2 denotes the type of location problem (P
for planar location problems), Pos3 contains special assumptions (B for barrier regions),
Pos4 contains the information about the distance function (dB in case of barrier distances)
and Pos5 indicates the objective function, which in this case is a convex function of the
distances between the new and the existing facilities (f convex).

In the following section some basic properties and concepts related to shortest paths in the
presence of polyhedral barriers will be derived. In Section 3 a reduction result is developed
that interrelates location problems with polyhedral barriers with a set of unrestricted
location problems. The algorithmic consequences of this result are discussed in Section 4,
and the paper is concluded with Section 5.

2 Shortest paths in the presence of barriers

In this section we focus on shortest permitted paths in the presence of barriers where the
set of barriers B consists of pairwise disjoint convex polyhedral sets.
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Let d be a given distance function induced by a norm k�kd. The set of points Y 2 F that
are not d-visible from a point X 2 F is called the shadow of X with respect to d, i.e.

shadowd(X) := fY 2 F : dB(X;Y ) > d(X;Y )g:

In Figure 1 two examples are given for the Euclidean metric l2 and the Manhattan metric
l1, respectively.

l 2
shadow   (X)l 1

shadow   (X)

B
2

3

1

X

B
2

3

1

X

(a) (b)

P
P

P

P
P

P

Figure 1: Part (a) depicts shadowl2(X) whereas part (b) shows shadowl1(X).

Note that for some choices of d a point that is d-visible may not be l2-visible, i.e. not visible
in the usual sense of straight line visible. On the other hand every pair of l2-visible points
is also d-visible if d is a distance function induced by a norm. This result is a generalization
of an earlier result in [6] where it was proven for block norms.

Lemma 1 Let d be a distance function induced by a norm. Then

shadowd(X) � shadowl2(X); X 2 F:

Furthermore if X;Y 2 F are l2-visible, X 6= Y , then the straight line segment connecting
X and Y is a d-shortest permitted path with length d(X;Y ).

Proof: Wlog let X = 0 be the origin and let Y 2 F be a point that is l2-visible from X.
Then the straight-line segment connecting X and Y is a permitted path P given by the
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parameterization p : [0; 1]! IR2, p(t) = t � Y , t 2 [0; 1]. Using (1), the length of P can be
calculated as

dB(0; Y ) �
Z 1

0
kp0(t)kd dt =

Z 1

0
k
d

dt
(tY )kd dt =

Z 1

0
kY kd dt =kY kd

= d(0; Y ):

This inequality implies that the subregion of F that is l2-visible from a point X 2 F is also
d-visible from X, which in turn implies that shadowd(X) � shadowl2(X) for all X 2 F .

2

In the case that distances are measured by an lp-metric, 1 � p � 1 Viegas and Hansen
1985 [17] showed that for any two points X;Y 2 F , X 6= Y there always exists an lp-
shortest permitted path connecting X and Y that is a piecewise linear path with breaking
points only in extreme points of a barrier. This property was generalized for block norms
in [6]. The following result shows that it also holds for any other distance function d that
is induced by a norm.

Lemma 2 Let d be a distance function induced by a norm and let X;Y 2 F . Then there
exists a d-shortest permitted path SP connecting X and Y with the following property.

Property 1:
SP is a piecewise linear path with breaking points only in extreme points
of barriers.

Proof: Let X;Y 2 F and let SP be any d-shortest permitted path connecting X and Y in
F that does not satisfy Property 1. Note that, since the set of barriers and correspondingly
the set of extreme points P(B) of barriers is �nite, SP can be partitioned by a �nite set of
points so that two consecutive points on SP are l2-visible. Lemma 1 therefore implies that
the straight line segment connecting two consecutive points on SP is a d-shortest permitted
path connecting these two points. We can therefore construct a piecewise linear path SP 0

with a �nite set of breaking points that has the same length as SP . A d-shortest permitted
path SP 00 with Property 1 can be constructed from SP 0 similar to the construction given
in [17] for lp-distances:
Let [Ti�1; Ti] and [Ti; Ti+1] be two consecutive straight line segments of SP 0. First assume
that Ti�1 and Ti+1 are l2-visible. Then the two segments [Ti�1; Ti] and [Ti; Ti+1] can be
replaced by one straight line segment [Ti�1; Ti+1] without increasing the length of SP 0.
Otherwise, using again Lemma 1, the breaking point Ti can be moved along [Ti�1; Ti] or
along [Ti; Ti+1] towards Ti�1 or Ti+1, respectively, without increasing the length of SP 0,
until one of these line segments becomes tangent to a barrier.
While iterating both operations every extreme point of a barrier which lies on SP 0 is
interpreted as a breaking point Ti even if the straight line segment [Ti�1; Ti+1] is part of
SP 0. Thus the iteration of both operations yields a path SP 00 with the desired property
after a �nite number of steps since every breaking point of SP 0 which is not yet an extreme
point of a barrier can be moved towards X, Y , or an extreme point of a barrier.

2
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An immediate consequence of Lemma 2 is that the barrier distance dB(X;Y ), X;Y 2 F
can be calculated with respect to a so-called intermediate point IX;Y 6= Y , i.e. a breaking
point on a d-shortest permitted X-Y -path with Property 1 so that IX;Y is d-visible from
Y . (Note that in case that X and Y are d-visible the intermediate point IX;Y equals X.)

Corollary 1 Let d be a distance function induced by a norm and let X;Y 2 F . Further-
more let SP be a d-shortest permitted X-Y -path with Property 1 and let the point IX;Y 6= Y
be a breaking point on SP that is d-visible from Y . Then

dB(X;Y ) = dB(X; IX;Y ) + d(IX;Y ; Y ):

Note that the intermediate points IX;Y are not necessarily unique. Furthermore, as a
result of Lemma 2, an intermediate point IX;Y can always be chosen such that it is not
only d-visible from Y , but also l2-visible from Y .

A visibility graph as proposed in Butt and Cavalier 1996 [3] can be used to determine
distances between the existing facilities and all those points that are candidates for in-
termediate points on a d-shortest permitted path between an existing facility and a point
X 2 F . The node set of this visibility graph G is given by V (G) := Ex[P(B). Two nodes
vi; vj 2 V (G) are connected by an edge of length d(vi; vj) if the corresponding points in
the plane are d-visible and have distance d(vi; vj). In Figure 2 an example is given for the
case that distances are measured by the Manhattan metric l1.
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Figure 2: The visibility graph for an example problem where distances are measured with
respect to l1.

The barrier distance dB(Exm;X) between an existing facilityExm 2 Ex and a point X 2 F
can now be calculated as

dB(Exm;X) = dG(Exm; IExm;X) + d(IExm;X ;X); (3)
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where dG(Exm; IExm;X) denotes the length of a shortest path between Exm and the inter-
mediate point IExm;X in the visibility graph G.

Another consequence of Lemmas 1 and 2 is that the boundary of shadowd(X),

@(shadowd(X)) := fY 2 F : N"(Y ) \ shadowd(Y ) 6= ;

and N"(Y ) 6� shadowd(Y ) 8" > 0g;

where N"(Y ) := fZ 2 IR2 : d(Z; Y ) < "g, is piecewise linear for any distance function d
that is induced by a norm. Therefore shadowd(X) has a simple analytic representation for
all X 2 F .

Obviously those parts of @(shadowd(X)) that are part of the boundary of a barrier re-
gion are piecewise linear. For all other parts of @(shadowd(X)), consider a point Y on
@(shadowd(X)) and let IX;Y be an intermediate point on a d-shortest permittedX-Y -path
with Property 1. Note that in this case Y is d-visible from X. If all the points Z on the
line-segment starting at IX;Y , passing through Y and ending as soon as it intersects the
interior of a barrier are d-visible fromX and thus not in shadowd(X), then @(shadowd(X))
is piecewise linear. To simplify further discussion we assume wlog that X = 0 is the origin.

Lemma 3 Let d be a distance function induced by a norm. Furthermore let Y 2 F be
a point that is d-visible from the origin and let I := I0;Y be an intermediate point on a
d-shortest permitted 0-Y -path with Property 1. Let Z = I + �(Y � I), � � 0 be a point in
F such that Z is l2-visible from I. Then Z is d-visible from the origin.

Proof: First assume that Y is l2-visible from the origin. Then I = 0 and thus Z is also
l2-visible and d-visible from the origin.
Now consider the case that Y is not l2-visible from the origin and thus I 6= 0. Then
d(0; I) + d(I; Y ) = d(0; Y ) since I is a point on a d-shortest permitted 0-Y -path.
Assume that there exist �; � 2 [0; 1] such that d(0; Z) < �d(0; I) + �d(I; Y ) where Z =
�I + �(Y � I). Using the triangle inequality we obtain

d(0; Y ) = d(0; �I + (1 � �)I + �(Y � I) + (1 � �)(Y � I))

� d(0; Z) + (1 � �)d(0; I) + (1� �)d(I; Y )

< �d(0; I) + �d(I; Y ) + (1 � �)d(0; I) + (1� �)d(I; Y )

= d(0; I) + d(I; Y );

contradicting the assumption that I is a point on a d-shortest 0-Y -path.
Thus d(0; Z) = �d(0; I)+�d(I; Y ) for all �; � 2 [0; 1], which, using � = 1, proves the result
for all � 2 [0; 1].
The remaining case is that � = 1 but � > 1, i.e. that Z = I + �(Y � I), � > 1. Assume
that there exists � > 1 such that d(0; Z) < d(0; I) + �d(I; Y ). It follows that

�d(0;
1

�
I + (Y � I)) < d(0; I) + �d(I; Y )

, d(0;
1

�
I + (Y � I)) < d(0;

1

�
I) + d(I; Y )
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which completes the proof using the inequalities derived for the previously discussed case.

2

Lemma 3 implies that the boundary of shadowd(X) is piecewise linear for all pointsX 2 F .
Note that shadowd(X) is nevertheless not necessarily convex as can be seen in Figure 1.

Corollary 2 Let d be a distance function induced by a norm and let X 2 F be a feasible
point. Then @(shadowd(X)) is piecewise linear.

3 Reducing the non-convex barrier problem to a set

of convex location problems

For the median problem with polyhedral barriers and the Euclidean distance function Butt
and Cavalier [3] proposed a partitioning of the feasible region into a �nite set of subregions
Rk � F such that the shortest barrier distance from every point X 2 Rk to all of the exist-
ing facilities in Exm 2 Ex can be calculated with respect to the same intermediate points
IExm;X , m 2 M. Using this partitioning an optimal solution to the original problem can
be found by solving a �nite set of convex subproblems on each of the subregions Rk. Since
this approach is not e�cient in practice due to the nonlinearity of the boundaries of the
regions Rk (their determination is di�cult especially as the number of barrier regions and
existing facilities increases) a heuristic method is suggested in [3] that avoids the explicit
calculation of the subregions Rk. Starting with some initial solution X 2 F , the procedure
iteratively solves unrestricted median problems with respect to the intermediate points
corresponding to the current solution. This approach is computationally very e�cient and
an optimal solution of the problem is found in the majority of cases, however, an optimal
solution cannot be guaranteed by this procedure.

A di�erent partitioning of the feasible region is suggested in this paper which also avoids
the determination of nonlinear boundaries but which still allows the development of an
exact solution procedure to solve the non-convex barrier problem. This partitioning uses a
smaller number of subregions and, moreover, the boundaries of all subregions are piecewise
linear. A major drawback though is that the objective function is not necessarily convex
on each of the subregions. We will prove a reduction result that nevertheless implies an
exact algorithm based on this grid tessellation of the feasible region.

Consider the grid Gd in the plane that is de�ned by the boundaries of the shadows of all
existing facilities and of all extreme points of the barrier regions, plus all facets of the
barrier regions, i.e.

Gd :=

0
@ [
X2Ex[P(B)

@(shadowd(X))

1
A [ F(B): (4)

Since the barriers are convex polyhedra and since the boundary of shadowd(X) is piecewise
linear for all X 2 F (Corollary 2), the grid Gd consists of a �nite set of line segments in F .
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Figure 3: The grids Gl2 and Gl1, respectively, for the example problem.

The set of cells of Gd, i.e. the set of smallest (not necessarily convex or closed) polyhedra
not intersected by a line segment in Gd, is denoted by C(Gd).

Similar to the representation of the barrier distance with respect to intermediate points
in Corollary 1, the objective function fB(X) can be rewritten for every point X in a cell
C 2 C(Gd).

Corollary 3 Let C 2 C(Gd) be a cell and let X 2 C be a feasible solution of
(1=P=B=dB=f convex). Then

fB(X) = fX(X); (5)

where

fX(Y ) := f(d(Y; I1) + c1; : : : ; d(Y; IM) + cM ); Y 2 IR2; (6)

and cm := dB(Im; Exm) (7)

= dG(Im; Exm); m = 1; : : : ;M

and where Im := IExm;X 6= X (m 2 M) is an intermediate point on a d-shortest permitted
X-Exm-path with Property 1 that is d-visible from X.

Note that fX(Y ) is convex in IR2 since it can be interpreted as the composition of the
convex, nondecreasing function f and the convex functions d(Y; Im) + cm, m 2 M, where
cm is a constant not depending on the choice of Y .

The reformulation of the objective function fB given in Corollary 3 will be used in the
following to interrelate the non-convex problem (1=P=B=dB=f convex) to a �nite set of
corresponding convex problems of type (1=P= � =d=fX ).

Theorem 1 Let C 2 C(Gd) be a cell and let X�
B 2 int(C) be an optimal solution of

(1=P=B=dB=f convex). Then X�
B is an optimal solution of the corresponding convex prob-

lem
min fX�

B
(Y )

s:t: Y 2 IR2;
(8)

where fX�

B
(Y ) is de�ned according to (6) and (7).
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Proof: Let X�
B 2 int(C) and let fX�

B
(Y ) be de�ned according to (6) and (7). Furthermore

let Im 6= X�
B, m 2 M be the corresponding intermediate points on d-shortest permitted

X�
B-Exm-paths with Property 1 that are d-visible from X�

B. Since int(C) is not intersected
by the boundary of the shadow of any candidate for an intermediate point (i.e. an existing
facility or an extreme point of a barrier), the intermediate points Im, m 2 M are d-visible
for all points Y 2 C. Thus the inequality

fB(Y ) = fY (Y ) � fX�

B
(Y ) (9)

holds for all Y 2 C. Assume that there exists a point Y � 2 C such that

fX�

B
(Y �) < fX�

B
(X�

B):

Using (9), we can calculate that

fB(Y
�) = fY �(Y �) � fX�

B
(Y �) < fX�

B
(X�

B) = fB(X
�

B);

contradicting the optimality of X�
B.

Using the fact that fX�

B
(Y ) is a convex function of Y in IR2 and that X�

B 2 int(C), we can
conclude that X�

B minimizes fX�

B
(Y ) in IR2.

2

Theorem 1 implies that any problem of type (1=P=B=dB=f convex) can be reduced to a
�nite set of convex subproblems within each cell in C(Gd) even though the original objective
function fB(X) is in general non-convex within the cells.
Note that Theorem 1 can be generalized to the case that the objective function fB(X)
is a non-convex function of the barrier distances. Nevertheless in this case the resulting
subproblems are also non-convex and the problem di�culty is not reduced as in the convex
case.

In some applications it may be bene�cial to consider the grid Gl2 instead of the grid Gd for a
given distance function d, especially in the case that the construction of Gl2 is simpler than
that of Gd. This is possible for any distance function d induced by a norm since Lemmas
1 and 2 imply the following reformulation of Theorem 1:

Corollary 4 Let d be a distance function induced by a norm. Furthermore, let
C 2 C(Gl2) be a cell in the grid Gl2 and let X�

B 2 int(C) be an optimal solution of
(1=P=B=dB=f convex). Then X�

B is an optimal solution of the corresponding problem

min fX�

B
(Y )

s:t: Y 2 IR2;
(10)

where fX�

B
(Y ) is de�ned according to (6) and (7) and the intermediate points Im (m 2 M)

are chosen such that they are l2-visible from X�
B.
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An important consequence of Theorem 1 is that many of the general properties of unres-
tricted location problems can be transferred to the restricted case (1=P=B=dB=f convex)
if X�

B 62 Gd.

As an example consider location problems for which the set of optimal solutions lies within
the convex hull of the existing facilities in the unrestricted case. De�ning the iterative
convex hull RB of the existing facilities and the barrier regions as the smallest convex
subset of F such that @RB \ int(B) = ; (see [6] for the construction of RB), the following
analogous result can be proven in the restricted case:

Theorem 2 Let X�
B 62 Gd be an optimal solution of (1=P=B=dB=f convex). Then

X�
B 2 RB

if, for the corresponding unrestricted problem (1=P=�=d=fX ) with objective function fX as
de�ned in (6) and (7), the set of optimal solutions is contained in the convex hull of the
existing facilities.

Proof: Let X�
B be an optimal solution of (1=P=B=dB=f convex) such that X�

B 2 int(C) for
some cell C 2 C(Gd).
Suppose that X�

B 62 RB. Wlog we assume that there exists no barrier in IR2 n RB since
this assumption does not increase the objective value of any point X 2 F . Applying
Theorem 1 we can follow that X�

B is an optimal solution of problem (8) with respect to
some intermediate points Im 2 Ex [ P(B), m 2 M. This problem is an unrestricted
location problem of type (1=P= � =d=fX ) and thus X�

B 2 convfIm : m 2 Mg\F . Since RB

is the convex hull of all existing facilities and all barrier sets intersected with the feasible
region F , we can conclude that

convfIm : m 2 Mg \ F � conv(Ex [ P(B)) \ F � RB:
2

Other consequences of Theorem 1 are e.g. the discretization results developed for the
median problem with Manhattan- or block norm distances (see [2, 6, 15]).

4 Algorithmic consequences

Reducing a problem of type (1=P=B=dB=f convex) to a set of convex subproblems with
respect to Theorem 1 (or Corollary 4), two di�erent cases may occur. An optimal solution
X�
B of a problem of type (1=P=B=dB=f convex) may either be located on the grid Gd or in

the interior of a cell C 2 C(Gd). In the �rst case X�
B can be easily found by applying a line

search procedure on the line segments of Gd. In the latter case X�
B is the optimal solution

of a corresponding unrestricted problem (8).

Thus a two step algorithm can be suggested to solve problems of type (1=P=B=dB=f convex).
In a �rst step, a line search procedure is applied on each line segment of the grid Gd. In a
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second step, a local minimum is sought in the interior of a cell in F n Gd by solving convex
subproblems (8) for all feasible reformulations fB(Y ) = fX(Y ) of the objective function.
For each solution Y � of one of these subproblems feasibility has to be tested, i.e. it has to
be veri�ed whether fB(Y �) = fX(Y �).

Algorithm 1

Input: Location problem (1=P=B=dB=f convex).

Step 1: Construct the grid Gd.

Step 2: Find the minimum of (1=P=B=dB=f convex) on Gd.

Step 3: For all feasible reformulations of the objective function, i.e. for all
feasible assignments of intermediate points to existing facilities, do:

(a) Find an optimal solution Y � of the corresponding unrestricted
problem minfX(Y ), Y 2 IR2.

(b) If fB(Y �) = fX(Y �), the solution Y � is a candidate for an
optimal solution.

Step 4: Determine the set of global minima from the candidate set found
in Steps 2 and 3.

Output: Set of optimal solutions of (1=P=B=dB=f convex).

Note that the grid Gd can also be replaced by the grid Gl2 (see Corollary 4).

The time complexity of Steps 1 and 2 of Algorithm 1 depends on the size of the grid Gd
(or Gl2, respectively) and thus on the number of existing facilities, the number of extreme
points of the barrier regions and the choice of the distance function d. In the case that
distances are measured by the Euclidean distance function l2, the number of line segments
in Gl2 is bounded by ( jExj+ jP(B)j ) � jP(B)j.
The overall time complexity of Algorithm 1 is in general dominated by Step 3. If no
additional information is available to reduce the possible assignments of existing facilities
to intermediate points, the number of subproblems is exponential in the number of existing
facilities and in the number of extreme points of the barrier regions. For specially shaped
barrier regions better results are nevertheless available. As an example consider the case
that the barrier is given by one line with a �nite number of passages. In this case it
was shown in [12] that a polynomial number of subproblems is su�cient to determine an
optimal solution.

A slight modi�cation of this algorithm was implemented in [16] for the Euclidean distance
function and one circular or polyhedral barrier. In case of a circular barrier, tangents to
the circle are used to de�ne the boundary of the shadow of the barrier; see [13] for a more
detailed discussion. In this implementation all the convex subproblems are solved by an
adaption of the method of Hooke and Jeeves [10].
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To compare Algorithm 1 with the results of other authors, we used an example problem
introduced in [11]. In this problem, �ve existing facilities with weights 1 are given at
the coordinates Ex1 = (�8:0;�6:0), Ex2 = (�7:0; 13:0), Ex3 = (�1:0;�5:0), Ex4 =
(6:6;�0:5), Ex5 = (4:4; 10:0), and one circular barrier with radius 2 centered at (0:0; 0:0)
is located within the considered region. We approximated the optimal solution at the
point X1 = (�1:18602; 2:06044) with an objective value of z1 = 48:2548. This result only
slightly improves the solution X2 = (�1:2016; 2:0776) with z2 = 48:2560 as found in [3],
whereas in [11] only an approximate solution X3 = (�0:08130; 2:4833) with z3 = 48:3524
was determined.

Since Algorithm 1 is computationally expensive if no additional information is available
on the structure of the problem, a heuristic strategy can alternatively be applied that,
in a large number of cases, still �nds the optimal solution of (1=P=B=dB=f convex) in
a remarkably smaller number of iterations. Instead of evaluating all the theoretically
possible assignments of existing facilities to intermediate points, a sample set S of (not
necessarily equidistant) grid points can be constructed in RB. All the points in this sample
set are used as starting points for an unrestricted location problem (8). As in Algorithm
1, the corresponding optimal solution Y � is used as a candidate for the optimal solution of
(1=P=B=dB=f convex) if Y � is feasible, i.e. if fB(Y �) = fX(Y �).

Algorithm 2

Input: Location problem (1=P=B=dB=f convex).

Step 1: Construct the grid Gd.

Step 2: Find the minimum of (1=P=B=dB=f convex) on Gd.

Step 3: De�ne a sample set S of grid points in RB.

Step 4: For each grid point X 2 S do:

(a) Find an optimal solution Y � of the corresponding unrestricted
problem minfX(Y ), Y 2 IR2.

(b) If fB(Y �) = fX(Y �), the solution Y � is a candidate for an
optimal solution.

Step 5: Determine the best solution found in Steps 2 and 4.

Output: Approximation of the optimal solution of (1=P=B=dB=f convex).

An optimal solution of a problem of type (1=P=B=dB=f convex) can be approximated with
increasing accuracy by re�ning the sample set S.

Theorem 3 For any problem of type (1=P=B=dB=f convex), Algorithm 2 yields an optimal
solution if the sample set of grid points S is chosen su�ciently �ne.

Proof: If an optimal solution of (1=P=B=dB=f convex) is located on the grid Gd, then this
solution is found in Step 2 of the algorithm.
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Otherwise, consider a partitioning of the grid Gd into a �nite set of subregions Rk � F ,
k = 1; : : : ;K as discussed at the beginning of Section 3. These subregions can be chosen
such that the shortest barrier distance from every point X 2 Rk to all the existing facilities
in Exm 2 Ex can be calculated with respect to the same intermediate points and so that
every subregion has a nonempty interior. (Note that subregions with empty interior can
be discarded since they must be contained in the boundary of subregions with nonempty
interior.) Furthermore, let " be maximal with the property that a ball of radius " can
be included in the interior of every subregion Rk, k = 1; : : : ;K. If a sample set S of
equidistant grid points with step length " is chosen, every subregion contains at least one
grid point in its interior, thus ensuring that every relevant assignment of existing facilities
to intermediate points is considered in the procedure.

2

The sample set S can be chosen in many alternative ways. An intuitive option is to
select sample points from the grid Gd. Using this option, the following �gure shows the
computation times of an implementation of Algorithm 2 in [16] for a set of randomly
generated test problems.
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Figure 4: Average cpu time in seconds for problems randomly generated in [16] with
M = 10; 20; : : : ; 60 existing facilities and one barrier region. For comparison, the function
f(M) = 1

30
M2 is included in the graph.

The computations were performed on a machine of type i586 Linux 2.0.30 with 32MB RAM
and 100MHz. The solutions were compared to an approximate global optimum obtained
by evaluating the objective function at a �nite set of equidistant points. In none of the
cases this second solution was better than the solution obtained by Algorithm 2.
However, a high solution quality implies a large number of iterations and thus a decreasing
e�ciency of the algorithm. A large sample set improves the quality of the solution but on
the other hand it is proportional to the number of iterations of the procedure.
In [16] the performance of Algorithm 2 was compared for di�erent sizes of the sample set
S. If for example only 10% of the intersection points in Gd are selected (according to
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their objective value, i.e. the best 10% of the intersection points are chosen), Algorithm 1
converged to an optimal solution in all of 54 example problems with one circular barrier,
whereas in the case of a thin rectangular barrier an optimal solution was found only in 25
out of 38 example problems.

Summarizing the discussion above we conclude that, if computation time is our major
concern, the iterative procedure developed in [3] is preferable since it determines a solution
that has a high probability to being optimal in a very small number of iterations. If on
the other hand the quality of the solution is our main interest, Algorithm 2 (or Algorithm
1) can be applied to verify these results with an accuracy and computation time speci�ed
by the user with the choice of the sample set S.

It is an interesting open question whether it is possible to construct a small sample set S
which still guarantees the detection of an optimal solution of the barrier problem.

5 Conclusions

In this paper a reduction result for a general class of planar location problems with poly-
hedral barriers is developed that allows the exact solution of this type of non-convex op-
timization problems by solving a �nite number of related convex location problems. This
result is as well of theoretical as of practical interest. It allows the transfer of theoretical
results for unrestricted planar location problems to the restricted case and it also yields
exact and heuristic Algorithms to solve planar location problems with barriers.

Future research topics include the investigation of special cases like simple barrier shapes
(e.g. rectangles or circles) and speci�c distance functions (e.g. the Manhattan metric l1
or the more general class of block norms). Furthermore reduction based methods could
be combined with modern solution techniques to develop e�cient implementations of the
suggested algorithms. Further generalizations as e.g. to problems in IRn, to multi-facility
problems or to problems with more than one objective function seem to be possible and
should be discussed in more detail in the future.

References

[1] Y. P. Aneja and M. Parlar. Algorithms for Weber facility location in the presence of
forbidden regions and/or barriers to travel. Transportation Science, 28:70{76, 1994.

[2] R. Batta, A. Ghose, and U. S. Palekar. Locating facilities on the Manhatten metric
with arbitrarily shaped barriers and convex forbidden regions. Transportation Science,
23:26{36, 1989.

[3] S. E. Butt and T. M. Cavalier. An e�cient algorithm for facility location in the
presence of forbidden regions. European Journal of Operational Research, 90:56{70,
1996.

15



[4] Z. Drezner. Facilities Location: A Survey of Applications and Methods. Springer
Verlag, New York, 1995.

[5] H. W. Hamacher. Mathematical Methods in Planar Locational Planning (in German).
Vieweg Verlag, Braunschweig, 1995. 171 pages.

[6] H. W. Hamacher and K. Klamroth. Planar location problems with barriers under
polyhedral gauges. Technical Report in Wirtschaftsmathematik No. 21, Universit�at
Kaiserslautern, Department of Mathematics, 1997.

[7] H. W. Hamacher and S. Nickel. Multicriteria planar location problems. European
Journal of Operational Research, 94:66{86, 1996.

[8] H. W. Hamacher and S. Nickel. Classi�cation of location problems. Location Science,
6, 1999. to appear.

[9] P. Hansen, B. Jaumard, and H. Tuy. Global optimization in location. In Z. Drezner,
editor, Facility Location, pages 43{68. Springer Series in Operations Research, 1995.

[10] R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical prob-
lems. J. Association Computer Machinery, 8:212{229, 1961.

[11] I. N. Katz and L. Cooper. Facility location in the presence of forbidden regions, I:
Formulation and the case of Euclidean distance with one forbidden circle. European
Journal of Operational Research, 6:166{173, 1981.

[12] K. Klamroth. Planar Weber location problems with line barriers. Optimization, 1999.
to appear.

[13] K. Klamroth and M. Ochs. Algebraic properties of the Weber problem with one
circular barrier. 1999. In preparation.

[14] K. Klamroth and M. Wiecek. A multiple objective planar location problem with a
line barrier. Technical Report in Wirtschaftsmathematik No. 33, Universit�at Kaiser-
slautern, Department of Mathematics, 1998. submitted.

[15] R. C. Larson and G. Sadiq. Facility locations with the Manhattan metric in the
presence of barriers to travel. Operations Research, 31:652{669, 1983.

[16] M. Ochs. 1-Standort Medianprobleme mit einfachen Barrieren. Diplomarbeit am
Fachbereich Mathematik der Universit�at Kaiserslautern, 1998.

[17] J. Viegas and P. Hansen. Finding shortest paths in the plane in the presence of barriers
to travel (for any lp-norm). European Journal of Operational Research, 20:373{381,
1985.

16


