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1 Introduction

Preemptive and non-preemptive single-machine scheduling has been a sub-
ject actively researched from the point of view of di�erent formulations and
solution approaches. The element of time-dependency has been introduced
to single-machine scheduling in various ways. Gascon and Leachman [7] ex-
amined a problem in which items to be scheduled on a single machine come
with time-dependent demands and proposed a dynamic programming-based
algorithm. Sousa and Wolsey [24] examined a time-indexed formulation in
which the cost of a job was indexed by time. They proposed a cutting
plane/branch-and-bound algorithm based on problem-related valid inequali-
ties. This formulation was also analyzed in depth by van der Akker [26] and
van der Akker et al. [27] who focused on polyhedral combinatorics and mixed-
integer programming approaches to the problem. Single-machine scheduling
with linear processing times of jobs was studied by Konov [16] and Cheng and
Ding [4], [5]. The former analyzed the criterion of maximum lateness that
makes the problem NP-hard while the latter showed that the makespan prob-
lem is strongly NP-complete. An overview on time-dependent scheduling can
be found in Alidaee and Womer [1]. Gawiejnowicz [8] surveys more general
discrete-continuous scheduling models including time-dependent processing
times and other continuous resources.

Independently of time-dependency, researchers extended single objective
models and studied bi-criteria single-machine scheduling problems. Typical
criteria of interest were given by a combination of 
owtime and a measure
of tardiness. Among others, Hoogeveen and van de Velde [11] proved that
the problem of minimizing total completion time and maximum cost is solv-
able in polynomial time. Hoogeveen [10] studied the criteria of maximum
promptness and maximum lateness while Azizoglu et al. [2] examined the
criteria of 
owtime and maximum earliness. Gupta et al. [9] studied a prob-
lem with customer orders and multiple job classes in which the makespan
and carrying costs of customer orders were minimized. Some authors made
special assumptions about job processing times to achieve stronger results.
For example, unit processing times were studied by Kondakci et al. [15].

In this paper, we propose a non-preemptive single machine scheduling
model with time-dependent multiple criteria. According to the authors, such
a model has not been studied in the literature before. Speci�cally, job pro-
cessing times depend upon the times the jobs have been started and the
minimization of the completion time may be one of the criteria of inter-
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est. All criteria to be optimized are, in general, monotone functions of time.
Scheduling is subject to a machine capacity constraint. The formulation is
based upon the classical knapsack problem extended by multiple criteria and
time-dependency. Similarly to others (e.g., Sousa and Wolsey [24]) we do
not enforce all jobs to be scheduled and therefore the model can be viewed
as a selection problem rather than a scheduling problem (see McCormick
[23]). Since the model extends the classical knapsack model, it is in general
NP-hard (see e.g., Martello and Toth [21]).

Analyzing our model in the context of the multiple criteria knapsack prob-
lem (MCKP), we recognize that this problem has already become a known
combinatorial optimization problem due to a wide range of applications.
Since in many real world applications the preferences of multiple decision
makers and/or various objectives have to be incorporated into the model, it
is a natural extension of the classical knapsack model (for an overview see
e.g., [20, 21]) to consider more than one criterion. Examples may be found in
a�ordability analysis where projects have to be chosen with respect to more
then a single criterion or in capital budgeting (see e.g., [3, 28, 19]). Teng and
Tzeng [25] applied the multiple criteria multiple constraint knapsack prob-
lem (MCMCKP) to transportation investment planning. Multiple criteria
knapsack problems were used by Kostreva et al. [17] to deal with reloca-
tion issues arising in conservation biology. The concept of time-dependency
in the knapsack problem has not been much studied although in some ap-
plications the parameters of the problem may change in time. Consider a
project selection problem in the presence of budget requirements and earn-
ings that are time-dependent, or a loading problem with loading requests
arriving stochastically over time and prices o�ered accordingly. Random and
dynamic change of (single objective) knapsack problem parameters has been
recently examined by Kleywegt and Papastavrou [14].

In this paper, we propose a dynamic programming (DP) approach to
the proposed time-dependent multiple criteria scheduling problem (TDM-
CSP) following upon Villarreal and Karwan [29]. They were perhaps the
only ones who proposed DP approaches to the MCMCKP. They proposed
four approaches: two basic ones, an embedded state approach, and a hy-
brid approach. The �rst basic approach was very similar to Nemhauser and
Gar�nkel's [6] recursive equations (I) developed for the single objective single
constraint knapsack problem while the second basic approach was a general-
ization of the recursive equations (III) developed by the same authors for the
same problem [6] and by Ibaraki [12] as model (1). The two other approaches
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aimed at reducing the computational complexity of the basic approaches.

To develop a solution approach to the TDMCSP, we follow upon the
second basic approach of Villarreal and Karwan [29]. While adapting this
model to the time-dependent multiple objective case, we modify the time-
dependent multiple criteria dynamic programming introduced by Kostreva
and Wiecek [18]. They proposed two approaches and algorithms (backward
and forward) to solving time-dependent multiple criteria routing problems by
means of dynamic programming. The backward approach is computation-
ally more complex but can handle general cost functions while the forward
approach, although it requires a monotonicity assumption about the objec-
tive functions, is more eÆcient. Both approaches can be adapted to the
TDMCSP.

We apply the forward approach as we believe it is more appealing due to
its eÆciency while the monotonicity assumption seems to naturally �t many
decision making situations. If for some applications, however, this assump-
tion was too constraining, the backward approach could be also modi�ed to
handle the TDMCSP.

In Section 2 we formulate the TDMCSP and in Section 3 we present a DP
solution approach. We illustrate the algorithm with a tri-criteria example in
Section 4. Section 5 concludes the paper.

2 Model formulation

Consider the classical problem of choosing projects over time in which the
total associated bene�t is to be optimized subject to resource constraints.
Only one project can be selected at a time. Due to time-dependency, the
selection problem becomes in fact a scheduling problem in which the projects
(or jobs) are to be scheduled on a single machine. Motivated by this general
problem, Sousa and Wolsey [24] used time-discretization which divides time
into periods so that the bene�t yielded by and the amount of resource used
by each project depend upon the period the project has been selected. They
considered the special case in which the resource availability in each period is
the same and the amount of resource used by a project in a period is either
zero or one. The model allowed to handle deadlines and release times for
jobs.

In the model proposed in this paper, time is considered as a continuous
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variable upon which the bene�t yielded by each job depends while the amount
of resource used by a job is a positive constant.

Let S = f1; :::; ng be an index set where j, j 2 S, denotes a job. A
schedule of jobs is de�ned as a sequence x := fxrg

p
r=1 of elements xr 2 S,

r = 1; : : : ; p satisfying

x 2 ffxrg
p
r=1 : p 2 IN; xr 2 S; r = 1; : : : ; pg: (1)

In a schedule, a job can be repeated or is to be executed only once. Only one
job can be processed at the same time and all jobs are released at time 0. Fur-
thermore, we assume that the jobs do not have due dates, and preemptions
are not allowed.

Each job j 2 S has a weight aj representing the job's usage of the resource
(e.g., machine occupancy, cost). The total weight of a schedule, calculated as
the sum of the weights of all jobs in the schedule, is represented by a weight
function de�ned as

a(x) :=
pX

r=1

axr ; (2)

where axr is the weight coeÆcient of the job xr in the schedule.
The total weight of a schedule cannot exceed a given capacity (budget)

constraint induced by the machine

a(x) � b; (3)

which is referred to as a capacity constraint (budget constraint).
We additionally assume that the weights aj; j 2 S, and the capacity b

are positive integers. In order to avoid trivial solutions let 0 < aj � b,
j = 1; : : : ; n.

A feasible schedule of jobs is consequently a sequence of elements in S

such that the total weight of the schedule does not exceed the capacity. Let
X := fx : a(x) � bg be the set of all the feasible schedules of the TDMCSP.
Note that due to the fact that all weight coeÆcients are positive integers,
all feasible solutions in X are �nite. Namely we get that p � b for all
fxrg

p
r=1 2 X.
The jobs are evaluated with respect to m bene�ts they yield. For every

j 2 S, let cj(t) be a unit vector bene�t associated with the job j at time
t. Elements cij(t), i = 1; : : : ; m, j = 1; : : : ; n, are de�ned to be real-valued
functions of time t and are not assumed to be continuous. In particular, let
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c1j(t), j = 1; : : : ; n be positive functions measuring the processing time of the
job j if it has been started at time t. In the context of the project selection
problem, c1j(t) thus represents the duration of project j, j = 1; : : : ; n. Let the
other components cij(t), i = 2; : : : ; m, j = 1; : : : ; n, represent the bene�ts of
interest to the decision maker according to which the jobs are to be scheduled
and processed (e.g., earnings, revenue, appreciation).

A bene�t of a schedule is calculated as the vector sum of the bene�ts of
all jobs in the schedule:

fi(x) :=
pX

r=1

cixr(t
r(x)); i = 1; : : : ; m; (4)

where t is a continuous variable, t � 0, and tr(x) represents the time at which
the r-th job of the schedule x is started and is calculated as

t1(x) = 0;

ts+1(x) = ts(x) + c1xs(t
s(x)); s = 1; : : : ; p:

(5)

In particular, the completion time of a schedule is represented by f1(x).
We formulate the TDMCSP as:

vmax� f(x) = [f1(x); f2(x); : : : ; fm(x)]
T

s.t. a(x) � b:
(6)

As we are interested in maximizing the objective functions fi(t), i =
2; : : : ; m and in minimizing the completion time simultaneously, the operator
vmax� in (6) denotes the maximization of [�f1(x); f2(x); : : : ; fm(x)]

T , i.e.

vmax� [f1(x); f2(x); : : : ; fm(x)]
T := vmax [�f1(x); f2(x); : : : ; fm(x)]

T : (7)

However, the decision maker may choose not to minimize the completion
time but only maximize the other criteria. In this situation the operator
vmax� = vmax is applied only to criteria [f2(x); : : : ; fm(x)]

T .

Solving (6) is understood as generating its eÆcient (Pareto) schedules. A
feasible schedule x̂ 2 X is said to be an eÆcient solution of (6) if there is no
other feasible schedule x 2 X such that

f1(x) � f1(x̂) and 8i 2 f2; : : : ; mg fi(x) � fi(x̂) (8)
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with at least one strict inequality in (8).
Let Xe denote the set of eÆcient schedules of (6) and let Ye denote the im-

age of Xe in the objective space, that is Ye = f(Xe), where f = [f1; : : : ; fm]
T .

Ye is referred to as the set of nondominated criterion vectors (outcomes) of
(6).

3 A dynamic programming approach

In the following it is convenient to consider the TDMCSP with the right-
hand-side k = 1; : : : ; b of the capacity constraint which is denoted by k-
TDMCSP. A feasible schedule x := fxrg

p
r=1 of the k-TDMCSP is a se-

quence of jobs xr 2 S, r = 1; : : : ; p; p � k, so that
Pp

r=1 axr = k for
k = 1; : : : ; b. Given two feasible schedules, xs = fxrg

s
r=1 of the ks-TDMCSP

and xw = fxs+rg
w
r=1 of the kw-TDMCSP, we de�ne the concatenated schedule

fxs; xwg := fxrg
s+w
r=1 that is a feasible schedule of the (ks + kw)-TDMCSP.

Let a set of states Q be de�ned as

Q := fq(0); q(1); : : : ; q(b)g;

where the initial state is de�ned to contain only the empty schedule f g
(independently from the weight function a and the objective coeÆcients)

q(0) = ff gg

and the state q(k), k = 1; : : : ; b, represents all the feasible schedules of the
k-TDMCSP, i.e.

q(k) := ffxrg
p
r=1 : p � k; xr 2 S; r = 1; : : : ; p;

pX
r=1

axr = kg:

Since there may occur eÆcient schedules in all the states, the set of �nal
states QF is given by

QF := fq(0); q(1); : : : ; q(b)g:

The decision of adding a job j 2 S to a schedule of jobs x 2 q(k) results
in an increase of the right-hand side k by aj and thus corresponds to a
transition of x from the state q(k) to the state q(k + aj). Observe that with
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this de�nition of the states, the original problem is represented as a loop-free
sequential decision process, i.e. a process whose states can be indexed from 0
to b, so that a transition from a state q(k) always occurs to a state q(l) such
that k < l, for any k; l = 0; 1; : : : ; b (see [12]).

Without loss of generality we assume that the system is in the state
q(0) at time t = 0. We also assume that there is no waiting time between
adding two consecutive jobs to a feasible schedule, i.e. once a job j has been
processed, another job �j is being chosen and processed right after. For all
j = 1; : : : ; n, c1j(t) > 0 represents the time needed to make a transition from
a state q(k) to a state q(k+ aj) for k = 0; 1; : : : ; b� aj given that the system
is in the state q(k) at time t. The arrival time at the state q(k+ aj) is equal
to t+ c1j(t).

The states de�ned above and the possible transitions between them yield
a network whose nodes and arcs are de�ned by these states and transitions,
respectively. This network does not have any circuits since the states and
the transitions form a loop-free decision process. Associated with every arc
of this network is a vector cost [c1j(t); : : : ; c

m
j (t)]

T related to adding the job
j 2 S to a feasible schedule at time t.

Given the network, we are in the position to apply the forward approach
of Kostreva and Wiecek [18]. They developed this approach to �nd the
set of all eÆcient (shortest) paths from a given source node to every other
node in the network whose links carried a time-dependent vector cost. They
considered a general network whose every node could be connected to every
other node. The costs were assumed to be real-valued positive and monotone
increasing functions of time. These assumptions were necessary to establish
the principle of optimality for dynamic multiple objective networks.

Given the special structure of our network, we may relax and change
some of their assumptions due to the fact that the feasibility constraint of
the TDMCSP yields a circuit-free network and that our problem involves
maximization rather than minimization. In general, we can allow all the ob-
jective functions to be positive and/or negative functions of time no matter
whether we pose a maximization or a minimization problem. In both cases
the optimal objective function (vector) value will be necessarily bounded as
we have a �nite number of states (nodes), a �nite number of transitions (arcs),
and no circuits in the network. However, as we have chosen c1j(t); j = 1; : : : ; n
to represent the processing time, we require these functions to be positive,
while the other functions cij(t); i = 2; : : : ; m; j = 1; : : : ; n, representing gen-
eral criteria of interest may be of any sign. In fact, a transition from a state
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q(k) at a given time t1 to a state q(l) may for some criterion i; i 2 f2; : : : ; mg
involve a cost cij(t1) < 0, which means that adding the job j at time t1 to a
schedule is not bene�cial at that time, however, the resulting schedule may
still be eÆcient. Clearly, the same job j could be added at a time t2; t2 6= t1;

so that the corresponding cost would be positive, cij(t2) > 0.
The following assumption is necessary to prove a principle of optimality

for the TDMCSP.

Assumption 1 For all t1; t2 � 0, if t1 � t2, then

(a) t1 + c1j(t1) � t2 + c1j(t2) for all j = 1; : : : ; n, and

(b) cij(t1) � cij(t2) for all i = 2; : : : ; m, and j = 1; : : : ; n.

Assumption 1 (a) requires that if a job j is added to a schedule at time
t1 or at a later time t2, then with the earlier starting time the next job
may be considered to be added to the schedule earlier than with the later
starting time. We observe that if c1j(t); j = 1; : : : ; n; are monotone increasing
functions of time, then this assumption holds. Assumption 1 (b) simply
requires that the other components of the objective functions cij(t) for all
i = 2; : : : ; m and j = 1; : : : ; n be monotone decreasing functions of time. In
the context of the model this implies that (for example) the bene�ts generated
by a project (job) j decrease in time, or in other words, the later the job is
processed in a schedule the less bene�ts it brings. Both assumptions represent
the typical requirement of the project selection problem that the earlier the
project is started, the earlier it is completed and the bigger bene�ts it brings.

Theorem 1 Principle of Optimality for the TDMCSP.
Under Assumption 1, an eÆcient solution sequence of jobs xp = fxrg

p
r=1 of

the k-TDMCSP completed at time tp+1(xp) has the property that each solution
subsequence xs = fxrg

s
r=1; 1 � s � p completed at time ts+1(xs); ts+1(xs) �

tp+1(xp), is an eÆcient solution sequence of jobs for the (
Ps

r=1 axr)-TDMCSP.

Proof:

Let xp be an eÆcient solution sequence of the k-TDMCSP completed at
time tp+1(xp). Assume to the contrary that a solution subsequence xs of the
solution sequence xp, xs = fxrg

s
r=1; 1 � s � p, completed at time ts+1(xs),
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ts+1(xs) � tp+1(xp), is not an eÆcient solution sequence of the (
Ps

r=1 axr)-
TDMCSP. Then there exists another solution sequence yu = fyrg

u
r=1 of the

(
Ps

r=1 axr)-TDMCSP completed at time

tu+1(yu) � ts+1(xs) (9)

such that

f1(y
u) � f1(x

s) and 8i 2 f2; : : : ; mg fi(y
u) � fi(x

s) (10)

with at least one strict inequality in (10). Furthermore, we have that xp =
fxs; xwg is the concatenation of the sequence xs and some other sequence
xw = fxs+rg

w
r=1 that is a solution sequence of the (k �

Ps
r=1 axr)-TDMCSP.

Thus the concatenation fyu; xwg of yu and xw is also a feasible solution
sequence of the k-TDMCSP. We get the following objective values for xp =
fxs; xwg and for fyu; xwg:

f(xp) = f(fxs; xwg) = f(xs) +
wX

r=1

cxs+r(t
s+r(fxs; xwg))

and

f(fyu; xwg) = f(yu) +
wX

r=1

cxs+r(t
u+r(fyu; xwg));

where ts+r(fxs; xwg) and tu+r(fyu; xwg), 1 � r � w, are the times of com-
pleting subsequences of s+ r� 1 and u+ r� 1 jobs in the sequences fxs; xwg
and fyu; xwg, respectively.

Applying Assumption 1 (a) to (9), we obtain

tu+1(yu) + c1j(t
u+1(yu)) � ts+1(xs) + c1j(t

s+1(xs))

for every element j in any feasible solution sequence. In particular, applying
this assumption to every element xs+r, 1 � r � w, in the sequence xw

concatenating the sequence yu and the sequence xs we get

tu+1(yu) +
wX

r=1

c1xs+r(t
u+r(fyu; xwg)) � ts+1(xs) +

wX
r=1

c1xs+r(t
s+r(fxs; xwg));

which yields
tu+w+1(fyu; xwg) � ts+w+1(fxs; xwg); (11)
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where tu+w+1(fyu; xwg) and ts+w+1(fxs; xwg) are the times at which the same
subsequence of jobs xw is completed when started at the times tu+1(yu) and
ts+1(xs), respectively. Clearly, ts+w+1(fxs; xwg) = tp+1(xp).

Applying Assumption 1 (b) to (9) and summing over all the elements in
the solution sequence xw that concatenates the sequence yu and the sequence
xs, we analogously have

wX
r=1

cixs+r(t
u+r(fyu; xwg)) �

wX
r=1

cixs+r(t
s+r(fxs; xwg)); i 2 f2; : : : ; mg: (12)

Observe that (11) is equivalent to

f1(fy
u; xwg) � f1(x

p) (13)

while (12) implies that

fi(fy
u; xwg) � fi(x

p); i 2 f2; : : : ; mg: (14)

Since at least one inequality in (10) is strict, it must be that the inequality
in (13) and (14) corresponding to the same index i, i 2 f1; : : : ; mg, is also
strict. This implies that the solution sequence xp consisting of subsequences
xs and xw is not eÆcient.

2

Note that when Assumption 1 is not satis�ed, Theorem 1 is in general
not true. Consider, for example, a problem where c1j(t), j = 1; : : : ; n, are
decreasing functions of time, and cij(t), i = 2; : : : ; m, j = 1; : : : ; n are all
increasing functions of time. Then a solution subsequence xs that is not
eÆcient and that is completed at a later time than another eÆcient subse-
quence yu may still yield an eÆcient solution if it is concatenated with an
appropriate solution subsequence xw since the later starting time may yield
higher bene�ts in this case.

Let f(x) := f(fxrg
p
r=1) be a nondominated criterion vector of the k-

TDMCSP corresponding to an eÆcient schedule completed at time tp+1(x)
that can be computed using (5). Let G(q(k)) = vmax�ff(x) : x 2 q(k)g be
the set of all the nondominated criterion vectors of the k-TDMCSP.
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By Theorem 1, we establish that

G(q(0)) = f0g

G(q(k)) = vmax�ff(xp+1 = fxrg
p+1
r=1) : x

p+1 2 q(k)g

= vmax�ff(xp = fxrg
p
r=1) + cxp+1(t

p+1(xp)) :

f(xp)2G(q(k � axp+1)); xp+12S; k�axp+1�0g;

k = 1; : : : ; b;

where the operation vmax� computes the nondominated criterion vectors
according to (7) in the set whose every element is a vector sum of a non-
dominated criterion vector of the (k � axp+1)-TDMCSP completed at time
tp+1(xp), and the cost vector cxp+1(t) evaluated at time t = tp+1(xp) at which
the schedule xp = fxrg

p
r=1 is completed.

Since all the states are �nal, the set of vector costs of all the nondominated
criterion vectors Ye is obtained as the vector-maximum of the union of the
sets G(q(k)), k = 0; 1; : : : ; b; i.e.

Ye = vmax�
[

k=0;1;:::;b

G(q(k)):

Note that in each step of the recursion two or more nondominated criterion
vectors may correspond to eÆcient solutions given by di�erent schedules built
with the same jobs which shows that di�erent objective function (vector)
values can be achieved while choosing the same jobs to a schedule but at
di�erent times. We discuss this and similar situations in Section 4.

4 Example

We now present a didactic example of the time-dependent scheduling problem
with three criteria (m = 3) and three jobs/projects (n = 3), i.e. S = f1; 2; 3g.
The �xed budget is given by b = 3 and the cost coeÆcients aj, j = 1; 2; 3 of
each job are given by

a1 = 1; a2 = 2; a3 = 1:

The �rst criterion de�nes the processing time of each job if it is added to
a schedule x at time t. With respect to the project selection problem this
time can be interpreted, for example, as the duration of the corresponding
projects. The other two criteria that are maximized could represent the
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revenue and dual use potential yielded by the projects if they are selected at
time t.

The objective vectors cj(t), j = 1; 2; 3 related to each job are de�ned as

c1(t)=

2
64

2
40� t2

30� 2t

3
75 ; c2(t)=

2
64

4
80� 2t2

40� t

3
75 ; c3(t)=

2
64
2t+ 1
40

20� 2t

3
75 :

The resulting TDMCSP has the following form:

vmax� f(x) = [f1(x); f2(x); f3(x)]
T

s.t. a(x) � 3:
(15)

The possible transitions between states for this example problem are repre-
sented by the arcs in the network given in Figure 1. The objective vector
cj(t) = [c1j(t); c

2
j(t); c

3
j(t)]

T of each transition and the corresponding job j are
identi�ed for each arc and denoted by the vector [j; cj].

[2,c  ]2 [2,c  ]2

[3,c  ]3 [3,c  ]3 [3,c  ]3

[1,c  ]1 [1,c  ]1 [1,c  ]1q(1) q(2) q(3)q(0)

Figure 1: The vertices of this network represent the states of the DP-
formulation for the example problem (15).

Applying the recursive equations developed in the previous section we
obtain the following sets of nondominated criterion vectors G(q(k)),
k = 0; 1; 2; 3:

G(q(0)) = f0g
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G(q(1)) =

8><
>:

2
64
1
40
20

3
75;

2
64
2
40
30

3
75

9>=
>;

G(q(2)) =

8><
>:

2
64
3
79
48

3
75;

2
64
4
76
56

3
75;

2
64
4
80
40

3
75;

2
64
7
80
46

3
75

9>=
>;

G(q(3)) =

8><
>:

2
64

5
110
72

3
75;

2
64

5
118
59

3
75;

2
64

6
100
78

3
75;

2
64

6
112
68

3
75;

2
64
10
119
62

3
75;

2
64
13
116
68

3
75;

2
64
13
120
52

3
75

9>=
>; :

The set of eÆcient solutions Xe and the set of nondominated criterion vectors
Ye of this example problem can thus be calculated as

Xe = f f g; f3g; f1g; f3; 1g; f1; 1g; f2g; f3; 1; 1g; f3; 2g; f1; 1; 1g; f1; 2g; f3; 1; 3g;

f1; 1; 3g; f2; 3gg ;

Ye =

8><
>:

2
64
0
0
0

3
75;

2
64
1
40
20

3
75;

2
64
2
40
30

3
75;

2
64
3
79
48

3
75;

2
64
4
76
56

3
75;

2
64
4
80
40

3
75;

2
64

5
110
72

3
75;

2
64

5
118
59

3
75;

2
64

6
100
78

3
75;

2
64

6
112
68

3
75;

2
64
10
119
62

3
75;

2
64
13
116
68

3
75;

2
64
13
120
52

3
75

9>=
>; :

Note that in this example di�erent criterion vectors are achieved by
scheduling the same jobs in a solution sequence at di�erent times. For
example, the solution sequences f3; 2g and f2; 3g with the criterion vec-
tors [5; 118; 59]T and [13; 120; 52]T are both eÆcient. Similarly, the solution
sequences f3; 1; 1g and f1; 1; 3g with the criterion vectors [5; 110; 72]T and
[13; 116; 68]T are both eÆcient.

Furthermore we observe that shorter processing times are achieved when
only one or two jobs are performed which may not be of high priority to the
company.

In order to make a �nal decision what jobs should be scheduled, the
company would have to specify additional preferences. For example, if the
preference was to perform three (not necessarily di�erent) jobs rather than
only two, four sequences f3; 1; 1g, f1; 1; 1g, f3; 1; 3g and f1; 1; 3g would be the
candidates for the �nal optimal solution. The decision maker would have to
choose between the criterion vectors [5; 110; 72]T , [6; 100; 78]T ,
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[10; 119; 62]T and [13; 116; 68]T . The vectors show that performing only job
1 yields the smallest revenue but the highest dual use potential and keeps
the total processing time quite short. On the other hand, the later job 3 is
performed, the later all the jobs are completed while the related revenue and
dual use potential stay competitive.

5 Conclusions

We introduced the time-dependent multiple criteria scheduling problem
(TDMCSP) and proposed an approach to generate all its eÆcient solutions.
The time-dependency of the model is included in its objective functions while
the capacity constraint is assumed to be �xed. The feasible solutions are
de�ned to be schedules of jobs consecutively chosen from a set of jobs at
di�erent times. The eÆcient solutions are found by the proposed dynamic-
programming approach using the monotonicity of the objective functions.
The model allows to use quite general scheduling criteria personalized to the
jobs/projects being scheduled which goes beyond the standard practice in
scheduling where criteria such as 
owtime and tardiness are typically used.

As in every multiple criteria program, the solutions inform the decision
maker about the structure of the eÆcient and nondominated set of the TDM-
CSP. The time-dependency makes the solutions even more signi�cant as it
equips the decision maker with additional information on mutual relation-
ships among the jobs of the eÆcient schedule, their order in the schedule
with respect to time, and the related objective function values. This infor-
mation provides the decision maker with deeper insight into the model and
may serve as a decision tool while choosing a preferred optimal solution.

The model and the solution approach are part of AMADEuS, an inter-
active decision tool developed by Klamroth et al. [13]. AMADEuS is based
on MATLAB 5.3.0 [22], a software package for numeric computation, data
analysis and graphics. The tool generates nondominated criterion vectors
for several types of multiple criteria capital budgeting problems and for the
TDMCSP, all being variations of the MCKP. The model presented in this
paper allows a job to be repeated in a schedule while AMADEuS includes
two scenarios for the TDMCSP: schedules with and without jobs' repetitions.
The tool is being currently tested so that complete computational results on
a family of MCKP-related models will be available in the near future.

The proposed model could be also modi�ed to accommodate additional
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features. For example, applying lexicographic vector optimization and always
minimizing �rst with respect to the �rst component of the criterion vector,
the shortest-processing-time scheduling rule could be included.

Further research should focus on developing more complex time-dependent
models featuring multiple constraints or multiple time periods.
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