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Abstract

In this paper we introduce a time-dependent multiple criteria model

of capital budgeting and propose a dynamic-programming-based solu-

tion approach to �nding all the e�cient solutions de�ned as sequences

of projects that are consecutively performed and bring bene�t to a

company. An illustrative example is enclosed.

1 Introduction

Capital budgeting is a well known problem in managerial economics. The
problem concerns a company confronted with a variety of possible investment
projects and a �xed capital budget independent of the investment decisions.
The cost and the revenue associated with every project are assumed to be
known. The objective is to select from among the projects the particular
projects that lead to the highest earnings for the company.
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The problem has been given a lot of attention by economists, management
scientists, industrial engineers, operations researchers, and mathematicians,
and the related literature is very rich. Among many others, Weingartner [24]
studied capital budgeting in the context of mathematical programming.

The traditional theory of capital budgeting uses a single objective, usually
in the form of a maximization of company's revenues. In the late nineteen
sixties and early nineteen seventies researchers proposed to extend the tra-
ditional model with multiple objectives, as the particular projects can be
selected with respect to more than a single objective, see Anso� [1], Cars-
berg [5], and Bromwich [4]. The other objectives could include appreciation,
sustainability, readiness, etc. all yielded by the selected investment projects.
Capital budgeting models with multiple objectives identify the so called ef-
�cient projects. Trading one e�cient project for another results in improve-
ment of at least one objective and simultaneous deterioration of at least one
other.

Hawkins and Adams [9] proposed a goal programming model of capital
budgeting. Bhaskar [3] more formally recognized multiple objective functions
and proposed a generalized goal programming approach. Capital budgeting
with multiple objectives was also studied by Lee and Lerro [14], Ignizio [11],
Thanassoulis [17], Corner et al. [6], and others. An interactive procedure
using a multiple criteria linear integer model was proposed by Gonzalez et
al. [8]. More recent papers proposed multiple criteria capital budgeting mod-
els extended with additional features such as time preferences (see Vetschera
[21]), stochastic and dynamic elements (see Turney [18]), risk (see Lin [15]),
and multiple decision makers (see Kwak et al.[13]).

In the framework of mathemtical programming, a typical capital budget-
ing model with multiple criteria is based on the multiple criteria knapsack
problem (MCKP), a known combinatorial optimization problem with appli-
cations in many other areas such as transportation planning, conservation
biology, packaging and loading.

The bi-criteria knapsack problem (BCKP) was studied by Rosenblatt
and Sinuany-Stern [16] whose work was continued later by Eben-Chaime [7].
Several recent papers of Ulungu and Teghem [19, 20] and Vis�ee et al. [23]
dealt with the BCKP or the MCKP. Villarreal and Karwan [22] were perhaps
the only ones who proposed dynamic programming (DP) approaches to the
MCKP with multiple constraints.

In this paper, we propose a time dependent capital budgeting model with
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multiple criteria. We assume that the vector of objective functions is com-
posed of time-dependent functions. The resulting model applies to the deci-
sion situation when the particular projects have to be selected subject to a
known and �xed budgetary constraint so that time-dependent criteria such
as revenue, appreciation, and others are maximized while the time needed to
perform the selected projects is minimized. In comparison to the MCKP that
identi�es the e�cient projects with respect to all the objective functions, the
TDMCKP yields e�cient sequences of the projects that should be consecu-
tively performed. We follow upon a DP model presented by Villarreal and
Karwan [22] and propose a DP approach to the TDMCKP. While adapting
this model to the time-dependent case, we modify the forward approach of
the time-dependent multiple criteria dynamic programming introduced by
Kostreva and Wiecek [12].

In Section 2 we present the TDMCKP and the DP-based solution ap-
proach is developed in Section 3. We illustrate the model and the approach
with a tri-criteria example in Section 4 and conclude the paper in Section 5.

2 A Model

Given a set of n projects of interest to a company, let fx1; : : : ; xng be a set
of elements representing the projects and let S := f1; : : : ; ng be the related
index set.

We assume that only one project can be performed at a time and that
during a decision process (that starts at time zero) some projects will be
selected at consecutive times in order to be performed. Every sequence of
projects to be performed corresponds to a sequence x := fxj(r)g

p
r=1 of ele-

ments xj(r); r = 1; : : : ; p, where j(r) 2 S := f1; : : : ; ng.
Given a �xed available budget b, we model the budgetary constraint as

a(x) � b; (1)

where a(x) is the function de�ned as

a(x) = a(fxj(r)g
p
r=1) :=

pX
r=1

aj(r) (2)

and aj(r) is the cost coe�cient of the project xj(r); j(r) 2 S. We addition-
ally assume that the cost coe�cients ai; i 2 S, and the budget b are positive
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integers.
Consequently, the set X of all the feasible sequences of projects of the

TDMCKP is de�ned as X := fx : a(x) � bg , where each sequence x satis�es

x 2 ffxj(r)g
p
r=1 : p 2 IN; j(r) 2 S; r = 1; : : : ; pg: (3)

Note that due to the fact that all the cost coe�cients are positive integers,
all the feasible solutions in X are �nite. Namely we get that p � b for all
fxj(r)g

p
r=1 2 X.

Given m objective functions fi(x); i = 1; : : : ; m, of interest to the com-
pany, we assume that f1 measures the time needed to accomplish the projects
and therefore it should be minimized while the other functions fi; i = 2; : : : ; m,
represent the criteria such as earnings, revenue, appreciation, etc., that
should be maximized. Each of the functions is a real-valued and time depen-
dent function of x. We de�ne the vector objective function as

f(x) := [f1(x); f2(x); : : : ; fm(x)]
T :=

pX
r=1

cj(r)(t
r); (4)

where (4) involves a vector sum and t is a continuous variable, t � 0, repre-
senting the time, that can be calculated as

t1 = 0;

ts+1 = ts + c1j(s)(t
s); s = 1; : : : ; p:

(5)

For every j 2 S, cj(t) = [c1j(t); : : : ; c
m
j (t)]

T is a vector objective related to
choosing the project xj at time t. Elements cij(t), i = 1; : : : ; m, j = 1; : : : ; n,
are de�ned to be real-valued functions of time t and are not assumed to
be continuous. In particular, for every j 2 S, c1j(t), j = 1; : : : ; n, is a
positive function measuring the time needed to accomplish the project xj
if its realization has started at time t, and the other components cij(t), i =
2; : : : ; m, represent the earnings, revenue, appreciation, etc., generated by
selecting the project xj if its realization has started at time t.

According to (5), the �rst project xj(1) in a feasible sequence of projects
is chosen at time t1 = 0 and its realization takes c1j(1)(t

1) time. Then the

next project xj(2) is selected at time t2 = t1+ c1j(1)(t
1) and it is accomplished

at time t2 + c1j(2)(t
2), and so on.
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We also assume that there is no waiting time between choosing and per-
forming two consecutive projects in a sequence of projects, i.e. once a project
xj(s) has been selected, another project xj(s+1) is being selected right after.

We formulate the time-dependent multiple criteria knapsack problem
(TDMCKP) as:

vmax� f(x) = [f1(x); f2(x); : : : ; fm(x)]
T

s.t. a(x) � b:

(6)

As we are interested in maximizing the objective functions fi(x), i =
2; : : : ; m and in minimizing the time simultaneously, the operator vmax� in
(6) denotes the maximization of [�f1(x); f2(x); : : : ; fm(x)]

T , i.e.

vmax� [f1(x); f2(x); : : : ; fm(x)]
T := vmax [�f1(x); f2(x); : : : ; fm(x)]

T : (7)

We also �nd it convenient to consider the TDMCKP with the right-
hand-side k = 1; : : : ; b of the budgetary constraint and denote this prob-
lem by k-TDMCKP. A feasible solution x := fxj(r)g

p
r=1 of the k-TDMCKP

is a sequence of projects xj(r); r = 1; : : : ; p; p � k, so that j(r) 2 S andPp
r=1 aj(r) � k for k = 1; : : : ; b.

Solving (6) is understood as generating its e�cient (Pareto) solutions
(sequences of projects). A feasible solution x̂ 2 X is said to be an e�cient
solution of (6) if there is no other feasible solution x 2 X such that

f1(x) � f1(x̂) and 8i 2 f2; : : : ; mg fi(x) � fi(x̂) (8)

with at least one strict inequality in (8).
Let Xe denote the set of e�cient solutions of (6) and let Ye denote the im-

age of Xe in the objective space, that is Ye = f(Xe), where f = [f1; : : : ; fm]
T .

Ye is referred to as the set of nondominated criterion vectors of the e�cient
solutions (sequences of projects) of (6).

3 A dynamic programming approach

Let a set of states Q be de�ned as

Q := fq(0); q(1); : : : ; q(b)g;
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where the initial state is de�ned to be empty (independently from the cost
function a and the objective functions)

q(0) = ;

and the state q(k), k = 1; : : : ; b, represents all the feasible solutions of the
k-TDMCKP, i.e.

q(k) := ffxj(r)g
p
r=1 : p 2 IN; j(r) 2 S; r = 1; : : : ; p;

pX
r=1

aj(r) = kg:

In other words, a state represents all the feasible sequences of projects such
that the total cost of each sequence is equal to a partial budget k; 1 � k � b.

Since there may occur nondominated solutions in all the states, the set
of �nal states QF is given by

QF := fq(0); q(1); : : : ; q(b)g:

The decision of adding a project xj to a solution sequence x 2 q(k)
results in an increase of the right-hand side k by aj and thus corresponds to
a transition of x from the state q(k) to the state q(k+aj). Observe that with
this de�nition of the states, the original problem is represented as a loop-free
sequential decision process, i.e. a process whose states can be indexed from 0
to b, so that a transition from a state q(k) always occurs to a state q(l) such
that k < l, for any k; l = 0; 1; : : : ; b (see [10]).

Without loss of generality we assume that the system is in the state q(0)
at time t = 0.

For all j = 1; : : : ; n, c1j(t) > 0 represents the time needed to make a
transition from a state q(k) to a state q(k + aj) for k = 0; 1; : : : ; b� aj given
that the system is in the state q(k) at time t, that is the time needed to
accomplish the project xj if it has started at time t. The transition to the
state q(k + aj) is completed at time t + c1j(t), which corresponds to the fact
that the project xj is accomplished at time t+ c1j(t).

The states de�ned above and the possible transitions between them yield
a network whose nodes and arcs are de�ned by these states and transitions,
respectively. This network does not have any circuits (a circuit is a path
traversing through a node twice, see [2]) since the states and the transitions
form a loop-free decision process. Associated with every arc of this network
is a criterion vector [c1j(t); : : : ; c

m
j (t)] related to adding the project xj to a

sequence of projects at time t.
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Given the network, we are in the position to apply the forward approach
of Kostreva and Wiecek [12]. They developed the forward approach to �nd
the set of all nondominated (shortest) paths from a given source node to every
other node in the network whose links carried a time-dependent vector cost.
They considered a general network whose every node could be connected to
every other node. The costs were assumed to be real-valued positive and
monotone increasing functions of time. These assumptions were necessary to
establish the Principle of Optimality for Dynamic Multiple Objective Net-
works.

Given the special structure of our network, we may relax and change
some of their assumptions due to the fact that the feasibility constraint of
the TDMCKP yields a circuit-free network and that our problem involves
maximization rather than minimization. In general, we can allow all the
objective functions to be positive and/or negative functions of time no matter
whether we pose a maximization or a minimization problem. In both cases
the optimal objective function (vector) value will be necessarily bounded as
we have a �nite number of states (nodes), a �nite number of transitions (arcs),
and no circuits in the network. However, as we have chosen c1j(t); j = 1; : : : ; n
to represent the time, we require these functions to be positive, while the
other functions cij(t); i = 2; : : : ; m; j = 1; : : : ; n, representing general criteria
of interest may be of any sign. In fact, a transition from a state q(k) at a
given time t1 to a state q(l) may for some criterion i; i 2 f2; : : : ; mg, yield an
objective value cij(t1) < 0, which means that adding the project xj at time t1
to a sequence of projects is not bene�cial at all and this project will certainly
not contribute to an e�cient sequence. But the same project xj could be
added at a time t2; t2 6= t1; so that the corresponding objective value would
be positive, cij(t1) > 0, and make the project xj competitive.

The following assumption is necessary for the principle of optimality for
the TDMCKP to hold.

Assumption 1 For all t1; t2 � 0, if t1 � t2, then

(a) t1 + c1j(t1) � t2 + c1j(t2) for all j = 1; : : : ; n, and

(b) cij(t1) � cij(t2) for all i = 2; : : : ; m, and j = 1; : : : ; n.

Assumption 1 (a) requires that if a project xj is initiated at time t1 or
at a later time t2, then with the earlier start time it has to be accomplished
earlier than with the later start time. In other words, the earlier a project
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is started, the earlier it has to be completed. We observe that if c1j(t); j =
1; : : : ; n; are monotone increasing functions of time, then this assumption
holds. Assumption 1 (b) simply requires that the other components of the
objective functions cij(t) for all i = 2; : : : ; m and j = 1; : : : ; n be monotone
decreasing functions of time. In the context of the model this implies that (for
example) the revenue generated by a project xj decreases in time, or in other
words, the later the project is initiated the less revenue it brings. We believe
that both assumptions naturally �t into the model as they mathematically
interpret the commonly made assertions in capital budgeting.

Let f(x) := f(fxj(r)g
p
r=1) be a nondominated criterion vector of the k-

TDMCKP accomplished at time tp+1 that can be computed using (5). Let
G(q(k)) = ff(x) : x 2 q(k)g be the set of all the nondominated criterion
vectors of the k-TDMCKP.

The principle of optimality for dynamic multiple criteria networks es-
tablished in [12] adapted to the time-dependent capital budgeting network
model yields the following theorem.

Theorem 1 Principle of Optimality for the TDMCKP.
Under Assumption 1, an e�cient sequence of projects xp = fxj(r)g

p
r=1

of the k-TDMCKP accomplished at time tp+1 has the property that each
subsequence of projects xs = fxj(r)g

s
r=1; 1 � s < p accomplished at time

ts+1; ts+1 � tp+1, is an e�cient sequence of the (
Ps

r=1 aj(r))-TDMCKP.

Theorem 1 results in the following recursive equations for tp > 0:

G(q(0)) = f0g

G(q(k)) = vmax�ff(fxj(r)g
p
r=1) : fxj(r)g

p
r=1 2 q(k)g

= vmax�ff(fxj(r)g
p�1
r=1) + cj(p)(t

p) :

f(fxj(r)g
p�1
r=1)2G(q(k � aj(p))); j(p)2S; k�aj(p)�0g;

k = 1; : : : ; b;

where the operation vmax� computes the nondominated criterion vectors
according to (7) in the set whose every element is a vector sum of a nondom-
inated criterion vector of the e�cient sequence of projects of the (k � aj(p))-
TDMCKP accomplished at time tp, and the criterion vector cj(p)(t) evaluated
at time tp.
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Since all the states are �nal, the set of all the nondominated criterion
vectors Ye is obtained as the vector-maximum of the union of the setsG(q(k)),
k = 1; : : : ; b; i.e.

Ye = vmax�
[

k=1;:::;b

G(q(k)):

Note that in each step of the recursion two or more nondominated cri-
terion vectors may correspond to di�erent e�cient sequences of projects,
however composed of the same projects, which shows that di�erent criterion
vectors can be achieved while choosing the same projects to a sequence but
at di�erent times. We discuss this and similar situations in Section 4.

4 Example

We now present a didactic example of the time-dependent capital budgeting
problem with three criteria (m = 3).

Assume there are four projects (n = 4) of interest to the company. The
�xed budget equals 3 and the cost coe�cients aj, j = 1; : : : ; 4 of each project
are given by

a1 = 1; a2 = 2; a3 = 1; a4 = 1:

The criteria include the time of performing the projects to be minimized,
and the revenue and appreciation yielded by the projects to be maximized.
The objective vectors cj(t), j = 1; : : : ; 4 related to each project are de�ned
as

c1(t)=

2
64

1
10� t2

40� t

3
75 ; c2(t)=

2
64

2
70� 2t2

10� t

3
75 ; c3(t)=

2
64

t + 1
20� 30t2

20� 2t

3
75 ; c4(t)=

2
64
2t+ 1
30

10� 2t

3
75 :

The resulting TDMCKP has the following form:

vmax� f(x) = [f1(x); f2(x); f3(x)]
T

s.t. a(x) � 3:
(9)

The possible transitions between states for this example problem are rep-
resented by the arcs in the network given in Figure 1. The objective vector
cj(t) = [c1j(t); c

2
j(t); c

3
j(t)]

T of each transition and the corresponding variable
xj are identi�ed for each arc and denoted by the vector [j; cj].
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[2,c  ]2 [2,c  ]2

[1,c  ]1 [1,c  ]1[1,c  ]1

[3,c  ]3 [3,c  ]3

[4,c  ]4 [4,c  ]4 [4,c  ]4

[3,c  ]3 q(1) q(2) q(3)q(0)

Figure 1: The vertices of this network represent the states of the DP-
formulation for the example problem (9).

Applying the recursive equations developed in Section 3 we obtain the
following sets of nondominated criterion vectors G(q(k)), k = 0; 1; : : : ; 3:

G(q(0)) = f0g

G(q(1)) =

8><
>:

2
64
1
10
40

3
75;

2
64
1
20
20

3
75;

2
64
1
30
10

3
75

9>=
>;

G(q(2)) =

8><
>:

2
64
2
19
79

3
75;

2
64
2
29
59

3
75;

2
64
2
39
49

3
75;

2
64
2
70
10

3
75;

2
64
3
47
28

3
75;

2
64
4
40
48

3
75;

2
64
4
50
28

3
75;

2
64
4
60
18

3
75

9>=
>;

G(q(3)) =

8><
>:

2
64

3
25
117

3
75;

2
64
3
35
97

3
75;

2
64
3
45
87

3
75;

2
64
3
78
49

3
75;

2
64
3
88
29

3
75;

2
64
3
98
19

3
75;

2
64
4
48
65

3
75;

2
64
5
54
54

3
75;

2
64
7
49
85

3
75;

2
64
7
59
65

3
75;

2
64
7
69
55

3
75;

2
64

7
100
16

3
75;

2
64
13
70
50

3
75;

2
64
13
80
30

3
75;

2
64
13
90
20

3
75

9>=
>;

The set of e�cient solutions Xe and the set of nondominated criterion
vectors Ye of this example problem can thus be calculated as

Xe = f f g; fx1g; fx3g; fx4g; fx1x1g; fx3x1g; fx4x1g; fx2g; fx1x1x1g; fx3x1x1g;
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fx4x1x1g; fx1x2g; fx3x2g; fx4x2g; fx4x3x1g; fx4x4x1g; fx1x1x4g;

fx3x1x4g; fx4x1x4g; fx2x4g; fx1x4x4g; fx3x4x4g; fx4x4x4gg ;

Ye =

8><
>:

2
64
0
0
0

3
75;

2
64
1
10
40

3
75;

2
64
1
20
20

3
75;

2
64
1
30
10

3
75;

2
64
2
19
79

3
75;

2
64
2
29
59

3
75;

2
64
2
39
49

3
75;

2
64
2
70
10

3
75;

2
64

3
25
117

3
75;

2
64
3
35
97

3
75;

2
64
3
45
87

3
75;

2
64
3
78
49

3
75;

2
64
3
88
29

3
75;

2
64
3
98
19

3
75;

2
64
4
48
65

3
75;

2
64
5
54
54

3
75;

2
64
7
49
85

3
75 ;

2
64
7
59
65

3
75 ;

2
64
7
69
55

3
75 ;

2
64

7
100
16

3
75 ;

2
64
13
70
50

3
75 ;

2
64
13
80
30

3
75 ;

2
64
13
90
20

3
75

9>=
>; :

Note that in this example di�erent criterion vectors are achieved by
choosing the same projects to a solution sequence at di�erent times. For
example, the solution sequences fx4x2g and fx2x4g with the criterion vec-
tors [3; 98; 19]T and [7; 100; 16]T are both nondominated. Similarly, the solu-
tion sequences fx4x4x1g, fx4x1x4g and fx1x4x4g with the criterion vectors
[5; 54; 54]T , [7; 69; 55]T and [13; 70; 50]T are all nondominated.

Furthermore we observe that shorter times are achieved when only one or
two projects are performed which may not be of high priority to the company.
On the other hand, none of the sequences includes all the projects, at most
three projects can be selected in any case, and project 2 seems to be the least
popular in all the sequences.

In order to make a �nal decision what projects should be selected, the
company would have to specify additional preferences. For example, if the
preference was to perform three di�erent projects, two sequences fx4x3x1g
and fx3x1x4g would be the candidates for the �nal optimal solution. The
decision maker would have to choose between the criterion vectors [4; 48; 65]
and [7; 59; 65]. The vectors show that performing project 4 at the beginning
rather than at the end saves time, yields less revenue, and keeps appreciation
at the same level. The �nal decision would be then between the time and
the revenue.
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5 Conclusions

We developed the time-dependent multiple criteria knapsack problem (TDM-
CKP) and used it to model time-dependent capital budgeting with multiple
criteria. The novelty of the formulation comes from the fact that the solution
set of the problem includes e�cient sequences of projects to be performed
consecutively over time. We believe that the new model signi�cantly en-
hances the traditional multiple criteria knapsack model and could be applied
in many decision making situations involving capital budgeting.

Future research should focus on developing more complex models such as
time-dependent models with multiple constraints or multi-period models.
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