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Abstract

In this paper we study the integer multiple criteria knapsack prob-

lem and propose dynamic-programming-based approaches to �nding

all the nondominated solutions.

Di�erent and more complex models are discussed including the

binary multiple criteria knapsack problem, problems with more than

one constraint, and multiperiod as well as time-dependent models.

1 Introduction

The single criterion knapsack problem is a well known combinatorial op-
timization problem with a wide range of applications (for an overview see
e.g. [20, 21]).

Since in many real world applications the preferences of multiple decision
makers have to be incorporated into the model, it is a natural extension of
the classical knapsack model to consider more than one criterion. Examples
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may be found in a�ordability analysis where projects have to be chosen
with respect to more then a single criterion or in Capital Budgeting (see
e.g., [2, 28, 19]). Multiple criteria knapsack problems were used by Kostreva
et al. [18] to deal with relocation issues arising in conservation biology. Teng
and Tzeng [24] applied the multiple criteria multiple constraint knapsack
problem to transportation investment planning.

In this paper we consider the integer multiple criteria knapsack problem
(MCKP) formulated as

vmax f(x) = Cx

s.t. ax � b

xj � 0; integer, j = 1; : : : ; n

(1)

where C is an m � n matrix with nonnegative entries cij, i = 1; : : : ; m,
j = 1; : : : ; n. We denote the ith row of C by ci and the jth column of C
by cj. Thus fi(x) = cix, i = 1; : : : ; m, represent the m con
icting objective
functions. The constraint ax � b is interpreted as a capacity constraint
(budget constraint). The set of feasible solutions of (1) is given by X = fx 2
INn

0 : ax � bg.

Throughout the paper we additionally assume that the weight coeÆcients
aj, j = 1; : : : ; n and the right-hand-side of the capacity constraint b are
positive integers. In order to avoid trivial solutions let 0 < aj � b, j =
1; : : : ; n and

Pn
j=1 aj > b. We also �nd it convenient to consider the MCKP

with the right-hand-side k = 0; 1; : : : ; b of the capacity constraint and denote
this problem by k-MCKP.

A special case of the above formulation is the case that m = 2, i.e. the
bicriteria case. In this case problem (1) becomes

vmax f(x) = [c1x ; c2x]

s.t. ax � b

xj � 0; integer, j = 1; : : : ; n:

(2)

Solving (1) is understood as generating its eÆcient (Pareto) solutions. A
feasible solution x̂ 2 X is said to be an eÆcient solution of (1) if there is no
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other feasible solution x 2 X such that f(x) � f(x̂), i.e.:

8i 2 f1; : : : ; mg f i(x) � f i(x̂)

and 9i 2 f1; : : : ; mg s:t: f i(x) > f i(x̂):
(3)

Let Xe denote the set of eÆcient solutions of (1) and let Ye denote the
image of Xe in the objective space, that is Ye = f(Xe), where f = [f1; : : : ; fm].
Ye is referred to as the set of nondominated solutions of (1).

Despite the wide range of applications, the literature on the MCKP is very
limited. Many authors focus on the determination of the set of supported
nondominated solutions, i.e., those solutions whose pre-images are optimal
solutions of the weighted-sum of the objective functions

max
Pm

i=1 �ic
ix

s.t. ax � b

xj � 0; integer, j = 1; : : : ; n

(4)

for some �i � 0; i = 1; : : : ; m and
Pm

i=1 �i = 1.

In [22], Rosenblatt and Sinuany-Stern suggested a branch and bound al-
gorithm to determine the set of all supported nondominated solutions of
problem (1) with binary variables. Additionally they presented a heuristic
procedure that �nds an approximation of the supported nondominated solu-
tions using signi�cantly less time than the exact procedure. Eben-Chaime [9]
continued the work of Rosenblatt and Sinuany-Stern and proposed a network-
based approach to solve the individual parameterized binary single-criterion
knapsack problems.

In several recent papers, Ulungu and Teghem [26, 27] and Vis�ee, Teghem,
Pirlot and Ulungu [31] pointed out the importance of considering also non-
supported nondominated solutions. In [31] they presented a table showing
that for a large set of randomly generated examples with 10 to 500 variables,
the supported nondominated solutions make up only a small percentage of
all nondominated solutions. By considering only the supported nondomi-
nated solutions a decision maker will be restricted to a small subset of the
nondominated solutions and may be forced to make an unfavorable decision.
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Therefore a two phase method was suggested in [26] that in the �rst phase
constructs all supported nondominated solutions and in the second phase
determines the nonsupported nondominated solutions applying a branch-
and-bound-based algorithm. That work was continued in [27] and [31], where
especially the second phase of the algorithm was improved.

As the MCKP falls into the category of multiple criteria integer pro-
grams, algorithms proposed for �nding all eÆcient solutions of the latter
could be also applied to solve the former. Bitran [3, 4] developed theory and
algorithms for multiple criteria linear programs with binary variables. The
algorithms were based on enumerative schemes and solving some auxiliary
multiple objective programs. Multiple criteria integer linear programs were
studied by several authors. Klein and Hannan [15] developed an algorithm
for generating the complete eÆcient set of such problems. This is a sequential
procedure in which one of the criterion functions is optimized subject to pro-
gressively more constrained feasible sets determined by the other criteria and
previously found eÆcient solutions. A variation of the weighted-sum method
was studied by Chalmet et al. [6] for the same class of problems. As this
method can only �nd the supported nondominated solutions, the authors
introduced an additional constraint to ensure access to the nonsupported
nondominated solutions.

Villarreal and Karwan [29] were perhaps the only ones who proposed
dynamic programming (DP) approaches to the integer multiple criteria mul-
tiple constraint knapsack problem. They proposed four approaches: two
basic ones, an embedded state approach, and a hybrid approach. The �rst
basic approach was very similar to Nemhauser and Gar�nkel's [10] recursive
equations (I) developed for the single objective single constraint knapsack
problem while the second basic approach was a generalization of the recursive
equations (III) of Nemhauser and Gar�nkel [10] for the multiple constraint
knapsack problem. The two other approaches aimed at reducing the com-
putational complexity of the basic approaches. Villarreal and Karwan [30]
extended dynamic programming recursive equations to the general multiple
criteria integer framework and presented them on the binary MCKP with
multiple constraints.

In this paper, we follow upon DP approaches and study them in the
context of di�erent variations of the multiple criteria knapsack model. In
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contrast to the work by Villarreal and Karwan [29] who concentrated on
computational issues, we argue that DP, being a very 
exible technique, is a
unifying umbrella under which all those variations can be solved. Therefore
the purpose of the paper is to provide evidence for the claim that DP is a
versatile modeling tool enabling the user to solve di�erent variations of the
knapsack problem in the same environment.

In Section 2 we present and discuss several DP formulations of the MCKP.
We have chosen those formulations that turned out to be specially useful
while dealing with more complex models. Our presentation is based on three
recursive equations provided by Nemhauser and Gar�nkel [10], and four rep-
resentations collected by Ibaraki [13] for the single criterion single constraint
integer knapsack problem as well as on two basic approaches proposed by
Villarreal and Karwan [29] for the MCKP with multiple constraints. While
adapting DP formulations to the multiple objective case, we used multiple
objective dynamic programming that has been studied by many authors.
Brown and Strauch [5] were probably the �rst to show that Bellman's prin-
ciple of optimality [1] can be extended to models with multiple criteria. Re-
sults directly related to this paper were obtained by Kl�otzler [17] and Yu
and Seiford [32]. Among others, Henig [12] developed a general theory of
dynamic programming with multiple objective functions. Corley and Moon
[7] and Hartley [11] showed how to compute the set of nondominated paths in
a network with vector costs on links while algorithmic procedures for �nding
all nondominated solutions to a multi-stage discrete decision process were
proposed by Trzaskalik [25].

In Section 3, several variations of the original problem are examined in
the context of the DP framework. In particular, we study the binary MCKP,
the MCKP with multiple constraints, a multiple period model and a time-
dependent model, and discuss the applicability of the DP approaches of Sec-
tion 2 to handle all these problems.

Throughout the paper we use a didactic bi-criteria example and its exten-
sions to illustrate our �ndings. Section 4 concludes the paper and highlights
the directions of further research.

2 Dynamic programming approaches

Throughout this section we will use the following didactic example of a bi-
criteria knapsack problem (2) to illustrate the discussed DP-approaches:
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vmax f(x) = [x1 + x2 + 2x3 + 3x4 ; 4x1 + 7x2 + 2x3 + x4]

s.t. x1 + 2x2 + x3 + x4 � 3

xj � 0; integer, j = 1; : : : ; 4:

(5)

In this example, the vector a of weights is given by [1; 2; 1; 1], the ca-
pacity b is 3, and the two objective vectors c1 and c2 are equal to [1; 1; 2; 3]
and [4; 7; 2; 1], respectively. The set of eÆcient solutions Xe and the set of
nondominated solutions Ye of this example problem are:

Xe =

8>>><
>>>:

2
6664
3
0
0
0

3
7775 ;
2
6664
2
0
1
0

3
7775 ;
2
6664
2
0
0
1

3
7775 ;
2
6664
1
0
1
1

3
7775 ;
2
6664
1
0
0
2

3
7775 ;
2
6664
0
0
1
2

3
7775 ;
2
6664
0
0
0
3

3
7775
9>>>=
>>>;
;
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;
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;
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;
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;
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;
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Figure 1: The nondominated solutions of problem (5) in the objective space.
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In the following subsections we present �ve distinct DP formulations of
the MCKP resulting from di�erent de�nitions of states and decisions to be
taken at a given state. At the beginning of each subsection we inform the
reader in detail about related results available in the literature. In general,
whether single or multiple criteria, the knapsack problem can be treated as
a sequential decision making process whose states and transitions between
them are determined by the feasibility constraint of the original problem. The
multiple criteria are treated as a vector cost function de�ned on the states
and decisions of the process. For each model, we develop recursive equations
that yield the set of all nondominated solutions of the MCKP. As these
results are based upon two theoretical well known foundations, we present
them without proofs. First, analogous recursive equations are available for
the single criterion knapsack problem. Second, general recursive equations
for sequential decision making problems with multiple criteria were proved,
see Yu and Seiford [32].

The sequential decision making process of the MCKP can be represented
by a network whose nodes and arcs come from the states and decisions to
be taken in the process. Equivalently, solving the MCKP can be viewed as
�nding the set of all nondominated paths from the initial state(s) to the �nal
state(s) in the network. Therefore, specialized algorithms designed to handle
the shortest path problem in networks with vector costs on links could also
be used to �nd the nondominated solutions of the MCKP.

2.1 Model I

The following DP-approach is an adaptation of the recursive equations given
for the single criterion case in Gar�nkel and Nemhauser [10] (equations III),
Ibaraki [13] (representation 1) and for the MCMCKP in Villarreal and Kar-
wan [29] (approach 2).

Let a set of states Q be de�ned as

Q := fq(0); q(1); : : : ; q(b)g:

In this model the state q(k), k = 0; : : : ; b, represents all nonnegative integer
solutions of the k-MCKP, i.e.

q(k) := fx 2 INn
0 : ax = kg:
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Note that for the initial state q(0) we get q(0) = f0g independently from the
weight vector a and the objective coeÆcients.

Since there may occur nondominated solutions in all states the set of �nal
states QF is given by

QF := fq(0); q(1); : : : ; q(b)g:

The decision of increasing a variable xj by 1 for a solution x 2 q(k)
results in an increase of the right-hand side k by aj and thus corresponds to
a transition of x from the state q(k) to the state q(k + aj).

The possible transitions between states for the example problem (5) are
represented by the arcs in the network N1 given in Figure 2. The objec-
tive value (c1j ; c

2
j) of each transition and the corresponding variable xj are

identi�ed for each arc and denoted by the vector [j; (c1j ; c
2
j)].

q(1) q(2) q(3)q(0)

[2,(1,7)]

[4,(3,1)] [4,(3,1)]

[1,(1,4)] [1,(1,4)][1,(1,4)]

[3,(2,2)] [3,(2,2)] [3,(2,2)]

[2,(1,7)]

[4,(3,1)]

Figure 2: The vertices of network N1 represent the states of the corresponding
DP-formulation for the example problem (5).

Let G(q(k)), k = 0; 1; : : : ; b, be the set of all nondominated solutions of
the k-MCKP. Then the original MCKP can be solved applying the following
recursive equations:

G(q(0)) = f0g

G(q(k)) = vmaxfG(q(k � aj)) + cj : j 2 S; k � aj � 0g; k = 1; : : : ; b;

where S := f1; : : : ; ng denotes the index set of the variables xj, j = 1; : : : ; n,
and operation vmax computes the nondominated solutions in the set being
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the algebraic sum of the cost vector cj and the set of all the nondominated
solutions of the (k � aj)-MCKP.

Since all the states are �nal, the set of vector costs of all nondominated
solutions Ye is obtained as the vector-maximum of the union of the sets
G(q(k)), k = 1; : : : ; b, i.e.

Ye = vmax
[

k=0;1;:::;b

G(q(k)): (6)

Note that in this formulation multiple nondominated solutions may occur
in each step of the recursion since the variables can be selected in a di�erent
order. To avoid multiple solutions a reduction has to be applied in each stage
additionally to the reduction due to dominated solutions.

In the following we illustrate the application of the recursion using the
example introduced in (5).

G(q(0)) =

("
0
0

#)

G(q(1)) = vmax fG(q(0)) + c1;G(q(0)) + c3;G(q(0)) + c4g

= vmax

(("
0
0

#)
+

"
1
4

#
;

("
0
0

#)
+

"
2
2

#
;

("
0
0

#)
+

"
3
1

#)

= vmax

("
1
4

#
;

"
2
2

#
;

"
3
1

#)

=

("
1
4

#
;

"
2
2

#
;

"
3
1

#)

G(q(2)) = vmax fG(q(1)) + c1;G(q(0)) + c2;G(q(1)) + c3;G(q(1)) + c4g

= vmax

(("
1
4

#
;

"
2
2

#
;

"
3
1

#)
+

"
1
4

#
;

("
0
0

#)
+

"
1
7

#
;

("
1
4

#
;

"
2
2

#
;

"
3
1

#)
+

"
2
2

#
;

("
1
4

#
;

"
2
2

#
;

"
3
1

#)
+

"
3
1

#)

= vmax

("
2
8

#
;

"
3
6

#
;

"
4
5

#
;

"
1
7

#
;

"
3
6

#
;

"
4
4

#
;

"
5
3

#
;

"
4
5

#
;

"
5
3

#
;

"
6
2

#)
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=

("
2
8

#
;

"
3
6

#
;

"
4
5

#
;

"
5
3

#
;

"
6
2

#)

G(q(3)) = vmax fG(q(2)) + c1;G(q(1)) + c2;G(q(2)) + c3;G(q(2)) + c4g

= � � � =

("
3
12

#
;

"
4
10

#
;

"
5
9

#
;

"
6
7

#
;

"
7
6

#
;

"
8
4

#
;

"
9
3

#)

Ye = vmax fG(q(0)); G(q(1)); G(q(2)); G(q(3))g

= vmax

("
0
0

#
;

"
1
4

#
;

"
2
2

#
;

"
3
1

#
;

"
2
8

#
;

"
3
6

#
;

"
4
5

#
;

"
5
3

#
;

"
6
2

#
;

"
3
12

#
;

"
4
10

#
;

"
5
9

#
;

"
6
7

#
;

"
7
6

#
;

"
8
4

#
;

"
9
3

#)

=

("
3
12

#
;

"
4
10

#
;

"
5
9

#
;

"
6
7

#
;

"
7
6

#
;

"
8
4

#
;

"
9
3

#)
:

The set of eÆcient solutions Xe can be found by keeping track of the
variables that contribute to the elements of the sets G(q(k)); k = 0; 1; : : : ; b:

2.2 Model II

The recursive equations given in this section were developed by Ibaraki [13]
(representation 2) for the single criterion case.

In Model II, a set of states Q is de�ned as

Q := fq(k; j) : k = 1; : : : ; b; j = 1; : : : ; ng

where the state q(k; j), k = 1; : : : ; b, j = 1; : : : ; n, is de�ned as the set of all
feasible solutions of the k-MCKP satisfying xj > 0 and xj+1; : : : ; xn = 0, i.e.

q(k; j) := fx 2 INn
0 :

jX
p=1

apxp = k; xj > 0; xj+1; : : : ; xn = 0g:

The initial state q(0; 0) is given by q(0; 0) = f0g.
As in the previous model, all states in this model are �nal, i.e. the set of

�nal states QF is given by

QF := fq(0; 0)g [ fq(k; j) : k = 1; : : : ; b; j = 1; : : : ; ng:
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The decision of increasing a variable xj by 1 in a state q(k; p) with 0 � p �
j corresponds to a transition from the state q(k; p) to the state q(k + aj; j).
Once a variable xj is increased, a variable xp with p < j cannot be changed.
Model II applied to the example problem (5) yields the network in Figure 3.

(3,1) (3,2) (3,3) (3,4)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(0,0)

Figure 3: The vertices of network N2 represent the states of Model II for
the example problem (5). The edge weights of all edges pointing to a vertex
(k; j), k = 1; : : : ; b, in this network are equal to the cost vector cj. Note that
some states in this model may be empty, e.g., q(1; 2) = ;.

Let G(q(k; j)) denote the set of all nondominated solutions in the state
q(k; j).

For convenience we assume in the following that the sets of nondominated
solutions are initialized by G(q(k; j)) = f0g for all k = 1; : : : ; b, j = 1; : : : ; n.

Then the MCKP can be solved by applying the following recursive equa-
tions:

G(q(0; 0)) = f0g;

G(q(k; j)) = vmaxfG(q(k � aj; p)) + cj : k � aj � 0; p � jg

k = 1; : : : ; b; j = 1; : : : ; n;

where operation vmax computes the nondominated solutions of the set being
the algebraic sum of the cost vector cj and the set of all the nondominated
solutions in the state q(k � aj; p).

Since all states in this model are �nite states, the set of nondominated
solutions Ye is obtained as the vector-maximum of G(q(0; 0)) and the union
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of the sets G(q(k; j)), k = 1; : : : ; b, j = 1; : : : ; n; i.e.

Ye = vmax
[

k=1;:::;b
j=1;:::;n

G(q(k; j)) [ G(q(0; 0)): (7)

Model II contains considerably more states than Model I. On the other
hand, multiple nondominated solutions are avoided due the structure of the
recursion.

2.3 Model III

The model described in this section, developed by Gar�nkel and Nemhauser
[10] (equations I) and Ibaraki [13] (representation 3) for the single criterion
case, and by Villarreal and Karwan ([29], approach 1), [30] for the MCKP
with multiple constraints, can be viewed as an extension of Model II. A very
similar model was also used by Eben-Chaime [9] to determine the supported
nondominated solutions of the MCKP.

The set of states Q is de�ned as

Q := fq(k; j) : k = 0; 1; : : : ; b; j = 0; 1; : : : ; ng

where the state q(k; j), k = 0; 1; : : : ; b, j = 0; 1; : : : ; n, represents all nonneg-
ative integer solutions satisfying

Pj
p=1 apxp = k, i.e.

q(k; j) := fx 2 INn
0 :

jX
p=1

apxp = k; xj+1; : : : ; xn = 0g:

Note that in this model and similarly in Model IV (as it will be seen in the
following section) the assumption that xj+1; : : : ; xn = 0 for all x 2 q(k; j)
could be omitted since each variable will be necessarily �xed during the
decision process.

Each stage j, j = 1; : : : ; n, of the corresponding DP-procedure consists
of the states q(k; j), k = 0; 1; : : : ; b. Thus stage j may be interpreted as
consisting of those feasible solutions for which the �rst j variables are �xed.

In this model we de�ne q(k; 0) = f0g for all states q(k; 0), k = 0; 1; : : : ; b
in the initial stage of the procedure. The set of �nal states QF is given by

QF := fq(k; n) : k = 0; 1; : : : ; bg:
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The decision of �xing a variable xj to a value � 2 IN0 in the state q(k; j�1)
corresponds to a transition from the state q(k; j � 1) to the state q(k +
ajxj; j) since this variable is �xed and the current right-hand side increases
accordingly by ajxj.

Network N3 (as shown in Figure 4 for the example problem (5)) depicts
all possible transitions between the di�erent states.

(1,1)(1,0) (1,2) (1,3) (1,4)

(2,0) (2,2)(2,1) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(0,0) (0,1) (0,2) (0,3) (0,4)

Figure 4: The vertices of network N3 represent the states of Model III for the
example problem (5). The weights of all horizontal arcs are equal to (0; 0).

Let G(q(k; j)) denote the set of all nondominated solutions of the k-
MCKP whose �rst j variables have been �xed.

With the states de�ned above, the MCKP can be solved by applying the
following recursive equations:

G(q(k; 0)) = f0g; k = 0; 1; : : : ; b

G(q(k; j)) = vmaxfG(q(k�ajxj; j�1)) + xjcj : xj2IN0; k�ajxj�0g

k = 0; 1; : : : ; b; j = 1; : : : ; n;

where operation vmax computes the nondominated solutions of the set being
the algebraic sum of the cost vector cj and the set of all the nondominated
solutions of the (k�ajxj)-MCKP whose �rst j�1 variables have been �xed.

The set of nondominated solutions Ye is obtained as the vector-maximum
of the union of the sets G(q(k; n)), k = 0; 1; : : : ; b; i.e.

Ye = vmax
[

k=0;1;:::;b

G(q(k; n)): (8)
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In this formulation multiple nondominated solutions are avoided as in the
previous model since in each stage of the recursion exactly one additional
variable is �xed.

2.4 Model IV

This model was developed by Gar�nkel and Nemhauser [10] (equations II)
for the single criterion case. It is very similar to Model II since variables are
always increased by 1, and to Model III as decisions are consecutively made
for the individual variables. A speci�c feature of this model is that in the
recursion each state has exactly two predecessors.

De�ne the set of states Q as

Q := fq(k; j) : k = 0; 1; : : : ; b; j = 0; 1; : : : ; ng:

The state q(k; j), k = 0; 1; : : : ; b, j = 0; 1; : : : ; n, represents all nonnegative
integer solutions satisfying

Pj
p=1 apxp = k, i.e.

q(k; j) := fx 2 INn
0 :

jX
p=1

apxp = k; xj+1; : : : ; xn = 0g:

As in Model III, q(k; 0) = f0g for all states q(k; 0), k = 0; 1; : : : ; b in the
initial stage of the procedure. The set of �nal states QF is given by

QF := fq(k; n) : k = 0; 1; : : : ; bg:

Here the decision of increasing the variable xj by 1 in the state q(k; j)
corresponds to a transition from the state q(k; j) to the state q(k + aj; j).

Network N4 (see Figure 5 for the example problem (5)) shows the possible
transitions between the di�erent states.

Let G(q(k; j)) denote the set of all nondominated solutions of the k-
MCKP in the state q(k; j).

Then the following recursive equations yield a solution to the MCKP:

G(q(k; 0)) = f0g; k = 0; 1; : : : ; b

G(q(k; j)) = vmaxfG(q(k; j�1)); G(q(k�aj; j)) + cj : k�aj�0g

k = 0; 1; : : : ; b; j = 1; : : : ; n;
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(0,0) (0,1) (0,2) (0,3) (0,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(2,0) (2,2)(2,1) (2,3) (2,4)

(1,1)(1,0) (1,2) (1,3) (1,4)

(1,4)

(1,4)

(1,4)

(1,7)

(1,7)

(2,2)

(2,2)

(2,2)

(3,1)

(3,1)

(3,1)

Figure 5: The states of Model IV for the example problem (5). The weights
of all horizontal arcs are equal to (0; 0).

where operation vmax computes the nondominated solutions of the union
of the set of all the nondominated solutions in the state q(k; j � 1) and
the set being the algebraic sum of the cost vector cj and the set of all the
nondominated solutions in the state q(k � aj; j).

The set of nondominated solutions Ye is obtained as the vector-maximum
of the union of the sets G(q(k; n)), k = 0; 1; : : : ; b; i.e.

Ye = vmax
[

k=0;1;:::;b

G(q(k; n)): (9)

2.5 Model V

Model V, given by Ibaraki [13] (representation 4) for the single criterion case,
describes a completely di�erent approach to solve the MCKP. Namely, the
multiple-criteria and single constraint model is solved as a single criterion
and multiple-constraint model.

Consider the following problem, where the roles of the objective functions
and the constraint are interchanged with respect to problem (1):
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min ax

s.t. Cx � y

xj � 0; integer, j = 1; : : : ; n:
(10)

The right-hand side y = (y1; : : : ; ym)
T 2 IRm

+ in this model can be inter-
preted as a nonnegative vector value of problem (1).

For di�erent right-hand sides y, let z(y) 2 IR+ denote the optimal ob-
jective value of (10). Then any solution that satis�es z(y) � b is a feasible
solution to the original problem (1). Thus the set of all nondominated solu-
tions of (1) can be found as the set of nondominated right-hand side vectors
y for which the optimal solution z(y) of (10) satis�es z(y) � b.

Let
Y := fy 2 INm : yi 2 f0; 1; : : : ; yi;maxg; i = 1; : : :mg

where yi;max is an upper bound on the right-hand side component yi. An
example for the choice of yi;max is

yi;max := b �max

(
cij

aj
: j = 1; : : : ; n

)
; i = 1; : : : ; m:

Using this derivation, the set Y for the example problem introduced in (5)
would be given by

Y =

(
y =

"
y1
y2

#
2 IN2 : y1 2 f0; 1; : : : ; 9g; y2 2 f0; 1; : : : ; 12g

)
:

Then a set of states Q can be de�ned as

Q := fq(y; j) : y 2 Y; j = 0; 1; : : : ; ng;

yielding

Q = fq(y1; y2; j) : y1 = 0; 1; : : : ; 9; y2 = 0; 1; : : : ; 12; j = 0; 1; : : : ; 4g

for the example problem and thus a total of 650 states!
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Analogously to Model III, the state q(y; j), y 2 Y , j = 0; 1; : : : ; n, repre-
sents all the nonnegative integer solutions satisfying

Pj
p=1 xpc

p = y, i.e.

q(y; j) := fx 2 INn
0 :

jX
p=1

xpcp = y; xj+1; : : : ; xn = 0g:

Each stage j, j = 1; : : : ; n, consists of the states q(y; j), y 2 Y .
As in Model III, we have q(y; 0) = f0g for all states q(y; 0), y 2 Y in the

initial stage of the procedure. The set of �nal states QF is de�ned as

QF := fq(y; n) : y 2 Y g:

Let G(q(y; j)) denote the optimal solution z(y) in the state q(y; j).
Then the MCKP can be solved by applying the following recursive equa-

tions:

G(q(y; 0)) = f0g; y 2 Y

G(q(y; j)) = minfG(q(y � xjcj; j � 1)) + ajxj : xj 2 IN0; y � xjcj � 0g

y 2 Y; j = 1; : : : ; n:

Note that in this recursion no vector-minimization is needed and that each
set G(q(y; j)) contains exactly one scalar. Namely G(q(y; j)) is the solution
z(y; j) of problem (10) with right-hand side y, where only the �rst j variables
x1; : : : ; xj are considered.

The set of nondominated solutions Ye of the original problem (1) is ob-
tained as the vector-maximum of all the feasible solutions of (1) determined
by the above recursion, i.e.

Ye = vmaxfy 2 Y : G(q(y; n)) � bg: (11)

2.6 Comparison of the models

We now compare and discuss the �ve models representing the MCKP. Al-
though the states of all the models are de�ned di�erently, each model rep-
resents a loop-free sequential decision making process, i.e., a process whose
states can be indexed in an increasing order so that the transition from one
state always takes place to a state with a higher index.
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As the de�nition of the state is closely connected to the de�nition of the
decision taken at every state, almost every model employs another decision
concept. Observe that the recursions given in Models I, II, and IV are based
on sequential decisions to increase a variable by 1 while in Models III and V
they are based on decisions to �x a variable to some integer value �. Fixing
a variable implies that once a value is assigned to the variable, it is never
changed throughout the decision process. On the other hand, in Model I a
variable xj can be increased at any time during the process while Models II
- V use a di�erent approach where the variables xj of a feasible solution x

are determined in the order j = 1; : : : ; n.
The de�nition of the decision to be taken in every state determines

whether a model is a multi-stage decision process or not, i.e. a process in
which each transition from a state always takes place to a state at the next
stage. We conclude that only Models III and V represent a multi-stage se-
quential decision process.

The structure of each model, including the number of states, the number
of �nal states, and the number of transition edges, a�ects the computational
complexity of each formulation. In this regard, Model I is superior to the
others while Model V is the most complex. Simplicity of Model I, how-
ever, produces multiple nondominated solutions, as mentioned in Section
2.1, which is an additional although computationally insigni�cant obstacle
not featured by the other models.

A summary of all the features of the �ve models is presented in Table 1.

3 Extensions

In this section we propose several extensions of the basic MCKP and relate
them to real-life applications. We also discuss the extensions in the context of
the �ve models of Section 2 and recommend the most eÆcient DP approach
to each of them.

3.1 The binary multiple criteria knapsack problem

The binary MCKP as well as the integer MCKP with bounded variables are
of special interest since they are needed to model many real-life situations.
As an example consider a set of di�erent projects that a decision maker may
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Model I Model II Model III Model IV Model V

decision
taken at
the state

q(k):
any variable
can be in-
creased by 1

q(k; j): the
variable xj

or any other
variable xi,
i > j can be
increased
by 1

q(k; j):
the variable
xj+1 is �xed

q(k; j):
the variable
xj can be in-
creased by 1
or the next
variable xj+1

is considered

analogous
to Model
III

loop-free yes yes yes yes yes

multi-stage no no yes no yes

�nal states q(k),
k=0; 1; : : : ; b

q(k; j),
k=0; 1; : : : ; b,
j=1; : : : ; n

q(k; n),
k=0; 1; : : : ; b

q(k; n),
k=0; 1; : : : ; b

q(y; n),
y 2 Y

# of states b+ 1 bn+ 1 (b+1)(n+1) (b+1)(n+1) (n+ 1)jY j

# of transi-
tion edges

nb O(n2b) O(nb2) n(2b+ 1) O(njY j2)

Table 1: Comparison of Models I-V

either choose or not. Since a partial engagement may not be possible, binary
variables are needed to model this type of problem.

In this section we concentrate on the binary MCKP (BMCKP) formulated
as

vmax f(x) = Cx

s.t. ax � b

x 2 f0; 1gn:
(12)

All �ve DP approaches described in the previous section can be adapted
to the case of binary variables since the BMCKP can be formulated as the
(integer) MCKP with multiple constraints (see Section 3.2). Nevertheless, we
mainly focus on Models II and III since binary variables can be incorporated
into these models without increasing the overall number of states. This is
not possible in the case of Models I and IV where the additional information
about the value of each variable has to be incorporated into the di�erent
states. Model V will be disregarded in this discussion since it does not seem
to be favorable due to a large number of states.

We �rst modify Model II to handle binary variables. Each state q(k; j)
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is rede�ned as

q(k; j) := fx 2 f0; 1gn :
jX

p=1

apxp = k; xj = 1; xj+1; : : : ; xn = 0g:

The decision of �xing a variable xj to 1 in a state q(k; p) with 0 � p < j

(compare with Model II) corresponds to a transition from the state q(k; p)
to the state q(k + aj; j). The corresponding decision process is represented
by the network given for the example problem (5) in Figure 6.

(3,1) (3,2) (3,3) (3,4)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(0,0)

Figure 6: The edge weights of all edges pointing to a vertex (k; j), k =
1; : : : ; b, in this network are equal to the cost vector cj.

Similar to the recursion de�ned in Model II, the following recursive equa-
tions can be used to solve the BMCKP:

G(q(0; 0)) = f0g;

G(q(k; j)) = vmaxfG(q(k � aj; p)) + cj : k � aj � 0; p < jg

k = 1; : : : ; b; j = 1; : : : ; n:

The set of nondominated solutions Ye of the BMCKP can be then found
applying formula (7).

A similar adaptation to the BMCKP can be given for Model III. In this
model, a state q(k; j) is de�ned as

q(k; j) := fx 2 f0; 1gn :
jX

p=1

apxp = k; xj+1; : : : ; xn = 0g:
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Similar to the original model, the decision of �xing a variable xj to 0 or 1 in
the state q(k; j � 1) corresponds to a transition from the state q(k; j � 1) to
the state q(k + ajxj; j).

The network for the example problem (5) given in Figure 7 depicts all
possible transitions between the di�erent states as well as the corresponding
objective values (c1j ; c

2
j).

(1,1)(1,0) (1,2) (1,3) (1,4)

(2,0) (2,2)(2,1) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,4)

(1,4)

(1,4) (1,7)

(1,7)

(2,2)

(2,2)

(2,2)

(3,1)

(3,1)

(3,1)

Figure 7: The weights of all horizontal arcs in this network are equal to (0; 0).

With the states de�ned above, the BMCKP can be solved by applying
the following recursive equations:

G(q(k; 0)) = f0g; k = 0; 1; : : : ; b

G(q(k; j)) = vmaxfG(q(k�ajxj; j�1)) + xjcj : xj 2 f0; 1g; k�ajxj�0g

k = 0; 1; : : : ; b; j = 1; : : : ; n:

The set of nondominated solutions Ye of the BMCKP can be then found
applying formula (8).

Both models solve the BMCKP utilizing the same number of states as
was needed to solve the integer MCKP. Model II leads again to a loop-free
procedure whereas Model III is a multi-stage procedure as was discussed in
Section 2. Note that the methods developed in this section can also be easily
adapted to handle integer models with bounded variables.

3.2 Models with multiple constraints

Knapsack models with more than a single constraint have many applications
especially in a�ordability analysis. Often more than one budget category has
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to be taken into account before deciding whether a project should be under-
taken or not. Each budget category may have its own budget constraints.
Furthermore, the multiple constraint knapsack problem can be viewed as the
most general formulation of the knapsack problem, including e.g. the binary
problem as well as problems with bounded variables as special cases.

The resulting problem is the multiple constraint multiple criteria knap-
sack problem (MCMCKP):

vmax f(x) = Cx

s.t. Ax � B

xj � 0; integer, j = 1; : : : ; n
(13)

with s linearly independent constraints, where A is an s� n matrix and
B is an s-dimensional vector. We denote the ith row of A by ai and the jth
column of A by aj.

Analogously to the original problem formulation, we assume that the
weights aij, i = 1; : : : ; s, j = 1; : : : ; n are nonnegative integers and the capac-
ities bi, i = 1; : : : ; s, are positive integers. In order to avoid trivial solutions
let 0 � aij � bi, i = 1; : : : ; s, j = 1; : : : ; n, and

Pn
j=1 a

i
j > bi, i = 1; : : : ; s.

As in the case of the BMCKP, Models I through IV given in Section 2 can
be adapted so that the MCMCKP can be solved by the corresponding DP
procedures. One way of achieving this is obviously the transformation of the
problem with multiple constraints into a problem with a single constraint so
that both problems have the same set of feasible solutions. The integration
of several constraints into a single constraint is possible, on the other hand
the tradeo� of this approach is a considerably increased value of the right-
hand-side b [23].

A more eÆcient way of incorporating multiple constraints into Models I
through IV is the introduction of an s-dimensional right-hand-side vector 0 �
K � B, replacing the right-hand-side k 2 IN0 in the single constraint model.
The corresponding K-MCMCKP is accordingly de�ned as the MCMCKP
with the right-hand-side vector K, 0 � K � B. The notation K � B is
de�ned as ki � bi, i = 1; : : : ; s where K = [k1; : : : ; ks].

Using this notation, the recursions given in Models I through IV in Sec-
tion 2 can be immediately applied to solve the MCMCKP, where the overall
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number of states needed in each model can be calculated as follows:

model number of states

I
Qs

i=1(bi + 1)

II 1 + n �
Qs

i=1 bi

III & IV (n+ 1) �
Qs

i=1(bi + 1):

As Model I uses the smallest number of states, we illustrate our approach
with this model. Villarreal and Karwan [29] used the same model for their
analysis of the MCMCKP.

A state q(K) is de�ned as

q(K) := fx 2 INn
0 : Ax = Kg:

Figure 8 depicts the decision process of Model I for problem (5) extended by
the second constraint 2x2 + x3 + 2x4 � 2.

(0,0) (1,0) (2,0) (2,0)
[1,(1,4)] [1,(1,4)][1,(1,4)]

(0,2) (1,2) (2,2) (3,2)
[1,(1,4)] [1,(1,4)] [1,(1,4)]

(0,1) (1,1) (2,1) (3,1)[1,(1,4)] [1,(1,4)] [1,(1,4)]

[2,(1,7)] [2,(1,7)]

[3,(2,2)]

[3,(2,2)] [3,(2,2)] [3,(2,2)]

[3,(2,2)][3,(2,2)]

[4,(3,1)][4,(3,1)][4,(3,1)]

Figure 8: States and possible transitions between states with respect to
Model I for the example problem (5) extended by the constraint 2x2 + x3 +
2x4 � 2.

Let G(q(K)), 0 � K � B, be the set of all nondominated solutions of
the K-MCKP. Then the MCMCKP can be solved applying the following
recursive equations:

G(q(0)) = f0g

G(q(K)) = vmaxfG(q(K � aj)) + cj : j2S; K�aj � 0g; 0 � K � B:
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The set of nondominated solutions Ye of the MCMCKP can be then found
applying formula (6) and taking the union over all 0 � K � B.

3.3 Multiperiod models

Problems with multiple time periods are frequently encountered in practice.
In many real-life situations the available budget depends on the �scal year
or other time periods during which certain expenses have to be made.

In [8], Dudzi�nski and Walukiewicz propose a multiple period model of the
binary single criterion knapsack problem and solve it using LP-relaxation.
Following their model, we formulate the multiple period multiple constraint
knapsack problem (MPMCKP) as:

vmax f(x) = Cx

s.t.
Pr

i=1

P
j2Si

ajxj � br; r = 1; : : : ; s

xj � 0; integer, j = 1; : : : ; n
(14)

where the index set of the variables S = f1; : : : ; ng is partitioned into
s pairwise disjoint subsets S1; : : : ; Ss so that S =

Ss
r=1 Sr. The constraint

coeÆcients aj, j = 1; : : : ; n and br, r = 1; : : : ; s are positive integers satisfying
0 < b1 � � � � � bs. Each of the subsets Sr, r = 1; : : : ; s can be interpreted as
corresponding to the time period r. A variable xj may be changed from 0 to
a value � 2 IN0 in the r-th time period only if j 2 Sr. Thus the set Sr can be
interpreted as a set of projects which may be selected only in one given time
period. Each time period has its individual budget constraint. If the budget
is not entirely used in one time period, the remaining budget is still available
in the following time period. On the other hand no part of the budget can
be used before it gets available. The total available budget in time period r

thus is given by br, r = 1; : : : ; s.

First notice that the problem (14) is a special case of the knapsack model
with multiple constraints discussed in Section 3.2 and therefore can be solved
using the corresponding recursive equations.

A di�erent approach based on Model III that exploits the special structure
of the staircase constraints and thus uses remarkably less states is given in
this section.
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Assume that the variables are sorted so that S1 = fj0; : : : ; j1g; S2 =
fj1 + 1; : : : ; j2g; : : : ; Ss = fjs�1 + 1; : : : ; jsg where j0 = 1 and js = n. Let
Sr = fjr�1 + 1; : : : ; jrg; r = 1; : : : ; s. The set Q of states is de�ned as

Q :=
s[

r=1

fq(k; j) : k = 0; 1; : : : ; br; j 2 Srg [ fq(k; 0) : k = 0; 1; : : : ; b1g;

where the state q(k; j), k = 0; 1; : : : ; br, j 2 Sr, is de�ned as

q(k; j) := fx 2 INn
0 :

jX
p=1

apxp = k; xj+1; : : : ; xn = 0g:

Similar to the original Model III, the decision of �xing a variable xj to � 2 IN0

in the state q(k; j � 1) corresponds to a transition from the state q(k; j � 1)
to the state q(k + ajxj; j).

Figure 9 shows all possible transitions between states for the example
problem (5) with two time periods. Time period 1 is given by S1 = f1; 2g
and time period 2 is given by S2 = f3; 4g. The corresponding right-hand-
sides of the capacity constraints are b1 = 2 and b2 = 3.

(1,1)(1,0) (1,2) (1,3) (1,4)

(2,0) (2,2)(2,1) (2,3) (2,4)

(3,3) (3,4)

(0,0) (0,1) (0,2) (0,3) (0,4)

Figure 9: The weights of all horizontal arcs are equal to (0; 0).

For convenience, we assume that the sets of nondominated solutions are
initialized by G(q(k; j)) = f0g for all k = 0; 1; : : : ; bs, j = 0; 1; : : : ; n. Then
the MPMCKP can be solved applying the following recursive equations:

G(q(k; 0)) = f0g; k = 0; 1; : : : ; b1

G(q(k; j)) = vmaxfG(q(k�ajxj; j�1)) + xjcj : xj 2 IN0; k�ajxj�0g

r = 1; : : : ; s; k = 0; 1; : : : ; br; j 2 Sr:
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The set of nondominated solutions Ye of the MPMCKP can be then found
applying formula (8) and taking the union over all k = 0; 1; : : : ; bs.

Using these recursive equations, the MPMCKP can be solved with the
same number of states as was needed to solve the MCKP in Model III. The
total number of states is bounded by (n + 1)(bs + 1) and the obtained DP
procedure is again a multi-stage process as was already discussed in Section
2.

Further extensions such as the incorporation of binary or bounded vari-
ables (see Section 3.1) are also possible.

3.4 Time-dependent models

Introducing time-dependency to the knapsack model is a challenging task
however dictated by real-life applications that feature time-varying data.
Furthermore, in many applications the parameters of the knapsack problem
may change over time (e.g., variable earnings or revenues to be maximized),
which has been recently recognized by Kleywegt and Papastavrou [16].

A time dependent version of the MCKP in which the vector of objective
functions is composed of time-dependent functions, i.e. the time-dependent
multiple criteria knapsack problem (TDMCKP) can be solved using Model I.
Under the assumption that time is to be minimized while other monotonous,
time dependent functions are to be maximized, recursive equations based
on those developed in Model I can be derived in order to obtain all the
nondominated solutions of the TDMCKP. A distinct feature of this model is
that its feasible solutions are de�ned as sequences of elements to be chosen at
di�erent times in a decision process. For a detailed discussion of this model
the reader is referred to [14].

4 Conclusions

In this paper we study the basic MCKP and its more complex extensions
including binary variables, multiple constraints, multiple periods, and time-
dependent criterion functions.

We �rst reviewed the DP approaches available in the literature (almost
all to the single criterion problem) and then generalized them to handle the
basic problem and the extensions. We hence proposed a comprehensive DP-
framework able to solve a broad class of knapsack problems.
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We believe that this class could be enlarged with knapsack models fea-
turing uncertainty or time-dependent constraints. Another direction of fur-
ther research could aim at eÆcient implementations of the proposed DP
approaches.
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