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Abstract

We propose to use block norms to generate nondominated solutions

of multiple criteria programs and introduce the new concept of the

oblique norm that is specially tailored to handle general problems. We

show the applicability of oblique norms to deal with discrete or convex

bicriteria programs and also discuss implications of using block norms

in multiple criteria decision making.

Keywords: Bicriteria optimization, bicriteria programming, block

norms, oblique norms, properly nondominated points.

1 Introduction

Compromise programming is based on the concept of identifying nondom-
inated solutions of multiple criteria programs that are the closest to some
utopia (ideal) point. Di�erent norms have been used to measure the dis-
tance between the solutions and the utopia point. In particular, the family
of Lp norms has been extensively studied by many researchers, including [Yu,
1973], [Zeleny, 1973], [Gearhart, 1979], [Wierzbicki, 1980], [Steuer and Choo,
1983], [Steuer, 1986], and many others. The l1 norm and the augmented l1
norm turned out to be very useful in generating nondominated solutions of
general continuous or discrete multiple criteria programs and led to the well
known weighted (augmented) Tchebyche� scalarization and its variations.
[Kaliszewski, 1987] introduced a modi�ed l1 norm and showed its applica-
bility in generating nondominated solutions. Compromise programming was
extended by [Szidarovszky et al., 1986] to composite programming using more
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than one value of p in the lp distance. [Ballestero and Romero, 1998] analyzed
connections between compromise programming and utility theory. [Carrizosa
et al., 1996] proposed a new class of norms that contains the family of Lp
norms to generate the set of points that have minimal distance to the utopia
point with respect to at least one norm within this class of norms. Their
approach leads to solving linear programs while generating nondominated
solutions.

Not only have norms been bene�cial in constructing scalarization ap-
proaches to multiple criteria programs but also become suitable tools sup-
porting decision making. The choice of the utopia point and weights usually
expresses decision maker's preferences in the objective space while select-
ing the most preferred nondominated solution. Applications of norm-based
methods can be found in structural design [Miura and Chargin, 1996], water
resource management [B�ardossy et al., 1985], manpower planning [Silverman
et al., 1988], transportation and location [Ogryczak et al., 1988] and many
other areas.

Motivated by the success of norm-based approaches in MCDM, we pro-
pose to apply block norms to generate nondominated solutions as well as to
support the decision making process. The family of block norms, also called
polyhedral norms, includes all the norms whose unit ball is a polyhedral set,
so that the l1 norm and the l1 norm are members of this family. In this
paper, we introduce the concept of the oblique norm that can be viewed as a
generalization of the augmented l1 norm. This new norm is designed to pre-
serve capabilities of the l1 norm and the augmented l1 norm while allowing
the decision maker more freedom in the choice of a distance measure.

In the next section we de�ne the oblique norm and derive some proper-
ties useful for �nding nondominated solutions. Section 3 contains the main
results of the paper. We �rst examine relationships between nondominated
solutions of a general multiple criteria program and optimal solutions of its
scalarization by means of a block norm and an oblique norm. In the sec-
ond part of this section we focus on bicriteria programs. In particular, we
examine relationships between (properly) nondominated solutions of (�nite)
discrete problems and (polyhedral) convex problems and optimal solutions
of related scalarizations by means of an oblique norm. At the end of this
section we discuss practical implications of using block norms in MCDM and
in Section 4 we highlight future research directions.

To facilitate further discussions, the following notation is used throughout
the paper. Let u;w 2 IRn be two vectors.

� We denote components of vectors by subscripts and enumerate vectors
by superscripts.

� u < w denotes ui < wi for all i = 1; : : : ; n. u � w denotes ui � wi
for all i = 1; : : : ; n, but u 6= w. u 5 w allows equality. The symbols
>;�;= are used accordingly.



� Let IRn
= := fx 2 IRn : x = 0g. If S � IRn, then S= := S \ IRn

=.

� hu;wi denotes the scalar product in IRn: hu;wi =
Pn

i=1 uiwi.

� conv(S) denotes the convex hull of a set S � IRn.

� int(S) denotes the interior of S � IRn.

We consider the following general multiple criteria program

min fz1 = f1(x)g
...

min fzn = fn(x)g
s. t. x 2 S;

(1)

where S � IRm is the feasible set and fi(x); i = 1; : : : ; n; are real-valued
functions. We de�ne the set of all feasible criterion vectors Z, the set of all
nondominated criterion vectors N and the set of all eÆcient points E of (1)
as follows

Z = fz 2 IRn : z = f(x); x 2 Sg = f(S)

N = fz 2 Z : @~z 2 Z s. t. ~z � zg

E = fx 2 S : f(x) 2 Ng;

where f(x) =
�
f1(x) � � � fn(x)

�T
. The set Z is assumed to be closed. The

point z� 2 IRn with

z�i = minffi(x) : x 2 Sg � "i i = 1; : : : ; n

is called the ideal (utopia) criterion vector, where the entries of " 2 IRn are
small positive numbers. Without loss of generality we assume z� = 0.

We de�ne the set of properly nondominated solutions according to
[Geo�rion, 1968]. A point �z 2 N is called properly nondominated, if there
existsM > 0 such that for each i = 1; : : : ; n and each z 2 Z satisfying zi < �zi
there exists a j 6= i with zj > �zj and

zi � �zi
�zj � zj

�M:

Otherwise �z 2 N is called improperly nondominated. The set of all properly
nondominated points is called Np.

2 Oblique norms

In order to develop the new concept of oblique norms we �rst review some
basic de�nitions about block norms. For a detailed introduction to norms and
their properties we refer the reader to [Rockafellar, 1970], [Hiriart-Urruty
and Lemar�echal, 1993a] and [Hiriart-Urruty and Lemar�echal, 1993b]. An
overview of basic properties of block norms is also given in [Schandl, 1998].



De�nition 2.1 A norm  with a polyhedral unit ball in IRn is called a block
norm. The vectors de�ned by the extreme points of the unit ball are called
fundamental vectors and are denoted by vi. The fundamental vectors de�ned
by the extreme points of a facet of B span a fundamental cone.

De�nition 2.2 Let u 2 IRn. The reection set of u is de�ned as

R(u) := fw 2 IRn : jwij = juij 8i = 1; : : : ; ng:

De�nition 2.3 [Bauer et al., 1961] A norm  is said to be absolute if for any
given u 2 IRn, all elements of R(u) have the same distance from the origin
with respect to , i. e.

(w) = (u) 8w 2 R(u):

Note that the unit ball of an absolute norm has the same structure in
every orthant, which is convenient as well as suÆcient for multiple criteria
programs as all nondominated solutions are located in the cone z�+IRn

= and
one does not need to search the entire space IRn.

De�nition 2.4 A block norm  with a unit ball B is called oblique if it has
the following properties:

(i)  is absolute.

(ii) (z � IRn
=) \ IR

n
= \ @B = fzg 8z 2 (@B)=.

z

z1z2

z3 (z � IRn
=) \ IR

n
=

Fig. 1: Example of the unit ball of an oblique norm
with R(z) = fz; z1; z2; z3g

The following corollaries immediately result from De�nitions 2.3 and 2.4.

Corollary 2.5 The number of fundamental vectors of an oblique norm 
in B= is �nite.



Corollary 2.6 If  with the unit ball B is an oblique (absolute) norm, then ~
with the unit ball �B;� > 0 is also an oblique (absolute) norm.

The following lemmas are useful in developing our main results in the
next section. Note that the condition (i) of Lemma 2.9 is identical with the
condition (ii) of De�nition 2.4.

Lemma 2.7 An oblique norm  with the unit ball B has the following prop-
erty:

(z � IRn
=) \ IR

n
= \ @((z)B) = fzg 8z 2 IRn

=:

Proof. Since z 2 @((z)B), the statement follows directly from De�nition 2.4
and Corollary 2.6. �

Lemma 2.8 An absolute norm  with the unit ball B has the following
property:

(z � IRn
=) \ IR

n
= � (z)B= 8z 2 IRn

=:

Proof. Consider �rst z 2 (@B)=. It follows that (z) = 1. Since  is ab-
solute, all points in R(z) are in B. Because of the convexity of B, we have
conv(R(z)) � B. But (z� IRn

=)\ IR
n
= is a subset of conv(R(z)) and therefore

also of B=.
The general case z 2 IRn

= follows again from Corollary 2.6. �

Lemma 2.9 Let  be an absolute block norm with the unit ball B. Let N
denote the set of outer normal vectors of all the facets of B. Let ej be the jth

unit vector, j = 1; : : : ; n. Then the following two statements are equivalent:

(i) (z � IRn
=) \ IR

n
= \ @B = fzg 8z 2 (@B)=.

(ii)


n; ej

�
6= 0 8j = 1; : : : ; n and 8n 2 N .

Proof.

(i) ) (ii) Let F be a facet of B with the normal vector n 2 N . Assume

n; ej

�
= 0 for some j. Then there exists a point z 2 F with zj 6= 0

(otherwise F would not be a facet). Since  is absolute, we can assume
without loss of generality that z 2 IRn

=. De�ne a point ~z as follows:

~zk = zk 8k 6= j

~zj =
1

2
zj :

Then ~z is in F � @B, because  is absolute. But we also have that

~z 2 (z � IRn
=) \ IR

n
= \ @B;

which is a contradiction to (i).



(ii) ) (i) Let z 2 (@B)= and assume there exists ~z 6= z with

~z 2 (z � IRn
=) \ IR

n
= \ @B: (2)

Because of Lemma 2.8 we have n � 0 for all normals of facets in IRn
=.

Together with


n; ej

�
6= 0 for all j we even know that n > 0 for these

same normals. Since we assumed that both z and ~z are in @B, they are
either on the same or on two di�erent facets.

Assume �rst that z and ~z are on the same facet F with the normal n.
Consequently hz � ~z; ni = 0, but since z � ~z � 0 and n > 0 it follows
that z = ~z, a contradiction to our assumption.

Assume now that z and ~z are on di�erent facets, say F and ~F with
normals n and ~n, respectively. Since z 2 B and ~z 2 ~F , the de�nition of
the outer normal yields hz � ~z; ~ni � 0. But since z � ~z � 0 and ~n > 0
it follows again that z = ~z, a contradiction.

Thus ~z =2 @B and assumption (2) was wrong. �

3 Generating the Nondominated Set

3.1 General Results

We �rst show that for every nondominated point there exists a block norm so
that this point is a unique minimizer of the related block-norm-scalarization.
In the proof, to show the existence of the desired block norm we use the l1
norm, and thus not an oblique norm. The result gives another interpretation
of the results on the weighted Tchebyche� approach in [Steuer, 1986] and
illustrates the idea of introducing block norms to multiple criteria program-
ming.

Theorem 3.1 Let �z 2 N . Then there exists a block norm  so that �z
uniquely minimizes

min
z2Z

(z) = min
x2S

(f(x)):

Proof. Recall that we assumed without loss of generality z� = 0. De�ne the
unit ball B of a block norm  as B = conv(R(�z)). Assume there is a ~z 2 Z,
~z 6= �z with (~z) � (�z). From the construction of  we have that ~z 5 �z.
Since ~z 6= �z, we have ~zi < �zi for some i, which is a contradiction to �z 2 N .
Thus (z) > (�z) for all z 2 Z. �

We now focus on oblique norms and show that any optimal solution of
the oblique-norm-scalarization of (1) is a nondominated solution of (1). The
converse of this result is not true in general since oblique norms cannot be
used to generate improperly nondominated points.



Theorem 3.2 Let  be an oblique norm and let �z be a solution of

min
z2Z

(z) = min
x2S

(f(x)):

Then �z 2 N .

Proof. Assume �z =2 N . Then there exists ~z 2 Z with ~z � �z; therefore
~z 2

�
(�z � IRn

=) \ IRn
=

�
n f�zg. However, according to Lemma 2.7, we have

f�zg =
�
(�z�IRn

=)\IR
n
=

�
\@((�z)B). Thus ~z =2 @((�z)B) and from Lemma 2.8, it

follows that ~z 2 int((�z)B). Therefore (~z) < (�z), which is a contradiction
to the minimality of �z. �

3.2 The Bicriteria Case

In this section we concentrate on bicriteria problems and show that there
exists an oblique norm  for every z 2 Np � IR2 so that z uniquely minimizes

min
z2Z

(z) = min
x2S

(f(x)):

We study the cases where Z is a general discrete set, a �nite discrete set,
a convex polyhedral set and a general convex set. In each case we prove
the existence of an oblique norm with the above mentioned property by con-
structing its unit ball.

Theorem 3.3 (Discrete case in IR2) Let Z � IR2 be discrete, Np 6= ?
and let �z 2 Np. Then there exists an oblique norm  so that �z uniquely
minimizes

min
z2Z

(z) = min
x2S

(f(x)): (3)

Proof. Consider the de�nition of properly nondominated points. For every
z 2 Np with z1 < �z1, we have z1� �z1 > ��z1 > �1, i. e. z1� �z1 is �nite. Thus
�z2 � z2 < 0 cannot be arbitrarily close to zero. Therefore we can �nd a line
through �z with a slope smaller than 0 (and greater than �1) so that there
does not exist a point z 2 Np with z1 < �z1 below or on that line. Take the
intersection point of this line and the z2-axis as an extreme point of the unit
ball B of  and �nd an extreme point on the z1-axis in an analogous way.
The set of extreme points of B is then de�ned as the union of the reection
sets of the three mentioned points.

Due to the chosen slope of the boundary segments of B, the unit ball is
convex and satis�es both conditions of De�nition 2.4, so the resulting norm
is an oblique norm. Since we constructed the boundary of B so that �z is the
only point in Np \ B, �z minimizes (3) uniquely. �

Although we have given a general proof for the discrete case, it is interest-
ing to demonstrate a construction of an oblique norm for the �nite discrete
case. The construction is described in Algorithm 3.4 while Lemma 3.5 and
Theorem 3.6 show that the constructed norm is in fact an oblique norm so
that �z uniquely minimizes (3).



Algorithm 3.4 Let Z � IR2 be discrete and �nite, and let �z 2 Np.

Step 1: Finding the extreme points v of B with
v1 2 [0; �z1] and v2 � �z2.

If there does not exist a point z 2 Np with z1 < �z1 below or on the
line through �z and (0; z2 + ��z1) where 0 < � < 1, then de�ne v1 = �z,
v2 = (0; z2 + ��z1) and goto Step 2.

Otherwise set v1 = �z and i = 1. Consider the following problem:

min z2
s. t. 0 < z1 < vi1

z 2 Z:
(4)

Note that (4) is always feasible, because we consider it only if we have
already found a point z 2 Np with z1 < vi1. Let vi+1 be the solution
of (4).

If there does exist a point z 2 Np with z1 < vi+11 below or on the line
through vi and vi+1, then set i = i+ 1 and consider again (4) to �nd
subsequent extreme points. Otherwise rede�ne vi+1 as the intersection
point of the z2-axis and the line through vi and vi+1, i. e.

vi+1  

�
0; vi+12 �

vi+12 � vi2
vi+11 � vi1

vi+11

�
:

Step 2: Finding the extreme points v of B with
v1 � �z1 and v2 2 [0; �z2].

Get these extreme points in a similar way as in Step 1 by considering
the following problem:

min z1
s. t. 0 < z2 < vi2

z 2 Z:
(5)

Step 3: Finding the complete set of extreme points of B.
The entire set of extreme points of the unit ball B of  is the union of
the reection sets of all the extreme points found in Steps 1 and 2.

Note that the procedure is �nite, since Z and therefore Np are both �nite.

Lemma 3.5 The block norm constructed in Algorithm 3.4 is an oblique
norm.

Proof. We �rst give two remarks:

(a) Each line segment between two consecutive extreme points vi+1 and vi

constructed in Step 1 has a negative slope, otherwise a point z 2 Np with
z1 < vi1 and z2 � vi2 would exist, which contradicts the construction of vi

using a nondominated point. An analogous result is valid for the points
found in Step 2.



(b) The slope of the line segments between vi+1 and vi constructed in Step 1
is always between 0 and �1 and increases with i. Since a slope change at
vi+1 occurs only if there is a point z 2 Np with z1 < vi+11 below the line
through vi and vi+1, the slope can never decrease with i. An analogous
result is valid for the points found in Step 2.

Because of remark (b), B is convex. Due to Step 3 of the algorithm,  is an
absolute norm. Due to remark (a) and Lemma 2.9, part (ii) of De�nition 2.4
is satis�ed, and by construction, part (i) of De�nition 2.4 is satis�ed as well.

�

Theorem 3.6 (Finite discrete case in IR2) Let Z � IR2 be discrete and
�nite, let �z 2 Np. The point �z 2 Np minimizes

min
z2Z

(z) = min
x2S

(f(x))

uniquely, where  is the oblique norm constructed in Algorithm 3.4.

Proof. Follows directly from the construction of  and Lemma 3.5. �

Theorem 3.7 (Convex polyhedral case in IR2) Let Z � IR2 be convex
and polyhedral and let �z 2 N . Then there exists an oblique norm  so that
�z uniquely minimizes

min
z2Z

(z) = min
x2S

(f(x)): (6)

Proof. Due to [Geo�rion, 1968], there exists a supporting line of Z at �z
with the normal vector w > 0. De�ne the two vectors w1 = (�w1; w2) and
w2 = (w1; �w2) where � > 1. Denote the line de�ned by the normal w1

through �z as l1 and the line de�ned by the normal w2 through �z as l2.
Take the intersection point of l1 and the z1-axis, the intersection point of

l2 and the z2-axis, and the point �z as extreme points of B in IR2
= and get the

entire set of extreme points of B by taking the union of the reection sets of
the three mentioned points.

Conditions (i) of De�nition 2.4 is satis�ed by construction. Since w1 > 0
and w2 > 0 and because of Lemma 2.9, B is convex and condition (ii) of
De�nition 2.4 is satis�ed, so  is oblique.

The point �z minimizes (6) uniquely, because � > 1 and therefore no other
point of N can be in B. �

Theorem 3.8 (Convex case in IR2) Let Z � IR2 be convex and let
�z 2 Np. Then there exists an oblique norm  so that �z uniquely minimizes

min
z2Z

(z) = min
x2S

(f(x)): (7)

Proof. Since Z is convex and �z is properly nondominated, there exists a
supporting line of Z at �z with a normal vector w > 0. We then proceed as
in the proof of Theorem 3.7. �



3.3 Practical Implications

Having established theoretical foundations for applying block norms in bi-
criteria optimization we should turn our attention to the issue of enhancing
the decision making process. Block norms can be viewed as a mathematical
tool but also as a decision tool introducing a piecewise linear utility func-
tion in the objective space which minimized over the outcome set yields a
most preferred nondominated solution. Piecewise linearity avoids compu-
tational diÆculties when the utility function is nonlinear but on the other
hand applies di�erent utility to di�erent regions of the objective space. As
the number of the fundamental directions of a block norm and their length
can be easily changed, the resulting utility function can be easily modi�ed
before the decision process starts or in the course of the process. This exi-
bility allows decision makers to change their preferences while searching for
a most preferred solution.

Furthermore, block norms are dense in the set of all norms in IRn, see
[Ward and Wendell, 1985], so that any norm in IRn can be approximated
arbitrarily close by a block norm, a feature again helpful in representing or
approximating complex decision maker's preferences.

Last but not least, block norms can be helpful in exploring the objective
space in several directions simultaneously, which can be bene�cial in MCDM
with multiple decision makers or in designing parallel algorithms for MCDM.

4 Conclusions

In this paper we introduced block norms into multiple criteria programming.
We also de�ned oblique norms, a new class of block norms specially designed
to generate properly nondominated solutions. These norms are absolute and
have a unit ball whose boundary is determined by hyperplanes with nor-
mal vectors never parallel nor perpendicular to the coordinate axes of the
objective space. This property makes the norms suitable to represent �nite
nonzero trade-o�s between nondominated solutions.

We showed a general relationship between nondominated solutions and
solutions of the scalarization by means of an oblique norm. Speci�c results are
presented for bicriteria problems. We also briey discussed the application
of block norms in MCDM.

We will generalize the results of this paper for the multiple criteria case
and will also study continuous nonconvex problems. In the future, we plan
to develop block-norm-based approaches to MCDM which make use of these
norms' exibility and versatility.
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