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Abstract: Based on theoretical results on the applicability of specially structured block norms to multi-

criteria programs, an algorithm to �nd a piecewise linear approximation of the nondominated set of convex

multicriteria programs is proposed. By automatically adapting to the problem's structure and scaling,

the approximation is constructed objectively without interaction with the decision maker. Moreover, all

generated extreme points of the approximation are nondominated.

1 Introduction

Decision making with respect to many con
icting criteria and constraints has become a central prob-
lem in management and technology. In the presence of multiple criteria, trade-o� information plays
a central role in decision making since it facilitates the comparison of nondominated outcomes (ef-
�cient alternatives). Among many methodological approaches to quantify trade-o�s, approximation
of the nondominated set is most attractive as it can visualize the outcomes for the decision maker
and provide this information in a simple and understandable way.

In this paper we suggest to use cones and norms, two concepts well known in convex analysis, to con-
struct piecewise linear approximations of the nondominated set of convex multicriteria programming
problems. Both cones and norms have been used in multicriteria programming quite extensively (see
e.g. Steuer (1986) and Kaliszewski (1987)) but, to our knowledge, Kaliszewski (1994) is the only
other source to combine both concepts in order to describe and solve multicriteria programs. There
have been quite a few approximation approaches developed for bicriteria convex as well as general
problems, see, e.g., Fruhwirth et al. (1989) and Jahn and Merkel (1992). For general multicriteria
optimization problems, approximation approaches were developed by Helbig (1991), Sobol and Lev-
itan (1997), and others. For an overview of approximation algorithms for multicriteria programming
problems we refer to Schandl (1999). The approach presented in this paper uses concepts employed
by other authors but puts them in the new framework of norms. This results in approximation
properties not yet present in the literature such as scale independence, weight independence and the
generation of a problem dependent measure of the approximation quality.

In the next section, we state the multicriteria programming problem and give some general de�ni-
tions and notations. A theoretical basis for the approximation algorithm is discussed in Section 3.
An approximation approach for problems with IRn

=-convex sets of criterion vectors is presented in
Section 4. The last section includes a short summary and some concluding remarks.

1This work was partially supported by ONR Grant N00014-97-1-0784.
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2 Problem Formulation
To facilitate further discussions, we use the following notation: Let u; w 2 IRn be two vectors. u < w
denotes ui < wi for all i = 1; : : : ; n. u � w denotes ui � wi for all i = 1; : : : ; n, but u 6= w. u 5 w
allows equality. The symbols >;�;= are used accordingly. Let IRn

= := fx 2 IRn : x = 0g. If S � IRn,

then S= := S \ IRn
=.

A set C 2 IRn is called a cone if for all u 2 C and � > 0 we also have �u 2 C. The origin may or
may not belong to C.

We consider the following general multicriteria program

min fz1 = f1(x)g
...

min fzn = fn(x)g
s:t: x 2 X;

(1)

where X � IRm is the feasible set and fi(x); i = 1; : : : ; n, are real-valued functions.

We de�ne the set of all feasible criterion vectors Z, the set of all nondominated criterion vectors N
and the set of all eÆcient points E of (1) as follows

Z = fz 2 IRn : z = f(x); x 2 Xg = f(X)
N = fz 2 Z : @~z 2 Zs:t:~z � zg
E = fx 2 X : f(x) 2 Ng;

where f(x) = (f1(x); : : : ; fn(x))
T . We assume that the set Z is closed and that we can �nd u 2 IRn

so that u+ Z � IRn
=.

The set of properly nondominated solutions is de�ned according to Geo�rion (1968): A point �z 2 N
is called properly nondominated, if there exists M > 0 such that for each i = 1; : : : ; n and each z 2 Z
satisfying zi < �zi there exists a j 6= i with zj > �zj and

zi � �zi
�zj � zj

�M:

Otherwise, �z 2 N is called improperly nondominated.

3 Oblique Norms in Multicriteria Programming
The concept of oblique norms was introduced in Schandl (1999) and Schandl et al. (2000). They can
be viewed as speci�c block norms that are suitable to generate nondominated solutions of multicriteria
programs.

Let u 2 IRn. The re
ection set of u is the set R(u) := fw 2 IRn : jwij = juij 8i = 1; : : : ; ng.

De�nition 1 A block norm 
 with a unit ball B is called oblique if

(i) 
(w) = 
(u) 8w 2 R(u); u 2 IRm , and

(ii) (z � IRn
=) \ IR

n
= \ @B = fzg 8z 2 (@B)= .

Observe that an oblique norm is a block norm where no facet of the unit ball is parallel to any
coordinate axis. Moreover, the structure of the norm's unit ball is the same in each orthant of the
coordinate system. An example of an oblique norm in IR2 is given in Figure 1.

The following two theorems justify the application of oblique norms for the generation of nondomi-
nated solutions.
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Figure 1: Example of the unit ball of an oblique norm with R(z) = fz; z1; z2; z3g

Theorem 2 Assume wlog that 0 2 Z + IRn
=. Let 
 be an oblique norm with the unit ball B. If

�z 2 IRn is a solution of
max 
(z)
s:t: z 2 �IRn

= \ Z
(2)

then �z is nondominated.

Proof. Assume �z =2 N , that is, there exists ~z 2 Z with ~z � �z. Since �z is feasible for (2), we have
~z 2 �IRn

=, and it follows that
�z 2 �IRn

= \ (~z + IRn
=):

Since 
 is oblique and therefore absolute, we can use the fact that an oblique norm 
 with the unit
ball B has the following properties:

(z � IRn
=) \ IR

n
= \ @(
(z)B) = fzg 8z 2 IRn

= ; (3)

and
(z � IRn

=) \ IR
n
= � 
(z)B= 8z 2 IRn

= ; (4)

see Schandl et al. (1999). Using (3) and (4) in �IRn
= instead of IRn

= we can infer that

�z 2 int((
(~z)B)

which implies 
(�z) < 
(~z), a contradiction to the optimality of �z.

�

Unfortunately, we cannot guarantee to �nd all nondominated points using an oblique norm with its
unit ball's center in Z+ IRn

= in the general setting of Theorem 2. Therefore the next theorem applies
only to problems with an IRn

=-convex feasible set Z.

Theorem 3 Let Z � IRn be IRn
=-convex and assume wlog that 0 2 Z + IRn

=. Let �z be properly
nondominated with �z 2 �IRn

= \Z. Then there exists an oblique norm 
 so that �z solves problem (2).

Proof. From Geo�rion (1968), we know that there exists a weight vector w 2 IRn
>
with
Pn

i=1wi = 1
so that �z solves

min
z2Z

nX

i=1

wizi:

Let H be the hyperplane with normal vector w and passing through the point �z, and let H+ be the
halfspace de�ned as

H+ := fz 2 IRn : hw; zi � hw; �zig:

Then the set R(�IRn
= \H

+) is the unit ball of an oblique norm 
.

Since �z 2 H, it follows that �z is located on a facet of the unit ball and thus 
(�z) = 1. So there
cannot exist z 2 Z with 
(z) > 1, because H is a tangent plane of Z. Therefore �z solves (2).

�
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4 Approximation of the Nondominated Set

For multicriteria programs with an IRn
=-convex feasible set Z, an approximation algorithm based on

Theorems 2 and 3 can be designed that utilizes oblique norms for the generation of nondominated
solutions. To keep explanations straight-forward, the general idea of this approach will be outlined
using a bicriteria example problem.

Starting from a given reference point z0 2 Z + IR2
= (z0 may be for example a currently implemented

solution, or the nadir point in bicriteria problems), a �rst approximation is obtained by exploring
the feasible set along m � 2 search directions d1; : : : ; dm 2 �IR2

=, speci�ed by the decision maker.
To obtain nondominated points along these search direction, an adaptation of the direction method
introduced in Pascoletti and Sera�ni (1984) can be used (see Schandl (1999)). In the example given
in Figure 2(a), the search directions are chosen as the negative unit vectors in IR2, d1 = (�1; 0)
and d2 = (0;�1), yielding the points z1 and z2.
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Figure 2: The steps of the approximation algorithm

These two points together with the reference point z0 are used to de�ne a cone and a �rst approx-
imation, see Figure 2(b). Interpreting this approximation as the lower left part of the unit ball of
an oblique norm 
 (or, more general, of an oblique gauge) with z0 as its center, this norm is then
maximized in Z \ (z0 � IR2

=). Consequently the next point (z3 in the example problem) is found as
a solution of problem (2), where 
 is an oblique norm (gauge), see Figure 2(c).

The point z3 is added to the approximation by building the convex hull of the points generated
so far and thus updating the approximation and the underlying norm (gauge) simultaneously as
shown in Figure 2(d). Continuing this process, we get a �ner approximation of the nondominated
set while generating nondominated points and updating the unit ball of the oblique norm (gauge),
see Figures 2(e) and 2(f). In each iteration, the point of maximal norm (gauge) is added. Since this
point is \farthest away" from the approximation with respect to the current oblique norm (gauge),
we always add the point of worst approximation with respect to this norm (gauge).

Observe that in each iteration the maximization problem (2) has to be solved only in those cones
whose facets were newly generated due to the addition of the last point. This includes new and
modi�ed cones. By updating the convex hull, the resulting approximation is always IRn

=-convex.

The following theorem shows that the quality of the approximation improves with each new point if
we assume that Z is IRn

=-convex.
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Theorem 4 Let Z � IRn be IRn
=-convex and 
k be an approximating oblique norm (oblique gauge)

constructed from k nondominated points, or points on the boundary of Z. Let �z be the solution of

max 
k(z)
s:t: z 2 Z \ (z0 � IRn

=):
(5)

Let 
k+1 be the updated norm (gauge) including the new point �z. Then


k+1(z) � 
k(z) 8z 2 Z \ (z0 � IRn
=):

Proof. Let Bk and Bk+1 be the unit balls of 
k and 
k+1, respectively. Since Z is IRn
=-convex, it

follows that 
k(�z) � 1 and therefore Bk � Bk+1. Thus for every z 2 Z \ (z0 � IRn
=) we have


k+1(z) = minf� � 0 : z 2 �Bk+1g � minf� � 0 : z 2 �Bkg = 
k(z):

�

5 Conclusions
In this paper we developed an approximation algorithm for convex multicriteria programs generalizing
the ideas for the bicriteria case as given in Schandl et al. (2000).

The described approximation algorithm combines several desirable properties which have been con-
�rmed by computational results, see Schandl et al. (1999). The most important and notable are:

� The approximation is always improved in the area where \it is needed most" because in each
iteration, the point of worst approximation is added.

� Using the approximation or a norm induced by it to improve the approximation releases the
decision maker from specifying preferences (in the form of weights, norms, or directions) to
evaluate the quality of the approximation. Such preferences can be used in the initialization
step (specifying the reference point z0 and the initial search directions) but apart from that
the approximation is carried out in a neutral manner without decision maker's involvement.

The approximation algorithm described above can be generalized to nonconvex and discrete problems.
However, in these cases a more detailed analysis is needed and the maximization problem (2) has to
be combined with methods particularly designed to handle nonconvexity and/or discrete variables.

The algorithm yields a piecewise linear approximation of the nondominated set which can easily be
visualized if not more than three criteria are present. For more criteria, plots of selected criteria
against each other can be created. Such plots and the approximation in general should help the
decision maker �nd a preferred solution within the nondominated set. While the approximation is
carried out in an objective manner, the subjective preferences must be (and should be) applied to
single out one (or several) �nal result(s).
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