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Abstract

Based on new theoretical results on norms, heuristic algorithms

to approximate the nondominated set of multicriteria programs are

proposed. By automatically adapting to the problem's structure and

scaling, the approximation is constructed objectively without interac-

tion with the decision maker. As the algorithms extend the results

obtained for bicriteria programs, diÆculties encountered when dealing

with more than two criteria are discussed.
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1 Introduction

Decision making with respect to several conicting criteria and constraints

has become a central problem in management and technology. Trade-o�

information plays a central role in decision making since it facilitates the

comparison of di�erent alternatives. Approximations of the nondominated

set visualize the alternatives for the decision maker and provide this trade-o�

information in a simple and understandable way.
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In this paper we suggest to use cones and norms, two concepts well-

known in convex analysis, to construct piecewise linear approximations of

the nondominated set of general multicriteria programming problems. Both

cones and norms have been used in multicriteria programming quite exten-

sively but, to our knowledge, Kaliszewski (1994) is the only other source to

simultaneously combine both concepts in order to describe and solve multi-

criteria programs.

Norms have frequently been used in multicriteria programming to mea-

sure the distance between the solutions and the utopia point. In particular,

the l1 norm and the augmented l1 norm were used for generating nondom-

inated solutions of general continuous or discrete multicriteria programs and

led to the well known weighted (augmented) Tchebyche� scalarization and

its variations, see Steuer and Choo (1983). Kaliszewski (1987) introduced a

modi�ed l1 norm and showed its applicability in generating nondominated

solutions. Carrizosa et al. (1997) suggested to use a class of norms that con-

tains the family of lp norms to generate the set of points that have minimal

distance to the utopia point with respect to at least one norm within this

class of norms. Further applications of norms in the context of multicriteria

decision making can be found, among others, in Yu (1973), Zeleny (1973),

Wierzbicki (1980), Steuer and Choo (1983) and Steuer (1986).

The literature on approximation of the nondominated set of general mul-

ticriteria problems is not rich in comparison to the literature devoted to the

bicriteria case. The former is reviewed below while for an overview of the

latter we refer to Schandl et al. (1999). Properties that hold quite nat-

urally in the bicriteria case, do not hold in general in higher dimensions.

Therefore many complex issues concerning the approximation arise only in

multicriteria problems. We discuss some of these problems in the following

sections.

Polak (1976) proposes to approximate the nondominated set by gen-

erating nondominated points as minimizers of constrained single criterion

problems and constructing a piecewise linear or spline approximation from

the determined candidates. This algorithm is later modi�ed in Jahn and

Merkel (1992), where special attention is given to the bicriteria case. Helbig
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(1991) uses a slight variation of the direction method proposed in Pascoletti

and Sera�ni (1984) to calculate a discrete approximation of a nondominated

set in IRn.

An approximation method based on the Tchebyche� approach is pro-

posed in Kaliszewski (1994). Using a modi�ed weighted Tchebyche� norm,

several nondominated points are generated and then used for the generation

of an approximation of the nondominated set. In Kostreva et al. (1995), the

weighted l1 distance to the utopia point is minimized for a set of weights.

The calculated points are then used to construct a linear approximation of

the nondominated set in IRn. Special attention is given to noncontinuous

objective functions.

Sobol' and Levitan (1997) develop an approximation method based on

the parameter space investigation introduced in Statnikov (1978). Benson

and Sayin (1997) propose a global shooting procedure to �nd a global rep-

resentation of the nondominated set of a general multicriteria problem with

a compact feasible set.

Das (1999) briey discusses an approach based on the normal-boundary

intersection technique, introduced in Das and Dennis (1998). Using the hy-

perplane de�ned by the individual minimizers of the criteria, the nondomi-

nated points with maximal distance from this hyperplane in some speci�ed

directions are determined.

Some authors developed probability-based approaches to the approx-

imation. Among others, genetic algorithms were developed by Fonseca

and Fleming (1995) while simulated annealing was studied by Czyzak and

Jaszkiewicz (1998) and Ulungu et al. (1999).

We propose a methodological framework for approximating continuous

(convex and nonconvex) and discrete problems. Our assumptions are mild

since we only require that the set of all feasible criterion vectors be IRn
=-closed

and that the set of nondominated solutions be IRn
=-bounded. We show that

the combination of norms and cones is a very powerful tool, on one hand, to

perform the approximation in a very objective, neutral and eÆcient way and,

on the other hand, to gain important information concerning the structure
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of the nondominated set and the trade-o�s between the criteria in di�erent

regions of the nondominated set.

In the next section we state the multicriteria programming problem and

give some general de�nitions and notations. The theoretical basis for the ap-

proximation algorithms is discussed in Section 3. Approximation approaches

for problems with IRn
=-convex, IR

n
=-nonconvex and discrete sets of feasible cri-

terion vectors are presented in Sections 4, 5, and 6, respectively. The last

section includes a short summary and some concluding remarks.

2 Problem Formulation

To facilitate further discussions, the following notation is used throughout

the paper.

Let u;w 2 IRn be two vectors. We denote components of vectors by

subscripts and enumerate vectors by superscripts. u < w denotes ui < wi

for all i = 1; : : : ; n. u � w denotes ui � wi for all i = 1; : : : ; n, but u 6= w.

u 5 w allows equality. The symbols >;�;= are used accordingly.

Let IRn
= := fx 2 IRn : x = 0g. If S � IRn, then S= := S \ IRn

=. The sets

IRn
�, IR

n
>, S� and S> are de�ned accordingly.

A set C 2 IRn is called a cone if for all u 2 C and � > 0 we also have

�u 2 C. The origin may or may not belong to C. If U = fu1; : : : ; ukg � IRn

is a set of vectors, then

cone(U) :=

�
v 2 IRn : v =

kX
i=1

�iu
i; �i � 0; ui 2 U

�

is the cone generated by U.

We consider the following general multicriteria program

min fz1 = f1(x)g
...

min fzn = fn(x)g

s. t. x 2 X;

(1)
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where X � IRm is the feasible set and fi(x); i = 1; : : : ; n, are real-valued

functions. We de�ne the set of all feasible criterion vectors Z, the set of

all (globally) nondominated criterion vectors N and the set of all eÆcient

points E of (1) as follows

Z = fz 2 IRn : z = f(x); x 2 Xg = f(X)

N = fz 2 Z : @~z 2 Z s. t. ~z � zg

E = fx 2 X : f(x) 2 Ng;

where f(x) =
�
f1(x); : : : ; fn(x)

�T
. We assume that the set Z is IRn

=-closed

and that we can �nd u 2 IRn so that u+ Z � IRn
=.

The set of properly nondominated solutions is de�ned according to Ge-

o�rion (1968): A point �z 2 N is called properly nondominated, if there exists

M > 0 such that for each i = 1; : : : ; n and each z 2 Z satisfying zi < �zi

there exists a j 6= i with zj > �zj and

zi � �zi
�zj � zj

�M:

Otherwise �z 2 N is called improperly nondominated. The set of all properly

nondominated points is denoted by Np.

The point z� 2 IRn with

z�i = minffi(x) : x 2 Xg � �i i = 1; : : : ; n

is called the ideal (utopia) criterion vector, where the components of

� = (�1; : : : ; �n) 2 IRn are small positive numbers.

For bicriteria problems, the point z� 2 IR2 with

z�i = min
n
fi(�x) : fj(�x) = min

x2X
fj(x); j 6= i

o
i = 1; 2

is called the nadir point. Note that this de�nition cannot be directly gener-

alized to multicriteria problems.
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3 Oblique Norms

The concept of oblique norms was introduced in Schandl et al. (1998) and

Schandl (1999). Since oblique norms can be viewed as a special class of block

norms, we �rst review some basic de�nitions about block norms and, more

general, polyhedral gauges. Then oblique norms are discussed in the context

of multicriteria programming. For a detailed introduction to norms and their

properties we refer to Rockafellar (1970), Hiriart-Urruty and Lemar�echal

(1993a) and Hiriart-Urruty and Lemar�echal (1993b). An overview of basic

properties of block norms is also given in Schandl (1998).

We de�ne polyhedral gauges according to Minkowski (1911):

De�nition 3.1 Let B be a polytope in IRn containing the origin in its

interior and let z 2 IRn. The polyhedral gauge  : IRn ! IR of z is de�ned as

(z) := minf� � 0 : z 2 �Bg:

If B is symmetric with respect to the origin, then  is called a block norm.

The vectors de�ned by the extreme points of the unit ball B of  are

called fundamental vectors and are denoted by vi. The fundamental vectors

de�ned by the extreme points of a facet of B span a fundamental cone.

If z is in a fundamental cone C of a polyhedral gauge  then one needs

to consider only the fundamental vectors generating this cone to calculate

the gauge of z. This result was proven in Hamacher and Klamroth (2000)

for the two-dimensional case. In Theorem 3.2, this result is generalized to

the multicriteria case.

Theorem 3.2 Let  be a polyhedral gauge with the unit ball B � IRn.

Let �z 2 C where C is the fundamental cone generated by the fundamental

vectors v1; : : : ; vk, k � n. Let �z =
Pk

i=1 �iv
i be a representation of �z in

terms of v1; : : : ; vk. Then (�z) =
Pk

i=1 �i.

Proof. By de�nition, all fundamental vectors generating a fundamental cone

are extreme points of the same facet of the unit ball B. Thus v1; : : : ; vk are

6



all located on a common hyperplane de�ned by, say, hn; zi = d where n 2 IRn

is the normal of the hyperplane and d 2 IR. Since  is a gauge, the origin is

in the interior of the unit ball B and therefore d 6= 0.

Since �z 2 C, the point �z can be written as �z = (�z)~z where ~z is located

on the same facet as v1; : : : ; vk. It follows that hn; ~zi = d and therefore

(�z) = (�z)
hn; ~zi

d
=

1

d
hn; (�z)~zi =

1

d
hn; �zi =

1

d

*
n;

kX
i=1

�iv
i

+

=
1

d

kX
i=1

�i


n; vi

�
=

1

d

kX
i=1

�id =

kX
i=1

�i: �

Note that all representations �z =
Pk

i=1 �iv
i can be used to calculate

(�z), even combinations where one or more �i's are negative which is only

possible if k > n. If C is generated by n fundamental vectors though, the

representation of �z in terms of v1; : : : ; vn is unique and all corresponding

�i's are nonnegative.

For the de�nition of oblique norms we additionally need the concepts of

reection sets and of absolute norms.

Let u 2 IRn. The reection set of u is de�ned as

R(u) := fw 2 IRn : jwij = juij 8i = 1; : : : ; ng: (2)

Using (2) we de�ne absolute norms analogously to Bauer et al. (1961).

De�nition 3.3 A norm  is said to be absolute if for any given u 2 IRn,

all elements of the reection set R(u) of u have the same distance from the

origin with respect to , i. e.

(w) = (u) 8w 2 R(u):

Note that the unit ball of an absolute norm has the same structure in

every orthant of the coordinate system.
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De�nition 3.4 A block norm  with a unit ball B is called oblique if it has

the following properties:

(i)  is absolute,

(ii) (z � IRn
=) \ IRn

= \ @B = fzg 8z 2 (@B)= .

Observe that De�nition 3.4 implies that an oblique norm is a block norm

where no facet of the unit ball is parallel to any coordinate axis. Moreover,

since an oblique norm is also an absolute norm, the structure of the norm's

unit ball is the same in every orthant of the coordinate system. This property

is convenient for the generation of nondominated solutions of (1) since they

may only occur in z� + IRn
=. An example of an oblique norm in IR2 is given

in Figure 1.

z

z1z2

z3 (z � IRn
=) \ IRn

=

Figure 1: Example of the unit ball of an oblique norm
with R(z) = fz; z1; z2; z3g

In Schandl et al. (1998) it was shown that oblique norms centered at the

utopia point z� can be used to generate all properly nondominated solutions

of (1). Moreover, every solution of such an oblique norm scalarization of (1)

yields a nondominated solution. However, in the bicriteria case (see Schandl

et al., 1999) it turned out useful to use an oblique norm centered at a point

in Z + IRn
= for the approximation of the nondominated set. The theoretical

foundation for this approach for higher dimensional problems is given by

the following result showing that every oblique norm scalarization of (1)

with an oblique norm centered at an arbitrary point in Z + IRn
= yields a

nondominated solution.
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Theorem 3.5 Assume without loss of generality that 0 2 Z + IRn
=. Let 

be an oblique norm with the unit ball B. If �z 2 IRn is a solution of

max (z)

s. t. z 2 �IRn
= \ Z

(3)

then �z is nondominated.

Proof. Assume �z =2 N , that is, there exists ~z 2 Z with ~z � �z. Since �z is

feasible for (3), we have ~z 2 �IRn
=, and it follows that

�z 2 �IRn
= \ (~z + IRn

=):

Since  is oblique and therefore absolute, we can use the fact that an oblique

norm  with the unit ball B has the following properties:

(z � IRn
=) \ IRn

= \ @((z)B) = fzg 8z 2 IRn
= ; (4)

and

(z � IRn
=) \ IRn

= � (z)B= 8z 2 IRn
= ; (5)

see Schandl et al. (1998) or Schandl (1999). Using (4) and (5) in �IRn
=

instead of IRn
= we can infer that

�z 2 int
�
(~z)B

�
which implies (�z) < (~z), a contradiction to the optimality of �z. �

Unfortunately, we cannot guarantee to �nd all nondominated points us-

ing an oblique norm with its unit ball's center in Z+IRn
= in the general setting

of Theorem 3.5. Therefore the next theorem applies only to problems with

an IRn
=-convex feasible set Z.

Theorem 3.6 Let Z � IRn be IRn
=-convex and assume without loss of gener-

ality that 0 2 Z+IRn
=. Let �z be properly nondominated with �z 2 �IRn

=\Np.
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Then there exists an oblique norm  so that �z solves the following problem:

max (z)

s. t. z 2 �IRn
= \ Z:

(6)

Proof. From Geo�rion (1968), we know that there exists a weight vector

w 2 IRn
>
with

Pn
i=1wi = 1 so that �z solves

min
z2Z

nX
i=1

wizi:

Let H be the hyperplane de�ned by the normal w and the point �z, see

Figure 2, and H+ be the halfspace de�ned as

H+ := fz 2 IRn : hw; zi � hw; �zig:

Then the set R(�IRn
= \H

+) is the unit ball of an oblique norm .

Since �z 2 H, it follows that �z is located on a facet of the unit ball and

thus (�z) = 1. So there cannot exist z 2 Z with (z) > 1, because H is a

tangent plane of Z. Therefore �z solves (6). �

Z

B
H

�z

Figure 2: Illustration of the proof of Theorem 3.6

Note that �z is in general not a unique solution of (6) with the constructed

oblique norm. If �z is, for example, in the interior of a facet of a polyhedral

set Z, then all elements of that facet are solutions of (6).
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4 Convex Multicriteria Problems

To keep explanations straightforward, the proposed approximation approach

is illustrated using an IR2
=-convex example as given in Figure 3. We empha-

size that higher dimensional problems cannot be illustrated and explained

with bicriteria cases, see Schandl (1999), and require a more sophisticated

treatment.

z0

(a)

z0z1

z2

(b)

z0z1

z3

z2

(c)

z0z1

z3

z2

(d)

z0z1

z3

z2
z4

(e)

z0z1

z3
z4

z2

(f)

Figure 3: The steps of the approximation algorithm

The approximation process is started by choosing a reference point z0 2

Z+IRn
= and de�ning z0�IRn

= as the region in which the nondominated set N

is approximated. The reference point might be a currently implemented (not

nondominated) solution or just a (not necessarily feasible) guess. Without

loss of generality, we assume throughout this section that the reference point

is located at the origin.

A �rst approximation is obtained by exploring the feasible set along

m � n search directions d1; : : : ; dm 2 �IRn
�. In the example given in Figure

3 the search directions are chosen as the negative unit vectors in IR2, d1 =

(�1; 0) and d2 = (0;�1), yielding the points z1 and z2. These two points

together with the reference point z0 are used to de�ne a cone and a �rst
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approximation, see Figure 3(b). Interpreting this approximation as the lower

left part of the unit ball of a polyhedral gauge  (or an oblique norm) with

z0 as its center, this gauge is then maximized in Z\(z0�IRn
=). Consequently

the next point (z3 in the example problem) is found as a solution of problem

(3), where  is a polyhedral gauge. Observe that according to Theorem 3.6

the new point z3 is always nondominated if  is also an oblique norm.

The point z3 is added to the approximation by building the convex hull

of the candidate points generated so far and thus updating the approxima-

tion and the underlying gauge simultaneously, see Figure 3(d). Continuing

this process, we get a �ner approximation of the nondominated set while

generating candidates for nondominated points and updating the unit ball

of the polyhedral gauge. In each iteration, the candidate point of maximal

gauge is added. Since this point is \farthest away" from the approxima-

tion with respect to the current gauge, we always add the point of worst

approximation with respect to this gauge.

The following theorem shows that the quality of the approximation im-

proves with each new point.

Theorem 4.1 Let Z � IRn be IRn
=-convex and k be an approximating

gauge constructed from k nondominated points or points on the boundary

of Z. Let �z be a solution of

max k(z)

s. t. z 2 Z \ (z0 � IRn
=):

(7)

Let k+1 be the updated gauge including the new point �z. Then

k+1(z) � k(z) 8z 2 Z \ (z0 � IRn
=):

Proof. Let Bk and Bk+1 be the unit balls of k and k+1, respectively. Since

Z is IRn
=-convex, it follows that 

k(�z) � 1 and therefore Bk � Bk+1. Thus

for every z 2 Z \ (z0 � IRn
=) we have

k+1(z) = minf� � 0 : z 2 �Bk+1g � minf� � 0 : z 2 �Bkg = k(z): �
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In the following paragraphs the details of the resulting approximation

algorithm are outlined.

One of the diÆculties arising in higher dimensional problems is the fact

that the nadir point concept does not directly generalize from the bicriteria

case. Consequently, the nadir point is not available as a default reference

point. If no starting solution is provided by the decision maker, a reference

point z0 can be constructed by the following method: The utopia point

z� is determined by calculating minimizers for each component, that is,

points ~zi with ~zii = minfzi : z 2 Zg are found for each i = 1; : : : ; n. Let

Z� := f~zi; i = 1; : : : ; ng. Then the ith component, i = 1; : : : ; n, of the default

reference point is de�ned as

z0i = maxfzi : z 2 Z�g;

which can be viewed as a possible generalization of the nadir point for bi-

criteria problems.

The negative unit vectors can be used as default for the search directions

d1; : : : ; dm 2 �IRn
= (m � n) needed for the �rst approximation of the non-

dominated set. Then an adaptation of the direction method introduced in

Pascoletti and Sera�ni (1984) is utilized to search for globally nondominated

points in the entire set Z along the search directions. The following theorem

adds a second step to their original problem formulation and guarantees to

generate a nondominated point for general multicriteria problems.

Theorem 4.2 Let z0 2 Z + IRn
=, d 2 IRn n IRn

= and 1 � p < 1. Then the

problem

lexmax (�; kqkp)

s. t. z = z0 + �d+ q

q 2 �IRn
=

z 2 Z;

(8)

has a �nite solution (��; �z; �q) where �z is a globally nondominated point.

Proof. Since z0 2 Z+IRn
=, there exists ~z 2 Z and ~q 2 IRn

= such that z
0 = ~z+~q.
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Thus (�; z; q) = (0; ~z;�~q) is a feasible solution of (8) where d is arbitrary.

Therefore problem (8) is feasible.

To prove that (8) is not unbounded consider the utopia point z�. We

have z� � z0 < 0. Since d 2 IRn n IRn
=, there exists i 2 f1; : : : ; ng so that

di < 0. Choosing � >
z�
i
�z0

i

di
, we have

z0i + �di + qi � z0i + �di < z0i +
z�i � z0i
di

di = z�i :

Since z� < z for all z 2 Z it follows that the constraint z = z0 + �d + q

is infeasible for any � >
z�
i
�z0

i

di
, so we have an upper bound for the �rst

objective �.

Consider the second objective kqkp. Since q 2 �IRn
=, then qi � 0 for

all i = 1; : : : ; n. On the other hand, we have qi = z�i � z0i . It follows that

kqkp 5
z� � z0


p
. Therefore the second objective is bounded as well.

As we showed that (8) has a �nite solution, it remains to prove that this

solution is nondominated. Due to Pascoletti and Sera�ni (1984), the solution

of the �rst optimization step is weakly nondominated, so it is suÆcient to

consider the second step. Assume (��; �z; �q) is a solution of the second step

of (8) where �z is weakly nondominated, but not nondominated. Thus there

exists ~z 2 Z with ~z � �z.

Since (��; �z; �q) is also a solution of the �rst step of (8), Theorem 3.3 from

Pascoletti and Sera�ni (1984) implies that (��; ~z; �q + ~q) is a solution of the

�rst step as well where ~q 2 @(�IRn
=) and ~q 6= 0. Then �qi � 0 and ~qi � 0 for

all i = 1; : : : ; n and ~qj < 0 for some j 2 f1; : : : ; ng and thus j�qij � j�qi + ~qij

for all i = 1; : : : ; n and j�qjj < j�qj + ~qjj. It follows that

k�qkp =

 
nX
i=1

j�qij
p

!1=p

<

 
nX
i=1

j�qi + ~qij
p

!1=p

= k�q + ~qkp ;

a contradiction to the optimality of (��; �z; �q) in step two of the optimization.

�

If the nondominated points found by the direction method generate a
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cone (or several cones) with empty interior, the algorithm has to be restarted

with new or additional directions. Otherwise, the convex hull of the non-

dominated points and the reference point is constructed using the Beneath-

Beyond Algorithm, see Edelsbrunner (1987). Given a set S of k points in

IRn, the Beneath-Beyond Algorithm constructs the convex hull of S by iter-

atively adding new points to partial convex hulls in O(k log k + kb(n+1)=2c)

time and O(kbn=2c) storage. It is among the most eÆcient algorithms for

the construction of convex hulls, and it is particularly well-suited for an

incorporation into our approximation algorithm.

The facets of the constructed convex hull not containing the reference

point are used to de�ne the cones of the initial approximation. Our goal

is to approximate @Z in these cones which is, in the multicriteria case, not

necessarily the same as approximating the set of nondominated solutions N .

However, dominated points found during the approximation process can be

easily removed after the approximation is completed.

Now a polyhedral gauge based on the current approximation is used to

�nd a new point in each cone. Assuming that z0 is the origin and that the

current cone is de�ned by k � n points z1; : : : ; zk, the gauge method solves

the following problem (cf. Theorem 3.2):

max
kP
i=1

�i

s. t. z =
kP
i=1

�iz
i

�i � 0 i = 1; : : : ; k

z 2 Z:

(9)

In contrast to the bicriteria case, this program does not necessarily generate

a nondominated point in higher dimensional problems if the normal of the

facet generating that point is not negative. The underlying gauge in (9)

can not be extended to an oblique norm and Theorem 3.5 does not apply.

For an example problem where facets with negative normals occur during

the approximation process, consider the unit ball of the l2 norm as the

feasible set Z (see Figure 4). Obviously, the three points z1 = (�1; 0; 0),
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z2 = (0;�1; 0) and z3 = (0; 0;�1) are (improperly) nondominated. It is

impossible to �nd a fourth nondominated point for which all three resulting

facets have negative outer normals; in fact, at least one of the normals always

has a positive component. Nevertheless, the program generates the point of

worst approximation in the cone even in this case.

z1

z3

z2

z1

z2

z3

(a)

z1

z3

z2

z1

z2

z3

z4

(b)

Figure 4: (a) Approximation of the unit sphere with negative normal, and
(b) with nonnegative normals (z4 is located on the sphere)

The deviation of a candidate �z 2 Z found by the gauge method (9) is

de�ned as

dev(�z) := j(�z) � 1j :

Thus dev(�z) relates to the distance of the current approximation from the

point �z with respect to the gauge induced by the approximation itself. Using

the result of Theorem 3.2, the objective value of (9) is the gauge of the

candidate and thus the candidate's deviation is calculated as a by-product

of problem (9). By adding a candidate �z with the maximal deviation to the

current approximation, we construct a new polyhedral gauge \induced by

the problem".

Once a new candidate �z of maximal deviation is identi�ed, the convex

hull of the candidate points generated so far is updated unless some stopping

criterion is satis�ed. Examples for possible stopping criteria are dev(�z) < �

with some given error bound � > 0, or an upper bound maxConeNo on the

number of constructed cones. The new convex hull can be constructed by
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applying one iteration of the Beneath-Beyond Algorithm, adding the point

�z to the previous approximation. Note that one of the central problems of

the Beneath-Beyond Algorithm, the identi�cation of a facet that is visible

from the point being added to the convex hull and that needs to be changed

or removed in the current iteration, is solved implicitly: The facet of the

cone in which the new point �z has been found is always a visible facet.

In the subsequent iterations of the approximation algorithm, we alternate

between generating a new candidate point by the gauge method and adding

it to the convex hull. The process of constructing the convex hull of the

candidate points, although \interrupted" by the generation of new points,

is exactly the same as if the convex hull was constructed all at once when

all points are known. So either the problem-dependent complexity of the

generation of nondominated points using the gauge method (9) or the overall

complexity of the Beneath-Beyond Algorithm dominates the complexity of

the complete approximation process.

Observe that it is not necessary to recalculate the gauge in each iteration

of the approximation algorithm. As demonstrated in Theorem 3.2, the gauge

can be evaluated cone by cone. The idea in our approach is to maximize

the gauge separately in each cone. Thus we �nd a candidate �z in every cone

having a deviation dev(�z) := j(�z)� 1j associated with it. When a point is

added to the convex hull, we have to keep track which facets (and therefore

cones) are removed from the current approximation, and which facets are

newly constructed. New candidates have to be generated only for all new

cones.

Summarizing the discussion above, Figures 5 and 6 give an outline of

the approximation algorithm for IRn
=-convex sets.

Using a gauge \induced by the problem" has several advantages. Usually

the quality of an approximation is measured by some prede�ned gauge or

norm, maybe a weighted lp norm. The choice of the norm and the weights

is very subjective and often diÆcult, especially if the problem criteria have

di�erent units, like time and distance. The choice of the weights additionally

depends on the scaling of the criteria. In our approach, the quality of the
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Procedure: Convex Approximation

Read/generate z0, di, �, maxConeNo
for all di do
Solve direction method

end for

Construct convex hull of the nondominated points and z0

Construct cones using the facets of the convex hull
for all cones do
Call Calculate Candidate

end for

while #cones < maxConeNo and dev(next point) � � do
Add next point using Beneath-Beyond technique
Identify new and modi�ed cones
for all new or modi�ed cones do
Call Calculate Candidate

end for

end while

Output approximation

Figure 5: Pseudo code of the multicriteria approximation
algorithm for an IRn

=-convex problem

Procedure: Calculate Candidate

Solve gauge method to �nd �z and dev(�z)

Figure 6: Finding a candidate in a cone for
an IRn

=-convex problem

current approximation is estimated by the result of problem (7), or, more

precisely, by the deviation j(ẑ)� 1j of the next point to be added. As

a stopping criterion, we check whether j(ẑ)� 1j < � where � > 0. This

condition does not depend on the scaling of the criteria; it depends only on

the choice of the reference point z0. There is no need for the decision maker

to be concerned about the choice of norm, weights or scaling factors.

Additionally, the constructed gauge can be used to evaluate feasible

points in z0 � IRn
=. If we interpret a gauge of 1 as the maximal possible

improvement over the point z0, all feasible points in z0 � IRn
= have a gauge
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between 0 and 1 (assuming the current approximation is \good enough").

So the gauge of a point �z can be interpreted as a measure of quality relative

to the maximal achievable quality in the direction of �z.

5 Nonconvex Multicriteria Problems

In the case of an IRn
=-nonconvex problem the approximation algorithm given

in Figure 5 generates an approximation of the convex hull of the nondomi-

nated set, see Figure 7 for an example. Note that the nondominated point

�z in Figure 7 cannot be found using the gauge method described in Figure

6.

�z

z0

Figure 7: Finding a point in the nonconvex area

To overcome this diÆculty in the IRn
=-nonconvex case, we switch to a

di�erent method, namely to the Tchebyche� method (see Steuer, 1986), in

those cones where no signi�cant improvement can be made with the gauge

method. Moreover, while constructing the initial approximation and also

in the updating phases in later stages of the algorithm, we do not use the

Beneath-Beyond Algorithm since the generation of the convex hull of the

candidate points is not suitable for the nonconvex areas of the feasible set

Z. In conclusion, for IRn
=-nonconvex problems we proceed as follows.

Given a reference point z0 (without loss of generality located at the

origin), k � n initial search directions and stopping parameters � and

maxConeNo, the direction method (8) is solved for each of the given di-

rections. Then the cone(s) of the initial approximation can be constructed.

For this purpose we use a projection of the generated points zi, i = 1; : : : ; k
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onto the facet of the l1-norm in �IRn
=, i.e.

P (z) = �
1Pn
i=1 zi

z; 8i = 1; : : : ; k:

Using this projection onto the n � 1-dimensional hyperplane, initial cones

can in general be de�ned in several di�erent ways. Figure 8 shows di�erent

possibilities in IR2. In order to avoid thin and elongated cones, we suggest the

construction of the initial cones using Delauney tessellations of the projected

point set (see, for example, Okabe et al. (1992)). The extreme points of the

resulting Delauney simplices are used to de�ne cones, which can equivalently

be represented using the generated points z1; : : : ; zk. Note that due to the

fact that the cones are constructed based on the Delauney simplices, each

cone has exactly n generators from the set fz1; : : : ; zkg.

(a) One
unique cone

(b) Two possible
subdivisions

(c) Two unique
cones

Figure 8: Constructing the initial cones

After constructing the initial cones, a new candidate has to be calculated

for each cone. First, the gauge method (9) is used to search a candidate

\outside" the current approximation. The deviation of the candidate is

in this case implicitly given because the candidate's gauge is equal to the

optimal objective value.

If no candidate with a deviation larger than the given stopping criterion

� > 0 is found, the \inside" of the approximation is examined. Since using

the direction method (8) with some search direction in the currently consid-

ered cone would further complicate the problem due to the fact that a point

outside the cone may be found, we propose to use a heuristic based on the

Tchebyche� method. To use the lexicographic Tchebyche� method, a local
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utopia point ~z� and a second point ~z� de�ning the weights of the norm are

needed, see Figure 9 for an example.

z0

zi

zi+1~z�

~z�

Figure 9: The Tchebyche� norm for a bicriteria example

Whereas in the bicriteria case ~z� and ~z� can be chosen as the local utopia

point and the local nadir point with respect to the generators zi and zi+1

of the current cone, only the local utopia point ~z� directly generalizes to

higher dimensional problems. If ~Z� is the set of generators of the cone and

j ~Z�j= k, the following points are reasonable choices for ~z�:

~z�i = maxfzi : z 2 ~Z�g (10)

~z�i = minfzi : z 2 ~Z� and 9�z 2 ~Z� s. t. �zi < zig (11)

~z�i =
1

k

X
z2 ~Z�

zi: (12)

Choice (10) is similar to the choice of the default reference point, choice (11)

selects the second smallest element for each coordinate, and choice (12) is

the center of gravity of the generators of the current cone. Which of the

points is the best to choose is probably related to the speci�c multicriteria

problem. Numerical studies are needed to determine whether one of the

choices is superior to the others. Another possibility is to solve the method

for all points de�ned in (10) through (12), but this has the obvious drawback

that a lot more calculations are necessary.
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Given the point ~z�, the weights of the Tchebyche� norm are set to

wi =
1

~z�i � ~z�i
i = 1; : : : ; n;

and the lexicographic Tchebyche� method solved in the current cone is given

by

lexmin
�
kz � ~z�kw1 ; kz � ~z�k1

�
s. t. z =

nP
i=1

�iz
i

�i � 0 i = 1; : : : ; n

z 2 Z:

(13)

The gauge (and therefore the deviation) of the candidate �z is implicitly

calculated because (�z) =
Pn

i=1
��i where �z =

Pn
i=1

��iz
i and (�z; ��) is an

optimal solution of (13).

After identifying a candidate in the cone by the gauge method (9) or the

Tchebyche� method (13), we only know that the point is locally nondom-

inated in the current cone, but there might be a dominating point outside

of this cone. This is another complicating fact in the multicriteria case.

Moreover, the generated point is in general not the point of worst approxi-

mation as this was the case with the gauge method in IRn
=-convex problems.

For now, we simply accept such a candidate and proceed with the algorithm.

When a stopping criterion is met, dominated points should be removed from

the approximation before the output is given.

When candidates for all initial cones are found, we proceed with the

algorithm as in the IRn
=-convex case, that is, the candidate with the largest

deviation is added to the approximation by splitting the corresponding cone.

The candidate and n� 1 of the n generators of the cone are used to de�ne

a new cone. Given a cone with n generators, we thus have up to n possi-

ble new cones. For each of the new cones, we have to check whether the

generators are linearly dependent in which case we omit the cone (it has

an empty interior). Cones with linearly independent generators are added

to the approximation, candidates for the new cones are calculated and the
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next iteration is started. Observe that the resulting approximation is not

necessarily convex. However, calculating an approximation \similar to a

norm" still yields the necessary information to evaluate the quality of the

approximation in the considered cone.

The approximation algorithm is summarized in Figures 10 and 11.

Procedure: Nonconvex Approximation

Read/generate z0, di, �, maxConeNo
for all di do
Solve direction method

end for

Transform points
Construct Delauney tessellation
Construct cones using the tessellation
for all cones do
Call Calculate Candidate

end for

while #cones < maxConeNo and dev(next point) � � do
Add next point
Construct new cones
for all new cones do
Call Calculate Candidate

end for

end while

Output approximation

Figure 10: Pseudo code of the multicriteria approximation
algorithm for an IRn

=-nonconvex problem

6 Discrete Multicriteria Problems

The general algorithm for the discrete multicriteria case follows the one

for the IRn
=-nonconvex case given in Figure 10. Only for the procedure to

calculate a candidate within a given cone (cf. Figure 11), an alternative to

the lexicographic Tchebyche� method (13) can be given which is based on

the generation of cutting planes.
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Procedure: Calculate Candidate

Solve gauge method to �nd �z and dev(�z)
if dev(�z) < � then
Calculate ~z� and ~z�

Use lexicographic Tchebyche� method to �nd �z
Calculate dev(�z)

end if

Figure 11: Finding a candidate in a cone for
an IRn

=-nonconvex problem

The general idea of this approach is to cut o� the generating points of

the current cone by suitable cutting planes. Then the gauge method (9)

can be applied in the new feasible set in order to �nd a new and possibly

nondominated point inside the current cone. For this purpose, one cutting

plane per generator of the current cone has to be constructed. Assume

that the two hyperplanes of the cone containing a particular generator �z are

de�ned by the equations hn1; zi = 0 and hn2; zi = 0 where n1 and n2 are

the normals of the hyperplanes pointing to the outside of the cone. The

right-hand side of both equations is zero, because both planes contain the

reference point z0 which is again assumed to be at the origin. We de�ne

an \intermediate" plane by using the normal �n = �n1 + (1 � �)n2 where

� 2 (0; 1), see Figure 12.

�z

z0

Figure 12: The intermediate plane containing the points z0 and �z

The plane de�ned by h�n; zi = 0 contains the origin (and therefore the
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reference point z0) and the point �z because the right-hand side is zero and

h�n; �zi = � hn1; �zi + (1� �) hn2; �zi = � � 0 + (1� �) � 0 = 0:

In order to cut o� �z, the intermediate plane must be either tilted or trans-

lated, see Figure 13. The plane can be tilted by using a normal ~n =

Æ�z + (1� Æ)�n where Æ 2 (0; 1) is small enough not to cut o� any other non-

dominated point, see Figure 13(a). The plane can be translated by changing

the right-hand side of the de�ning equation to get h�n; zi = Æ where Æ > 0 is

small enough not to cut o� any other nondominated point, see Figure 13(b).

�n

~n z0

�z

(a) Tilting the plane

Æ
k�nk2

z0

�z

(b) Translating the plane

Figure 13: Changing the cutting plane

None of the two methods has an obvious advantage and for both we have

to estimate a suitable parameter Æ. Obviously, this estimation is easier for

the case where the variables are integer.

After constructing cutting planes for all generating points, the gauge

method is applied in the cone with the cutting planes as additional con-

straints. To avoid cases where the gauge method searches \too deep" in the

cone, an upper bound induced by one of the possible generalizations of the

local nadir point given in (10) through (12) can be added. Assuming we

construct n cutting planes using the \tilting method" and additionally use
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a point ~z� as an upper bound, the problem to solve is

max
nP
i=1

�i

s. t. z =
nP
i=1

�iz
i

�i � 0 i = 1; : : : ; n

~ni; z

�
� 0 i = 1; : : : ; n

z 5 ~z�

z 2 Z:

(14)

Similar to the lexicographic Tchebyche� method (13), the point generated

by (14) is not necessarily globally nondominated. However, we can use this

point as the candidate for the current cone and remove points that are not

globally nondominated at the end of the approximation procedure.

The candidate's deviation can be calculated directly from the optimal

objective value of (14) which is equal to the candidate's gauge. The proce-

dure to �nd a candidate using cutting planes is summarized in Figure 14.

Procedure: Calculate Candidate

Construct cutting plane for each generator
Calculate local nadir point
Construct new feasible set using the cone, the cutting

planes and the local nadir point
Solve gauge method to �nd �z and dev(�z)

Figure 14: Finding a candidate in a cone for a discrete
problem using cutting planes

If the procedure given in Figure 14 generates a point \outside" the cur-

rent approximation, that is, a candidate with a deviation large enough, a

point of worst approximation and a suitable point to add to the approxi-

mation is found. But if a point is obtained \inside" the approximation, it

is actually a point of best approximation. Therefore it may happen that a

cone is excluded from further consideration too early.

We can conclude that the approach using the Tchebyche� norm as well

as the approach using cutting planes have disadvantages. In the former, two
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optimization problems have to be solved one of which is often NP-hard (see,

for example, Warburton (1987) or Murthy and Her (1992)); the latter avoids

NP-hard problems in some cases but cones might be excluded from further

consideration prematurely because a point of best approximation is found

when examining the \inside" of the approximation. While a premature ter-

mination is likely to take place using cutting planes whenever the algorithm

examines the interior of the current approximation, such a termination is

possible but less likely in the Tchebyche� approach in which, in general, we

do not �nd a point of best approximation, but some other point. For an

example see Figure 15 where the arrow points to the identi�ed candidate.

z0

(a) Cutting planes

z0

~z�

(b) Tchebyche� method

Figure 15: Finding a candidate in the interior of the current approximation

In e�ect, choosing one approach or the other is a problem-dependent

task and has to be decided for the particular problem at hand.

7 Conclusions

In this paper we developed approximation algorithms for general multicrite-

ria problems generalizing the ideas for the bicriteria case as given in Schandl

et al. (1999). Due to numerous problems in higher dimensions which are

present in general independently of the methodology, the developed ap-

proaches are more specialized than in the bicriteria case but preserve most

of the properties of norm-based approximations in that case.

27



The presented approximation algorithms combine several desirable fea-

tures. The most important and notable are:

� The approximation is improved in the area where \it is needed most"

because in each iteration, the point of worst approximation is added

whenever available.

� The algorithms are applicable even if the structure and convexity of the

feasible set is unknown. Given the knowledge though that a problem

is continuous and convex, more eÆcient versions can be applied.

� Using the approximation or a gauge induced by it to improve the ap-

proximation releases the decision maker from specifying preferences

(in the form of weights, norms, or directions) to evaluate the quality

of the approximation. Such preferences can be used in the initializa-

tion step (specifying the search directions) but apart from that the

approximation is carried out in a very objective and neutral manner.

The algorithms yield a piecewise linear approximation of the nondomi-

nated set which can easily be visualized if not more than three criteria are

present. For more criteria, plots of selected criteria against each other can

be created. Such plots and the approximation in general should help the

decision maker �nd a preferred solution within the nondominated set. While

the approximation is carried out in an objective manner, the subjective pref-

erences must be (and should be) applied to single out one (or several) �nal

solution(s).
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