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Abstract

This paper considers one facility planar location problems using
block distance and assuming barriers to travel. Barriers are defined
as generalized convex sets relative to the block distance. The objec-
tive function is any convex, nondecreasing function of distance. Such
problems have a non-convex feasible region and a non-convex objective
function. The problem is solved by modifying the barriers to obtain
an equivalent problem and by decomposing the feasible region into a
polynomial number of convex subsets on which the objective function
is convex. It is shown that solving a planar location problem with
block distance and barriers requires at most a polynomial amount of

additional time over solving the same problem without barriers.
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1 Introduction

Continuous, planar, one facility location models assume a finite set of existing
facility locations in the plane IR? denoted by E = {e; = (xj,y;)" : j =
1,...,m} with the objective of locating one new facility x = (z,y)" € IR* in
order to minimize some function of the distances between x and the e; for
allj=1,...,m.

A wide array of distance functions are available to represent travel dis-
tance between x and e;. Models using the I, distance (Euclidean), the [;
distance (rectilinear), and [, for 1 < p < oo are well studied. The loca-
tion models considered here assume block distances which are denoted by
dy(x,x') for a given integer p > 2 and x,x’ € IR*. Block distances are
defined explicitly in Section 2.

The models considered here also assume barriers, denoted by B;,i =
1,...,n, which are subsets of the plane through which travel is forbidden.
Barriers are defined explicitly later, but may represent lakes, mountains or
any restricted areas that prohibit tresspassing. Let B = |J;_, B;. Then
the feasible region for the location of a new facility x is denoted by F =
IR? \ int(B). The set F is also the set through which travel is permitted.
We assume that F is connected and that £ C F. The feasible region F is
typically not convex.

For a set S C IR? and points x, x’ € S, the shortest feasible block distance
between x and x’ with travel restricted to S is denoted by d, s(x, x") which
is the length, measured by the distance d,(x,x’), of a shortest path that
lies entirely in S. The distance d, ¢(x,x’) is a metric on S, but is typically

a nonconvex function of x. In particular, d, #(x, e;) measures the shortest



feasible block distance between x and e; restricted to the feasible set F.

The objective function is determined by any convex, nondecreasing func-
tion f of the feasible distances d, #(x,€;),j = 1,...,m. For convenience,
denote d, r(x, E) = (d, r(x,€1),...,d, 7(x,e,)). Then the objective func-
tion is given by f(d, #(x,E)). Two well known special cases are the sum
of distances, which is called the median problem, and the maximum of dis-
tances, which is called the center problem.

The planar location problem with barriers is written as

min f(dp,7(x, E)).

Figure 1 shows an example problem with five existing facilities and five bar-
riers.

Despite their practical relevance, location problems with barriers have
received relatively little attention in the location literature. Most authors
have concentrated on special barrier shapes and/or special distance func-
tions. Barriers were first considered in location models by Katz and Cooper
(1981) who developed a heuristic solution procedure for the median problem
with Euclidean distance and one circular barrier. In the case that all barrier
sets are polytopes, a visibility graph of the existing facilities and the extreme
points of the barrier polytopes can be constructed. The visibility graph was
used by Aneja and Parlar (1994), Butt (1994) and Butt and Cavalier (1996)
to efficiently evaluate solution points in a heuristic algorithm for the median
problem using Euclidean distance. For the case of polyhedral barrier sets,
Klamroth (2001a) and Klamroth (2001b) showed that an optimal solution of
the non-convex barrier problem can be found by solving a finite (and in the

case of line barriers a polynomial) number of related unconstrained subprob-
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Figure 1: Example of a planar location problem with five existing facilities

and five barriers

lems. This result was generalized to the multi-criteria case in Klamroth and
Wiecek (2002).

For several classes of location problems with barriers, finite dominating
sets have been constructed that are shown to contain optimal solutions. Lar-
son and Sadiq (1983) identified an easily determined finite dominating set for
the median problem with rectilinear distances. Their results were later gen-
eralized by Batta et al. (1989) who included forbidden regions into the model,
and by Savasg et al. (2002) who located finite size facilities acting as barriers
themselves. Similar finite dominating sets were developed by Hamacher and
Klamroth (2000) for the median problem with general block norm distances

and by Dearing et al. (2002) for the center problem with rectilinear distances.



The computational efficiency of these methods was improved by Segars Jr.
(2000) and Dearing and Segars Jr. (2002a,b) who showed that a much smaller
dominating set is sufficient to solve the problem. Klamroth (2002) provides
an overview of results on location with barriers up to 2002.

For the special case that n pairwise disjoint axis-aligned rectangles are
given as barriers, Kusakari and Nishizeki (1997) presented an output-sensitive
O((k 4+ n) logn)-time algorithm for the median problem, assuming that the
number of existing facilities m is small. This result was improved to O(nlogn+
k) by Choi et al. (1998) who also gave an O(n*mlog® m)-time algorithm,
based on parametric search, for the center problem. Ben-Moshe et al. (2001)
recently improved this last result for the unweighted center problem by giving
an O(nmlog(n + m))-time algorithm.

General global optimization methods are applied by Hansen et al. (1995)
to the nonconvex objective function of barrier location problems. Krau (1996)
and Hansen et al. (2000) generalized the big square small square method, a
geometrical branch and bound algorithm, to handle the median problem
with polyhedral barrier sets as well as forbidden regions, and Fliege (1997)
suggested modeling the physical barriers by suitable barrier functions (in the
sense of nonlinear optimization).

This paper extends the results of Dearing and Segars Jr. (2002a,b) from
[y distances to block distances. In the following section, block distances and
the related concepts of shortest paths and visibility are formally introduced.
Section 3 introduces barriers and discusses modifications of barriers. Equiv-
alence results for location problems with different - but related - barrier sets

are proved in Section 4. Section 5 presents a specific modification of the



barriers that leads to a maximal reduction of the feasible set. In Section
6 the feasible set is partitioned into convex subsets on which the objective
function is convex, which leads to a solution procedure. An example problem

is worked in Section 7. Extensions are discussed in Section 8.

2 Block Distance and Paths

Block distance is defined in the plane with respect to a symmetric polytope
as its unit ball. The polytope is assumed to have 2p distinct extreme points,
for an integer p > 2, that are called fundamental directions and denoted by
by, by, ..., by, where b,y = —by for k =1,...,p. Assume the fundamental
directions are ordered counter clockwise and for notational convenience, let
boyir = by for k=1,...,p.

For each fundamental direction by = (byx,boy)”, k = 1,...,2p, let b}
denote the orthogonal (row) vector given by b, = (by, —b1 ).

For any two vectors b, b’ € IR? let I'(b,b’) denote the cone in IR? gen-
erated by b and b’ with its vertex at the origin. Observe that I'(bg, byxi1) =
{x : bfx < 0,b;;x > 0}. Also, for any two points x, and x, € IR?

Xq — Xo € I'(bg, byyq) for some £ =1,...,2p, so that
Xg — Xo = aodbk + 5odbk+1

for some unique, nonnegative scalars a,; and [3,4.

Definition: The block distance between the points, x, and X4 with respect
to a given set of fundamental directions by, ..., by, is denoted by dy(x,, Xq)
and is defined as

dp (X07 Xd) = Qg + Bod
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where a,g and P,q are nonnegative scalars so that
Xg —Xo = aodbk + 5odbk+1

for some k=1,...,2p.

Block distances are a special case of norm distances (see, for example,
Minkowski, 1911) and were introduced to location models by Witzgall (1964),
and Ward and Wendell (1985). They can also be viewed as a generalization
of distances in fized orientations as introduced in Widmayer et al. (1987) who
assumed that all fundamental directions have unit length, that is ||bg|| = 1,
k=1,...,2p where ||bg|| is the Euclidean norm of by.

For any x and x, such that x—x, € I'(bg, bxy1), an alternative expression
for the block distance is given by d,(x,,x) = b}(x — x,) where b} denotes
the polar direction (a row vector) determined by by and by, (see Ward
and Wendell, 1985). In fact, b = eTD/,;,ICJrl where Dy 41 is the matrix
with columns by and by, and e = (1,1)7. The unit ball centered at x,
for the block distance d, is the polytope in IR* whose extreme points are
X, + by, for £ = 1,...,2p. The unit ball may also be expressed as the set
{x:bd(x—x,) <1,k =1,...,2p}, and the facet between each consecutive
pair of directions x, + by and x, + by, of the unit ball centered at x, is the
line bYx = bix, + 1 for k=1,...,2p.

Block distances are used to model travel distance in which travel direc-
tions are restricted to the fundamental directions. The [; distance is an
example of a block distance with p = 2 and fundamental directions given by
b, =€, by = €9, by = —¢1, and by, = —&,, where g; is the i unit vector
in IR%. Figure 2 illustrates the fundamental directions of two block distances

in IR*: the [, distance (p = 2) and a block distance with p = 4, referred to
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here as the ‘example block distance’. The example block distance is used in

the example problem of Figure 1 and throughout the paper.

b2 b3
by
b3 bl -b5 b1

bs

b,

bg
by b7

Figure 2: Examples of block distances in IR?

For the example block distance, Figure 3 shows the cone I'(bs, by), the
orthogonal vectors by and b}, the polar vector b and a vector x; — X, €
['(bs, by) with a,q = .5 and S, = 1.5 so that x4, — x, = .5bs + 1.5by and
dp(Xo,X4) = 2.

Figure 3: Vectors bz, by, by, b}, b), and x4 — x, € I'(bs, by)

A path from an origin point, X, = (z,,y,)’ to a destination point x4 =
(24, ya)T, denoted P(x,,%4), is a rectifiable, Jordan arc (see Apostol (1960))

in IR? whose points (z,y)” are defined by a continuous, vector-valued, one-



to-one function § = (u,v)” on the interval [0, 1] with:

6(0) = (u(0),v(0)" = (0,0)"
o) = (z,y)" for t € (0,1)
6(1) = (u(l),v()" = (va,ya)"

For each point t; € (0,1), the point x; = §(¢;) is an intermediate point of
P(x,,%4), and is written P(x,,X;,%X4). A partition P of [0, 1] is a finite set
of points {tg,t1,..., ¢y} C [0,1] with 0 =ty <t < ... <typy = 1. Each
partition P of [0, 1] yields a set of intermediate points x; = §(¢;), for ¢; € P,
of P(x,,%4). For each partition P, let A(P) = mawxy,cp(t; — ti—1).

Definition: The length of a path P(x,,x4) in terms of the distance d, is

defined as:
n(P)

Ay (P (o, Xa) = Jim > dy(xi1,%).
=1

The assumption that P(x,,x,) is a Jordan arc ensures that d,(P(x,,Xq))
exists and is finite. Note that for any intermediate point x;, d,(P (X, X;, X))
=d,(P(x0,%;)) +d,(P(x;,%y)). Also, for any path P(x,,Xq4), dp(P (X0, X4)) >

dp(Xo, Xq)-

Definition: A path P(x,,x4) is a d, shortest path if and only if:

dyp(P(Xo,%4)) = dp(Xo, Xa)-

Observe that if P(x,,x,4) is a d, shortest path from x, to x4 with inter-

mediate point x;, then P(x,,x;) is a d,, shortest path from x, to x;, P(x;, X,)



is a d, shortest path from x; to x4, and

dp(P (X0, Xi, Xq)) = dp(Xo, Xi) + dp(Xi, Xq)-

If x4 = x, + A\gby for some A\g > 0 and some k =1,...,2p, then the path
P(x,,x4) that coincides with the ray x, + Aby for A > 0 is the unique d,

shortest path from x, to x4 and has length \g.

Lemma 1 Suppose P(X,,X4) is a d, shortest path from x, to x4 and suppose
Xq—X, € ['(bg, bgy1) for somek = 1,...,2p. Then for all intermediate points

X, X; — X, € F(bk,bk+1).

Proof: Suppose that for some intermediate point x;, x; — X, & ['(bg, bgy1).
Then either b} (x; —x,) > 0, or b}, (x; —%,) < 0. Suppose b} (x; —x,) > 0.
Since x4 —x, € T'(bg, bry1) = {x: bx < 0,b; ;x> 0}, then b (x4 —x,) <
0, and b{x; > bfx, > bfx,;. Then the ray x, + Abj, must intersect the
continuous arc P(x;,X4) at some intermediate point, say x,. Let P*(x,,x;)
be the path coincident with the ray x,+ Aby so that P*(x,, X, ) is the unique
d, shortest path between x, and x,. This contradicts the assumption that
P(x,,%i,%;) is a d, shortest path between x, and x,. Thus b} (x; —x,) < 0.
A similar contradiction is reached for the case b, (x; — x,) < 0 and the

result is proved.

O

Note that the converse of Lemma 1 is not necessarily true. However, the
following condition provides an equivalent characterization of a d, shortest

path.
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Definition: Given two points x, and X4, suppose X4 — X, € I'(bg, by1). A
path P(x,,%x4) is monotone if for all intermediate points x;,x; determined

by ti,t; € (0,1) with t; < t;, the vector x; — x; € I'(bg, bgy1).

Lemma 2 A path P(x,,%4) in IR? is a d, shortest path from x, to x4 if and

only if it is monotone.

Proof: Suppose P(x,,X4) is monotone and suppose x4 — X, € ['(bg, bgi1)
for some k =1,...,2p so that x4 — x, = aby + Sbg; for some nonnegative
a and f§ and dy(x,,%x4) = o+ . Let P be a partition of [0,1] with 0 =
to <ty < oo <ty = 1 s0 that x, = xo = 0(tp) and xg = Xpp) =
O(tn(py) with intermediate points x; = d(¢;) for i = 1,...,n(P) — 1. Let
A(P) = maxyep(t; — ti—1). Since P(x,,X4) is monotone, for each pair of
consecutive intermediate points x; 1 and x;, X; — X;_1 € ['(bg, bgy1) so that
X; — X;_1 = ;b + Bibgyy with o; > 0 and 5; > 0 fori =1,...,n(P).
Thus

Xg—Xo = XpP) — XpP)-1 T XpP)-1 — - +X1 — X,
n(P)
= ) {aibi + Bibrai}
i=1
n(P) n(P)
= O a)(bi) + (D Bi) (bry).
i=1 i=1

This implies
n(P) n(P)
o= Z o and b= Z Bi
=1 =1

for any partition P since a and [ are unique in the representation x; —x, =

abg + by
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Thus

n(P)
PO x) = fim S (i)
n(P)
= A(lggo :l(az‘Jrﬂz)
~ A
= a+p
= dp(xmxd)

so that P(x,,X4) is a d, shortest path.

For the converse, suppose P(x,,x,) is a d, shortest path from x, to x4
and suppose x4 — X, € ['(bg, bgy1) for some k£ = 1,...,2p, with x;, — x, =
agbg + B4bri1 and ag > 0 and [, > 0.

Choose 0 < ¢; < t; < 1 and consider the intermediate points x; =
§(t;) and x; = d(¢;). The object is to show that x; — x; € I'(by, bii1)
so that P(x,,x4) is monotone. Consider the path P(x;,x4) which is a d,
shortest path from x; to x4. Furthermore, x;—x; € I'(by, bi11). This follows
because P(x4,X,) is a d,, shortest path with x, — x4 € I'(=by, —by41), and
by Lemma 1, for any intermediate point x;, x; — x4 € I'(=bg, —byy1), or
xq — X; € ['(bg, bgi1). Applying Lemma 1 to P(x;,X4), implies that for all

intermediate points x;, x; — x; € I'(bg, bgy1).

Observe that any straight line path P(x,,x4) from x, to x4 can be rep-

resented by a linear function as follows:
X =0(t) = X, + t(Xqg — X,) for 0<t<1.
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Let by, b, be an adjacent pair of fundamental directions such that the
vector X4 — X, = aby + fbgyy. Then for all #;,¢; € [0,1] with ¢; < ¢;, the

vector
Xj =X = (tj —ti)(Xa — Xo)
= (tj — ti)(abg + Sbp1)
= (t; —tij)aby + (t; — t;) Bbrys
so that x; —x; € I'(by, by41) for all intermediate points x; and x;, and hence

a straight line path is always a d, shortest path.

Definition: A path of fundamental directions, P(x,,%4), from x, to X4
(not necessarily a d, shortest path) has the property that there exists a finite
set of intermediate points x;, determined by t; € [0,1] with t; 1 < t;, for
1 =1,...,n, such that for each consecutive pair of intermediate points X;_1
and x;, there is some fundamental direction by such that x; — X;_1 = A\;bg
with \; > 0, and for all intermediate points x;» = §(t;r) with t; 1 < t; < t;,

then xX;, — X;_1 = \iyby for some 0 < \;. < A,

That is, a path of fundamental directions P(x,,x,4) proceeds from x, to
X4 in a sequence of connected straight line segments each of which is parallel

to some fundamental direction.

Definition: A staircase path P(x,,x4) is a path of fundamental directions

such that exactly two adjacent fundamental directions are used.

A staircase path consists of straight line segments that alternate between
two adjacent fundamental directions. Observe that a staircase path is a d,

shortest path. Figure 4 illustrates a path of fundamental directions and a
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staircase path with respect to the example block distance d4 shown in Figure

2.

Figure 4: A path of fundamental directions (dashed) and a staircase path

(solid) in the fundamental directions by and by

Definition: A feasible path with respect to a set S C IR?, denoted Ps(x,,Xq),

is a path from x, to x4 contained in S. That is Ps(X,,x4) C S.

Definition: The d, distance with respect to S between x, and x4, denoted
dp.s(Xo,Xq), is defined as the length of a d, shortest feasible path with respect
to S. A path Ps(X,,X4) is a d, shortest feasible path with respect to S if and

only if d, 5(X0,%Xq) = dp(Ps(X,, X4))-

Definition: If d,s(x,,%X4) = dp(X,,X4) then x, and x4 are said to be d,

visible with respect to the set S.

Definition: A set S C IR? is said to be d, visible if for all pairs of points

Xo,Xg € S, X, and X4 are d,, visible, that is, d, s(Xe, Xa) = dp(Xo, X4)-

14



The following property of d, visible sets is used subsequently.

Lemma 3 Let S C IR? be a d, visible set and let x, and x4 be distinct points
in S such that xq — x, = Aoby for some k=1,...,2p and \g > 0. Then the

stratght line segment connecting X, and Xq is contained in S.

Proof: The straight line segment connecting x, and x, is the unique d,
shortest path between x, and x4. Since S is d), visible, this path must be

contained in S.

The next lemma gives the converse of Lemma 3 with the additional as-
sumption that the set S is connected. Figure 5 illustrates a counter-example
to the converse of Lemma 3 for the [, distance; that is, S = S; U S, with the
property that any vertical or horizontal line segment connecting two points

in S is contained in S, but S is not [; visible.

Figure 5: A counter-example to the converse of Lemma 3 using [;.
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Lemma 4 Let S C IR? be a connected set, and suppose that for any pair
of points X,,Xq € S satisfying Xqg — X, = Aoby for some k = 1,...,2p and
Ao > 0, the line segment connecting X, and Xq is contained in S. Then S 1is

d, wvisible.

Proof: Let x,,%x; € S and suppose that x; — x, € ['(by, bg,1) for some
k=1,...,2p. Since S is connected, there exists a feasible path Ps(x,,X,).
If Ps(x,,%Xq) is monotone, it is a shortest feasible path so that x, and x4
are visible. If Pg(x,,X4) is not monotone, there exists ¢t; < ¢; € [0,1] corre-
sponding to intermediate points x; and x; such that x; — x; ¢ I'(bg, byy1).
If b/ x; > b/ x;, there must be an intermediate point x; € Ps(x,,X4) corre-
sponding to a point ¢, < t; € [0, 1] such that b{x; = b/ x;. By assumption,
the line segment connecting x; and x; is contained in S. Consider the new
path Ps(x,,x;,X;,X4), where the segments Ps(x,,%;), and Ps(x;,%4) coin-
cide with Ps(x,,%4), and the segment Ps(x;,x;) is the straight line segment,
connecting x; and x;. If bf;rlxj > balxi, a new path is constructed by
a similar argument. This process is repeated until the constructed path is

monotonic so that x, and x4 are d, visible.

Lemma 4 shows that d, visibility is equivalent to the concept of ‘d, con-
vexity’ introduced in Widmayer et al. (1987) for distances in fixed orienta-
tions and so-called ‘d, polygons’, that is, polygons whose boundary consists
exclusively of segments parallel to one of the fundamental directions (see

also Ottmann et al. (1984) for the special case of rectilinear distances). The
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next lemma shows that d, visibility is a generalization of convexity in that a

convex set is a d,, visible set.
Lemma 5 A convez set S C IR? is a d,, visible set.

Proof: Let S C IR? be a convex set and let x,,x4 € S. By definition of
convexity there exists a straight line path Ps(x,,%x4) C S. Since a straight

line path is a d,, shortest path, S is a d, visible set.

O

The barriers By, Bs, By, Bs in the example problem are d,, visible sets but

are not convex.

3 Barriers

We will use the following concept of a barrier thoughout the remainder of
the paper:

Definition: A set B C IR? is a barrier if it satisfies the following five
conditions: (1) B is d, visible, (2) the boundary of B is a closed, rectifiable
Jordan curve, (3) clos(int(B)) = B, (4) int(B) Nint(B") = O for all other
barriers B', and (5) int(B) N E = ().

Condition (2) ensures that the boundary of a barrier is continuous and
of finite length. Condition (3) ensures that a barrier has non empty interior
and no protruding line segments. For each barrier B;, define 2p points called

fundamental vertices, denoted by v;;, for kK =1,...,2p, as follows:
v, = arg(max(b}x : x € B;)).
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It follows from the definition that a barrier is compact, so that the funda-
mental vertices exist. If there are alternative solutions to the maximization
of b, x, choose any particular solution so that the designated fundamental
vertex v; is unique for each £ =1,...,2p. For notational convenience, let
Viop+k = Vig. Figure 6 shows the barrier B; from the example problem with

its fundamental vertices.

Vi1 Vi2

Figure 6: The barrier Bs and its fundamental vertices

For a barrier B;, the portion of the boundary between consecutive pairs of
fundamental vertices is a feasible path with respect to B; and is denoted by
Py(Vig, Vigsr) for k=1,...,2p. It follows from the definition of fundamental
vertices that v; i1 — vix € I'(bg, by) for k=1,...,2p.

The following results show that Py(v;, virt1) is a d, shortest feasible

path with respect to B;.

Theorem 1 Let B; be a set satisfying conditions (2), (3), (4), and (5). Then
B is a barrier if and only if each path Py(viy,Vigs1), for k=1,...,2p, is a
d, shortest path.
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Proof: Suppose Py(Vik,Vigt1), for each k& = 1,...,2p, is a d, shortest
path. Show that B; is d, visible. Choose x; and x, € B;, and suppose
x3—x1 € ['(by, by 1) forsome l =1,...,2p, so that xo—x; = pb;+vb;; with
i, v > 0. Let x5 be the point such that x; — x; = pb; and x, — x; = vb;q,
and let x; be the point such that x, — x; = vb;;; and x; — x; = pb;. If
Xs € B; then the path P(xy,x,,x3) consisting of the line segment from x; to
x; and the line segment from x; to X, is a d, shortest path in B; so that x;
and x, are d, visible. If x, € B;, the same argument shows that x; and x,
are d, visible.

Suppose X; is not in B;. By the definition of fundamental vertices,
b/ v, > b/x;. By the construction of x;, b;x; = b;x;. Since x;, ¢ B;,
bfxt > bfrvlﬂ. Since the path P(v;,v;;1) is continuous and monotone, by
the Intermediate Value Theorem, it must cross the line b x = b,"x; exactly
once. A segment of the path P(v;, v;;1) may coincide with a segment of the
line b’x = b;"x;. Let x, be a point on the line b ’x = b;’'x; and on the
path P(v;,viq). Similarly, b, viyr > b/l xe = b/l x, > b/, vy, so that the

continuous, monotone path P(v;,v;4;) must cross the line b, x = b/,

1+1%2

exactly once. Let x, be such a crossing point. Then the path P(xy, x4, X,, X2)
consisting of the line segment from x; to x,, the path Py(x,,x,) and the line
segment from x, to x, is a d, shortest path within I'(b;, b;11), and x; and
Xy are d, visible.

Now suppose that B; is d, visible and show that the boundary path
Py(Vik, Vikt1), is a d, shortest path for each £ = 1,...,2p. By convention
Vikt1 — Vig € ['(bg, bgir).

Suppose that Py(v;, Vikt1), is not a d, shortest path for some k£ =
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1,...,2p. Then for some intermediate points x; and x;, x;—x; & I'(bg, by11).
Then either b}l (x; —x;) > 0 or b}, (x; — x;) < 0.

Consider the case b (x; — x;) > 0. By definition of v;;, b/ v, > b}x
for all x € B;. Thus b} v;; > b;x; > b/x;. Consider the ray x; + A(—by)
for A > 0, which, by the intermediate value theorem, must intersect the
continuous path Pjy(v;x,x;) at some point, say x,. By visibility, the line
segment from x; to x, is contained in B;, and by visibility, the region bounded
by the line segment from x; to x, and the path Py(x,,x;) is a subset of B;.
Thus, for some ¢ > 0, the neighborhood N(x;,¢) C B;. Thus x; is not
a boundary point, which is a contradiction. Thus, Py(v;k, Vigt1), is a d,

shortest path for each £k =1,...,2p.

Corollary 1 If S is a conver set in IR? satisfying conditions (2), (3), (4),
and (5), then S is a barrier.

Proof: By Lemma 5, S is d,, visible and thus a barrier.

Definition: Given a block distance d,, the block hull of a compact set S,
denoted H(S), is the smallest polytope enclosing S with sides parallel to the

fundamental directions of d,:

H(S)={x:b/x < magib,jxfork =1,...,2p}.
Xe
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Observe that the fundamental vertices of a barrier B; are fundamental ver-
tices of H(B;). The faces of the polytope H(B;) are denoted by F;, = {x €
H(B;) : bfx =b/v;;} for k =1,...,2p. Let h;; be the point of intersec-
tion of faces F;; and Fj44q for K = 1,...,2p. Some of the points h;; may
coincide, but the distinct points h;; are extreme points of H(B;).

There is at least one fundamental vertex of B; on each face of H(B;) and
one or more fundamental vertices may be coincident with an extreme point
of H(B;). See Figure 7 for an example. Different barriers may have the same
block hull. Also, two barriers having the same fundamental vertices will have

the same block hull.

Vi1 Vi2

Figure 7: The block hull of the barrier Bj in the example problem

Define a corner set, C;; of H(B;) as the set bordered by the faces Fj,

F, k+1, and the path Py(v; g, Vi) for each £ =1,...,2p. Alternatively,
Oi,k = (hz,k + F(bk—l—l; —bk)) \ (lIlt(Bz) + F(bk+1, —bk)) .
Note that C;; has empty interior if Py(v;, Vigt1) C Fip U Fjgi1.
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Definition: For each barrier B; with fundamental vertices v;y, k =1,...,2p,

define a modified barrier, denoted B}, to be a barrier such that:

(1) H(B:) = H(Bj),

(2) Vi is a fundamental vertex of Bj for each k=1,...,2p,
(3) int(B}) Nint(B;j) =0 fork=1,...,2p and j # i,
(4) nt(BY)NE =0 fori=1,...,n.
Alternatively, a barrier B; is modified by choosing its boundary to be any
alternative d, shortest path between each consecutive pair of fundamental
vertices, while maintaining conditions (3) and (4). A modified barrier B]

may be a subset of B;, a super set of B;, or neither. Figure 8 illustrates a

modification of the barrier By in the example problem.

Vi1 Vi2

Figure 8: The barrier with diagonal lines is modification of the barrier B;
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4 Equivalence Results

Given a planar location problem with barriers B;, i = 1,...,n, and the fea-
sible set F = IR*\ int(B), where B = |J!"_, B;, consider the location problem
with modified barriers B!, i = 1,...,n, and feasible set F' = IR*\ int(B'),
where B’ = |J._, B/. The following lemmas and theorem show that the

original problem minyer f{d, #(x, E)} is equivalent to the modified problem

mingez f{d, 7 (x, E)}.
Lemma 6 Let x,,x4 € FNF'. Then dy (X0, Xq) = dp 7(X0,Xa)-

Proof: For x,,x4 € F NF', let Pr(x,,%4) be a d, shortest feasible path
with respect to F so that d,(Pr(X,,X4)) = dp 7(Xo, X4). If Pr(x,,%x4) C F',

then Pr(x,,%4) is a feasible path with respect to F' and

dp, 7 (Xo,Xa) < dp(Pr(X0,%4)) = dp, (X0, Xa).

If Pr(x,,%4) € F', then Pr(x,,%X4) must contain at least one point, say x;
such that x, € F\ F', that is, x; € B!\ B; for some i. Thus z; must be
in a corner set C;y of H(B;) for some k£ = 1,...,2p. Therefore Pr(x,,x:)
must intersect the boundary path P)(vy, vgi) of B. at some point, say x,
and Pr(x;,X4) must intersect the boundary path P)(vy, vigiq1) of Bl at some
point, say X,, so that the path segment Pj(x,,x,) C F'.

Construct a new path Px(X,,X,,X;,X4) which consists of the segments
Pr(x,,%q), Py(xq,%x,) and Pr(x,, Xq).

This process is repeated for each segment of Px(x,,X,, X, x4) that lies in

F\ F' until a new path is constructed, say Px(x,,Xg4), that lies in F'. Then
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the new path P}(x,,x4) is a feasible path with respect to F' and

dp,}—' (XO’ Xd) < dp(P]*-'(Xm Xd)) = p,}'(xm Xd)'

To show d, x(X,,%4) < d, 7(x,,Xq), the argument is repeated reversing

the roles of F and F'.

Lemma 7 There exists a point x' € F N F' that is an optimal solution to

the location problem: minger f{d, 7(x, E)}.

Proof: Let x* be an optimal solution to the Ilocation problem
minger f{d, 7(x, E)}. Then x* € F. If x* € F’ then let x' = x*. lf x* ¢ F'
then x* € F\ F' and x* is located within the interior of some barrier Bj and
within a corner C;; of H(B;) for some k=1,...,2pand i =1,...,n. Let x’
be the point where the ray x* + (b, — by 1) intersects the boundary path
P)(Vig, Vigs+1) of Bl, so that x" = x* + A\g(by — bg41) for some g > 0 is an
intermediate point of P)(v;, Vikt1)-

For any existing facility e;, let Pr(ej,x*) be a d, shortest feasible path
with respect to F. Since e; ¢ int(B}), Pr(e;,x*) must intersect the boundary
Py(vik, Vikt+1) of Bl, at some point, say x,. Since x’ and x, are intermediate
points of P§(v;k, Vik+1), they are ordered either as Pj(v;k, Xq, X', Vj 1), OF
as P)(vix, X', X4, Vigt1). Suppose the former. Let Pj(x,,x') be the segment
of P)(Vik, Vik+1) from x, to x’ so that x' — x, € T'(bg, bg1)-

If x* —x, € I'(bg, bgt1) then dy(x4,x") = d,(x4,x*) since x* and x’ are
both on the facet, given by b)(x — x,) = b} (x' —x,), of the d, ball centered

at x, with radius b?(x’ — x,).
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If x* —x, & I'(bg, bgsy) then d,(x,,x") < d,(x,,x*) since x* is on the
support, given by b)(x —x,) = b)(x' —x,), of the d, ball centered at x, with
radius b (x' — x,). In either case, d,(x,, x') < d,(x4, x*).

If the intermediate points x, and x" are ordered as P}(v; , X', Xq, Vig+1),
then x, — x' € I'(—by, —bg11), and a similar argument yields d,(x,,x’) <
dp(xq, X*).

Thus dy(ej,x') < dy(ej,x*) for all j = 1,...,m. Since the objective

function f is convex and nondecreasing,

Hep7(x', E)} < f{dy 7(x", B)}.

Thus x’ must also be an optimal solution.

Lemma 8 There exists a point x' € F N F' that is an optimal solution to

the location problem: mingecz f{d, 7 (x, E)}.

Proof: The proof is analogous to the proof of Lemma 7.

Theorem 2 There exists a point x* € FNF' that is an optimal solution to

both of the location problems mingez f{d, 7 (x, E)} and minger f{d, r(x, E)}.

Proof: By Lemma 7 there exists a point x; € F N F' that minimizes
f{d,.#(x, E)}, and by Lemma 8 there exists a point xo € F N F’ that mini-
mizes f{d, = (x,E)}. By Lemma 6, d,r(x1,E) = d,m(x1,E) =
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dp’}'r]}'/(XI,E), and dp’}'(XZ,E) = p’}'/(XZ,E) = p’j.'r]j.'/(XZ,E). Since F N
F' C Fand FNF C F, x; and x, both minimize f{d, rnr(x, E)}.
Since x; and x» are both optimal solutions to the same problem, they must

have the same objective function value. Therefore, x; and x, both minimize

fAdy,7(x, E)} and f{d, = (x,E)}.

The implication of Theorem 2 is that a solution to a given location prob-
lem with barriers B; and feasible set F may be obtained by solving a location
problem with modified barriers B; and feasible set F'. If an optimal solution
x* to the modified problem exists in '\ F, then there is an optimal solution

x’ to the original problem that is constructed from x*.

5 An Explicit Modification

A modification is given in this section that decreases the feasible set by
modifying each barrier B; to be as large as possible within its block hull
H(B;), but without enclosing any existing facility or intersecting the interior
of another barrier. The resulting modified barrier is denoted by B! and is
shown to be a (setwise) maximal modified barrier. The maximal modified
barrier B; is obtained from B; by reducing each corner C;; of H(B;), for
k = 1,...,2p, as much as possible. For any point x’ in a corner C;j of
H(B;), define the restricted hull of x’ and the corner point h;j, denoted

H; (h;z, %), as the smallest parallelogram containing h;; and x’ with sides
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parallel to the faces Fj; and Fj .y, of H(B;). That is,
Hi,k(hi,k; X,) = {X : bZX, S b]:X S b;hi’k, b;—l—lxl S b;—l—lx S bl::r—l—lhiak}'

Next define the following sets for each ¢ = 1,...,n and £k = 1,...,2p repre-

senting what must remain in each corner.

Uk = Ueec,, Hir(hix, e;)
Vieg = Uin‘ﬂ(Bl)ﬂCi,Hf@,Vl,mGCi,k Hi’k(hi’k’ Vl,m)
Wik = Uint(Bl)ﬁCi,k;éQ) {BiNCix}

Then the k™ corner of the modified barrier is given by C}, = Ui, UV;; U
Wik, and the modified barrier B; is obtained by removing from the block
hull H(B;) all of the modified corners Cj, for k = 1,...,2p. That is,

B; = clos { H(B) \Uy_,,.5,Clu } -

It follows that B; C B; and that C; ; = 0ift ENC;y = 0, and if int(B),NC; 1, =
() for I # k. In particular, if H(B;) contains no existing facilities and does not
intersect the interior of any other barrier, then B! = H(B;). The construction

of a maximal modified barrier Bj is illustrated in Figure 9.

Observe that the boundary of B! between consecutive pairs of fundamen-
tal vertices v; ; and v; 1 is made up of segments that are either a segment of

a common boundary with another barrier or a staircase path in the directions

of bk and bk+1-

Lemma 9 Fach modified barrier B, obtained from B; is set-wise mazimal,

that is, there is no barrier B} that strictly contains B.
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’ Vi1 Viz2

Figure 9: The maximal modification of barrier Bs with existing facility ey,

and a barrier B;.

Proof: Observe that the boundary of each set H; i (h; x, ;) is a staircase path
with intermediate point e;. If any proper subset of H; j(h;, ;) is removed,
then either the existing facility e; is interior to the modified barrier, or the
boundary path is not a d, shortest path. Thus H;j(h;, e;) is a minimal
subset that can be removed to ensure that e; NintB; = () and that B is a
barrier. A similar argument implies that each set H; y(h; 4, v;,,) is minimal.
Clearly, each set B; N C; is a minimal set that can be removed to ensure
that the modified barriers remain disjoint. The removal of minimal subsets

from B; implies that the resulting set B; is maximal.

For a given location problem, maximal modified barriers B; are con-

structed sequentially for : = 1,...,n as follows:
(1) Fori=1,...,n,
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(2) Modify B; to obtain Bi.
(3) Reset: B; «— B..

The new feasible region is given by ' = IR*\ int(B') where B' = |JI_, B..
Modifying the barriers B; in a different order from the index ¢ may result
in a different feasible region F', however, the optimal solutions will not be
changed.

A further reduction of the feasible region is given by the following lemma,
which says that there is some optimal solution within H(E, B'), the block

hull of all existing facilities and all modified barriers.

Lemma 10 There exists a point x* € H(E,B') that is a minimal solution

to f{d, (x,E)}.

Proof: Denote each face of H(E,B') by bfx = b}x) for k = 1,...,2p,
where each x} is either a fundamental vertex v;j for some i = 1,...,n
and & = 1,...,2p, or an existing facility e; for some j = 1,...,m. Thus,
b} x < b/ x) is a supporting hyperplane of H(E,B') for k =1,...,2p.

If x* ¢ H(E,B'), then bfx* > b/x) for some £ = 1,...,2p. Let x;
be the point of intersection between the ray x* — yb/} and the supporting
hyperplane.

For each j = 1,...,m, let Pr(e;,x*) be a d, shortest feasible path be-
tween x* and e;. Then there is some intermediate point x;- that is on the
supporting hyperplane b}x = b}x%. Since there are no barriers outside
H(E,B'), x; and x* are d,, visible so that d,(Pzr (x},x*)) = d, 7 (x};, x*) and

x* —x} € ['(by, byy1) for some I =1,...,2p. Each cone x}+T'(b;, biy1) lies in
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the halfspace b x > b/ x}, so that b} is an ascending direction with respect
to by and byyy. Thus, d, 7 (x],x;) < dp 7 (x},x*) for each j =1,...,m.

If x; € H(E,B'), then d, 7 (ej,x;) < d, 7 (e;,x*) for all j, so that x; is
an alternative minimum solution.

Otherwise, x;, violates some other supporting hyperplane of H(E, B'), and
the argument is repeated, generating a new point that lies on the violated
supporting hyperplane and is closer to e;. For any point x ¢ H(E, B') there
can be at most p supporting hyperplanes violated by x. Thus this process
will require at most p repetitions until the point generated is in H(E,B’),

and the result follows.
O

Figure 10 illustrates the maximal modified barriers for the example prob-
lem and the block hull H(FE, B'). The feasible region is the unshaded region
inside H(F, B’) and the common boundaries between barriers (bold line seg-

ments)

6 A Grid and Cell Structure

The feasible set F' is now divided into subsets, called cells, that are formed
by the intersections of a collection of cones. The set of vertices of these cones
is defined below. Each cone is generated by extending rays from a vertex
along a pair of consecutive fundamental directions into the feasible set.

For each maximal modified barrier Bj, let F}, be the k" face for k =
1,...,2p, that is, F], = {x € B} : bx = b v;,}. If F}, is a line segment, let

r; ;. and s;; be its end points, that is, b,r; , = MaXxep! byx, and —bys;, =
bl b b 7, bl
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Figure 10: Example problem with maximal modified barriers and the block

hull

MaXxer —byx. If F}, is a point, then F}, = {vix = riy = s;x}. The set
of vertices consists of all distinct points that are either existing facilities in
E, or end points r;; and s;; for ¢ = 1,...,n and & = 1,...,2p. Denote
the set of vertices by W and let R be the index set of vertices, so that
W = {w, : v € R}. There are at most 4p vertices for each barrier, so the
number of vertices is of the order O(np + m). Figure 11 illustrates the faces
and the end points of the faces of a maximal modified barrier B]. Observe
that the faces of a barrier may not be the entire boundary of the barrier. The
vertices of cones associated with the barrier B; in Figure 11 are the points
{ri,h €, V5, Vk,5, Vk,6,5:,2, T2, i 4, I‘i,s}-

For each r € R and for each k = 1,...,2p, construct the ray w, + Aby
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_ I __
Iy = Fi5 = 86

_ I __
rp = FZ3 = S84

_ !
ris = Fi;

—_
= Fjg = s

r;

Figure 11: Endpoints of faces of a barrier B, and vertices of cones:

{I‘z‘,b €, Vi5, Vk,5, V6, 8i2, 2,4, I‘z‘,s}

for A > 0, if possible, until it intersects the interior of some modified barrier
or until it intersects the boundary of the block hull H(E, B"). The collection
of rays extending from each vertex is called the grid structure for the feasible
set F'. Figure 12 illustrates the grid structure for the example problem. The
number of rays in the grid is of the order O(np? + mp).

A cell C'is a subset of F' with nonempty interior that is bounded by the
fundamental rays and/or barrier boundaries such that no fundamental ray
passes through its interior. In Figure 12 the cells for the example problem
are the regions delineated by the barrier boundaries and the rays extending

from each vertex.

Lemma 11 Fach pointx € F' is in some cell C' or is on a common boundary

between two maximal modified barriers.
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Figure 12: Grid structure of the example problem formed by the vertices

(dots) and rays (dashed lines) extending from each vertex

Proof: Suppose x' € F' but is not a point on a common boundary between
two maximal modified barriers. The boundary of each maximal barrier is
a line segment whose equation is of the form b}x = b/ w, for some vertex
w, € W. Since X' is not interior to a barrier, then either b/ x" > b} w, or

—bF

k+px’ > —b;" w, for some vertex w, € W. In either case, x' is in some

k+p

cone and hence in some cell.
O

Denote the cones formed by the grid structure as I', , = w, + (b, by1)
for (r, k) € Rx{1,...,2p}. Foreach cell C, let I(C) be the set of indices (r, k)
such that C' C Ty, that is, I(C') = {(r,k) € R x {1,...,2p} : C C T, x}.
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Thus, C' has the polyhedral representation given by
C ={x:bfx <bjw,, b/ x>bl w, for(r,k) e I(C)}.

In this representation, some of the inequalities may be redundant.

The problem of identifying the set I(C) and constructing the polyhedral
representation of each cell C' is the problem in computational geometry of
finding an arrangement in IR?, given a set of points w,, 7 € R, and a set
of rays w, + Aby for £ = 1,...,2p. Agarwal and Sharir (2000) present
polynomial-time algorithms for finding arrangements.

The grid structure and cells contain all the information needed to solve
the ‘median’ or ‘total cost’ location problem, that is, when the function f
is the sum of nonnegative weighted distances d, 7 (e;, x). Since d,(W,,x) is
linear for x within each cone with vertex w,, then the distance d, #(e;, x) is
concave within each cell since it is the minimum of linear functions d,(w,, x)+
dp.7 (e, w,). Thus the sum of nonnegative weighted distances d, = (e;, x) is
concave over each cell. Also, f is concave over each line segment that is a
common boundary between two maximal barriers. Thus the set of optimal
solutions consists of either (a) cell corners, (b) cell facets, (c) cells, or (d)
the end points of line segments that are common boundaries between two
maximal barriers. The median problem is solved by evaluating the objective
function at each of the cell corners and at the end points of each common
barrier boundary, and choosing the minimum values. A similar result was
reported by Larson and Sadiq (1983) for /; distances and by Hamacher and
Klamroth (2000) for block distances and with barriers that are polytopes.

In general, when f is a nondecreasing, convex function of the distances

dy.7 (e, %), the objective function f(d, = (x, E)) may be non-concave and/or
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non-convex over each cell. In the general case, the cells are subdivided into
convex subsets, called conver domains, on which d, z(e;,x) is convex for
all ej,7 = 1,...,m. Then on each convex domain the objective function
f(dy7(x,E)) is convex and may be minimized by methods appropriate for
the convex function. The convex domains are constructed so that for each x
in the convex domain and any existing facility e;, there is a vertex w, such
that dy, 7 (e;,x) = dy(w,,x) + d, 7 (e, w,).

For each existing facility e;, and for each pair of cones T, and I';; with
nonempty intersection, define the bisector, b(j,r, k,s,1), to be the set of
points x in the intersection of the two cones such that the distance between
x and e; through w, equals the distance between x and e; through w,. That
is,

xel, Ny, :
b(j,r K, s,1) = kT

dy, 7 (W;,€)) + bi(x — w;) = dp (W, €5) + b} (x — W)
or alternatively,

b k. s.1) = xel,,Nly,:
(b} — b})x = biw, — b)w, + d,, 7 (W, €;) — dy 7 (W;, ;)
If the bisector b(j,r, k, s,l) exists, it is either a line segment or the set
of all points in the intersection of the two cones. Necessary and sufficient
conditions for a bisector to exist, to be a line segment, or to be the set of all
points in the intersection of the two cones are developed next.
The first step is to determine the shortest path distance d,,r,,ur, , (Wr, Ws),

that is, the distance between w, and w, when the path is restricted to the

union of the cones I',; and I'y;. If w, € [y, then dpr ,or, (W, wy) =
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b?(w, — w,.). Likewise, if wy € T, then dpr, ur,, (Wr, W) = b?(w, — wy).
If w, ¢ I's;, and wy & I',;, define the point x;;41 to be the intersection
of the rays w, + Ab;, and wy + Ab;;; and the point x; ;41 to be the inter-
section of the rays w, + Abgy; and w, + Ab;. Then d,r ,ur,,(Wr, W,) =
min{b) (Xp41 — W) + b (Xk 41 — We), b (Xp k1 — W,) + D) (Xp k1 — W)}

The following result has been observed in other settings, but is stated

here in the context of the barrier problem with block distance.

Lemma 12 The bisector b(j,r, k,s,l) exists in I'yvp N Ty, if and only if

|dp,f’ (er ej) - dp,f’ (WSv ej)| <d e kUls (WT, WS)'

If (b) —b?) # 0, the definition shows that b(j, 7, k, s,1) is a line. Alterna-
tively, if (b)) —b}) = 0 and if b)w, —b)w, +d, 7 (W, e;) — d, 7 (W,,e;) =0,
then b(j, 7, k, s,1) is the set of all points in the intersection of the two cones
(called a degenerate bisector by Widmayer et al. (1987)). Some algebraic
manipulation shows that b{w, — blw, + d, = (ws, e;) — d, 7 (w,,e;) = 0 if
and only if |dz (w,,e;) — dr(W,,e;)| = dpr, ,or,, (Wr, Wy).

Define h(j,r,k, s,1) to be the set of points x in the intersection of the two
cones so that the distance between x and e; through w, is less than or equal
to the distance between x and e; through w,. The set h(j,r, k, s,1) is a half

plane intersected with the cones I'; ; and T’y ;, that is,

] X € Fr,k N Fs,l :
h(j,r k,s,1) =
dp 71 (Wr, €5) + bR(x —w,) < dy 5 (W5, €5) + b (x — wy)

or alternatively,

] X € Fr,k N Fs,l :
h(j,r k,s,1) =
(b) — bY)x < bYw, — b)w, + d, (W, ;) — dp 5 (W,, ;)
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Notice that the border between the two sets h(j,r, k, s, 1) and h(j,s,[,r k) is
b(j,r,k,s,1).

Next let h(j,r,s) be the set of all points x € F' whose distance to e;
through the vertex w, is less than or equal to the distance to e; through the

vertex w,, that is,

h(j,r,s) = U h(j,r k,s,1).

Lk:Ty N0 1 £0

The Voronoi region V' (j,7) is the set of all points x € F’' whose distance to
e; through w, is less than or equal to the distance to e; through any other

vertex, and is defined by

V(j,r)= ﬂ h(j,r,s).

s#r
The Voronoi regions partition the set F', and the borders of the Voronoi
regions form a Voronoi diagram of F” with respect to the existing facility e;.
This is an example of a Voronoi diagram with a fixed distance d, z (w,, e;)
added to d,(x,w,) for each r € R.

Figure 13 shows the Voronoi diagram and the bisectors with respect
to the existing facility e3 and the vertices wi, wy and ws. The line seg-
ments A, B,C, D, E, F,G correspond to the bisectors as follows: Line A C
b(3,1,6,3,4), B C b(3,1,6,3,3), C C b(3,1,6,2,5), D = b(3,1,7,2,5),
E=0(3,1,7,2,4), F Cb(3,2,5,3,3), and G = (2, 2,6, 3, 3),

Mitchell (2000) gives algorithms that are polynomial in |R| and p for con-
structing Voronoi diagrams and Voronoi regions in the presence of polygonal
barriers using a variety of distances. Although block distances are not ex-

plicitly discussed, the results extend directly to block distances. A shortest

37



Figure 13: Voronoi diagram with respect to e3 and vertices wy, wy and ws

path map is constructed of vertices w,,r € R that lie on each shortest path
rooted at each existing facility e;. Bisectors exist only for pairs of vertices
w, and w; in the shortest path map for each e;. Mitchell (2000) gives a
wave front algorighm that requires O(p|R|log?|R|) time for constructing the
shortest path map for each e;.

Convex domains within each cell C' are given by the intersection of C' with
each Voronoi region V'(j,r) for (r, k) € I(C) and for each e;,j = 1,...,m.

Thus each convex domain C'D has the polyhedral representation given by
CD={xeCnV(jr):(rk)el(C),j=1,...,m}.

The convex domains may be constructed as an arrangement given the set of
line segments which are bisectors in the Voronoi Diagram and the rays from
all vertices in the grid system. The number of rays and bisector segments is

polynomial of order O(|R[*p*m?).
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Figure 14 shows the bisectors of the example problem as connected line
segments, labeled by b(e;) for j = 1,2,3,5. The convex domains are the re-
gions formed by the rays, barrier boundaries and the bisectors. The results of
this section show that solving a planar location problem with block distance
and barriers requires at most a polynomial amount of additional time over

solving the same problem without barriers.

Figure 14: The bisectors, denoted by b(e;) and the resulting convex domains

7 Example Problems

The median and center problems are solved to illustrate the use of the grid
structure and the convex domains.

First consider the median problem where the objective function is given
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by Z?Zl dp,7/(x,€;). The problem is solved by evaluating the objective func-
tion at each intersection point of two grid lines or of a grid line and a barrier
boundary, and at the end points of common barrier boundaries. The min-
imum of these values yields the optimal point. The optimal point for the
example problem is denoted by x* in Figure 15 and has an objective func-

tion value of 29.7.

Figure 15: Optimal solution x* to the median problem, optimal solution x*

and upper bound x" to the center problem

Next consider the center problem where the objective function is given
by maz;=1,. md,r(x,e;). An upper bound is determined by evaluating the
objective function at all intersection points of grid lines, bisectors and bar-
rier boundaries. This yields the point denoted by x* in Figure 15 with an

objective function value of 7.31.
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Lower bounds are next computed for each convex domain. For a convex
domain C'D, let C(CD) denote the index set of corner points and let y, cp, [ €
C(CD) denote the corner points of CD. Each y; ¢p is an intersection point

of grid lines, bisectors or barrier boundaries. A lower bound is given by

Ib(CD) = mazj=1,. m{minicccpydp,7 (Yi,c0,€)}-

A similar lower bound is computed for each common barrier boundary. The
lower bound was computed for each convex domain and each common barrier
boundary. There were six convex domains whose lower bound was less than
the upper bound of 7.31. The convex domain with the smallest lower bound,
6.47, was chosen and the center problem solved over that convex domain,
yielding the unique point x* in Figure 15, with an objective function value
of 7.0. All other convex domains had lower bounds greater than 7.0, so they

were eliminated from consideration. Thus x* is the unique optimal solution.

8 Extensions

The results of this paper may be extended in two ways. A relatively straight
forward extension is to relax the requirement that barriers be d, visible.
For the case of [; distances, this relaxation was reported in Dearing and
Segars Jr. (2002a). With this relaxation, barrier sets must be partitioned
into subsets that are d, visible, which become the barriers. Figure 16 shows
a set that is not d, visible and a partition into d, visible subsets B;, By, B
that are barriers. (The partition is not unique.) The maximal modification
of the barriers is also shown. The boundary between subsets (dashed lines)

is excluded from the feasible set.
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Figure 16: A barrier set that is not d,, visible and a partition into d,, visible

subsets By, By, B3

The results reported here may also be extended by relaxing the assump-
tion of block distances to polyhedral gauges, that is, distances whose unit ball
is a polytope that is not necessarily symmetrical. The fundamental directions
are the extreme points of the polytope and are not necessarily symmetric.

The extension to polyhedral gauges will be reported in a future paper.
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