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Abstract

We propose to use block norms to generate nondominated solutions

of multiple criteria programs and introduce the new concept of the

oblique norm that is specially tailored to handle general problems. We

prove the equivalence of �nding the properly nondominated solutions

of a multiple criteria program and solving its scalarization by means

of oblique norms.
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1 Introduction

Block norms, also referred to as polyhedral norms, play an important role

in the measurement of distances. Not only can they be used to model real

world situations (like measuring highway distances) more accurately than

the generally used Euclidean norm, but they can also be used to approx-

imate arbitrary norms since the set of block norms is dense in the set of
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all norms, see Ward and Wendell (1985). Due to their polyhedral struc-

ture, block norms imply piecewise linearity of the corresponding distance

measure and thus often lead to eÆciently solvable (piecewise linear) opti-

mization problems.

In multiple criteria programming, norms have usually been used to iden-

tify the nondominated solutions that are the closest to some reference point,

very often chosen as the utopia (ideal) point. The identi�cation relies on

measuring the distance between the nondominated solutions and the refer-

ence point in the objective space. In particular, the family of lp norms has

been extensively studied by many researchers, including Yu (1973), Zeleny

(1973), Steuer and Choo (1983), Steuer (1986), Lewandowski andWierzbicki

(1988), and many others. Gearhart (1979) studied a family of norms includ-

ing the lp norms. The l1 norm and the augmented l1 norm turned out to be

very useful in generating nondominated solutions of general continuous and

discrete multiple criteria programs and led to the well known weighted (aug-

mented) Tchebyche� scalarization and its variations. Kaliszewski (1987)

introduced a modi�ed l1 norm and showed its applicability in generating

nondominated solutions. More recently, a new class of norms that contains

the family of lp norms was proposed in Carrizosa et al. (1997) to generate

the set of points that have minimal distance to the utopia point with re-

spect to at least one norm within this class of norms. This approach leads

to solving linear programs while generating nondominated solutions.

The success of norm-based approaches in multiple criteria programming

and decision making suggests the application of block norms that can be

bene�cial both for the determination of nondominated solutions and for the

comparison of the resulting alternatives. Moreover, the choice of a suitable

norm combined with the choice of a reference point can be used to express

decision maker's preferences in the objective space while selecting the most

preferred nondominated solution.

In this paper, we introduce the concept of the oblique norm into multiple

criteria programming. This concept was �rst introduced and applied to bi-

criteria programs in Schandl et al. (2000). In general, oblique norms can be

viewed as a generalization of the augmented l1 norm. They are designed to
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preserve capabilities of the l1 norm and the augmented l1 norm while al-

lowing the decision maker more freedom in the choice of a distance measure.

Therefore they accommodate more speci�c decision maker's preferences due

to their more re�ned structure.

We intend to show that oblique norms are e�ective tools to generate

nondominated solutions of general multiple criteria programs. In the next

section we state the multiple criteria problem and give general de�nitions

and notations. In Section 3, we de�ne oblique norms and state some of their

properties. Di�erent ways to construct oblique norms are discussed in Sec-

tion 4. In Section 5, we use oblique norms to �nd nondominated points. In

particular, we examine the relationship between (properly) nondominated

solutions of general multiple criteria programs and optimal solutions of their

scalarization by means of an oblique norm. The last section includes con-

clusions and a short discussion of the implications of using oblique norms in

multiple criteria decision making.

2 Problem Formulation

To facilitate further discussions, the following notation is used throughout

the paper. Let u;w 2 IRn be two vectors.

� We denote components of vectors by subscripts and enumerate vectors

using superscripts.

� u < w denotes ui < wi for all i = 1; : : : ; n. u � w denotes ui � wi

for all i = 1; : : : ; n, but u 6= w. u 5 w allows equality. The symbols

>;�;= are used accordingly.

� Let IRn
= := fx 2 IRn : x = 0g. If U � IRn, then U= := U \ IRn

=. The

sets IRn
�, IR

n
>
, U� and U> are de�ned accordingly.

� hu;wi denotes the scalar product in IRn: hu;wi =
Pn

i=1 uiwi.

� conv(U) denotes the convex hull of U � IRn.

� int(U) denotes the interior of U � IRn.
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A set C 2 IRn is called a cone if for all u 2 C;� > 0 we also have �u 2 C.

The origin may or may not belong to C. If U = fu1; : : : ; ukg � IRn is a set

of vectors, then

cone(U) :=

�
v 2 IRn : v =

kX
i=1

�iu
i; � � 0; ui 2 U

�

is the cone generated by U .

We consider the following general multiple criteria program

min fz1 = f1(x)g
...

min fzn = fn(x)g

s. t. x 2 S;

(1)

where S � IRm is the feasible set and fi(x); i = 1; : : : ; n, are real-valued

functions. We de�ne the set of all feasible criterion vectors Z and the set of

all nondominated criterion vectors N of (1) as follows

Z = fz 2 IRn : z = f(x); x 2 Sg = f(S)

N = fz 2 Z : @~z 2 Z s. t. ~z � zg;

where f(x) =
�
f1(x); : : : ; fn(x)

�T
. We assume that the set Z is closed and

that we can �nd u 2 IRn so that u+ Z � IRn
=.

The point z� 2 IRn with

z�i = minffi(x) : x 2 Sg � �i i = 1; : : : ; n

is called the ideal (utopia) criterion vector, where the components of

� = (�1; : : : ; �n) 2 IRn are small positive numbers.5 Without loss of gen-

erality we assume z� = 0.

5Strictly speaking, � = 0 can be used throughout this paper as well. In applications

though, � > 0 can help to avoid numerical problems.
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We de�ne the set of properly nondominated solutions according to Geof-

frion (1968). A point �z 2 N is called properly nondominated, if there exists

M > 0 such that for each i = 1; : : : ; n and each z 2 Z satisfying zi < �zi

there exists a j 6= i with zj > �zj and

zi � �zi
�zj � zj

�M:

Otherwise �z 2 N is called improperly nondominated. The set of all prop-

erly nondominated points is called Np. Henig (1982) shows that properly

nondominated solutions can also be characterized by means of a cone.

Lemma 2.1 (Henig, 1982) A vector �z is properly nondominated i� there

exists a convex cone ~C with IRn
� � int( ~C) so that

(Z � �z) \ (� ~C) = f0g: (2)

Note that 0 2 ~C, ~C 6= IRn and that Equation (2) can be rewritten as

(�z � ~C) \ Z = f�zg:

3 Oblique Norms

In order to develop the new concept of oblique norms we �rst review some

basic de�nitions about block norms. For a detailed introduction to norms

and their properties we refer the reader to Rockafellar (1970) and Hiriart-

Urruty and Lemar�echal (1993a,b). An overview of basic properties of block

norms is also given in Schandl (1998).

De�nition 3.1 A norm  with a polyhedral unit ball B � IRn is called a

block norm. The vectors de�ned by the extreme points of the unit ball are

called fundamental vectors and are denoted by vi. The fundamental vectors

de�ned by the extreme points of a facet of B span a fundamental cone.
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De�nition 3.2 Let u 2 IRn and U � IRn. The reection sets of u and U

are de�ned as

R(u) := fw 2 IRn : jwij = juij for all i = 1; : : : ; ng

R(U) :=
[
u2U

R(u);

respectively.

Using De�nition 3.2 we de�ne absolute norms analogously to Bauer et al.

(1961).

De�nition 3.3 A norm  is said to be absolute if for any given u 2 IRn, all

elements of R(u) have the same distance from the origin with respect to ,

that is,

(w) = (u) 8w 2 R(u):

Note that the unit ball of an absolute norm has the same structure in

every orthant, which is convenient as well as suÆcient for multiple criteria

programs as all nondominated solutions are located in the cone z�+IRn
= and

one does not need to search the entire space IRn.

The following lemma will later be used to establish a property of oblique

norms.

Lemma 3.4 Let B � IRn be the unit ball of an absolute norm  and let

z; z1; z2 2 B have the following properties:

z 6= z1 6= z2 6= z

z = �z1 + (1� �)z2 for some � 2 (0; 1)

z = (0; : : : ; 0; zk ; 0; : : : ; 0) for some k = 1; : : : ; n

zk > 0:
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Then there exist ~z1; ~z2 2 B with the following properties:

z 6= ~z1 6= ~z2 6= z

z = �~z1 + (1� �)~z2 for some � 2 (0; 1) (3)

~z1 2 IRn
�

~z1k > 0

~z1k � ~z2k:

Proof. Without loss of generality k = 1 and z11 � z21 . Since z1 > 0 and

z1 2 [z21 ; z
1
1 ] it follows that z11 > 0. De�ne ~z1 and ~z2 componentwise as

follows:

i = 1 : ~z11 = z11 ; ~z
2
1 = z21 .

i > 1 : If z1i � 0: ~z1i = z1i ; ~z
2
i = z2i . If z

1
i < 0: ~z1i = �z1i ; ~z

2
i = �z2i .

Since  is absolute we know that ~z1; ~z2 2 B. Since ~z11 > 0 it follows that

~z1 2 IRn
�. Now we are left with checking Equation (3) componentwise.

i = 1 : Simple calculations yield

�~z11 + (1� �)~z21 = �z11 + (1� �)z21 = z1:

i > 1 : For z1i � 0 we get

�~z1i + (1� �)~z2i = �z1i + (1� �)z2i = zi

and z1i < 0 yields

�~z1i + (1� �)~z2i = �(�z1i ) + (1� �)(�z2i )

= �
�
�z1i + (1� �)z2i

�
= �zi = 0 = zi: �
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De�nition 3.5 A block norm  with the unit ball B is called oblique if it

has the following properties:

(i)  is absolute.

(ii) (z � IRn
=) \ IRn

= \ @B = fzg 8z 2 (@B)=.

Figure 1 depicts a simple oblique norm. Observe that no facet is orthog-

onal or parallel to any coordinate axis which is a general property of oblique

norms that we show in Lemma 3.9. Furthermore, an oblique norm is strictly

IRn
�-monotone as de�ned in Gerth and Weidner (1990).

z

z1z2

z3 (z � IRn
=) \ IRn

=

Figure 1: Example of the unit ball of an oblique norm
with R(z) = fz; z1; z2; z3g

The following corollary immediately results from De�nitions 3.3 and 3.5.

Corollary 3.6 If  with the unit ball B is an oblique (absolute) norm,

then ~ with the unit ball �B;� > 0 is also an oblique (absolute) norm.

In the following, we prove some further properties of oblique norms.

These properties will be used in Section 5 to prove the applicability of oblique

norms for the generation of nondominated solutions.

Lemma 3.7 An absolute norm  with the unit ball B has the following

property:

(z � IRn
=) \ IRn

= � (z)B= 8z 2 IRn
=: (4)
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Proof. For z = 0, the property obviously holds. So consider only z 6= 0.

Consider �rst z 2 (@B)=. It follows that (z) = 1. Since  is abso-

lute, all points in R(z) are in B. Because of the convexity of B, we have

conv
�
R(z)

�
� B. But (z�IRn

=)\IR
n
= is a subset of conv

�
R(z)

�
and therefore

also of B=.

The general case z 2 IRn
= follows from Corollary 3.6. �

Note that Lemma 3.7 guarantees that all normals n of facets in IRn
= are

nonzero and have only nonnegative components, that is, n � 0. Other-

wise (4) would be wrong for (at least) every point in the interior of a facet

with a normal n � 0.

Lemma 3.8 An oblique norm  with the unit ball B has the following

properties:

(i) (z � IRn
=) \ IRn

= \ @
�
(z)B

�
= fzg 8z 2 IRn

=.

(ii) There exist fundamental vectors of B along each coordinate axis.

Proof.

(i) For z = 0, the lemma obviously holds. Otherwise, since z 2 @
�
(z)B

�
and (z) > 0, the statement follows directly from De�nition 3.5 (ii)

and Corollary 3.6.

(ii) Assume there does not exist a fundamental vector along some co-

ordinate axis, say (1; 0; : : : ; 0). Without loss of generality z 2 @B,

z = (z1; 0; : : : ; 0), z1 > 0 is not an extreme point, that is, there exist

z1; z2 2 B and � 2 (0; 1) with

z 6= z1 6= z2 6= z

z = �z1 + (1� �)z2:

Due to Lemma 3.4 we can assume that z1 2 IRn
� and z11 � z21 . It

follows that z11 � z1 and therefore z 2 z1 � IRn
=. Since we know

that z 2 IRn
= \ @B it is enough to show z1 2 @B in order to get a

contradiction to De�nition 3.5 (ii).
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Assume that there exists ~z 2 B with ~z1 > z1. Since  is absolute

it follows that ẑ := (~z1;�~z2; : : : ;�~zn) 2 B and since B is convex
1

2
~z + 1

2
ẑ = (~z1; 0; : : : ; 0) 2 B. But ~z1 > z1 and therefore z would not

be in @B, a contradiction. Thus 8~z 2 B : ~z1 � z1. But since we know

that z11 � z1 it follows z11 = z1. This implies that z1 2 @B because B

is closed and there does not exist ~z 2 B with ~z1 > z1 = z11 . �

Lemma 3.9 Let  be an absolute block norm with the unit ball B. Let N

denote the set of outer normal vectors of all the facets of B, let n 2 N be the

normal vector of a facet of B, and let ej be the jth unit vector, j = 1; : : : ; n.

Then the following two statements are equivalent:

(i) (z � IRn
=) \ IRn

= \ @B = fzg 8z 2 (@B)=.

(ii)


n; ej

�
6= 0 8j = 1; : : : ; n and 8n 2 N .

Proof.

(i) ) (ii) Let F be a facet of B with the normal vector n 2 N . Assume

n; ej

�
= 0 for some j. Then there exists a point z 2 F with zj 6= 0

(otherwise F would not be a facet). Since  is absolute, we can assume

without loss of generality that z 2 IRn
=. De�ne a point ~z as follows:

~zk = zk 8k 6= j

~zj =
1

2
zj :

Then ~z is in F � @B, because  is absolute. But we also have that

~z 2 (z � IRn
=) \ IRn

= \ @B;

which is a contradiction to (i).

(ii) ) (i) Let z 2 (@B)= and assume there exists ~z 6= z with

~z 2 (z � IRn
=) \ IRn

= \ @B: (5)
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Because of Lemma 3.7 and its following remark we have n � 0 for

all normals of facets in IRn
=. Together with



n; ej

�
6= 0 for all j we

even know that n > 0 for these same normals. Since we assumed that

both z and ~z are in @B, they are either on the same or on two di�erent

facets.

Assume �rst that z and ~z are on the same facet F with normal n.

Consequently hz � ~z; ni = 0, but since z � ~z � 0 and n > 0 it follows

that z = ~z, a contradiction to our assumption.

Assume now that z and ~z are on di�erent facets, say F and ~F with

normals n and ~n, respectively. Since z 2 B and ~z 2 ~F , the de�nition

of the outer normal yields hz � ~z; ~ni � 0. But since z � ~z � 0 and

~n > 0 it follows again that z = ~z, a contradiction.

Thus ~z =2 @B and assumption (5) was wrong. �

4 Construction of Oblique Norms

In this section, we demonstrate two approaches to constructing oblique

norms. We �rst present an algebraic construction by giving linear inequal-

ities for the unit ball of the norm. Then a set-theoretic construction based

on polyhedral cones is given. The latter is used in Section 5 to construct

oblique norms for the generation of nondominated solutions.

We can de�ne a block norm in terms of its unit ball using a set of

linear inequalities, see, for example, Anderson and Osborne (1977). Let

z 2 IRn, A 2 IRm�n and e := (1; : : : ; 1)T 2 IRm, where m > n and the set

B := fx : Az 5 eg has the following properties:

(i) B is bounded.

(ii) int(B) 6= ?.

(iii) z 2 B () �z 2 B.

Then the block norm speci�ed by A is

A(z) = minf� : Az 5 �eg:

11



Note that the number of facets of the unit ball is smaller than or equal to m

and that, due to Property (ii), the rank of the matrix A is n.

To describe an oblique norm in a similar way, we have to pose additional

restrictions on the constraint matrixA. Consider the properties of an oblique

norm given in De�nition 3.5 and Lemma 3.9:  is absolute and none of

the normals of its unit ball's facets are orthogonal or parallel to any unit

vector ei. The latter implies that all entries of A are nonzero. Together

with the former this also implies that we can subdivide the rows of A into

2n blocks, one for each orthant. We need to consider only the �rst block

de�ning the facets in IRn
=; all others can be obtained by changing the signs

of the entries of this block appropriately. Note that such a subdivision into

blocks is in general not possible for absolute norms.

Summarizing the discussion above, we can de�ne an oblique norm by

choosing k � 1 positive vectors which are the normals of the unit ball's

facets in the �rst orthant so that the n columns (of length 2nk) of A are

linearly independent. The remaining 2n�1k rows of A can be found by

changing the signs of the entries of the �rst k rows appropriately.

By following only these rules we might de�ne many hyperplanes that do

not a�ect the shape of the unit ball. To avoid unnecessary hyperplanes we

could require that all the hyperplanes have the same distance from the origin.

Note that this additional restriction makes the norm \more symmetrical"

than required by the de�nition of oblique norms. A hyperplane de�ned by

the equation hn; xi = d where n is the hyperplane's normal has an l2 distance

of jdj
knk

2

from the origin, see, for example, Tuy (1998, p. 4). Since the right

hand side of each inequality in Ax 5 e is one, all hyperplanes have the same

distance from the origin if the corresponding row vectors have the same

l2 norm.

We now present an example satisfying all the conditions mentioned

above. We de�ne the �rst block of A consisting of k = n + 1 rows as
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follows:

aij =

8>><
>>:

1 if i = 1; : : : ; n and j = i
1

n
if i = 1; : : : ; n and j 6= iq

n2+n�1
n3

if i = n+ 1 and j = 1; : : : ; n:

All entries of the �rst k rows of A are positive, the columns of A are linearly

independent and the l2 norm of each row of A is equal to
q

n2+n�1
n2

.

Another example where the rows do not have the same l2 norm is the

following. Again we give the �rst k = n+ 1 rows:

aij =

8>><
>>:

1 if i = 1; : : : ; n and j = i
1

10
if i = 1; : : : ; n and j 6= i

7

10
if i = n+ 1 and j = 1; : : : ; n:

(6)

The norm is depicted in Figure 2 for two dimensions. The unit ball is then

de�ned as

0
BBBBB@

1 1

10

1

10
1

7

10

7

10

...

1
CCCCCA
x 5

0
BBBBB@

1

1

1
...

1
CCCCCA
:

The four extreme points in the �rst quadrant are z1 = (0; 1), z2 =
�
10

21
; 20
21

�
,

z3 =
�
20

21
; 10
21

�
, and z4 = (1; 0). An easy calculation shows that none of the

hyperplanes in (6) can be omitted without changing the unit ball.

We now give an alternative set-theoretic construction of an oblique norm.

First, we need the following lemma that states some properties of gauges

and was proved in Minkowski (1967).

Lemma 4.1 Let B � IRn be a convex compact set containing the origin in

its interior and  be the gauge with the unit ball B, that is,

(z) := minf� � 0 : z 2 �Bg z 2 IRn:
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z1 z2

z3

z4

Figure 2: An oblique norm in two dimensions

Then  satis�es

(z) � 0 8z 2 IRn

(z) = 0 () z = 0

(�z) = �(z) 8z 2 IRn;8� � 0

(z1 + z2) � (z1) + (z2) 8z1; z2 2 IRn:

If  additionally satis�es (z) = (�z) for all z 2 IRn then  is a norm.

Observe that if the set B in Lemma 4.1 was not bounded, a functional 

could be similarly de�ned replacing min by inf. However, the second of the

four properties given in Lemma 4.1 holds if an only if B is compact, see

Hiriart-Urruty and Lemar�echal (1993a).

With the help of the following lemma we will be able to construct oblique

norms by means of a convex, closed, polyhedral cone satisfying two addi-

tional conditions.

Lemma 4.2 Let C ( IRn be a convex, closed, polyhedral cone and

IRn
� � int(C). Let �z 2 IRn

>
be some vector in the �rst orthant. Then

B := R
�
(�z � C) \ IRn

=

�

is the unit ball of an oblique norm.
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Proof. The proof is subdivided into four parts. First we show the auxiliary

statement that B � �z � C which is then used to prove the convexity of B.

This is followed by a proof of the norm properties of the gauge  de�ned

by B and �nally we show that  is in fact an oblique norm.

1. B is a subset of �z � C.

We show B � �z�C by contradiction. Assume there exists z 2 Bn(�z�C).

De�ne ~z componentwise as ~zi = jzij. Clearly ~z 2 IRn
=. Since B is de�ned

using a reection set, ~z 2 B. Since

B \ IRn
= = (�z � C) \ IRn

=; (7)

we also have that ~z 2 �z � C. It follows

z 2 ~z � IRn
= � �z � C;

which is a contradiction to the assumption that z 2 B n (�z � C). Thus

B � �z � C.

2. Convexity of B.

Now we show by contradiction that B is convex. Assume that we can

�nd z1; z2 2 B and � 2 [0; 1] so that

z := �z1 + (1� �)z2 =2 B: (8)

Since B is de�ned by means of a reection set, we can multiply vector

components in (8) by �1 and we still have z1; z2 2 B and z =2 B. There-

fore we can assume without loss of generality that z 2 IRn
=. Since z =2 B it

follows from (7) that z =2 �z�C. Because C is a convex cone, �z�C is also

convex and therefore either z1 =2 �z�C or z2 =2 �z�C (or both). But since

B � �z �C it follows that z1 =2 B or z2 =2 B (or both), a contradiction to

our assumption. Thus B is convex.

3. Norm properties of  de�ned by B.

Since �z > 0 it follows that 0 2 int(B). B is closed because C is closed.
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Because of the de�nition of B by means of a reection set we know that

(z) = (�z) 8z 2 IRn:

We are left with showing that B is bounded. Assuming that B is un-

bounded we can �nd d 2 C n f0g so that

�z � �d 2 IRn
� 8� > 0:

Consequently d � 0. But then d 2 C and IRn
� � int(C) implies C = IRn,

a contradiction to the assumption that C ( IRn. Thus B is bounded and,

using Lemma 4.1,  de�nes a norm. Since C is a polyhedral cone, B is a

polyhedral set and therefore  is a block norm.

4.  de�ned by B is an oblique norm.

Now we check the two properties of an oblique norm given in De�ni-

tion 3.5. By de�nition,  is absolute and Property (i) is satis�ed.

To check Property (ii) we observe that since int(C) is a convex cone we

have

z � int(C) � �z � int(C) 8z 2 �z � C: (9)

Let z 2 (@B)= � �z � C, so (9) holds. It follows that

z � IRn
� � z � int(C) � �z � int(C);

which, using (7), implies

(z � IRn
�) \ IRn

= �
�
�z � int(C)

�
\ IRn

= = int(B) \ IRn
=;

and consequently

(z � IRn
�) \ IRn

= \ @B = ?:

Substituting IRn
= for IRn

�, we add only z which proves property (ii). �
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Given a cone C, depending on the point �z, the unit ball of the oblique

norm can look very di�erent, see Figure 3. Note that, given one cone, we can

only construct oblique norms with at most one extreme point per orthant.

C �z

�z

Figure 3: A cone C and two unit balls based on C with di�erent points �z

5 Generating Nondominated Points

According to Lemma 2.1, one can �nd a convex cone satisfying (2) for each

properly nondominated point. Due to the fact that an oblique norm can

be constructed by means of a convex, closed, polyhedral cone as shown

in Lemma 4.2, it is helpful to �nd a relationship, similar to that given in

Lemma 2.1, between a properly nondominated solution and a convex, closed,

polyhedral cone. The following lemma leads to this relationship.

Lemma 5.1 Let ~C � IRn be a convex cone containing the origin with

IRn
� � int( ~C). Then there exists a convex, closed, polyhedral cone C � ~C

with IRn
� � int(C).

Proof. Let ei 2 IRn and ci 2 IRn, i = 1; : : : ; n, be the vectors with the

following components:

eij =

8<
:
1 if i = j

0 if i 6= j
cij =

8<
:
1 if i = j

�Æ if i 6= j

where Æ > 0. Note that IRn
� = cone

�
fei; i = 1; : : : ; ng

�
. According to Tuy
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(1998, p. 37), the set C := cone
�
fci; i = 1; : : : ; ng

�
is a closed, convex,

polyhedral cone.

Since int( ~C) is open, we can �nd Æ > 0 so that 8i : ci 2 int( ~C). Since ~C

is a convex cone, we have C � ~C.

Since fei; i = 1; : : : ; ng � int(C) and int(C) is a convex cone, we have

IRn
� = cone

�
fei; i = 1; : : : ; ng

�
� int(C): �

We can now reformulate Lemma 2.1 using a closed, polyhedral cone.

Theorem 5.2 A vector �z is properly nondominated i� there exists a convex,

closed, polyhedral cone C with IRn
� � int(C) so that

(�z � C) \ Z = f�zg:

Proof. Use Lemmas 2.1 and 5.1. �

Note that again 0 2 C.

We now show that for every nondominated point there exists a block

norm so that this point is a unique minimizer of the related block-norm-

scalarization. To show the existence of the desired block norm we use the

l1 norm, and thus not an oblique norm. The result gives another interpre-

tation of the results on the weighted Tchebyche� approach in Steuer and

Choo (1983) and Steuer (1986) and illustrates the idea of introducing block

norms into multiple criteria programming.

Theorem 5.3 Let �z 2 N . Then there exists a block norm  so that �z

uniquely minimizes

min
z2Z

(z) = min
x2S


�
f(x)

�
:

Proof. Recall that we assumed without loss of generality z� = 0. De�ne

the unit ball B of a block norm  as B = conv
�
R(�z)

�
. Assume there is a

~z 2 Z; ~z 6= �z with (~z) � (�z). From the construction of  we have that

~z 5 �z. Since ~z 6= �z, we have ~zi < �zi for some i, which is a contradiction to

�z 2 N . Thus (z) > (�z) for all z 2 Z. �
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We now focus on oblique norms and show that any optimal solution of

an oblique-norm-scalarization of (1) is a properly nondominated solution

of (1). Note that an oblique norm cannot be used to generate improperly

nondominated points.

Theorem 5.4 Let  be an oblique norm and let �z be a solution of

min
z2Z

(z) = min
x2S


�
f(x)

�
: (10)

Then �z 2 Np.

Proof. Since �z solves (10), there is a �� > 0 such that (�z) = ��. Similar to

the proof of Lemma 3.8 (ii), we can show that there is an �i > 0 such that

~zi := (0; : : : ; �zi + �i; : : : ; 0) 2 ��B 8i = 1; : : : ; n:

De�ne a cone Ĉ := � cone
�
f~z1 � �z; : : : ; ~zn � �zg

�
. Obviously, Ĉ is convex

and IRn
� � int(Ĉ). Since (�z� Ĉ)\ IRn

= � ��B and �z minimizes (10), we know

that

(�z � Ĉ) \ Z = f�zg:

Thus Lemma 2.1 shows that �z 2 Np. �

In the following theorem we show that all properly nondominated solu-

tions can be found by solving suitable scalarizations involving oblique norms.

Theorem 5.5 Let �z 2 Np. Then there exists an oblique norm  so that �z

uniquely minimizes

min
z2Z

(z) = min
x2S


�
f(x)

�
: (11)

Proof. We assumed that the utopia point z� = 0, so it follows that

�z 2 Z � IRn
>
. Since �z 2 Np and because of Theorem 5.2 there exists a

closed, polyhedral, convex cone C with 0 2 C and IRn
� � int(C) so that

(�z � C) \ Z = f�zg:
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With the help of Lemma 4.2 we can construct an oblique norm  with the

unit ball B = R
�
(�z � C) \ IRn

=

�
. Then

B \ IRn
>
= R

�
(�z � C) \ IRn

=

�
\ IRn

>
= (�z � C) \ IRn

>
:

Therefore

B \ IRn
>
\ Z = (�z � C) \ IRn

>
\ Z = f�zg:

Thus �z uniquely minimizes (11). �

Considering problems with only properly nondominated points, i.e. for

which N = Np, Theorems 5.4 and 5.5 show the equivalence between the

multiple criteria program and its scalarization by means of an oblique norm.

We state this in the following corollary.

Corollary 5.6 Let �z 2 IRn. The following two statements are equivalent:

(i) �z 2 Np.

(ii) There exists an oblique norm  so that �z uniquely minimizes

min
z2Z

(z) = min
x2S

(f(x)):

6 Conclusions

In this paper we introduce oblique norms into multiple criteria programming.

Oblique norms are block norms with none of their facets being orthogonal

or parallel to any coordinate axis. We prove that a properly nondominated

solution of the general multiple criteria program is also a solution of a scalar-

ization of the program by means of an oblique norm and vice versa. The

de�nition of oblique norms opens up possibilities for constructing a variety

of such norms in order to not only generate nondominated solutions but

to e�ectively support the decision making process of choosing a preferred

nondominated solution. The main di�erence between l1 norms and oblique

norms is that the former have only one fundamental direction in IRn
>
while
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the latter may feature any �nite number of those directions and therefore

can be more useful in accommodating decision maker's preferences and more

precise in measuring the distance in the objective space. Moreover, the unit

ball of an oblique norm yields a piecewise linear utility function and par-

titions the objective space into cones generated by the extreme points of

the facets of the unit ball. In each of these cones, di�erent trade-o�s can

be used by changing the length of the fundamental vectors. This has two

important consequences. On one hand, it is easy to incorporate decision

maker's preferences by de�ning an appropriate norm. On the other hand,

the more detailed trade-o� information provided by oblique norms can be

used to evaluate and/or compare nondominated points.

Norms and cones have been used extensively in multiple criteria program-

ming but, to our knowledge, Kaliszewski (1994) is perhaps the only other

source to use both concepts simultaneously in order to analyze and solve

multiple criteria programs. In Schandl (1999) and Schandl et al. (1999),

we show that the combination of norms and cones is a powerful tool to

gain important information concerning the structure of the nondominated

set and the trade-o�s between the criteria in di�erent regions of the non-

dominated set. In particular, we develop a norm-based methodology to

evaluate and approximate nondominated points and present applications

in engineering design and capital budgeting. The usage of oblique norms

instead of weighted (augmented or modi�ed) l1 norms (which are special

cases of oblique norms) generalizes and enhances the method by providing

more versatility.

Solutions of the oblique-norm scalarization could be studied in a broader

sense and compared to other classes of nondominated solutions proposed in

the literature. For example, in Ester (1986), Dubov (1981), and Sawaragi

et al. (1985) various classes of such solutions are de�ned. In particular,

oblique norms are not suited for properly nondominated solutions in the

sense of Germeier (1971) or Sch�onfeld (1970). However, the class of �-uniform

nondominated solutions studied in Dubov (1981) seems to be closely related

to the nondominated solutions generated with oblique norms.

The scalarization proposed in this paper lays down a foundation for the
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methodology applicable to decision making problems with multiple criteria

encountered in many areas of human activity including engineering, business

and management problems as well as location theory, scheduling and others.
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