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Abstract

In this paper we consider the problem of locating N new facilities with
respect to M existing facilities in the plane and in the presence of polyhe-
dral barriers. We assume that a barrier is a region where neither facility
location nor traveling is permitted. For the resulting multi-dimensional
mixed-integer optimization problem two different alternate location and
allocation procedures are developed. Numerical examples show a supe-
riority of a joint treatment of all assignment variables, including those
specifying the routes taken around the barrier polyhedra, over a sepa-
rate iterative solution of the assignment problem and the single-facility
location problems in the presence of barriers.
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1 Introduction

A commonly studied location problem is that of locating a finite set of new fa-
cilities with respect to a finite set of existing facilities. For the generalized multi-

Weber problem (MWP), also referred to as uncapacitated multi-facility location-

allocation problem, the problem of locating a set of N new facilities x1, . . . ,xN ∈
R

2 with respect to a given set of M existing facilities A = {a1, . . . ,aM} ⊂ R
2

in order to minimize the total, positively weighted travel distance can be for-
mulated as

min

N
∑

n=1

M
∑

m=1

ymnwmd(xn,am)

s. t.

N
∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

xn ∈ R
2, n = 1, . . . , N.

(MWP)
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In this model, the binary variables ymn contain the information on the assign-
ment of existing facilities to new facilities, i.e.

ymn =

{

1 if am is assigned to xn,

0 otherwise,
m = 1, . . . , M, n = 1, . . . , N.

The positive weights wm ∈ R+, m = 1, . . . , M , may model, for example, the
demand of the existing facilities am, m = 1, . . . , M . We assume that d : R

2 ×
R

2 → R is an arbitrary distance function in R
2 that is induced by a norm

‖•‖d : R
2 → R.

The MWP was first formally stated by Cooper [1963], who also showed that
it is neither convex nor concave. It may in fact have a very large number of local
minima, see Eilon et al. [1971] for an example. Moreover, the problem can be
interpreted as an enumeration of the Voronoi partitions of the customer set, and
it was proven to be NP-hard in Megiddo and Supowit [1984]. There have been
many suggestions for both heuristic and exact solution methods for the MWP. A
well-known heuristic approach is the alternate location and allocation algorithm
[Cooper, 1964] that alternates between a location and an allocation phase until
no further improvement is made. Other heuristics include, for example, local
search methods such as variable neighborhood search, tabu search and genetic
algorithms, see Brimberg et al. [2000] for a comparative study. Further, in
Brimberg et al. [2006] strategies to tackle large-scale MWPs are presented, that
are based on a decomposition into smaller MWPs which can be treated with
recent methods.

Barrier regions, in which neither locating new facilities nor traveling is per-
mitted can be used to model, for example, lakes, mountain ranges or residential
areas or, on a smaller scale, conveyor belts in an industrial plant in order to
obtain a more realistic representation of distances.

Barriers were first introduced to location modeling by Katz and Cooper
[1981], who consider Weber problems with the Euclidean metric and with one
circular barrier. Assuming that all barrier sets are polyhedra allows the con-
struction of a visibility graph, that can be used to compute barrier distances ef-
ficiently. There exist several heuristic and iterative algorithms for single-facility
location problems that use the visibility graph for distance computations and
bear some similarity to location and allocation heuristics [see Aneja and Parlar,
1994, Butt and Cavalier, 1996, McGarvey and Cavalier, 2003, among others].
For an overview about location problems with barriers we refer to Klamroth
[2002].

In this paper we assume that a set of K polyhedral and pairwise disjoint
barrier regions B :=

⋃K

k=1
Bk ⊂ R

2 with a finite set of extreme points E(B) =
⋃K

k=1

⋃Lk

l=1
{ekl} is given. The feasible region, where traveling as well as locating

new facilities is allowed, is defined as F = R
2 \ int(B). To avoid infeasible cases

we assume that F is connected and that all existing facilities a1, . . . ,aM are lo-
cated in F . A path P connecting any two points x,y ∈ F while not intersecting
the interior of a barrier region is denoted as feasible x-y-path. The length l(P )
of a shortest feasible x-y-path, measured with respect to the prescribed norm
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‖·‖d, defines a distance function in F , the so called barrier distance,

dB(x,y) := inf {l(P ) : P feasible x-y-path} .

Note that the resulting distance measure dB is in general not positively homoge-
nous. It is, however, positive definite and symmetric and satisfies the triangle
inequality. Consequently, the barrier distance dB defines a metric on F , see
Klamroth [2002].

Using the notation introduced above, the multi-Weber problem with barriers

(MWPB) can be formulated as

min

N
∑

n=1

M
∑

m=1

ymnwmdB(xn,am)

s. t.

N
∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

xn ∈ F , n = 1, . . . , N.

(MWPB)

Since (MWPB) reduces to (MWP) if no barriers are present, it is also NP-hard
according to Megiddo and Supowit [1984].

An alternative approach to model regional characteristics in the MWP is the
incorporation of zone-dependent, fixed opening costs

∑N

n=1
f(xn) for the new

facilities in the objective function, in addition to the (unconstrained) transporta-

tion costs
∑N

n=1

∑M

m=1
ymnwmd(xn,am). The resulting fixed-charge location-

allocation problem was introduced in Brimberg and Salhi [2005]. Similar to the
(MWPB), this problem formulation also suggests the application of alternate
location and allocation heuristics, see Brimberg and Salhi [2005].

The rest of the paper is organized as follows. In the next section, geometrical
properties and theoretical results for the MWPB with general barrier distances
are developed. Two variants of alternate location allocation heuristics, together
with different techniques for the generation of starting solutions, are presented
in Section 3. Computational results for the case that the underlying distances
are Euclidean distances are presented in Section 4.

2 Problem Structure and General Properties

While several principal properties of the MWP remain valid in the presence of
barriers, other properties (e.g., cluster properties) do in general not transfer to
the MWPB. If not specified differently, the results presented below are true
for general distance functions induced by norms and their corresponding barrier
distances.

2.1 Single-Facility Subproblems

If the assignment variables ymn are fixed to constant values ymn, m = 1, . . . , M ,
n = 1, . . . , N , the MWP reduces to N single-facility location problems [see
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Cooper, 1963]. A similar property also holds in the presence of barriers. In par-
ticular, the MWPB decomposes into N Weber problems with barriers (WPB(n)),
n = 1, . . . , N ,

min

M
∑

m=1

cmndB(xn,am)

s. t. xn ∈ F ,

(WPB(n))

where

cmn :=

{

wm if ymn = 1,

0 otherwise,
m = 1, . . . , M, n = 1, . . . , N.

One approach to determine an optimal solution of (MWPB) is consequently to
enumerate all feasible partitions of the set of existing facilities A = {a1, . . . ,aM}
into so called allocation clusters An ⊂ A,

An = {am ∈ A : ymn = 1, m = 1, . . . , M}, n = 1, . . . , N.

and to solve the resulting single-facility Weber problems with barriers.
Since the number of feasible partitions of M existing facilities into N al-

location clusters, one allocation cluster An for every new facility xn, equals
S(N, M), the Stirling number of the second kind [see Cooper, 1963] given by

S(N, M) =
1

N !

N
∑

n=0

(

N

n

)

(−1)n(N − l)M ,

total enumeration is only applicable for small example problems.

2.2 Set Partitioning Subproblem

When keeping the location variables fixed, the MWP reduces to a set partition-
ing problem [see Cooper, 1963]. The same holds for the MWPB, i.e., for fixed
location variables xn, n = 1, . . . , N , the MWPB reduces to the set partitioning
problem

min

N
∑

n=1

M
∑

m=1

cmnymn

s. t.

N
∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N,

(SP)

where

cmn := wm · dB(xn,am), m = 1, . . . , M, n = 1, . . . , N.
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Obviously, this problem is solved by simply finding for each m ∈ {1, . . . , N} an
index nm ∈ {1, . . . , N} that solves minn=1,...,N{cmn}.

Both decomposition properties outlined in Sections 2.1 and 2.2 suggest the
application of a variant of the alternate location and allocation algorithm (LA)
[see Cooper, 1964] also on the MWPB, that iterates between the solution of
location problems (WPB(n)) and the determination of allocation clusters (SP).
This approach is described in Section 3.1.

2.3 Iterative Convex Hull

A well known property of the classical Weber problem with Euclidean distances
is the convex hull property stating that all optimal solutions have to be located
within the convex hull of the existing facilities. Variations of this property also
hold for Weber problems with other distance functions like, for example, rect-
angular distances and polyhedral gauges [see, for example, Durier and Michelot,
1994].

In the presence of barriers these results have to be modified slightly. Namely,
instead of the convex hull of just the existing facilities, the iterative convex hull

has to be considered [see Klamroth, 2002]. The iterative convex hull H(A,B)

of a set of existing facilities A = {a1, . . . ,aM} and barrier sets B =
⋃K

k=1
Bk is

the smallest compact convex set in R
2 such that

A ⊂ H(A,B) and ∂(H(A,B)) ∩ int(B) = ∅.

Starting with the convex hull of the set of existing facilities, the iterative
convex hull can be obtained by iteratively computing the convex hull of a set
that is successively extended by the extreme points of barriers which intersect
the boundary of the convex hull.

If the classical Weber problem with distance function d satisfies at least a
weak convex hull property, i.e., if it has at least one optimal solution that lies
in the convex hull of the existing facilities, then, according to Klamroth [2002],
the Weber problem with barriers (WPB) has at least one optimal solution x?

that is contained in the iterative convex hull of existing facilities and barrier
polyhedra, i.e.

x? ∈ F ∩H(A,B).

The iterative convex hull property also holds in the case of multiple new
facilities since for arbitrary, feasible assignment variables, (MWPB) can be de-
composed into N independent subproblems (WPB(n)), n = 1, . . . , N (cf. Section
2.1). Each of the subproblems (WPB(n)), n = 1, . . . , N satisfies the weak convex
hull property, and thus has at least one optimal solution x?

n that satisfies

x?
n ∈ F ∩H(An,B),

where An denotes the allocation cluster corresponding to new facility x?
n, n =

1, . . . , N .

5



Further, since the allocation clusters An, n = 1, . . . , N define a partition of
A and since H(A?

n,B) ⊆ H(A,B) for any subset A?
n ⊆ A, it holds that

x?
n ∈ F ∩H(A,B), n = 1, . . . , N.

Note that this property is independent of the actual assignment of existing
facilities to the new facilities. In particular, for an arbitrary but fixed set of
feasible assignment variables, there always exists a set of new facilities that is
optimally located with respect to the assignment and that is located in the
iterative convex hull.

2.4 Mixed Integer Formulation

As discussed in Klamroth [2001] and further analyzed in Bischoff and Klamroth
[2006], the single-facility subproblems (WPB(n)) as specified in Section 2.1 can
be solved by partitioning the feasible region F ∩ H(A,B) into a finite set of
domains and solving the corresponding mixed integer subproblems. In this
section we develop a similar decomposition for the MWPB and present results
that motivate the application of a location and allocation procedure.

To obtain this partition of the feasible region, we distinguish those parts of
F in which the distance from a point x ∈ F is lengthened by barrier regions
from those where the distance equals the underlying metric. In particular, two
points x,y ∈ F are called d-visible, if dB(x,y) = d(x,y). The set of points that
are d-visible from a point x ∈ F is defined as

visibled(x) :=
{

y ∈ F : dB(x,y) = d(x,y)
}

.

Note that the set of points that are not d-visible from x, i.e., F \ visibled(x),
x ∈ F is the union of polyhedral sets. By computing these polyhedra, visibled(x)
can easily be obtained. See Klamroth [2002] for an extensive discussion on
shortest paths and the concept of visibility.

Based on visibility properties, the candidate domains partition the feasible
region as follows.

Definition 2.1 (Candidate Set and Candidate Domain).
Let P := A∪E(B) = {p1, . . . ,pI} be the set of all existing facilities and barrier

extreme points. For a given point x ∈ F , let P ∩ visibled(x) be the set of all

existing facilities and barrier extreme points that are d-visible from x. The set

P ∩ visibled(x) is called the candidate set of x with index set I,

I =
{

i ∈ {1, . . . , I} : pi ∈ P ∩ visibled(x)
}

.

The set

R := {y ∈ F : P ∩ visibled(y) = P ∩ visibled(x)} 6= ∅

is called the candidate domain of x.

The finite collection of all candidate domains in F is denoted by R.
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The candidate domains define a partition of the feasible region into a finite
number of subsets that can be bounded by the cardinality of the power set of
the set of existing facilities and barrier extreme points P(A∪E(B)) [see Bischoff
and Klamroth, 2006].

2.4.1 The Single-Facility Case

If only one new facility must be located, the candidate domains induce a reduc-
tion of the single-facility Weber problem with barriers into a polynomial number
of mixed integer programming problems, one for each candidate domain R. In
each of these subproblems, the optimal location x ∈ R and the assignment of
intermediate points to every existing facility are determined simultaneously. An
intermediate point is a breaking point on a piecewise linear shortest feasible
path from an arbitrary point x ∈ R to an existing facility am ∈ A. Due to the
barrier touching property [Klamroth, 2002], for every facility am, m = 1, . . . , M ,
there exists at least one intermediate point p that is contained in the candidate
set P ∩visibled(x). Further, if p ∈ P ∩visibled(x) is an intermediate point from
x ∈ R to am ∈ A, for the barrier distance between x and am holds:

dB(x,am) = d(x,p) + dB(p,am).

Since the barriers are polyhedra and since the set of barrier extreme points
E(B) and the set of existing facilities A = {a1, . . . ,aM} are finite, the barrier
distances dB(p,am), am ∈ A, p ∈ P = A ∪ E(B) can be treated as known
constants in the problem formulation. In practice, their value is determined
before the actual optimization process.

Introducing variables that contain information on the assignment of inter-
mediate points pi ∈ P = {p1, . . . ,pI} to existing facilities

zim =

{

1 if pi is used as intermediate point to am,

0 otherwise

for all m = 1, . . . , M , i = 1, . . . , I, we obtain the following formulation for a
single-facility Weber problem with barriers in one candidate domain R:

min
M
∑

m=1

wm

(

∑

i∈I

zim

(

d(x,pi) + dB(pi,am)
)

)

s. t.
∑

i∈I

zim = 1, m = 1, . . . , M

zim ∈ {0, 1}, m = 1, . . . , M, i = 1, . . . , I

x ∈ R.

(WPR
B )

2.4.2 The Multi-Facility Case

Since the definition of candidate sets and candidate domains itself is independent
of the selection of appropriate allocation clusters, the MWPB can be similarly
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decomposed into a series of subproblems, where each of the new facilities xn is
restricted to one of the candidate domains Rn with candidate set P∩visibled(xn)
and index set In = {i ∈ {1, . . . , I} : pi ∈ P ∩ visibled(xn)}, n = 1, . . . , N , as
follows:

min

N
∑

n=1

M
∑

m=1

ymnwm

(

∑

i∈In

zim

(

d(xn,pi) + dB(pi,am)
)

)

s. t.

N
∑

n=1

∑

i∈In

ymn · zim = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

zim ∈ {0, 1}, m = 1, . . . , M, i ∈ In

xn ∈ Rn, n = 1, . . . , N.

(MWPR
B )

This problem decomposition can be seen as an extension of the reduction
result of Klamroth [2001] to the case of multiple new facilities. In the following
we present basic properties of the resulting mixed integer problems in order to
highlight that the application of an alternate location and allocation algorithm
is promising.

By rearranging the terms in the objective function of (MWPR
B ) and defining

the variables umni = ymn · zim, i.e.

umni =

{

1 if ymn = zim = 1,

0 otherwise,
m = 1, . . . , M, n = 1, . . . , N, i ∈ In,

we obtain the equivalent formulation

min

N
∑

n=1

M
∑

m=1

∑

i∈In

umniwm

(

d(xn,pi) + dB(pi,am)
)

s. t.

N
∑

n=1

∑

i∈In

umni = 1, m = 1, . . . , M

umni ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N, i ∈ In

xn ∈ Rn, n = 1, . . . , N.

(MWPR
B ’)

Similar to the decomposition of (MWPB) into location and allocation sub-
problems as discussed in Sections 2.1 and 2.2, problem (MWPR

B ’) can be de-
composed into a location and an allocation subproblem:

(1) If the assignment variables umni are fixed to constant values umni, m =
1, . . . , M , n = 1, . . . , N , i ∈ In, problem (MWPR

B ’), decomposes into N

Weber problems on the candidate domains Rn, n = 1, . . . , N ,

min

M
∑

m=1

∑

i∈In

cmni d(xn,pi)

s. t. xn ∈ Rn,

(WPR(n))
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where cmni := wm · umni, i.e.

cmni :=

{

wm if umni = 1,

0 otherwise,
m = 1, . . . , M, n = 1, . . . , N, i ∈ In.

(2) For fixed location variables xn, n = 1, . . . , N , problem (MWPR
B ’) reduces

to the set partitioning problem

min

N
∑

n=1

M
∑

m=1

∑

i∈In

cmni umni

s. t.

N
∑

n=1

∑

i∈In

umni = 1, m = 1, . . . , M

umni ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N, i ∈ In,

(SP’)

where

cmni := wm·
(

d(xn,pi)+dB(pi,am)
)

, m = 1, . . . , M, n = 1, . . . , N, i ∈ In.

While the allocation subproblems are similar to those in Section 2.2, the
resulting location subproblems are much easier in this case. Since the barrier
distances dB(pi,am), i = 1, . . . , I, m = 1, . . . , M can be treated as known
constants and the intermediate points pi ∈ P , i ∈ {1, . . . , In}, n = 1, . . . , N are
specified with the given assignment variables, the barrier distances have been
eliminated. Therefore, the resulting subproblem (WPR(n)) is a single facility
Weber problem that has a convex objective function (as a positively weighted
sum of convex distances), and is restricted on the candidate domain Rn.

The number of location subproblems is much larger than in the case of
the WPB, in particular, we obtain S(M, N) ·M · I ·CN Weber problems, where
S(M, N) is the Stirling number of the second kind (cf. Section 2.1) and C denotes
the number of candidate domains, which can be bounded by the cardinality of
the power set |P(A∪ E(B))| of the set of existing facilities and barrier extreme
points [see Bischoff and Klamroth, 2006]. Consequently, due to the complexity
of the proposed decomposition, a total enumeration of the location subproblems
for all feasible assignments, as presented by Klamroth [2001] for the WPB, is not
a viable solution method for the multi facility counterpart. Instead, a heuristic
solution method, that alternately determines a low priced feasible assignments
and solves the corresponding Weber subproblems seems favorable.

It is easy to show that the integrality constraints umni ∈ {0, 1} of problem
(SP’) can be relaxed to umni ∈ [0, 1], m = 1, . . . , M , n = 1, . . . , N , i ∈ In,
without changing the optimal objective value. That is, the continuous relaxation
has an integral optimal solution which satisfies u?

mni ∈ {0, 1}, m = 1, . . . , M ,
n = 1, . . . , N , i ∈ In. Considering this continuous relaxation of problem (SP’),
which in fact always has an integer optimal solution, this decomposition implies
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that the objective function of problem (MWPR
B ’) is bi-convex in the sense that

although it is non-convex, its variable set can be partitioned into two subsets
of variables ({x1, . . . ,xN} and {umni, m = 1, . . . , M, n = 1, . . . , N, i ∈ In},
respectively) such that, if one set of variables is fixed, the objective function is
convex in the remaining variables. One of the most typical solution methods for
bi-convex problems is the alternate convex search algorithm, which alternately
solves the subproblems that are obtained when fixing the other set of variables.
This approach, which results in an alternate location and allocation algorithm
similar to the one for the MWP, is applied as a heuristic solution method for the
MWPR

B ’. See Section 3.2 for a detailed description of the algorithm. For further
information on the optimization of bi-convex functions, we refer to Floudas and
Visweswaran [1990] and Gorski et al. [2006].

2.5 Allocation Clusters

Rosing [1992] examines geometric properties of the MWP by considering the
allocation clusters. He shows that under Euclidean distances the convex hulls
of the N allocation clusters associated with the new facilities have pairwise
disjoint interior. More precisely, let x?

n, n = 1, . . . , N , y?
mn, m = 1, . . . , M ,

n = 1, . . . , N , be an optimal solution of problem (MWP), then for arbitrary
m ∈ {1, . . . , M}, n ∈ {1, . . . , N} we have

am ∈ int(conv(An)) ⇒ ymn =

{

1 if n = n,

0 otherwise,
n = 1, . . . , N.

This property is true, since the domains of the Voronoi diagram with generators
x?

n, n = 1, . . . , N are convex under Euclidean distances. See Okabe et al. [1992]
for an overview about spatial tessellations by Voronoi diagrams.

Based on this result, Rosing [1992] presents a solution method that solves
the single-facility location problems for all combinations of allocation clusters
satisfying this property. An algorithm to enumerate these clusters is given in
Harris [2003]. By selecting a set of N cheapest allocation clusters that partition
the set of existing facilities, an optimal solution of problem (MWP) is found.
The number of partitions of the set of existing facilities into N clusters that sat-
isfy the given property depends on the geometry of the problem and is in general
far below the Stirling number of the second kind S(N, M), cf. Section 2.1.

Unfortunately, this property does in general not hold in the presence of
barriers. An example is depicted in Figure 1. In this instance of problem
(MWPB), two new facilities have to be located. The weights of the existing
facilities a1 and a5 can be chosen sufficiently high such that one new facility is
located at x1 = a1 while the other is located at x2 = a5. Then the remaining
existing facilities are assigned to the new facilities x1 and x2 as illustrated in
Figure 1. Note that in this simple example problem the convex hull of the
iterative convex hulls of both allocation clusters, A1 = {a1,a2,a3} and A2 =
{a4,a5} overlap. Moreover, neither conv(A1) nor conv(A2) contains a barrier
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polyhedron. The interested reader may find numerical values in Table 1 in order
to validate the example in Figure 1.

 a
1
 

 a
2
 

 a
3
 

 a
4
  a

5
 

 B
1
 

 B
2
 

Figure 1: In contrast to the MWP under Euclidean distances, an optimal solu-
tion of the MWPB may contain overlapping allocation clusters.

a1=(0, 10) w1=1010

a2=(10, 18) w2=1
a3=(10, 2) w3=1
a4=(9, 10) w4=1
a5=(17, 10) w5=1010

B1={(11, 11), (11, 20), (17, 20)}
B2={(11, 9), (11, 0), (17, 0)}

dB(a1, a2)=12.8062 < 13.1538=dB(a5, a2)
dB(a1, a3)=12.8062 < 13.1538=dB(a5, a3)
dB(a1, a4)= 9.0000 > 8.0000=dB(a5, a4)

Table 1: Numerical values to the example presented in Figure 1.

Therefore, a solution method similar to the one proposed by Rosing [1992]
can not be used for (MWPB). That is, no general geometric property is known
in the presence of barriers that can be applied to reduce the number of allocation
clusters to consider.

However, the cluster property can be transferred to those regions of a prob-
lem (MWPB) where no barrier regions interfere. If the convex hull of the union
of a set of allocation clusters {An, n ∈ N} with N ⊆ {1, . . . , N} does not con-
tain any barrier polyhedra, the corresponding subproblem of locating |N | new
facilities with respect to the existing facilities

⋃

n∈N
An is an unconstrained

MWP for which the property holds. Consequently, the number of partitions
of the existing facilities into N clusters that need to be evaluated in order to
exactly solve problem (MFLAPwb) can be reduced at least in those regions that
are not intersected by any barriers.

In the alternate location and allocation algorithm developed in this paper,
this cluster property is automatically fulfilled after the first iteration, since the
partition variables are set to minimize optimization problem SP with respect to
the fixed location variables.

11



3 Alternate Location-Allocation Heuristic

Since their introduction by Cooper [1964] alternate location and allocation
heuristics (LA) that are based on the alternating solution of location and al-
location subproblems have been among the most successful heuristics for the
MWP. In the case of the MWPB, the subproblem decompositions presented
in Sections 2.1 and 2.2 on one hand, and the mixed-integer formulations pre-
sented in Section 2.4 on the other hand, suggest two different extensions of LA
to multi-facility Weber problems with barriers. Namely, the determination of
intermediate points and thus the routes taken around the barriers can either
be included in the location step, leading to an Alternate Location-with-Barriers
Allocation Algorithm (LBA), or can be integrated into the allocation step, hence
implying an Alternate Location Allocation-with-Routes Algorithm (LAP).

3.1 Alternate Location-with-Barriers Allocation

Given a feasible starting solution for the location variables x1, . . . ,xN ∈ F , the
Alternate Location-with-Barriers Allocation Algorithm (LBA) iterates between
the determination of allocation clusters by solving problem (SP), and the con-
secutive solution of N Weber problems with barriers (WPB(n)), n = 1, . . . , N ,
one for each allocation cluster:

Algorithm 3.1 (LBA).

Input: Starting locations x1, . . . ,xN ∈ F

REPEAT

Allocation Step: For m = 1, . . . , M , set

n := minarg
n=1,...,N

{dB(xn,am)} and ymn :=

{

1 if n = n,

0 otherwise,
n = 1, . . . , N

Location Step: For n = 1, . . . , N , set

cmn :=

{

wm if ymn = 1,

0 otherwise,
m = 1, . . . , M,

and solve

min

M
∑

m=1

cmndB(xn,am)

s. t. xn ∈ F

(WPB(n))

UNTIL a stopping criterion is satisfied.
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The actual performance of LBA vitally depends on the quality of the initial
location solution x1, . . . ,xN . Different possibilities for its selection are discussed
in Section 3.4 below. Moreover, the solution of the non-convex Weber problems
with barriers (WPB(n)) in the location steps is in general much more time-
consuming than the solution of unconstrained Weber problems. We therefore
suggest the application of a heuristic based on a genetic algorithm for the solu-
tion of (WPB(n)), see Bischoff and Klamroth [2006] for details.

Note that, in contrast to the total enumeration technique mentioned in Sec-
tion 2.1, the LBA does not necessarily find the global optimal solution of problem
(MWPB), even if the location subproblems (WPB(n)) are solved exactly. How-
ever, since enumerating all potentially feasible allocation clusters is generally
computationally too expensive, it offers an efficient alternative that frequently
finds very good solutions in practice.

3.2 Alternate Location Allocation-with-Routes

Based on the integrated formulation (MWPR
B ’) and on its decomposition into

location and allocation subproblems presented in Section 2.4, the Alternate Lo-
cation Allocation-with-Routes Algorithm (LAP) iterates between the combined
determination of allocation clusters and routes taken around the barriers to
the existing facilities by solving problem (SP’), and relaxations of the location
problems (WPR(n)), n = 1, . . . , N :

Algorithm 3.2 (LAP).

Input: Starting locations x1, . . . ,xN ∈ F and the index sets In, n = 1, . . . , N

of their candidate sets P ∩ visibled(xn)

REPEAT

Allocation Step: For m = 1, . . . , M , set

(n, i) := minarg
n=1,...,N

minarg
i∈In

{

d(xn,pn
i ) + dB(pn

i ,am)
}

and

umni :=

{

1 if (n, i) = (n, i),

0 otherwise,
n = 1, . . . , N, i ∈ In

Location Step: For n = 1, . . . , N , set

cmni :=

{

wm if umni = 1,

0 otherwise,
m = 1, . . . , M, i ∈ In,

and solve

min

M
∑

m=1

∑

i∈In

cmni d(xn,pn
i )

s. t. xn ∈ F ,

(WP(n))
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and determine the index sets In, n = 1, . . . , N of the candidates sets

P ∩ visibled(xn) with respect to the new locations xn,

UNTIL a stopping criterion is satisfied.

As in the case of the LBA, the selection of an appropriate starting solution
influences the efficiency and the solution quality of LAP . We implemented LAP

with the same termination criteria and variants for obtaining initial solutions
as the LBA, see Sections 3.3 and 3.4 for details.

Note that the allocation steps in both algorithms have the same complexity.
The location step in contrast is significantly easier for the LAP , since it only
involves the solution of N Weber problems which can be realized using the
Weiszfeld algorithm [Weiszfeld, 1937]. However, relaxing the constraints xn ∈
Rn, n = 1, . . . , N to xn ∈ R

2 in (WP(n)) may lead to an underestimation of the
actual distances in the location step and / or to infeasible location solutions.
While infeasibility is avoided by moving infeasible locations to the optimal point
on the boundary of the barrier set containing them (using Weiszfeld iterations
on the respective barrier boundaries), the distances to the existing facilities are
only later corrected in the next allocation step.

Furthermore, it is possible that from an optimal solution of the relaxed
problem (WP(n)) the corresponding intermediate points are not visible any-
more. Therefore, monotone decreasing objective values can not be guaranteed.
Convergence of the algorithm is only ensured if in all iterations the intermediate
points are d-visible from the optimal locations of the relaxed problem. Obvi-
ously, this property is satisfied if no barrier intersects the convex hull of the
intermediate points. Despite this theoretical shortcoming, we did not observe
difficulties concerning the convergence of this solution method in practice.

This approach can also be interpreted as a generalization of the iterative
solution heuristic for single-facility Weber problems with polyhedral barriers as
suggested by Butt and Cavalier [1996] to the multi-facility case.

3.3 Termination Criteria

A natural stopping condition for both versions of the alternate location and
allocation heuristic, LBA and LAP , is that the same set of allocation clusters
is determined in two consecutive iterations of the allocation step. In this case,
a local minimum is found, and neither location nor allocation variables would
be changed in the following iterations. Additionally, an upper bound on the
number of iterations has been set, that never was reached in practice.

3.4 Starting Solutions

We have implemented both variants of the LA presented above with a random
multi-start approach (Section 3.4.1) as well as using an optimized solution of the
problem relaxation to a p-median problem as a starting solution. The network of
the p-median problem is defined by the visibility graph of the existing facilities
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and barrier extreme points (Section 3.4.2). For a numerical comparison of both
approaches, see Section 4.

3.4.1 Random Starting Solutions

One possibility to increase the chances of convergence to the global minimum
with alternate location and allocation algorithms is to repeat the algorithm
multiple times with different initial values. In the end, the best solution of all
computations is returned.

Since in our implementation both LA variants start with an allocation step,
the initial locations are a randomly chosen subset of the set of existing facili-
ties and barrier extreme points, i.e. {x1, . . . ,xN} ⊆ A ∪ E(B). Restricting the
starting locations to this set is convenient since such initial values are feasible
and their determination requires almost no computational cost. Moreover, the
resulting location solutions are automatically contained in the iterative convex
hull of the problem, and since optimal new facilities often coincide with ex-
isting facilities (or are located in close proximity), this technique yields good
initial values in practice. However, this restriction may in some cases make it
impossible to reach the global optimum of the problem.

3.4.2 p-Median Based Starting Solutions

When choosing initial values randomly, there may always be a number of start-
ing solutions that result in local optimal solutions with function values far away
from the global minimum. To avoid these redundant computations, different se-
lection criteria for the starting solutions may be applied. For example, p-median

based algorithms first transform the continuous MWP into a network location
problem with a node set that is given by the existing facilities. The optimal,
or at least a sufficiently good solution of the p-median problem on this network
(with p = N) is then used as a starting solution for the LA.

Applied to the MWPB, the corresponding network location problem addi-
tionally has to represent the barrier distances and is therefore based on the
visibility graph of the existing facilities and the barrier extreme points. The vis-
ibility graph of P = A∪E(B) = {p1, . . . ,pI} is a graph G = (V, E) with node set
V = {1, . . . , I}, where node l ∈ V corresponds to the point pl ∈ P , l = 1, . . . , I.
Every pair of nodes i, j ∈ V for which the corresponding points pi and pj

are d-visible in F is connected by an edge [i, j] ∈ E of length li,j = d(pi,pj).
Consequently, the length dG(i, j) of a shortest network path between two arbi-
trary nodes i, j ∈ V corresponds to the barrier distance dB(pi,pj) between the
corresponding points in the plane.

The p-median problem [Hakimi, 1964, 1965] on G is to find a set of p = N

nodes {v1, . . . , vN} ⊆ V that minimize the total transportation cost to the nodes
{a1, . . . , aM} ⊆ V that correspond to the existing facilities {a1, . . . ,aM} = A
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in the plane:

min
N
∑

n=1

M
∑

m=1

ymnwmdG(vn, am)

s. t.
N
∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

vn ∈ V, n = 1, . . . , N.

(p-med)

A solution ymn, m = 1, . . . , M , n = 1, . . . , N and vn, n = 1, . . . , N of the p-
median problem can be easily transferred to a starting solution for (MWPB) by
setting xn := pn, n = 1, . . . , N .

Since the p-median problem is itself NP-hard [see Garey and Johnson, 1979]
and since we are only interested in finding a good starting solution for our
problem, we did not apply an exact solution method for its solution. Instead, we
applied a tabu search procedure developed by Rolland et al. [1996]. Obviously,
starting with the optimal solution of the p-median solution both methods not
necessarily converge to the global optimum of the corresponding (MWPB), and
it may even happen that a suboptimal solution of the relaxation possibly reaches
better results in the original problem. Therefore, a randomized search method
that yields different very good starting solutions is not only more efficient but
also a helpful component for diversification when performing multiple starts.

Even though starting with an optimal p-median solution does not guarantee
the LA to converge to the global minimum of (MWPB), starting with a good
p-median based solution has turned out to be efficient in the sense of quick
convergence and effective in finding optimal or near-optimal solutions even for
large-scale problems.

4 Computational Results

In this section the two heuristics and the two different starting solution tech-
niques presented in Section 3 are compared. The algorithms have been imple-
mented in Matlab (Release 14) and were evaluated on a Sun Fire V20z machine
with two AMD Opteron 2.4GHz CPUs and 8GB memory.

Since the single-facility barrier location problems that occur in the LBA are
solved with a solution method that is based on genetic algorithms for which
random decisions are a fundamental tool, and since the starting solutions are
obtained either with a tabu-search heuristic or are totally random-based, re-
peated computations may lead to different results.

Both methods have been tested and compared with a large set of location
problems. In order to give the reader an outline of the performance, the com-
putational results of a well-known facility location problem with barriers intro-
duced by Aneja and Parlar [1994] have been selected to be presented as sam-
ple data. This location problem consists of 18 existing facilities with weights
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wm = 1, m = 1, . . . , 18, and twelve barrier regions. The coordinates of the
existing facilities and barrier extreme points are specified in Table 2.

Table 2: Problem data of the example problem from Aneja and Parlar [1994]

Existing facility locations:

a1 = (1, 2) a2 = (2, 8) a3 = (3, 12) a4 = (5, 5)
a5 = (6, 1) a6 = (6, 11) a7 = (7, 4) a8 = (8, 8)
a9 = (9, 1) a10 = (9, 5) a11 = (9, 10) a12 = (10, 12)
a13 = (14, 2) a14 = (14, 4) a15 = (16, 8) a16 = (17, 4)
a17 = (17, 10) a18 = (19, 13)

Barrier region extreme points:

E(B1) = {(1, 5), (3, 5), (4, 3), (5, 4), (6, 2), (2, 1)}
E(B2) = {(1, 8), (3, ), (2, 6)}
E(B3) = {(1, 9), (2, 11), (5, 10), (3, 8)}
E(B4) = {(4, 6), (4, 8), (7, 11), (8, 9)}
E(B5) = {(4, 11), (4, 13), (5, 14)(9, 14), (10, 13)}
E(B6) = {(6, 5), (6, 7), (7, 7), (7, 5)}
E(B7) = {(7, 2), (8, 3), (9, 2)}
E(B8) = {(9, 8), (10, 10), (13, 13), (16, 13), (15, 7), (10, 6), (12, 9)}
E(B9) = {(12, 2), (12, 3), (13, 3), (13, 2)}
E(B10) = {(9, 4), (19, 8), (19, 6)}
E(B11) = {(16, 1), (16, 3), (19, 3), (18, 1)}
E(B12) = {(18, 11), (18, 12), (19, 12), (19, 10)}

Note that barriers B1 and B8 are not convex, but, since no existing facili-
ties are contained in their convex hulls, they can be replaced by their convex
hulls before applying the solution methods in order to reduce the number of
candidates of intermediate points. Also Butt and Cavalier [1996] and Bischoff
and Klamroth [2006] performed this substitution before further examining the
problem.

Originally, Aneja and Parlar [1994] solved this problem as a single-facility
problem with a simulated annealing heuristic and obtained the solution x? =
(8.76, 4.97), with an objective function value f(x?) = 119.13. This result is
confirmed in Butt and Cavalier [1996] and Bischoff and Klamroth [2006] as
best-known solution. We now solved this location problem for the case of N =
1, . . . , 18 new facilities. In the special case of N = 1 the aforementioned solution
was obtained as well.

The computational results of LBA and LAP are summarized in Table 3 and
Table 4, respectively. Both algorithms have been examined with the starting
solution techniques described in Section 3.4. When applying the random multi-
start technique (see Section 3.4.1), the best solution obtained in ten executions
of the algorithms, each starting with a random initial solution, was selected. To
give a more representative comparison with respect to the randomized search
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subroutines, every problem has been solved five times with both algorithms and
both starting solution techniques.

In the tables below, flow denotes the lowest function value found in any
computation of the corresponding multi-facility location problem. favr stands
for the average of the function values in the five computations. ∆f is the relative
difference between the lowest function value flow and the average function value
favr,

∆f :=
favr − flow

flow

.

In the column t(s), the average CPU time in seconds of the five computations is
displayed. Table 5 shows how many of the five computations converged to the
lowest function value flow.

p-median based random multi-start
N flow favr ∆f t(s) favr ∆f t(s)

1 119.1387 119.1387 0.00 2.88 119.1387 0.00 66.47
2 90.3821 95.2783 5.42 1.46 93.4821 3.43 62.75
3 66.0557 66.0557 0.00 3.83 66.6473 0.90 55.08
4 49.5569 49.5569 0.00 2.95 49.5569 0.00 46.02
5 41.4761 42.4428 2.33 3.19 42.1940 1.73 38.11
6 34.6326 34.6326 0.00 2.65 34.8281 0.56 29.09
7 29.8940 30.0721 0.60 1.51 30.1504 0.86 23.86
8 25.9033 26.0814 0.69 0.70 26.4410 2.08 19.83
9 22.2530 22.4311 0.80 0.69 23.3327 4.85 17.67

10 19.0169 20.1950 6.20 0.74 20.4195 7.38 15.40
11 16.7808 16.7808 0.00 0.69 17.1288 2.07 13.28
12 13.7808 13.7808 0.00 0.75 14.2387 3.32 12.72
13 10.9443 10.9443 0.00 0.78 11.6485 6.43 11.97
14 8.7082 8.7082 0.00 0.83 9.0283 3.68 13.41
15 6.4721 6.4721 0.00 0.88 6.4721 0.00 12.44
16 4.2361 4.2361 0.00 0.93 4.2361 0.00 13.84
17 2.0000 2.0000 0.00 0.97 2.0472 2.36 14.89
18 0.0000 0.0000 0.00 1.02 0.0000 0.00 15.53

Table 3: Computational results of LBA for the example problem

The results show a clear superiority of the p-median based starting solution
to the random multi-start technique with ten starts. When starting with a good
solution of the p-median problem, solutions with lower function values are ob-
tained more often, the best known function values are reached more often and
the computation times are drastically reduced since the computation time to
determine a good solution of the p-median problem is negligible with respect
to the time that is needed for the location and allocation procedure. There-
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p-median based random multi-start
N flow favr ∆f t(s) favr ∆f t(s)

1 119.1387 119.1387 0.00 0.17 121.9215 2.34 0.38
2 90.3821 90.8684 0.54 0.25 92.3281 2.15 1.15
3 66.0557 66.0557 0.00 0.40 69.0292 4.50 1.85
4 49.5569 49.8363 0.56 0.46 54.8103 10.60 2.51
5 41.4761 42.6511 2.83 0.44 43.2317 4.23 3.21
6 34.6326 34.6326 0.00 0.69 36.6098 5.71 3.80
7 29.8940 29.8940 0.00 0.62 32.0692 7.28 3.92
8 25.9033 25.9033 0.00 0.61 27.1249 4.72 4.15
9 22.2530 22.2530 0.00 0.66 23.7588 6.77 4.48

10 19.0169 20.0170 5.26 0.65 20.8687 9.74 5.25
11 16.7808 16.7808 0.00 0.62 18.2901 8.99 5.39
12 13.7808 13.7808 0.00 0.66 14.4354 4.75 5.35
13 10.9443 10.9443 0.00 0.70 12.2952 12.34 5.88
14 8.7082 8.7082 0.00 0.74 9.4213 8.19 5.98
15 6.4721 6.4721 0.00 0.78 6.9193 6.91 6.23
16 4.2361 4.2361 0.00 0.82 4.4249 4.46 6.46
17 2.0000 2.0000 0.00 0.85 2.0944 4.72 6.86
18 0.0000 0.0000 0.00 0.90 0.0000 0.00 6.09

Table 4: Computational results of LAP for the example problem

fore, since the algorithms are executed ten times in the case of the multi-start
technique, also the computation time increases by about a factor of ten.

We also observed that a joint treatment of all assignment variables, includ-
ing those specifying the routes taken around the barrier polyhedra as done in
the LAP , is superior to the LBA where the assignment problem and the barrier
location problems are solved separately. Obviously, the computation time of
LBA is higher since, while the allocation step has more or less the same com-
plexity in both algorithms, the subproblem in the location step of LBA is more
time-consuming.

In the two special cases N = 1 and N = 18 the best-known solution was
obtained in almost all computations with any algorithm and starting solution.
This is due to the fact that in both cases the optimal assignments are known:
If N = 1, every existing facility is assigned to the same new facility, if N = 18,
every existing facility is assigned to a different one. Only the LAP together
with random multi-start converged to a suboptimal solution for N = 1 in two
of the five trials. Although the allocation of existing facilities to the new facility
is trivial in this case, the determination of the intermediate points and the
assignment of intermediate points leads to different results.

Further, note that whenever the best known solution has been determined
starting with a p-median starting solution, it has been obtained in all five trials.
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LBA LAP

N p-median random p-median random

1 5 5 5 3
2 0 0 0 1
3 5 4 5 2
4 0 1 0 0
5 0 0 0 1
6 0 2 0 0
7 0 1 0 0
8 0 0 0 1
9 0 0 5 0

10 0 0 0 1
11 5 3 5 0
12 5 0 5 2
13 5 1 5 0
14 5 2 5 1
15 5 5 5 1
16 5 5 5 1
17 5 4 5 3
18 5 5 5 5

Table 5: Number of runs in which the best known solution has been obtained

Although the p-median heuristic may generate different very good solutions, it
actually found the same, probably optimal solutions of the p-median subproblem
in most of the runs. Starting with the same initial solution, the LAP and LBA
either converged to the best known solution of the MWPB in all five runs or in
none of them.

While the computation time of LBA decreases with an increasing number of
new facilities, the time needed by LAP decreases. This is due to the fact that on
the one hand the effort increases in the assignment step with the number of new
facilities available, on the other hand the location subproblems become smaller
and thus easier to solve. Since LBA solves single-facility location problems with
barriers the computation time depends mostly on the difficulty of the location
problems, while LAP determines the assignment of existing facilities together
with the intermediate points which results in a longer computation time if the
number of new facilities is large. In the special case of N = 18 all location
subproblems are trivial since every new facility is located at one existing facility
only.

In 11 of the 18 location problems, LAP together with the p-median starting
solution converged to the solution with the lowest function value in all five com-
putations. This most effective combination of algorithm and starting solution
technique additionally had an average computation time of less than one second
for every problem.
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In Figure 2 the example problem together with the best locations and the
corresponding allocation clusters in the case of three new facilities is displayed.

Figure 2: The example problem, the best known locations and the corresponding
allocation clusters for three new facilities

Figure 3 shows a plot of the lowest objective function values with respect to
the number of new facilities located. It can be seen that for a small number of
new facilities there is a big difference between the function values if an additional
new facility is available. On the other hand, if N , the number of new facilities is
large as compared to the number of existing ones, the total transportation costs
are not that drastically reduced by increasing N further. A similar behavior is
observed also in the unconstrained case, i.e., if all barrier polyhedra are removed
from the example problem. Both situations (with and without barriers) are
displayed in Figure 3 in a direct comparison. As was to be expected, the function
values of the unconstrained problem are lower than those of the constrained
problem particularly for relatively small values of N . If N is relatively large
as compared to the number of existing facilities, smaller allocation clusters are
obtained and less barriers interfere. As soon as the distances are not lengthened
by barriers, the same objective values can be reached in both problems.

The trade-off analysis between the number of new facilities and the corre-
sponding reduction of transportation costs points to an extended or multicriteria
model of the generalized multi-Weber problem (with and without barriers) in
which the number of new facilities is not predefined, but either considered as an
additional objective function, or interpreted as an additional parameter in the
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optimization problem associated with a cost function.
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Figure 3: The lowest function values for the example problem of Aneja and
Parlar [1994] with and without barrier regions with respect to the number of
new facilities

5 Conclusion

We developed two alternate location and allocation heuristics for multi-facility
location-allocation problems with barriers. Both solution methods iteratively
decompose the (MWPB) into single-facility problems and a set partitioning
problem. While in the allocation step of one method only optimal assignments
are specified, in the other additionally the paths taken around the barriers
are optimized. A numerical comparison shows the superiority in efficiency and
effectiveness of a joint treatment of all discrete variables in the allocation step.

The numerical results show that the developed algorithms are suitable for
the solution of reasonably sized multi-facility location-allocation problems with
barriers, both with regard to computation time and solution quality. This makes
this non-convex and numerically difficult, NP-hard problem class accessible for
an efficient heuristic solution. Future research should focus on alternative so-
lution methods, including the development of exact algorithms, for example,
based on branch and bound. Moreover, the bi-convex structure of the problem
as discussed in Sections 2.1 and 2.2 could be exploited further, for example, us-
ing ideas from Gorski et al. [2006]. Another interesting extension of the problem
is a bicriteria analysis of the trade-off between the number of new facilities and
the transportation cost as mentioned in Section 4 above.
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