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Abstract

In planar location problems with barriers one considers regions

which are forbidden for the siting of new facilities as well as for tres-

passing. These problems are important since they model various ac-

tual applications. The resulting mathematical models have a non-

convex objective function and are therefore diÆcult to tackle using

standard methods of location theory even in the case of simple barrier

shapes and distance functions.

For the case of center objectives with barrier distances obtained
from the rectilinear or Manhattan metric it is shown that the problem

can be solved in polynomial time by identifying a dominating set.

The resulting genuinely polynomial algorithm can be combined with

bound computations which are derived from solving closely connected

restricted location and network location problems.

1 Introduction

In applications of location problems one often encounters situations in which
regions are neither allowed for siting new facilities nor for trespassing. In
accordance with most of the literature quoted below we call such regions
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barriers. Examples of barriers include lakes or nature parks when the location
of industrial facilities is considered, high risk areas in the transportation and
storing of chemicals, or obstacles in a production environment. An actual
application of the latter was reported, for example, in Love and Yerex [18]
who considered the problem of locating two new production facilities in the
yard area of a precast-prestressed concrete products plant where traveling
was restricted by other buildings.

In spite of this practical importance, there is only a relatively small
amount of literature on location problems with barriers. Katz and Cooper
[13] considered median (total cost) location problems using Euclidean dis-
tance and a forbidden region consisting of one circle. Klamroth [14] con-
sidered the median problem where distance is induced by a norm and with
a barrier consisting of a line with passages. Aneja and Parlar [1] and Butt
and Cavalier [4] developed heuristics for the median problem with lp distance
and barriers that are closed polyhedra. Larson and Sadiq [16], and Batta,
Ghose and Palekar [2] obtained discretization results for median problems
with l1-distance and arbitrarily shaped barriers by transforming these prob-
lems into equivalent network location problems. Their results were general-
ized by Hamacher and Klamroth [9] for arbitrary block norms although it is
not possible to transform these problems to the analogous network location
problems. Location problems in which regions are excluded from siting new
facilities, but trespassing is allowed are called restricted location problems.
They have lately drawn some attention and have been successfully tackled
for median and center problems, for instance, in Hamacher [8], Nickel [20],
Hamacher and Nickel [10], and Hamacher and Sch�obel [12].

This paper considers the weighted center problem with polyhedral barri-
ers for which upto very recently no results where available in the literature.
For the special case that N pairwise disjoint axis-aligned rectangles are given
as barriers, Choi, Shin and Kim [5] presented an O(N2M log2M)-time algo-
rithm based on parametric search to compute the solution set of the weighted
center problem with a �xed numberM of existing facilities. Ben-Moshe, Katz
and Mitchell [3] improved this result for the unweighted case by giving an
O(NM log(N+M))-time algorithm. More general problems with polyhedral
(or general) barrier sets and general location objectives of which the weighted
center problem with barriers can be viewed as a special case were discussed
in Klamroth [15] and Segars [23].

In the next section we will formally introduce the problem and derive
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lower and upper bounds on the objective value by investigating the inter-
relation between center barrier problems on one hand and network location
and restricted location problems on the other hand. A discretization result
is developed in Section 3 for the special case that distances are measured by
the Manhattan metric (l1 metric) and that the barriers are pairwise disjoint
convex polyhedra. Using the piecewise linearity of distances that distin-
guishes the Manhattan metric from round norms like the Euclidean norm it
is shown that it is suÆcient to consider a �nite number of candidate sets, a
dominating set (DS), to �nd an optimal location. The resulting polynomial
time algorithm using this dominating set is given in Section 4. The paper is
concluded by a �nal section in which the results of the paper are summarized
and directions for future research are outlined.

2 Formal de�nition and bounds for center

problems with barriers

In this section we �rst give a formal de�nition of center problems with bar-
riers. Then we show that by considering the restricted location problem as
a relaxation we get lower and upper bounds. Additional upper bounds are
obtained by investigating a network location problem closely related to the
input of the center problem with barriers.

Let fB1; : : : ; BNg be a set of closed, convex sets in the plane, IR2, with
pairwise disjoint interior. Each set Bi, i = 1; : : : ; N is called a barrier.
Let B =

SN
i=1Bi. The location of new facilities in the interior of B and

travel through int(B) is forbidden. Thus the feasible region F � IR2 for new
facilities is given by

F = IR2 n int(B):

The distance dB(X; Y ) between two points X; Y 2 F is de�ned as the
length of a shortest path from X to Y that does not meet the interior of a
barrier. A �nite set

Ex = fExm 2 F : m 2 M = f1; : : : ;Mgg

of existing facilities is given in a connected subset of the feasible region F .
A positive weight wm = w(Exm), m 2 M is associated with each existing
facility that represents the relative importance of facility Exm.
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De�ne the function

fB(X) = max
m2M

wmdB(X;Exm):

Then the weighted center problem with barriers is to minimize fB(X) over
all X 2 F . To simplify further notation we will use the classi�cation
Pos1=Pos2=Pos3=Pos4=Pos5 of location problems according to Hamacher
and Nickel [11]. Following their notation, the weighted center problem with
barriers is classi�ed as 1=P=B=dB=max, where Pos1 gives the number of new
facilities sought (1 for a single-facility problem), Pos2 denotes the type of
location problem (P for planar location problems), Pos3 contains special as-
sumptions (B for barrier regions), Pos4 contains the information about the
distance function (dB in case of barrier distances) and Pos5 indicates the
objective function (max for the center objective).

While center location problems in the plane without barriers are exten-
sively discussed in the literature (see, e.g. the books of Francis et. al. [6],
Hamacher [8], and Love et. al. [17]) no references can be found on the corre-
sponding barrier problems. The decisive distinction between the former and
the latter problem is that the distance measure dB for the problem considered
in this paper reects the fact that trespassing of the barriers is not allowed.

Let d be a given distance function induced by a norm k � kd. Then the
distance dB(X; Y ) between two points X; Y 2 F is de�ned as the length
of a shortest path (with respect to the given distance function d) from X
to Y that does not intersect the interior of a barrier. Formally, let p be
a piecewise, continuously di�erentiable parameterization, p : [a; b] ! IR2,
a; b 2 IR, a < b, of a permitted path connecting X and Y , i.e. a curve not
intersecting the interior of a barrier, p([a; b]) \ int(B) = ;, with p(a) = X
and p(b) = Y . Then dB is given by

dB(X; Y ) := inf

(Z b

a
kp0(t)kd dt : p permitted path connecting X and Y

)
:

Any path connecting X and Y with length dB(X; Y ) not intersecting the
interior of B is called a d-shortest permitted path connecting X and Y . Any
two points X and Y in F that satisfy dB(X; Y ) = d(X; Y ) are called d-visible.
If d is the Manhattan metric, dB(X; Y ) is denoted by l1;B(X; Y ).
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Note that dB is symmetric and satis�es the triangle inequality, but is in
general not positively homogeneous. Moreover, the objective function fB is
non-convex. However, instead of tackling the problem with methods of non-
convex optimization we will choose a di�erent approach by investigating the
structure of the problem in more detail.

Next, upper and lower bounds for the optimal objective value of the center
problem with barriers, 1=P=B=dB=max, will be discussed. These bounds are
analogous to bounds given for the median objective function in Hamacher
and Klamroth [9]. Since these results can be easily transferred to other and
more general objective functions we refer to their work for a more detailed
discussion.

Two di�erent approaches are suggested. The �rst approach is based on
a relaxation of the barrier problem to a restricted location problem of the
type 1=P=R = B=d=max. Here trespassing through the barrier regions is
allowed whereas the placement of a new facility within the region R = B
is prohibited. The second approach makes use of the visibility graph G of
the problem to relate the barrier problem to a network location problem
1=G= � =dG=max on G. In both cases the non-convex optimization problem
1=P=B=dB=max is relaxed to a location problem that is easier to solve.

Lemma 1 Let z�B be the optimal objective value of the barrier problem
1=P=B=dB=max and let X�

R be an optimal solution of the corresponding re-
stricted problem 1=P=R = B=d=max. Then

f(X�
R) = max

m2M
fwm d(Exm; X

�
R)g � z�B � max

m2M
fwm dB(Exm; X

�
R)g = fB(X

�
R):

Proof: The second inequality is trivial. For the �rst inequality, let X�
B be

an optimal solution of the barrier problem 1=P=B=dB=max. Since X�
R is an

optimal solution of the restricted problem 1=P=R = B=d=max, we have that
f(X�

R) � f(X�
B). Furthermore, f(X) � fB(X) for all X 2 F , and thus

f(X�
R) � f(X�

B) � fB(X
�
B) = z�B:

2

An immediate consequence of the preceding lemma is the following result.

Corollary 1 Let X�
R be an optimal solution of the restricted problem

1=P=R = B=d=max. If z�B � wmdB(Exm; X
�
R) for all m 2 M, then X�

R =
X�
B is an optimal solution of 1=P=B=dB=max.
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For the case that distances are measured with respect to the Manhat-
tan metric d = l1 or the Chebychev metric d = l1, the restricted problem
1=P=R = B=d=max can be solved by an algorithm developed in Hamacher
and Nickel [10]. If distances are measured with respect to polyhedral gauges,
the optimal solution of the restricted problem can be obtained using an al-
gorithm proposed in Nickel [20].

The second approach to derive bounds for the problem 1=P=B=dB=max
makes use of the visibility graph of the problem in order to relax the non-
convex barrier problem to a network location problem. In this case an ad-
ditional assumption is needed, namely that the set of barriers is given by
a set of polyhedra with extreme points P(B) := fpi : i = 1; : : : ; gg. The
embedded visibility graph of Ex[P(B) is de�ned as G = (V;E) with node set
V (G) = Ex[P(B) and weights w(v) = 0 if v = p 2 P(B) and w(v) = w(Exm)
if v = Exm 2 Ex. Two nodes u; v 2 V (G) are connected by an edge if the cor-
responding points are d-visible in the feasible region F , i.e. dB(u; v) = d(u; v),
and in this case the length of the edge is d(u; v). The embedding of this edge
is represented by a d-shortest permitted path between the points u and v.
The length of a shortest network path between two vertices u and v is denoted
by dG(u; v). Analogously the length of a shortest network path between a
vertex v and a point X on an edge e 2 E(G) is denoted by dG(X; v). Then
the network location problem 1=G= � =dG=max on G is de�ned by

min
X2G

fG(X)

where fG(X) = max
v2V (G)

w(v) dG(X; v):

Lemma 2 If X�
G is an optimal solution of the network location problem

1=G= � =dG=max on G, then a point XB in the feasible region F that corre-
sponds to the point X�

G on the embedded graph, is feasible for 1=P=B=dB=max
and

fB(XB) � fG(X
�
G):

Proof: The feasibility of X�
G is trivial because X�

G is either a vertex of G,
i.e. X�

G 2 (V (G) [ P(B)) � F , or it is a point on an edge of G which is
represented by a shortest permitted path in the feasible region F .

The upper bound on the optimal objective value of the barrier problem
follows from

fB(XB) = min
X2F

�
max
m2M

fwm dB(X;Exm)g
�
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� min
X2G

(
max
v2V (G)

fw(v) dG(X; v)g

)
= fG(X

�
G):

2

Observe that the upper bounds given in Lemmas 1 and 2 are in gen-
eral independent of each other. An example where the optimal solution of
problem 1=P=B=l1;B=max di�ers both from the solution of the correspond-
ing restricted problem and of the corresponding network location problem is
given in Figure 1. In this example, X�

R is the optimal solution of problem
1=P=R = B=l1=max with f(X�

R) = 4:5 and fB(X
�
R) = 6:5. The network lo-

cation problem on the network the embedding of which is represented by all
the lines in Figure 1 has two optimal solutions X�

G;i, i = 1; 2 which both have
an objective value of fG(X

�
G;i) = fB(X

�
G;i) = 7. However, the optimal solu-

tion of the original problem 1=P=B=l1;B=max is given by X�
B with objective

value fB(X
�
B) = 5:5.

B

X *
RX *

B

X *
G,2

X *
G,1

Ex4

Ex1 Ex2

Ex3

3

1

1

3

1

1

3 3

3 3

5

Figure 1: An example problem with four existing facilities and weights equal to 1.

3 The special case of the Manhattan metric

and convex polyhedral barriers

In this section a di�erent network than the one used in the previous section
is constructed for the special case that distances are measured by the Man-
hattan metric d = l1 and that all barriers are closed, convex polyhedra with
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pairwise disjoint interior. Using this network we will develop a polynomial
time algorithm that determines at least one optimal solution of the problem
1=P=B=l1;B=max.

3.1 Shortest l1-paths in the presence of barriers

Let l1;B(X; Y ) denote the length of an l1-shortest permitted path connecting
X and Y in F , i.e. a shortest permitted path with respect to length l1;B. As
a special case of the d-visibility de�nition above, any two points X and Y in
F that satisfy

l1;B(X; Y ) = l1(X; Y )

are called l1-visible. The set of points Y 2 F that are non l1-visible from a
point X 2 F is called the shadow of X with respect to l1, i.e.

shadowl1(X) := fY 2 F : l1;B(X; Y ) > l1(X; Y )g:

Note that if a point X 2 F is l1-visible from another point Y 2 F , then Y
is also l1-visible from X, i.e. the concept of visibility is symmetric. For all
X 2 F the set shadowl1(X) is bounded by parts of the boundaries of barriers
or by horizontal or vertical line segments or half-lines in F . Furthermore some
l1-visible points are obviously not l2-visible, i.e. not visible in the usual sense
of straight line visibility. On the other hand, the following result holds; see
Figure 2 for an example.

Lemma 3 Every point X 2 F that is l2-visible from the origin is also l1-
visible from the origin. Furthermore, in this case the straight line segment
connecting the origin and X is an l1-shortest permitted path.

Proof: Let X 2 F be a point that is l2-visible from the origin. Then the
straight-line segment connecting the origin and X is a permitted path P from
the origin to X = (x1; x2)

T with length l1(P ) = jx1j+ jx2j = l1(0; X).

2

Since we assume that all barriers are convex polyhedra, the relation be-
tween l1-visibility and l2-visibility can be used to obtain a simpler description
of the barrier distance l1;B. The following lemma is a special case of a result
of Viegas and Hansen [26] for lp-distance functions (1 � p � 1).
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shadow    (X) l 1

shadow    (X)

Figure 2: The l2-shadow and the l1-shadow of a point X 2 F .

Lemma 4 Let X; Y 2 F . Then there exists an l1-shortest permitted path,
SP , connecting X and Y with the following property.

SP is a piecewise linear path with breaking points only in extreme
points of barriers.

(1)

In the following we will refer to Property (1) as the barrier touching
property.

3.2 Constructing a cell decomposition of the feasible

region

In the following a network N will be constructed such that l1-shortest per-
mitted paths between all existing facilities and extreme points of barriers are
represented by network paths in N , similar to the visibility graph given in
Section 2. Additional edges are added resulting in a decomposition of the fea-
sible region into cells. The four fundamental vectors e1 = (0; 1)T , e2 = (1; 0)T ,
e3 = (0;�1)T and e4 = (�1; 0)T de�ning the unit ball of the Manhattan
metric and the corresponding fundamental directions di = f�ei : � � 0g,
i = 1; : : : ; 4 play a central role in the construction of N (see Figure 3).

Let P(B) and F(B) denote the set of extreme points and facets, respec-
tively, of the convex barrier polyhedra. For every X 2 (Ex [ P(B)) and for
every fundamental direction di, i = 1; : : : ; 4, de�ne a construction line

(X + di)B := fX + �ei : � 2 IR+; (X + �ei) \ int(B) = ; 80 � � � �g
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Figure 3: The unit ball of the l1-norm and its four fundamental vectors.

as the set of points in the plane which are l2-visible fromX in the fundamental
direction di. Then

G :=

0
@ [
X2Ex[P(B)

4[
i=1

(X + di)B

1
A [ F(B)

de�nes a grid which is a subset of F . Moreover, a networkN corresponding to
the grid G is de�ned as follows: All possible intersection points of construction
lines, or the intersection points of construction lines and facets of a barrier
in G de�ne the set V (N ) := V (G) of vertices of the corresponding network
N . Two vertices u, v 2 V (N ) are connected by an edge in E(N ) if they are
adjacent on some construction line or facet in G. The length of this edge is
then given by the l1-length of the corresponding line-segment in G.

The grid de�ned by G decomposes the feasible region F into a �nite set of
cells denoted by C(G), i.e. the set of smallest 2-dimensional convex polyhedra
with nonempty interior and with extreme points in V (G) (see Figure 4 and
compare Figure 11 for an example with two barrier sets). The extreme points
of a cell C 2 C(G) are called corner points of the cell C. Note that the
boundary of each cell consists of construction lines or facets of the barriers.

Larson and Sadiq [16] de�ned a similar network omitting some of the con-
struction lines introduced above by only considering horizontal and vertical
tangents to the barrier polyhedra. Even though the properties of l1-shortest
permitted paths with respect to their smaller network need some further
discussion, Larson and Sadiq showed that in case of the median objective
function the problem can be transformed into a network location problem.
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B

Ex 2

p2

p3

p1

Ex 1

Ex 3

A cell C

Figure 4: The grid G for an example problem with three existing facilities and one

triangular barrier. The vertices of the corresponding network N are represented

by small dots.

Observe that an analogous result is not true for the center objective function
even in the unconstrained case as can be seen in Figure 5.

X *

Ex 4

Ex 1 Ex 2

Ex 3

Figure 5: An example with four existing facilities with equal weights (wi = 1,

i = 1; : : : ; 4). The unique optimal solution X� of 1=P= � =l1=max lies in the

interior of a cell of the corresponding grid G.

Nevertheless it can be shown that the set of optimal solutions X �
B of

1=P=B= l1;B=max is contained in the rectangular hull R of the existing facili-
ties and the barrier regions, i.e. in the smallest rectangle R with sides parallel
to the coordinate axes, containing all existing facilities, and such that the
boundary @(R) of R does not intersect with the interior of a barrier.
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Theorem 1 Let R be the smallest axes-parallel rectangle such that Ex � R
and @(R)\ int(B) = ;. Then the set of optimal solutions of 1=P=B=l1;B=max
is contained in R, i.e.

X �
B � R:

Proof: Suppose that X�
B 2 X �

B is an optimal solution not located in R,
i.e. X�

B 2 F nR. Then the assumption that there exists no barrier in IR2 nR
does not increase the objective value of X�

B and it has no inuence on the
objective values of points in R.

Let R = [x1; x2] � [y1; y2] and let X�
B = (a; b)T . Since X�

B 62 R we can
conclude that a is not contained in the closed interval [x1; x2] or that b is not
contained in the closed interval [y1; y2]; without loss of generality let a < x1.

Let Pm be an l1-shortest permitted path fromX�
B to Exm with the barrier

touching property of Lemma 4, and let Im 2 P(B) [ fExmg be an interme-
diate point on Pm that is l2-visible from X�

B, m 2 M. The straight-line
segment connecting X�

B and Im, m 2 M intersects @(R) in a point (am; bm)
T

with a < am. Thus moving X�
B towards the boundary of R by increasing

a to a + � with a small � > 0 decreases the l1-distance between X�
B and

(am; bm)
T , and thus also between X�

B and each of the intermediate points Im
and between X�

B and Exm, m 2 M, contradicting the optimality of X�
B.

2

Note that since the barrier polyhedra are compact sets, R is a compact
and convex set, the boundary of which is part of the network N . Since the
boundary @(R) of the rectangular hull R is also feasible, i.e. @(R) � F , the
following result for l1-shortest permitted paths between two points in R can
be proven:

Lemma 5 Let X and Y be two points in F \ R. Then every l1-shortest
permitted path connecting X and Y lies completely in F \R.

Proof: The result follows from the fact that all barriers B � IR2 n R can
be discarded. Every permitted path connecting X and Y that leaves the set
F \R at some point Z1 2 @(R) has to reenter at some point Z2 2 @(R) and
will be dominated by a path using the shortest path from Z1 to Z2 along the
boundary of R instead.

2
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Note that Theorem 1 implies not only that it is suÆcient to consider only
cells within the rectangle R, but that, using Lemma 5, we can also reduce
the network N to a subnetwork N 0 � N that results from the intersection
of the embedding of N in F with the rectangle R.

Ex

B

Ex 3

Ex 2

p2

p3

p1

1

Figure 6: The rectangle R and the network N 0 for the example problem introduced

in Figure 4.

3.3 Grid vertices on l1-shortest permitted paths

The decomposition of F into cells C(G) will be used in this section to de-
rive further properties of l1-shortest permitted paths from arbitrary feasible
points to the existing facilities. Since an extended network is used compared
to that de�ned in Larson and Sadiq [16], the following two results which can
also be found in this reference can be proven in a more straight forward way.

Lemma 6 Let Y 2 (Ex [ P(B)) be an existing facility or an extreme point
of a barrier, and let C be a cell in C(G). If Y is l1-visible from some point
in int(C), then Y is l1-visible from all points in C.

Proof: Let Y 2 (Ex[P(B)). Then the l1-shadow of Y is bounded by facets
of the barriers and by construction lines rooted at extreme points of the
barriers. Thus the result follows directly from the construction of the grid G.

2
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Lemma 7 Let Exm 2 Ex be an existing facility and let C be a cell in C(G)
with X 2 int(C). Then there exists an l1-shortest permitted path connecting
Exm and X that passes through a corner point of C.

Proof: Let Exm 2 Ex and let X = (a; b)T 2 int(C). Furthermore let
P (X;Exm) be an l1-shortest permitted path connecting Exm and X and
satisfying the barrier touching property of Lemma 4. Then there exists an
intermediate point Im 2 (Ex [ P(B)) on P (Exm; X) that is l1-visible from
X. From Lemma 6 it follows that Im is l1-visible from all points in C.

Let x1 := minfx : (x; y)T 2 Cg, x2 := maxfx : (x; y)T 2 Cg, y1 :=
minfy : (x; y)T 2 Cg, and y2 := maxfy : (x; y)T 2 Cg and let Im =
(am; bm)

T . Then am can not be contained in the open interval ]x1; x2[ and bm
can not be contained in the open interval ]y1; y2[ since otherwise there would
exist a construction line intersecting int(C).

Since C is a convex polyhedron the boundary of which consists of vertical
and horizontal line-segments and of boundary segments of barriers, there
exists a corner point Cm = (c1; c2)

T of C such that c1 2 [am; a] and c2 2
[bm; b]. Using additionally the fact that Im is l1-visible from every corner
point of C and that the corner points of C are l1-visible from every point in C,
we can conclude that there exists a permittedX-Cm-path of length l1(X;Cm)
and a permitted Cm-Im-path of length l1(Cm; Im), the combination of which is
an l1-shortest permitted path connecting X and Im with the desired property
(see Figure 7 for an example).

2

Lemma 7 implies that we can always �nd l1-shortest permitted paths to
the existing facilities with the following property: Whenever the path enters
the interior of a cell, it leaves the cell through a corner point.

However, there might exist cells C � (F \ R) having two corner points
C1 and C2 that are not connected by a network path of length l1(C1; C2)
in N 0 even though they satisfy l1;B(C1; C2) = l1(C1; C2); see Figure 8 for an
example.

Extending N 0 by edges of length l1(C1; C2) that connect two corner points
C1 and C2 of the same cell C that are not yet connected by a network path
of length l1(C1; C2) leads to a network N 00 with the following property:

Corollary 2 The length of an l1-shortest permitted path between a corner
point of a cell and an existing facility in Ex is equal to the length of a shortest
network path connecting the corresponding vertices in N 00.
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B
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p2

p3

I =p1 1

Ex 1

Ex 3

cell C

X

Figure 7: An example of an l1-shortest permitted path connecting Ex1 and X that

passes through a corner point of the cell C.

Moreover, the length of an l1-shortest permitted path between two existing
facilities in Ex is equal to the length of a shortest network path connecting
the corresponding vertices in N 00.

Observe that Corollary 2 can in general not be extended to points on
lines or line-segments of the grid G corresponding to points on edges of N 00.
This can be seen for example in Figure 8 where an l1-shortest permitted path
from points on the facet of B2 bounding the cell C to the corner point C2

is not represented in the corresponding network N 00. However, the network
N 00 can be used similar to the visibility graph (cf. Lemma 2) to derive an
improved upper bound for the optimal objective value of 1=P=B=l1;B=max:

Corollary 3 Let N 00 be the extension of N 0 as de�ned above. If X�
N 00 is an

optimal solution of the network location problem 1=N 00= � =dN 00=max on N 00,
then the point in the plane corresponding to the point X�

N 00 in the embedding
of N 00 is feasible for 1=P=B=l1;B=max and

fB(X
�
B) � fB(X

�
N 00) � fN 00(X�

N 00):

In general, contrary to the median case (see [16]), this bound is not sharp
(see Figure 5). Therefore additional arguments are needed in order to eÆ-
ciently �nd an optimal solution to problems of type 1=P=B=l1;B=max.
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1

2

1

Figure 8: The two corner points C1 and C2 are not connected by a network path

of length l1(C1; C2) in N
0.

3.4 A dominating set for an optimal solution

Corollary 2 enables us to calculate barrier distances between corner points of
G and existing facilities in an eÆcient way by evaluating network distances in
N 00. We can now draw our attention to the properties of an optimal solution
of 1=P=B=l1;B=max.

In the following we will use an extension of the concept of weighted bisec-
tors (see, for example, [19] or [22]) to problems involving barriers. For two
points Y1; Y2 2 F with positive weights w1; w2 2 IR+ let the weighted bisector
of Y1 and Y2 be de�ned as

b(w1Y1; w2Y2) := fX 2 F : w1l1;B(X; Y1) = w2l1;B(X; Y2)g:

To simplify a further discussion of intermediate points on l1-shortest permit-
ted paths we additionally de�ne for the constants d1 and d2 the weighted
bisector of Y1; d1 and Y2; d2 as

b(w1(Y1; d1); w2(Y2; d2)) :=

fX 2 F : w1(l1;B(X; Y1) + d1) = w2(l1;B(X; Y2) + d2)g:

A well known result for center problems, that also applies to center prob-
lems with barriers, is that every optimal solution has to be located on the
weighted bisector of two existing facilities. Otherwise the objective value
could be improved by moving the new location towards the existing facil-
ity at maximum weighted distance. Note that therefore an optimal solution
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can always be found as a point on the farthest-point Voronoi diagram (see
e.g. [21]) with respect to the existing facilities taking into account the barrier
regions (see e.g. [24] for the unconstrained case).

Since the construction of the farthest-point Voronoi diagram is diÆcult
in the presence of barriers, this result is strengthened in the following the-
orem yielding a solution strategy to solve 1=P=B=l1;B=max that avoids the
construction of the weighted bisectors of all pairs of existing facilities or the
corresponding Voronoi diagram.

In the following we distinguish two di�erent scenarios:

Scenario 1: There exists an optimal solution X�
B 2 X

�
B of 1=P=B=l1;B=max

with objective value z�B so that X�
B 2 N

00 and

wpl1;B(X
�
B; Exp) = z�B = wql1;B(X

�
B; Exq)

is satis�ed for exactly two di�erent existing facilitiesExp; Exq 2
Ex.

In this case X�
B must lie on the intersection of the weighted

bisector b(wpExp; wqExq) of Exp and Exq with the network
N 00.

Scenario 2: Otherwise, there does not exist an optimal solution X�
B of

1=P=B=l1;B=max with optimal objective value z�B on N 00 that
is of maximal weighted distance z�B from only two existing
facilities in Ex. Then an optimal solution X�

B may exist in
the interior of a cell C � (F \ R) that lies on only one
weighted bisector b(wiExi; wjExj) of two di�erent existing fa-
cilities Exi; Exj 2 Ex. An example for this situation is given
in Figure 9.

However, the following theorem proves that in this case an op-
timal solution of 1=P=B=l1;B=max can also be found in the
intersection of two weighted bisectors b(wiExi; wjExj) and
b(wjExj; wkExk), determined by three pairwise di�erent ex-
isting facilities Exi; Exj; Exk 2 Ex.

Theorem 2 Let X �
B be the set of optimal solutions of 1=P=B=l1;B=max ac-

cording to Scenario 2, i.e. there does not exist X�
B 2 X �

B with X�
B 2 N 00
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*X

Ex 4

Ex 1

Ex 3

Ex 2

Figure 9: An example problem with four existing facilities having equal weights

wm = 1, m = 1; : : : ; 4. The weighted bisectors of all pairs of existing facilities are

represented by dashed lines.

such that X�
B is at maximum weighted distance from only two of the existing

facilities in Ex. Let z�B be the optimal objective value of the problem.
Then there exists at least one optimal solution X�

B 2 X �
B that has the

weighted distance z�B from at least three di�erent existing facilities in Ex.

Proof: First suppose that there exists X�
B 2 X

�
B with X�

B 2 N
00. Then the

fact that every optimal solution of 1=P=B=l1;B=max has to lie on at least
one weighted bisector of two existing facilities and the assumption that there
exists no optimal solution on N 00 being at maximum weighted distance from
exactly two existing facilities implies the result.

Now suppose that X�
B is an optimal solution of 1=P=B=l1;B=max and

that C is a cell such that X�
B 2 int(C). Then Theorem 1 implies that

C � R\F . Obviously there exist at least two existing facilities Exi and Exj
in Ex with z�B = wil1;B(X

�
B; Exi) = wjl1;B(X

�
B; Exj). Furthermore, let Ci (and

Cj, respectively) be a corner point of C such that there exists an l1-shortest
permitted path connecting Exi and X�

B (Exj and X�
B, respectively) passing

through Ci (Cj, respectively), see Lemma 7.
Now assume that there is no existing facility Exm 2 Ex other than Exi

and Exj such that wml1;B(X
�
B; Exm) = z�B. Then Ci 6= Cj since otherwise the

objective value z�B could be improved by moving X� towards Ci in C.
De�ning di := l1;B(Ci; Exi) and dj := l1;B(Cj; Exj) we get that

wi(l1(X
�
B; Ci) + di) = wj(l1(X

�
B; Cj) + dj) = z�B

18



and thus X�
B 2 b(wi(Ci; di); wj(Cj; dj)) \ C.

Due to the optimality of X�
B and to the fact that the weighted distance

from X�
B to all other existing facilities is strictly less than z�B, X

�
B has to

be located on an l1-shortest permitted path connecting Ci and Cj in C.
Otherwise we could move X�

B towards a path with this property, decreasing
both the distance to Ci and to Cj and thus also to Exi and Exj, contradicting
the optimality of X�

B. Since there also exists an l1-shortest permitted path
connecting Ci and Cj on the network N 00, there exists a point XN 00 2 N 00

(not necessarily a node, i.e. XN 00 may lie on an edge) di�erent from X�
B on

this path (and in the cell C) such that

wi(l1(XN 00; Ci) + di) = wj(l1(XN 00; Cj) + dj) = z�B:

Thus XN 00 6= X�
B is also a point on the weighted bisector of Ci; di and Cj; dj,

i.e. XN 00 2 b(wi(Ci; di); wj(Cj; dj)) \ C. Since C is convex, all points on the
line-segment

X�
BXN 00 := fX : X = �X�

B + (1� �)XN 00; � 2 [0; 1]g

connecting X�
B and XN 00 lie in C. Furthermore for m 2 fi; jg all points

X 2 X�
BXN 00 satisfy wml1;B(X;Cm) = wml1(X;Cm) and, due to the linearity

of l1 on C, we obtain wm(l1(X;Cm) + dm) = z�B.
Thus X�

B 2 X�
BXN 00 can be moved along the line-segment X�

BXN 00 (which
is part of the weighted bisector b(wi(Ci; di); wj(Cj; dj)) \ C) in the cell C
without increasing the weighted distance to Exi and Exj until the weighted
distance to some other existing facility Exm 2 Ex equals z�B, m 62 fi; jg or
until it reaches the boundary of C. In the latter case, the point XN 00 is
an optimal solution according to Scenario 1, a case that is excluded by the
assumption.

2

Let DS(N 00) denote the set of those points in N 00 that are located on the
intersection of a weighted bisector b(wpExp; wqExq) of two existing facilities
with the network N 00. Obviously, DS(N 00) contains an optimal solution of
1=P=B=l1;B=max in case of Scenario 1.

Similarly, letDS(C(G)) denote the set of points in cells C 2 C(G) that are
located on the intersection of at least two weighted bisectors b(wiExi; wjExj)
and b(wjExj; wkExk) determined by three pairwise di�erent existing facilities
Exi; Exj; Exk 2 Ex.
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Figure 10: The dashed lines represent the bisectors b(Exi; Exj) for the example

problem introduced in Figure 4. Note that there exist optimal solutions on N 00,

but not in an intersection of bisectors.

Consequently, Theorem 2 enables us to construct a dominating set DS �
F , containing at least one optimal solution of 1=P=B=l1;B=max. This domi-
nating set can be de�ned as the union of the two sets DS(N 00) and DS(C(G)),
i.e.

DS := DS(N 00) [DS(C(G)):

Before we develop an algorithm to solve 1=P=B=l1;B=max based on the dom-
inating set DS, we will �rst reduce the set DS by further exploiting the
particular structure of the problem.

Consider an arbitrary cell C 2 C(G) and let the corner distance between
a point X 2 F n C and the cell C be de�ned as

l1;corn(X;C) := minfl1;B(X;Ci) : Ci is a corner point of Cg:

Observe that the corner distance between an existing facility Exm 2 Ex and
a cell C � (F \ R) can be found as

l1;corn(Exm; C) = minfdN 00(Exm; Ci) : Ci is a corner point of Cg;

using the network N 00. Now we can identify an existing facility ExCmax 2 Ex
with weight wC

max which maximizes the weighted distance to C, i.e.

wC
max l1;corn(Ex

C
max; C) = maxfwm l1;corn(Exm; C) : Exm 2 Exg:
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Furthermore let

jCj := maxfl1(Ci; Cj) : Ci and Cj are corner points of Cg

denote the maximal distance between two corner points of a cell C 2 C(G).

Lemma 8 Let X �
B be the set of optimal solutions of 1=P=B=l1;B=max and let

z�B be the optimal objective value of the problem. Then every optimal solution
X�
B 2 X �

B in a cell C 2 C(G) lies on the weighted bisector of two di�erent
existing facilities Exi; Exj 2 Ex satisfying

wp l1;corn(Exp; C) + wp jCj � wC
max l1;corn(Ex

C
max; C); p = i; j:

Proof: Recall that every optimal solution X�
B 2 X �

B of 1=P=B=l1;B=max
lies on the weighted bisector of two existing facilities Exi; Exj 2 Ex with
z�B = wpl1;B(X

�
B; Exp) for p = i; j. Let C 2 C(G) be a cell with X�

B 2 C.
Then

z�B � wC
max l1;corn(Ex

C
max; C):

On the other hand,

z�B = wp l1;B(X
�
B; Exp) � wp l1;corn(Exp; C) + wp jCj; p = i; j;

which implies the result.

2

Thus with respect to each cell it is suÆcient to consider only those existing
facilities that satisfy the distance requirement given in Lemma 8. Especially
in applications with a large number of uniformly distributed existing facilities,
this result leads to a signi�cant reduction of intersection points of weighted
bisectors that have to be considered.

Summarizing the results above, we get the following dominating set for
an optimal solution of 1=P=B=l1;B=max:

Theorem 3 Let DS be a set of points in F consisting, in all cells C � R\F ,
of

(i) the intersection points of the network N 00 with the weighted bisector
determined by two di�erent existing facilities Exi; Exj 2 Ex, and

21



(ii) the intersection points of at least two weighted bisectors determined by
three pairwise di�erent existing facilities Exi; Exj; Exk,

where only those existing facilities Exp 2 Ex are considered in (i) and (ii)
that satisfy

wp l1;corn(Exp; C) + wp jCj � wC
max l1;corn(Ex

C
max; C):

Then DS contains at least one optimal solution of 1=P=B=l1;B=max.

Note that the dominating set DS of Theorem 3 is in general not �nite
since the set of intersection points of two weighted bisectors with respect to
rectilinear distance is not necessarily a �nite set.

4 Algorithmic Consequences

As was shown in the previous sections, in case of the center objective function
it is not suÆcient to consider intersection points of the grid G as it was the
case for the median objective function. Moreover, the problem is not equiv-
alent to a network location problem on N 00 even though this was proven for
the corresponding median problem [16]. Therefore it is necessary to consider
additional points in the intersections of speci�c weighted bisectors between
existing facilities in order to �nd an optimal solution of the center problem
with barriers. An example problem where the unique optimal solution lies
in the intersection of weighted bisectors and not on the grid N 00 is given
in Figure 11. Observe also that for example the bisector b(Ex1; Ex3) has a
breakpoint in the interior of a cell in this example.

The following outline of an algorithm for the solution of center prob-
lems with barriers and rectilinear distances is based on the construction of
intersections of weighted bisectors between pairs of existing facilities, yield-
ing a dominating set DS for an optimal solution of 1=P=B=l1;B=max as dis-
cussed above. Observe that the determination of the individual candidate
sets DS(N 00) and DS(C(G)) can be combined since both candidate sets use
the same weighted bisectors between pairs of existing facilities.

Algorithm 1 (Bisector Algorithm for 1=P=B=l1;B=max)

Input: Location problem 1=P=B=l1;B=max.
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Step 1: Construct G, R and N 00.

Step 2: Find a dominating set DS by determining the weighted bisec-
tors b(wiExi; wjExj)\R between all pairs of existing facilities,
and the intersection of

(a) all pairs of weighted bisectors, determined by three ex-
isting facilities at a time

(b) and of weighted bisectors with the network N 00.

Step 3: From the candidate solutions determined in Steps 2(a) and
(b), �nd z�B := minffB(X) : X 2 DSg and
XB := argminffB(X) : X 2 DSg.

Output: A subset XB of the set of optimal solutions X
�
B of 1=P=B=l1;B=max

and the optimal objective value z�B.

Ex 1

Ex 2

Ex 4

Ex 3

X *
B

B

B

1

2

Figure 11: An example problem with four existing facilities having equal weights

wm = 1, m = 1; : : : ; 4. The weighted bisectors of all pairs of existing facilities are

represented by dashed lines.

In Step 1 of Algorithm 1 the fundamental data structures are imple-
mented, and a network N 00 of the same asymptotic size as the network used
in [16] for the corresponding median problem is constructed. In particular,
the number of vertices, edges and cells of the original network N can be
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bounded by O((jExj + jP(B)j)2) using simple planarity arguments. Since
N 0 � N and since the number of edges added in the transition from N 0 to
N 00 can be bounded by a constant within each cell, the same bounds also
hold for the extended network N 00.

Di�erent from the case of the median objective function, the additional
determination of weighted bisectors is needed in the case of the center ob-
jective function in Step 2 of the algorithm. These bisectors can be found
adapting an algorithm of Mitchell [19] which is based on the determination
of l1-shortest permitted paths in the presence of polyhedral barriers. The
presented algorithm extends a \continuous Dijkstra" technique of propagat-
ing a \wavefront" from a given source node s towards a termination node t.
The propagation is implemented based on \dragged segments", that is, line
segments that make up portions of the wavefront and that are dragged in
south-east, north-east, north-west and south-west direction, respectively, ac-
cording to the unit ball of the Manhattan metric. Mitchell [19] showed that
this approach can also be used for the determination of bisectors between
pairs of points. In particular, the bisector b(Exi; Exj) between two existing
facilities can be constructed in time O(jP(B)j � log jP(B)j) by initiating one
wavefront at each of the two facilities. If the weight of the respective facility
is associated with its wavefront (and with each of the corresponding dragged
segments whose data structure includes the information about the segments
distance from its source node), this algorithm can be easily adapted to handle
the more general case of a weighted bisector b(wiExi; wjExj) with positive
weights wi; wj.

The number of intersections of weighted bisectors determined by three
existing facilities at a time is bounded by O(jExj3), where each intersection
may consist of a set of points, and the number of intersections of weighted
bisectors between two existing facilities and the network N 00 is bounded by
O(jExj2). Observe that all weighted bisectors are piecewise linear, and that
in the case that an intersection consists of a set of points, a \best candidate"
solution within this set can be determined by minimizing the weighted dis-
tance to only one of the facilities de�ning the set. Restricting this search to
cells and using the piecewise linearity of l1;B as well as its description based
on cell corners, this remains a simple task that can be solved as part of Step
3 of the algorithm.

We can conclude that the overall complexity of Algorithm 1 remains poly-
nomial even if all of the O(jExj3) intersection sets are examined. Note that
the reductions of the dominating set due to Theorem 1 and Lemma 8 are not
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yet reected in this discussion.

5 Conclusions

In this paper a dominating set result is developed for center location problems
with Manhattan distances where polyhedral barriers restrict traveling in the
plane. A polynomial time algorithm to solve this non-convex optimization
problem is suggested which is based on this dominating set result.

All results can be extended to barrier center problems with respect to
arbitrary block norms having four fundamental vectors using an appropriate
linear transformation of the coordinate system.

This paper can be seen as a continuation of earlier work on the discretiza-
tion of planar location problems which has proven to be a powerful method
in location theory. Future research includes the analysis of level curves for
barrier problems which will be helpful, for instance, in dealing with multi-
criteria location problems with barriers.

It is an interesting open question whether the wave-front approach used
in [19] could be further combined with the ideas discussed in the previous
sections. A �rst promising result in this direction was obtained in the two
recent masters projects [7] and [25]. In these projects, prototype algorithms
were implemented that allow the solution of example problems with the Man-
hattan metric and with the Euclidean metric. This interesting approach will
be further developed in future research.
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