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Abstract

The Weber problem for a given �nite set of existing facilities in the plane is to

�nd the location of a new facility such that the weighted sum of distances to the

existing facilities is minimized.

A variation of this problem is obtained if the existing facilities are situated on two

sides of a linear barrier. Such barriers like rivers, highways, borders or mountain

ranges are frequently encountered in practice.

Structural results as well as algorithms for this non-convex optimization problem

depending on the distance function and on the number and location of passages

through the barrier are presented.

1 Introduction

Modern life encounters an ever growing concentration in many respects. Growing popula-
tion, higher integration of electronic circuits or the economical need to choose an optimized
site for new facilities have led to planar location problems with an ever growing number of
obstacles (see e.g. [14]).

The classical Weber problem (median problem, minisum problem) which is the basis
for many developments is stated as follows: Let Ex = fEx1; Ex2; : : : ; ExMg be a �nite set
of existing facilities represented by points in IR2. A positive weight wm = w(Exm) is asso-
ciated with each existing facility Exm (m 2 M := f1; : : : ;Mg) which can be interpreted
as the demand of facility Exm. The objective is to �nd a new facility X� 2 IR2 such that
the weighted sum of distances between X� and the existing facilities

f(X) =
MX
m=1

wm d(X;Exm)

is minimized for some distance function d. With X � we denote the set of optimal solutions
of the Weber problem.

This problem, which has the classi�cation 1=P=�=d=
P

with respect to the classi�cation
scheme for location problems proposed in [6, 9] has already been thoroughly treated by
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many authors. For an overview see e.g. [5, 6, 13, 16]. In practice the modeling of the
investigated region as the complete IR2 is not realistic. There may be for example areas
where the positioning of a new facility is not allowed (see e.g. [4, 7, 8]) and of course
there may be regions where trespassing is prohibited. Such barriers may be for example
buildings, lakes or mountain ranges. The idealized case that the barriers are linear and have
only a �nite set of passages is a special case which is frequently encountered in practice.
Line barriers with passages may be used to model rivers, border lines, highways, mountain
ranges or, on a smaller scale, conveyer belts in an industrial plant. Here trespassing is only
allowed through a �nite set of passages. Disregarding these types of barriers may lead to
bad locational decisions since especially long and almost linear barriers have a big impact
on travel distances and travel times.

The introduction of barriers signi�cantly entails di�erent treatment because the objec-
tive function is not convex as in the classical Weber problem. Literature has so far only
treated some particular types of metrics and barrier shapes, like one circle as a barrier and
the Euclidean distance [11] or closed polyhedra as barriers and the lp-metric [1, 3]. Espe-
cially line barriers with passages have so far only been treated in the case of the Manhattan
metric l1 [12, 2] for which arbitrarily shaped barriers can be handled.

In this paper, general results as well as algorithms for Weber problems with line barriers,
i.e. for problems of the type 1=P=BL=dBL=

P
, and for a large class of metrics including the

class of lp metrics are presented.

2 General Results

The Weber problem with line barriers 1=P=BL=dBL=
P

can be modeled as follows: Let
L := f(x; y) 2 IR2 j y = ax + bg be a line and let fPn 2 L j n 2 N := f1; : : : ; Ngg be a
set of points on L. Then BL := L n fP1; : : : ; PNg is called a line barrier with passages
or shortly line barrier. The case that the barrier is a vertical line which is not included in
this description can easily be transformed to this de�nition.

The feasible region F for new locations is de�ned as the union of the two closed half-
planes F 1 and F 2 on both sides of BL. Here F 1[F 2 = IR2 since the line y = ax+b belongs
to both half-planes F 1 and F 2. As all results can easily be transferred to the case that the
line barrier has a �nite width, for simpli�cation this model will be used in the following
although a new location placed directly on the barrier is not allowed in reality.

Furthermore a �nite number of existing facilities Exim 2 F i, m 2 Mi := f1; : : : ;M ig
is given in each half-plane F i, i = 1; 2, represented by points in IR2. A positive weight
wi
m := w(Exim) 2 IR+ is associated with each existing facilityExim representing the demand

of Exim.
The major di�erence between this model and planar location problems without bar-

riers is the modi�ed distance function. If a distance function d, derived from a norm, is
given for the unconstrained problem, the distance function dBL for a problem of the type
1=P=BL=dBL=

P
is de�ned as the length of a shortest path (wrt. d) that does not cross the

barrier. Therefore, dBL is given by
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Figure 1: An example problem modeling a river with two bridges.

dBL(X; Y ) =

(
d(X; Y )
d(X;PnX;Y ) + d(PnX;Y ; Y ) for some nX;Y 2 N

if
X; Y 2 F i

X2F i; Y 2F j;
(1)

where PnX;Y is a passage point located on a shortest path connecting two points X and Y
in opposite half-planes. Note that for dBL the triangle inequality is still satis�ed but that
dBL is not positively homogeneous in general. As a consequence the objective function of
location problems with barriers is usually non-convex.

The general idea for solving problem 1=P=BL=dBL=
P

can be summarized as follows:
Assume that an optimal solution of the problem is located in half-plane F 1. Then the
passages channel the 
ow from the existing facilities in F 2 to the new location. Interpreting
these passages as arti�cial facilities carrying the weights of the assigned existing facilities in
F 2, the new location can be retrieved as the solution of an unconstrained Weber problem
in half-plane F 1. Finding the relevant subset of passage points and their respective weights
is a combinatorial problem which will be discussed in Section 3. In the following we will
derive the theoretical basis for this approach for a large class of Weber problems with
distance functions including the class of all lp metrics, p 2 [1;1].

We can use (1) to rewrite the objective function for a point X 2 F i. A similar formu-
lation was given in [3], where the corner points of a set of polyhedral obstacles are used
instead of the passage points.

Lemma 1 Let d be a metric derived from a norm, X 2 F i and i; j 2 f1; 2g, i 6= j. Then
there exist passages Pn1; : : : ; PnMj

such that

f(X) = f iX(X) + gjX ; (2)

where

f iX(Y ) =
M iX
m=1

wi
md(Y;Ex

i
m) +

MjX
m=1

wj
md(Y; Pnm); Y 2 F i;

gjX =
MjX
m=1

wj
md(Ex

j
m; Pnm):
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Note that f iX(Y ) is the objective function of the corresponding unconstrained Weber
problem in the half-plane F i with existing facilities Exi1; : : : ; Ex

i
M i ; P1; : : : ; PN . Observe

also that the right hand side of (2) takes on di�erent values depending on what passage
points have been used to evaluate the distance from a point X to the existing facilities
located in the opposite half-plane while passing through those passage points. Due to the
de�nition of Pnm, we have that

f(Y ) = f iY (Y ) + gjY � f iX(Y ) + gjX 8X; Y 2 F i: (3)

Lemma 1 implies the following result specifying the possible locations of optimal solutions
of problem 1=P=BL=dBL=

P
.

Lemma 2 Consider a problem of type 1=P=BL=dBL=
P

and let d be a metric derived from
a norm such that

(a) X � � convfExm j m 2 Mg holds for 1=P= � =d=
P
. Then

X �
B � convfEx1m; Pn j m 2 M1; n 2 Ng [ convfEx2m; Pn j m 2 M2; n 2 Ng;

(b) X � \ convfExm j m 2 Mg 6= ; holds for 1=P= � =d=
P
. Then

X �
B \

�
convfEx1m; Pn j m 2 M1; n 2 Ng [ convfEx2m; Pn j m 2 M2; n 2 Ng

�
6= ;:

The assumptions of Lemma 2 are satis�ed for a large class of distance functions, in-
cluding the class of lp-metrics, p 2 [1;1] (see [10, 15]).

Unfortunately it is not possible to restrict X �
B for example to that half-plane with the

higher total weight as one may conjecture intuitively. This can be easily seen since, starting
from an appropriate unconstrained Weber problem, a line barrier can be added so that the
optimal solution of the unconstrained problem does not lie on the side with the higher
total weight. If we now place passage points on the line so that the shortest paths from
the existing facilities to the former optimum remain feasible, we obtain the same solution
also for the problem including the barrier.

In the following we will restrict our discussion to such metrics d derived from a norm
(and location problems 1=P= � =d=

P
) for which conditions (a) or (b) of Lemma 2 are

satis�ed. In the �rst case, the complete set of optimal locations X �
B of 1=P=BL=dBL=

P
can

be determined by solving a �nite series of subproblems in each half-plane, whereas in the
latter case at least one optimal solution X�

B 2 X
�
B is found. Note that Lemma 2 is crucial

for the relaxation of the restriction to the respective half-planes in the subproblems.

Theorem 1 Under the assumptions of Lemma 2 (a), every optimal solution X�
B 2 X �

B

of 1=P=BL=dBL=
P

is also an optimal solution of the corresponding unconstrained Weber
problem 1=P= � =d=

P
with existing facilities Exi1; : : : ; Ex

i
M i; P1; : : : ; PN (i 2 f1; 2g) and

objective function f iX�

B

.
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Proof: LetX�
B 2 F i be an optimal solution of 1=P=BL=dBL=

P
. From Lemma 1 we have

that f(X�
B) = f iX�

B

(X�
B)+gjX�

B

. Here gjX�

B

is constant and f iX�

B

(Y ) is the objective function of

an unconstrained Weber problem. Assume that 9Y 2 F i with f iX�

B

(Y ) < f iX�

B

(X�
B). Then

f(Y ) � f iX�

B

(Y ) + gjX�

B

< f iX�

B

(X�
B) + gjX�

B

= f(X�
B), contradicting the optimality of X�

B.
2

Theorem 1 can be easily transformed to the case that only the weaker condition (b) of
Lemma 2 is true for the unconstrained Weber problem 1=P= � =d=

P
:

Corollary 1 Under the assumptions of Lemma 2 (b), there exists at least one optimal
solution X�

B 2 X
�
B of 1=P=BL=dBL=

P
which is also an optimal solution of the corresponding

unconstrained Weber problem 1=P= � =d=
P

with existing facilities Exi1; : : : ; Ex
i
M i; P1; : : : ;

PN (i 2 f1; 2g) and objective function f iX�

B

.

3 Algorithms for Weber problems with line barriers

Theorem 1 implies a straight-forward solution approach for Weber problems with line
barriers. The basic idea is to check for all existing facilities in one half-plane F i all possible
passages to the other half-plane F j and to determine the sets of optimal solutions of the
corresponding unconstrained location problems in F j. This procedure must be carried out
for each half-plane, yielding a total number of O(N2M) subproblems (where M =M1+M2

denotes the overall number of existing facilities and N denotes the number of passage
points). In the following we will develop a polynomial time algorithm that disregards
irrelevant subproblems from further investigation. Since the case that only 1 passage
allows trespassing through BL is trivial, we will concentrate on line barriers with 2 or more
passages.

3.1 Line barriers with two passages

For both half-planes F i, i = 1; 2 de�ne the di�erence of distances Di(m) between an
existing facility Exim 2 F i and the two passages P1 and P2 as

Di(m) := d(Exim; P1)� d(Exim; P2); m 2 Mi:

Wlog assume that the existing facilities are ordered such that Di(1) � � � � � Di(M i).
Furthermore let j 2 f1; 2g with j 6= i be the index of the opposite half-plane F j. A
shortest path SP from an existing facility Exjm 2 F j to a point X 2 F i passes through
one of the passages P1 and P2 depending on the following condition:

P1 2 SP , Dj(m) < d(P2; X)� d(P1; X)

P2 2 SP , Dj(m) > d(P2; X)� d(P1; X):
(4)

In the case that Dj(m) = d(P2; X)� d(P1; X) a shortest path may pass through either
passage P1 or P2. Note that the set of points for which both passages are equally good
is in general not linear but may de�ne an only implicitly available curve, depending on
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the distance function d. However, the computation of those subsets of F i where the
same passage points are used from an existing facility can be avoided by de�ning k :=
max fm 2 f0; : : : ;M jg j Dj(m) < d(P2; X)� d(P1; X)g. Then, similar to (2), the value of
the objective function f(X) for the point X 2 F i can be evaluated as

f(X) = f ik(X) + gjk; (5)

where

f ik(X) =
M iX
m=1

wi
md(X;Ex

i
m) +

 
kX

m=1

wj
m

!
d(X;P1) +

0
@ MjX
m=k+1

wj
m

1
A d(X;P2)

gjk =
kX

m=1

wj
md(P1; Ex

j
m) +

MjX
m=k+1

wj
md(P2; Ex

j
m):

The only unknown parameters in (5) are the values of i and k. Therefore all possible values
i = 1; 2 and k = 0; : : : ;M j are tested in the following algorithm to obtain a candidate set
for the set of globally optimal solutions.

Algorithm for solving 1=P=BL; 2 passages=dBL=
P
:

For i = 1; 2 do

1. Let j 2 f1; 2g with j 6= i, determine Dj(m) := d(Exjm; P1) � d(Exjm; P2); m 2 Mj,
and sort the existing facilities in F j such that Dj(1) � � � � � Dj(M j).

2. For k = 0 to M j do

Let w(P1) :=
Pk

m=1w(Ex
j
m), w(P2) :=

PMj

m=k+1 w(Ex
j
m), and determine the set

of optimal solutionsX i
k of 1=P=�=d=

P
with existing facilities Ex := fP1; P2; Ex

i
1;

: : : ; ExiM ig and the corresponding objective values f ik(X
i
k) + gjk.

Output: X �
B = argmin

Xi
k
2X i

k
; k2Mi ; i2f1;2g

f ik(X
i
k) + gjk.

The time complexity of this algorithm can be calculated as O(M logM + MT ), where
M = M1 +M2 is the number of existing facilities and O(T ) is the time complexity of the
corresponding unconstrained Weber problems.

Note that a solution X i
k may be found during the algorithm for which the current value

of k and therefore the current assignment of passages is not optimal. Anyhow the optimal
assignment yielding a globally optimal solution X�

B is used sometimes during the solution
process so that equality, i.e. f(X�

B) = f ik(X
�
B) + gjk, holds in this case.

3.2 Line barriers with N passages, N > 2

In the case that more than 2 passages are available, some additional considerations have to
be made. Wlog we assume that the passages are in consecutive order, i.e. there is no other
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passage between Pi and Pi+1 for 1 � i � N �1. Again the di�erences of distances between
the existing facilities and every pair of two adjacent passages Pn and Pn+1 are needed. For
each half-plane F i, i 2 f1; 2g and n = 1; : : : ; N � 1 we de�ne

Di
n(m) := d(Exim; Pn)� d(Exim; Pn+1); m 2 Mi:

For n = 1; : : : ; N � 1 let �jn : M
j !Mj be a permutation of Mj such that Dj

n(�
j
n(1)) �

� � � � Dj
n(�

j
n(M

j)): Unfortunately two permutations �jn and �j~n need not be the same for
n 6= ~n. Nevertheless, a shortest path SP from an existing facility Exjm 2 F j, j 2 f1; 2g,
i 6= j in the opposite half-plane to a point X 2 F i has to pass through one of the passages
P1; : : : ; PN depending on condition (6):

P1 2 SP , Dj
1(m)< d(P2; X)� d(P1; X)

Pn 2 SP , d(Pn; X)� d(Pn�1; X)< Dj
n�1(m) ^ Dj

n(m)< d(Pn+1; X)� d(Pn; X)

PN 2 SP , d(PN ; X)� d(PN�1; X)< Dj
N�1(m):

(6)

To take into account the di�erent orderings �j1; : : : ; �
j
N�1 we de�ne

kn := argmax
m2Mj

n
0; �jn(m) j Dj

n(�
j
n(m)) < d(Pn+1; X)� d(Pn; X)

o
; n = 1; : : : ; N � 1;

and kN := M j. Furthermore, let Mj
1 := Mj and Mj

n := Mj
n�1 n

n
�jn�1(m) j �jn�1(m) �

kn�1g ; n = 2; : : : ; N: Now we can rewrite the objective function similar to (5):

f(X) = f ik1;:::;kN (X) + gjk1;:::;kN ;

where

f ik1;:::;kN (X) =
M iX
m=1

wi
md(X;Ex

i
m) +

NX
n=1

 X
�
j
n(m)2Mj

n

�
j
n(m)�kn

wj

�
j
n(m)

!
d(X;Pn)

gjk1;:::;kN =
NX
n=1

X
�
j
n(m)2Mj

n

�
j
n(m)�kn

wj

�
j
n(m)

d(Pn; Ex
j

�
j
n(m)

):

The unknown parameters in this case are the values of i and of k1; : : : ; kN . Therefore all
possible combinations i = 1; 2 and k1; : : : ; kN 2 f0; : : : ;M jg satisfying k1 + � � � + kN =
M j have to be tested to obtain the globally optimal solution of 1=P=BL=dBL=

P
. As in

the special case of N = 2 this leads to a polynomial time algorithm with a complexity
of O(N(M logM) +

�
M+N�1
N�1

�
T ), where O(NM logM) is the time needed to �nd the

permutations �n, n = 1; : : : ; N � 1 and O(
�
M+N�1
N�1

�
) is an upper bound on the number

of subproblems being solved. Note that with an increasing number of passages N the
time complexity of this algorithm grows exponentially whereas it remains polynomial if
the number of passages is �xed.
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4 Conclusions

The concepts developed in this paper allow the introduction of line barriers with a �nite
number of passages into the theory of planar location problems. For a broad class of
location problems including the Weber problem with the lp-metric, p 2 [1;1], the solution
of the non-convex Weber problem with line barriers can be reduced to the solution of
a polynomial number of unconstrained Weber problems and thus convex optimization
problems.

The simultaneous introduction of forbidden regions as well as the consideration of line
barriers with a �nite positive width are examples of generalizations of the described model
that can be easily incorporated. A generalization to higher dimensional problems seems
to be more of theoretical than of practical interest. Anyhow a generalization to the case
that the barriers are hyper-planes in IRn which allow trespassing only through a �nite set
of points is easily possible.
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