Seminar: Integrationstheorie und ihre Anwendungen in Stochastik und Analysis WS19/20

 

Termine


Freitag, 10:15 -- 11:45, G.15.25, wöchentlich


11.10.2019: Vorbesprechung

 

Vorkenntnisse


Vorlesung Maß und Integrationstheorie

 

Mögliche Themen


Dichte Teilmengen von L^p
Kompakte Teilmengen von L^p und der Satz von Fischer-Riesz
Konvergenzbegriffe und gleichgradige Integrierbarkeit
Rieszscher Darstellungssatz
Fouriertransformation
Disintegration und reguläre bedingte Wahrscheinlichkeiten
Hahn-Jordan Zerlegung
Der Satz von Ionescu-Tulcea
Der Satz von Doeblin
Lebesgue-Stieltjes Integration und Verteilungsfunktionen
Maßtheoretische Konvergenzbegriffe

Themen Übersicht mit Literatur

 

Ausarbeitung


Es soll eine Ausarbeitung des jeweiligen Vortragsthemas angefertigt werden. Diese soll mathematisch richtig und vollständig sein. Insbesondere sollten keine Lücken in den Beweisen vorhanden sein. Die Ausarbeitung kann in gut leserlicher Handschrift angefertigt werden, besser ist es jedoch LaTex zu verwenden.
Der Umfang ist auf ca. 6-12 Seiten je nach Thema, Schriftgrösse und weiteren Faktoren begrenzt. Die Ausarbeitungen sollen spätestens 2 Wochen nach dem letzten Vortrag abgegeben werden. Ein genaues Datum wird zu gegebener Zeit festgelegt werden.

 

Bachelorarbeit


Bei Interesse kann auch im Rahmen dieses Seminares eine Bachelorarbeit geschrieben werden. In diesem Fall wird anstelle der Ausarbeitung später eine Bachelorarbeit abgegeben werden. Weitere Details werden in der Vorbesprechung bekannt gegeben.