Introduction to Optimization - Kathrin Klamroth
Tutorial: Tuesday, 16:15 - 17:45, large auditorium, MI, Bismarckstr. 1 1/2
Start of tutorials: 25.10.2005
Prerequisites: Linear Algebra I and II, Analysis I and II
Contents:
1) Applications and Modelling: Production planning,
Approximation problems, Optimal control
2) Linear Programming:
Optimality and duality, Simplex method, Extensions to quadratic problems,
Outlook
3) Integer Programming:
Interrelation to Linear Programming,
Problem relaxations, cutting plane methods and Branch and Bound,
Dynamic programming, Outlook
4) Convex Optimization:
Convex functions and generalizations, KKT-conditions, Duality,
Descent methods, Outlook
Literature:
R.K. Ahuja, T.L. Magnanti and J.B. Orlin:
"Network Flows: Theory, Algorithms and Applications".
Prentice-Hall, 1993.
M.S. Bazaraa, H.D. Sherali and C.M. Shetty:
"Nonlinear Prorgramming: Theory and Algorithms".
Wiley, 1993.
H.W. Hamacher and K. Klamroth:
"Lineare und Netzwerk-Optimierung / Linear and Network Optimization".
Bilingual textbook, Vieweg, 2000.
J. Jahn:
"Introduction to the Theory of Nonlinear Optimization", 2nd. ed.
Springer, 1996.
G.L. Nemhauser and L.A. Wolsey:
"Integer and Combinatorial Optimization".
Wiley, 1988.
Questions!? Mail to: klamroth@am.uni-erlangen.de
Last Update: October 18, 2005 - Kathrin Klamroth - klamroth@am.uni-erlangen.de