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Abstract

Let p ≥ 5 and let Z(H(1)

Fp
) be the center of the mod p pro-p-Iwahori Hecke algebra of

GL2(Qp). Let ζ be a central character ofGL2(Qp). LetXζ be the projective curve parametriz-
ing 2-dimensional mod p semi-simple representations of the absolute Galois group Gal(Qp/Qp)

with determinant ωζ. We construct a quotient morphism of schemes Lζ : SpecZ(H(1)

Fp
)ζ → Xζ .

We then show that the correspondence between the specialization M(1)

Fp,z
of the spherical H(1)

Fp
-

moduleM(1)

Fp
from [PS] in closed points z ∈ SpecZ(H(1)

Fp
)ζ and the Galois representation ρLζ(z)

is the semi-simple mod p local Langlands correspondence for the group GL2(Qp).
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1 Introduction

Background. The mod p (and the p-adic) Langlands correspondence for GL2(Qp) was conjectured
by Breuil, and has been fully established by Colmez-Dospinescu-Paškūnas [CDP14], building on
work of Breuil, Colmez, Emerton, Kisin, Paškūnas and many others. Its semisimple version was
established by Breuil in [Br03]. It is an explicit map ρ 7→ π(ρ), from the set of semisimple contin-
uous representations of Gal(Qp/Qp) on 2-dimensional Fp-vector spaces, to the set of semisimple

smooth representations of GL2(Qp) on Fp-vector spaces.

Set G := GL2(Qp), let Z(G) = Q×
p be the center of G and ζ : Z(G) → F×

p be a central
character. Assume p ≥ 5. In [DEG22], Dotto-Emerton-Gee introduce a curve Xζ over Fp (denoted
by X in loc.cit.), which is a chain of projective lines with ordinary double points and of length
(p± 1)/2, where the sign is equal to −ζ(−1). The definition of Xζ is motivated by the Galois side
of Breuil’s semisimple correspondence: the closed Fp-points of Xζ parametrize isomorphism classes
of semisimple 2-dimensional continuous representations of Gal(Qp/Qp) over Fp with determinant
ωζ:

Xζ(Fp) ∼=
{
semisimple continuous ρ : Gal(Qp/Qp)→ ĜL2(Fp) with det ρ = ωζ

}
/ ∼ .
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Here ω is the mod p cyclotomic character and ĜL2 is the Langlands dual group of GL2 over Fp.
See [DEG22, 1.4] for further discussion on the curve Xζ . In the the sequel, we let X be the disjoint
union over all Xζ , base changed to Fp.

Let I(1) ⊂ G be the standard pro-p Iwahori subgroup consisting of integral matrices which are

upper unipotent mod p, and let H(1)

Fp
is the pro-p-Iwahori Hecke algebra of G with coefficients in

Fp. By work of Ollivier [O09], the functor of I(1)-invariants π 7→ πI(1)

is an equivalence from the
category of mod p smooth representations of G which are generated by their I(1)-invariants, to

the category of H(1)

Fp
-modules. Thus the composed map ρ 7→ π(ρ)I

(1)

is a correspondence from

the set of semisimple mod p 2-dimensional continuous representations of Gal(Qp/Qp) to the set

of semisimple H(1)

Fp
-modules. We refer to this latter correspondence as the semisimple mod p local

Langlands correspondence for Hecke modules.

Statement of the result. Let Z(H(1)

Fp
) be the center of the algebra H(1)

Fp
. It is fibered over

the central characters ζ of GL2(Qp). In [PS, 7.4.1], we constructed the mod p spherical module

M(1)

Fp
. It is a distinguished H(1)

Fp
-action on a maximal commutative subring of H(1)

Fp
, which is a

mod p analogue (plus extension to the pro-p Iwahori level) of the classical (anti)spherical module
appearing in complex Kazhdan-Lusztig theory [KL87, 3.9]. The quasi-coherent module associated

toM(1)

Fp
on SpecZ(H(1)

Fp
), when specialized at closed points, gives rise to a parametrization of all

irreducible H(1)

Fp
-modules. This is the spherical map from [PS, 7.4.2]. We recall the definition of

M(1)

Fp
and the spherical map in 4.4 below.

Here we prove the following theorem. For a closed point z ∈ SpecZ(H(1)

Fp
), viewed as a character

Z(H(1)

Fp
)→ Fp, we denote byM(1),ss

Fp,z
the semisimplication of the H(1)

Fp
-module

M(1)

Fp,z
:=M(1)

Fp
⊗

Z(H(1)

Fp
),z

Fp.

Theorem (cf. Theorem 4.11). Let G = GL2(Qp) with p ≥ 5. There exists, for any ζ, a
quotient morphism of Fp-schemes

Lζ : SpecZ(H(1)

Fp
)ζ −→ Xζ ,

with the following property: given a closed point z ∈ SpecZ(H(1)

Fp
)ζ , the correspondence

M(1),ss

Fp,z
←→ ρLζ(z)

between the H(1)

Fp
-module M(1),ss

Fp,z
and the Galois representation ρLζ(z) associated to the point

Lζ(z) ∈ X is the semisimple mod p local Langlands correspondence for Hecke modules.

We remark straightaway that the morphism Lζ is first defined set-theoretically on the level of
Fp-points and many of its properties follow already from this definition.

The above result implies an interesting interpolation property (see Cor. 4.15). For simplicity,

we also writeM(1)

Fp
for the quasi-coherent module on the affine variety SpecZ(H(1)

Fp
) associated to

the Z(H(1)

Fp
)-module M(1)

Fp
. Let L be the union over all Lζ . Let L∗M(1)

Fp
be pushforward along

L . On the other hand, we may view the semisimple Langlands correspondence for Hecke modules

as a function x 7→ π(ρx)
I(1)

on the set X(Fp). In this situation, the above theorem implies that

the quasi-coherent OX -module L∗M(1)

Fp
, interpolates the semisimple Langlands correspondence:

for any x ∈ X(Fp), one has an isomorphism of H(1)

Fp
-modules(

L∗M(1)

Fp
⊗OX

k(x)
)ss ∼= π(ρx)

I(1)

.
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As a byproduct of our constructions, we also obtain an interpolation of Paškūnas’ parametriza-
tion of the blocks of the category Modladmζ (Fp[G]) of locally admissible smooth G-representations

over Fp with central character ζ [Pas13]. See 7.3 for the precise statement.

More details on the construction. The construction of the morphism L is a consequence of
our results from [PS] on the geometry of the generic pro-p-Iwahori-Hecke algebra (with coefficients
in the ring Z[q] where q is a formal variable) for GL2(Qp), specialized at q = p = 0 ∈ Fp. To

give more details, let Ĝ be the Langlands dual group of GL2 over Fp, with maximal torus T̂. We

consider the special fibre at q = 0 of the Vinberg fibration VT̂

q→ A1 associated to T̂ ⊂ Ĝ followed

by base change to Fp. This yields the Fp-semigroup scheme

VT̂,0 := SingDiag2×2×Fp
Gm,

where SingDiag2×2 represents the semigroup of singular diagonal 2× 2-matrices over Fp, cf. [PS,
7.1]. Let T∨ be the finite abelian group dual to T = T(Fp), and consider the extended semigroup

V
(1)

T̂,0
:= T∨ × VT̂,0.

It has a natural diagonal W0-action. In [PS, 7.2.1] we established the mod p pro-p-Iwahori Satake
isomorphism

SpecS
(1)

Fp
: V

(1)

T̂,0
/W0

∼ // SpecZ(H(1)

Fp
)

identifying the center Z(H(1)

Fp
) with the ring of regular functions on the quotient V

(1)

T̂,0
/W0. It

encodes the duality between GL2 and the dual group Ĝ. The morphism L is then a composition

of the inverse of SpecS
(1)

Fp
with a certain morphism L (see below) from V

(1)

T̂,0
/W0 to X:

L := L ◦ (SpecS
(1)

Fp
)−1.

The morphism L =
∐

ζ Lζ is fibered over the central characters ζ of GL2(Qp). Each morphism

Lζ : (V
(1)

T̂,0
/W0)ζ → Xζ

is first defined set-theoretically on the level of Fp-points. This uses Paškūnas’ parametrization of the

blocks of the category Modladmζ (Fp[G]) from [Pas13] and is responsible for our restriction to p ≥ 5.
The interpolation property of the map L with respect to the p-adic Langlands correspondence

follows already from this definition. Then one checks on each connected component of (V
(1)

T̂,0
/W0)ζ ,

that Lζ extends to a morphism of varieties. In fact, any fibre (V
(1)

T̂,0
/W0)ζ is a naturally ordered

union of connected components, which generically1 are equal to two affine lines A1∪0A1 intersecting
at the origin. It turns out that Lζ is locally given by the toric construction of the projective line: it
identifies the open subset Gm in the ”first” irreducible component A1 of the connected component
A1 ∪0 A1 with the open subset Gm in ”second” irreducible component A1 of the ”next” connected
component A1 ∪0 A1 via the map z 7→ z−1, thus forming a P1. This produces an irreducible
component of the chain Xζ .

Organization of the article. In section 2 we recall some results from [PS], notably that the

quotient V
(1)

T̂,0
/W0 is naturally fibered over the central characters ζ of GL2(Qp). In section 3 we

recall some properties of Xζ . Whereas in [DEG22] the irreducible components of Xζ are labeled
by certain cuspidal types, we chose a labelling of irreducible components by certain pairs of Serre
weights, which is inspired from [Em19]2 and which is more suitable for our purposes. In section
4 we state the existence and interpolation properties of the morphism Lζ . We define Lζ on the

1There occur also connected components equal to A1 corresponding to non-regular components of SpecZ(H(1)

Fp
).

2The idea of relating the curve X and the spherical module M(1)

Fp
came to the authors when listening to the talk

[Em19], and led to the first preprint [PS2] in 2020. We thank M. Emerton for this enlightening talk. This article is
a revised version of [PS2].
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level of Fp-points and reduce the verification of being a morphism of varieties to two basic cases.
In section 5 resp. 6 we prove all stated properties of Lζ in the two basic even resp. odd cases.
This is the main technical work of the paper. Finally, in section 7 we explain the interpolation of
Paškūnas’ block parametrization.

Notation. We fix an algebraic closure Qp of Qp and let k be its residue field, an algebraic

closure Fp of Fp. We let G = GL2(Qp). We let T denote the diagonal torus in GL2 and W0 its

Weyl group. Let T = T(Fp). If H is a finite group, then H∨ := Hom(H, k×). Finally, Ĝ denotes

the dual group of GL2 over k, with maximal torus T̂.

2 Mod p Satake parameters with fixed central character

We recall some results from [PS, 7.5] in the special case F = Qp.

2.1. Let ω : F×
p → k× be given by the embedding Fp ⊂ k. The group (F×

p )
∨ = ⟨ω⟩ is cyclic of

order p−1. Any element ωr gives rise to a non-regular character of T via ωr(t1, t2) := ωr(t1)ω
r(t2)

for all (t1, t2) ∈ T = F×
p ×F×

p . Composition with multiplication in T∨ produces an action of (F×
p )

∨

on T∨, which factors through the quotient T∨/W0:

T∨/W0 × (F×
q )

∨ −→ T∨/W0, (γ, ω
r) 7→ γωr.

A W0-orbit γ ∈ T∨/W0 is called regular if it consists of two elements. Otherwise, it is called
non-regular. If γ ∈ T∨/W0 is regular (non-regular), then γωr is regular (non-regular).

2.2. We may restrict characters to the subgroup F×
p ≃ {diag(a, a) : a ∈ F×

p } ⊂ T and this gives a
homomorphism T∨ → (F×

p )
∨ which factors into a restriction map

T∨/W0 → (F×
p )

∨, γ 7→ γ|F×
p
.

The relation to the (F×
p )

∨-action on the source T∨/W0 is (γωr)|F×
p
= γ|F×

p
ω2r. We recall the fibers

of the restriction map γ 7→ γ|F×
q
. Let (·)|−1

F×
p
(ω2r) be the fibre at a square element ω2r. The action

of ω−r on T∨/W0 induces a bijection with the fibre (·)|−1

F×
q
(1). The fibre

(·)|−1

F×
q
(1) = {1⊗ 1}

∐
{ω ⊗ ω−1, ω2 ⊗ ω−2, ..., ω

q−3
2 ⊗ ω− q−3

2 }
∐
{ω

q−1
2 ⊗ ω− q−1

2 }

has cardinality p+1
2 and, in the above list, we have chosen a representative in T∨ for each element

in the fibre. The W0-orbits represented by the characters ωr⊗ω−r for r = 1, ..., p−3
2 , are all regular

W0-orbits. The two orbits at the two ends of the list are non-regular orbits. Since the action of
ω−r preserves regular (non-regular) orbits, any fibre at a square element (there are p−1

2 such fibres)

has the same structure. On the other hand, let (·)|−1

F×
p
(ω2r−1) be the fibre at a non-square element

ω2r−1. The action of ω−r induces a bijection with the fibre (·)|−1

F×
p
(ω−1). The fibre

(·)|−1

F×
p
(ω−1) = {1⊗ ω−1, ω ⊗ ω−2, ..., ω

p−1
2 −1 ⊗ ω− p−1

2 }

has cardinality p−1
2 and we have chosen a representative in T∨ for each element in the fibre. All

elements of the fibre are regular W0-orbits. Since the action of ω−r preserves regular (non-regular)
orbits, any fibre at a non-square element (there are p−1

2 such fibres) has the same structure.

2.3. We have the commutative k-semigroup scheme

V
(1)

T̂,0
= T∨ × VT̂,0 = T∨ × SingDiag2×2×Gm.

cf. [PS, 7.5.3]. It has a natural W0-action: the natural action of W0 on the factors T∨ and
SingDiag2×2 and the trivial one on Gm. In addition to this, there is a commuting action of the
k-group scheme

Z∨ := (F×
p )

∨ ×Gm

4



on V
(1)

T̂,0
: the (constant finite diagonalizable) group (F×

p )
∨ acts only on the factor T∨ and in the

way described in 2.1; an element z0 ∈ Gm acts trivially on T∨, by multiplication with the diagonal
matrix diag(z0, z0) on SingDiag2×2 and by multiplication with the square z20 on Gm. Therefore

the quotient V
(1)

T̂,0
/W0 inherits a Z∨-action. We have a decomposition

V
(1)

T̂,0
/W0 =

∐
γ∈(T∨/W0)reg

VT̂,0

∐
γ∈(T∨/W0)non-reg

VT̂,0/W0.

In this optic, the (F×
p )

∨-action is by permutations on the index set T∨/W0. It preserves the

subsets of regular and non-regular components. The Gm-action on V
(1)

T̂,0
/W0 preserves connected

components.

2.4. According to [PS, 7.5.4], we have two projection morphisms

V
(1)

T̂,0
/W0

prT∨/W0

zz

prGm

##

T∨/W0 Gm.

Composing prT∨/W0
with the restriction map (·)|F×

p
: T∨/W0 → (F×

p )
∨, setting

θ :=
(
(·)|F×

p
◦ prT∨/W0

)
× prGm

yields

V
(1)

T̂,0
/W0

θ

��

Z∨.

The relation to the Z∨-action on the source V
(1)

T̂,0
/W0 is given by the formula

θ(x.(ωr, z0)) = θ(x)(ω2r, z20) = θ(x)(ωr, z0)
2

for x ∈ V
(1)

T̂,0
/W0 and (ωr, z0) ∈ Z∨. The following definition is [PS, Def. 7.5.1].

2.5. Definition. Let ζ ∈ Z∨. The space of mod p Satake parameters with central character ζ is
the k-scheme

(V
(1)

T̂,0
/W0)ζ := θ−1(ζ).

2.6. Let ζ = (ζ|F×
p
, z2) ∈ Z∨(k) = (F×

p )
∨ × k×. Denote by (V

(1)

T̂,0
/W0)z2 the fibre of prGm

at

z2 ∈ k×. Recall from [PS, 7.5.5] that

(V
(1)

T̂,0
/W0)ζ =

∐
γ∈(T∨/W0)reg,γ|F×p

=ζ|
F×p

VT̂,0,z2

∐
γ∈(T∨/W0)non-reg,γ|F×p

=ζ|
F×p

VT̂,0,z2
/W0.

There are standard coordinates x, y such that VT̂,0,z2
≃ A1 ∪0 A1, two affine lines crossing at the

origin. There is a Steinberg coordinate z1 such that

VT̂,0,z2
/W0 ≃ A1.

2.7. Lemma. Let ζ, η ∈ Z∨. The action of η on V
(1)

T̂,0
/W0 induces an isomorphism of k-schemes

(V
(1)

T̂,0
/W0)ζ ≃ (V

(1)

T̂,0
/W0)ζη2 .

Proof. This is [PS, Lem. 7.5.2].
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3 Mod p Langlands parameters with fixed determinant

3.1. We normalize local class field theory Q×
p → Gal(Qp/Qp)

ab by sending p to a geometric

Frobenius. In this way, we identify the k-valued smooth characters of Gal(Qp/Qp) and of Q×
p .

Finally, ω : Q×
p → k× denotes the extension of the character ω : F×

p → k× to Q×
p satisfying

ω(p) = 1, and unr(x) : Q×
p → k× denotes the character trivial on F×

p and sending p to x.

3.2. Let ζ : Q×
p → k× be a character. Recall from [DEG22] the projective curve Xζ over

Fp whose Fp-points parametrize (isomorphism classes of) two-dimensional semisimple continuous
Galois representations over k with determinant ωζ:

Xζ(k) ∼=
{
semisimple continuous ρ : Gal(Qp/Qp)→ Ĝ(k) with det ρ = ωζ

}
/ ∼ .

The curve Xζ is a chain of projective lines over k of length p±1
2 , whose irreducible components

intersect at ordinary double points. The sign ±1 is equal to −ζ(−1). We refer to ζ in the case
−ζ(−1) = −1 resp. −ζ(−1) = +1 as an even character resp. odd character. From now on, we let
Xζ denote its base change to k. There is a finite set of closed points X irred

ζ ⊂ Xζ which correspond

to the classes of irreducible representations. Its open complement Xred
ζ = Xζ \X irred

ζ parametrizes

the reducible representations (i.e. direct sums of characters). Let η : Gal(Qp/Qp) → k× be a
character. Since det(ρ⊗ η) = (det ρ)η2, twisting representations with η induces an isomorphism

(·)⊗ η : Xζ
∼−→ Xζη2 .

Hence one is reduced to consider only two ‘basic’ cases: the even case where ζ(p) = 1 and ζ|F×
p
= 1

and the odd case where ζ(p) = 1 and ζ|F×
p

= ω−1. Indeed, if ζ|F×
p

= ωr for some even r, then

choosing η with η(p)2 = ζ(p)−1 and η|F×
p
= ω− r

2 , one finds that (ζη2)(p) = 1 and (ζη2)|F×
p
= 1; if

ζ|F×
p
= ωr for some odd r, then choosing η with η(p)2 = ζ(p)−1 and η|F×

p
= ω− r+1

2 , one finds that

(ζη2)(p) = 1 and (ζη2)|F×
p
= ω−1.

3.3. We make explicit some structure elements of Xζ in the even case ζ(p) = 1 and ζ|F×
p

= 1.

Every irreducible component of Xζ is isomorphic to P1 and there are p−1
2 components. They are

labelled by pairs of Serre weights of the following form:

Sym0 | Symp−3⊗det

Sym2⊗det−1 | Symp−5⊗det2

Sym4⊗det−2 | Symp−7⊗det3

...
...

...

Symp−3⊗det
p+1
2 | Sym0⊗det

p−1
2 .

The component with label ” Sym0 | Symp−3⊗det ” intersects the next component at the point
of X irred

ζ parametrizing the irreducible Galois representation whose associated Serre weights are

{Sym2⊗det−1,Symp−3⊗det}. The component with label ” Sym2⊗det−1 | Symp−5⊗det2 ” in-
tersects the next component at the point of X irred

ζ parametrizing the irreducible Galois represen-

tation whose associated Serre weights are {Sym4⊗det−2,Symp−5⊗ det2}. Continuing in this way,
one finds p−3

2 points of X irred
ζ , which correspond to the p−3

2 double points of the chain Xζ . There

are two more points in X irred
ζ : they are smooth points, each one lies on one of the two ‘exterior’

components and corresponds there to the irreducible Galois representation whose associated Serre

weights are {Sym0,Symp−1} and {Sym0⊗det
p−1
2 ,Symp−1⊗det

p−1
2 } respectively. So X irred

ζ has

cardinality p+1
2 . Suppose we are on one of the two exterior components P1. There is a canonical

affine coordinate z1 on the open complement of the double point, identifying this open complement
with A1. We call the four points where z1 = ±1 the four exceptional points of Xζ .

3.4. We make explicit some structure elements of Xζ in the odd case ζ(p) = 1 and ζ|F×
p
= ω−1.

Every irreducible component of Xζ is isomorphic to P1 and there are p+1
2 components. Except for
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the two outer components, they are labelled by pairs of Serre weights of the following form:

Symp−2 | ” Sym−1 ”

Symp−4⊗det | Sym1⊗det−1

Symp−6⊗ det2 | Sym3⊗det−2

...
...

...

Sym1⊗det
p−3
2 | Symp−4⊗det

p+1
2

” Sym−1⊗ det
p−1
2 ” | Symp−2⊗det

p−1
2 .

The weight Sym−1 does not exist, which is why we put it into quotation marks, so the first and
the last line of the above table consist of only of one weight. On the geometric side, this reflects
the fact that these lines describe the two outer components. Each of them intersects the rest of
the chain in only one point.

The component with label ” Symp−2 | ” Sym−1 ”” intersects the next component at the point
of X irred

ζ parametrizing the irreducible Galois representation whose associated Serre weights are

{Sym1⊗det−1,Symp−2}. The component with label ” Symp−4⊗det | Sym1⊗det−1 ” intersects
the next component at the point of X irred

ζ parametrizing the irreducible Galois representation

whose associated Serre weights are {Sym3⊗det−2,Symp−4⊗det}. Continuing in this way, one
finds p−1

2 points of X irred
ζ , which correspond to the p−1

2 double points of the chain Xζ . There are

no more points in X irred
ζ and X irred

ζ has cardinality p−1
2 . Suppose we are on one of the two exterior

components P1. There is a canonical affine coordinate t on the open complement of the double
point, identifying this open complement with A1. We call the four points where t = ±2 the four
exceptional points of Xζ .

3

4 A morphism from Hecke to Galois

4.1. We let I ⊂ G be the standard Iwahori subgroup of G consisting of integral matrices which
are upper triangular mod p. Let I(1) ⊂ I be its p-Sylow subgroup, i.e. matrices which are upper

unipotent mod p. We identify W0 with the subgroup of G generated by the matrix s =

(
0 1
1 0

)
.

We let W (1) = (T ×X•(T)) ⋊W0 be the extended Iwahori-Weyl group, wheren X•(T) = Z × Z
equals the cocharacter lattice of T. We identify cocharacters with a subgroup of diagonal matrices
in the usual way, i.e. (1, 0) 7→ diag(p−1, 1) and (0, 1) 7→ diag(1, p−1).

We also put

u =

(
0 p−1

1 0

)
, u−1 =

(
0 1
p 0

)
, us =

(
p−1 0
0 1

)
, su =

(
1 0
0 p−1

)
.

Moreover, u2 = diag(p−1, p−1).4 Since(
0 p−1

1 0

)(
a b
c d

)(
0 1
p 0

)
=

(
d p−1c
pb a

)
the element u ∈ G normalizes the group I(1). Note that u = (1, 0)s ∈W (1).

4.2. Let H(1)

Fp
be the pro-p-Iwahori-Hecke algebra of G relativ to I(1) with coefficients in k = Fp, cf.

[V04]. It equals the convolution k-algebra generated by the I(1)-double cosets in G. A system of
representatives for these double cosets is given by W (1) and we denote the Hecke operator attached

to w ∈W (1) by Tw. The Tw form a k-basis of H(1)

Fp
. We write U := Tu.

3The Galois representations living on the two exterior components in the odd case are unramified (up to twist),

i.e. of type ρ =

(
unr(x) 0

0 unr(x−1)

)
⊗ η and t equals the ‘trace of Frobenius’ x + x−1. Hence t = ±2 if and

only if x = ±1.
4Note that our element u equals the element u−1 in [Be11],[Br07] and [V04].
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Recall further that H(1)

Fp
decomposes into a product of algebras Hγ

Fp
indexed by the elements

γ ∈ T∨/W0, cf. [V04, 3.1]. For simplicity, we denote the image of U and Ts in a direct factor
Hγ

Fp
by the same letters. In the case of a regular orbit γ, one chooses an ordering (χ|T, χs|T)

on the set γ. The associated standard coordinates X,Y ∈ Hγ

Fp
compute the center Z(Hγ

Fp
) as

Fp[U
2][]X,Y ]/(XY ), cf. [V04, 2.2]. Vignéras’ standard module M(x, y, z, χ|T) is then the unique

Hγ

Fp
-module, where the central elements X,Y, U2 act as the scalars x, y, z ∈ Fp respectively [V04,

2.3]. In the case of a non-regular orbit γ, the center Z(Hγ

Fp
) is generated by U2 and a certain

second element Z. Vignéras’ standard module M(a, z, χ|T) is then the unique Hγ

Fp
-module, where

the central elements Z,U2 act as the scalars a, z ∈ Fp respectively [V04, 1.4].

We denote by Modsm(k[G]) the category of smooth G-representations over k. We have the

functor of I(1)-invariants π 7→ πI(1)

from Modsm(k[G]) to the category Mod(H(1)

Fp
). It gives a

bijection between the irreducible G-representations and the irreducible H(1)

Fp
-modules. Thereby,

supersingular representations correspond to supersingular Hecke modules [V04].

We recall the I(1)-invariants for some classes of representations. If π = IndGB(χ) is a principal

series representation with χ = χ1 ⊗ χ2, then πI(1)

is a standard module in the component γ :=
{χ|T, χs|T}. In the case of a regular orbit γ, one chooses an ordering (χ|T, χs|T) on the set γ and
associated standard coordinates. Then

IndGB(χ)
I(1)

= M(0, χ(su), χ(u2), χ|T) = M(0, χ2(p
−1), χ1(p

−1)χ2(p
−1), χ|T).

In the case of a non-regular orbit γ we obtain

IndGB(χ)
I(1)

= M(χ(su), χ(u2), χ|T) = M(χ2(p
−1), χ1(p

−1)χ2(p
−1), χ|T).

These standard modules are irreducible if and only if χ ̸= χs [V04, 4.2/4.3].5

If π = π(r, 0, η) is a standard supersingular representation with parameter r = 0, ..., p − 1

and a character η : Q×
p → k×, then πI(1)

is a supersingular module in the component γ =
{χ, χs} represented by the character χ := (ωr ⊗ 1) · (η|F×

p
), cf. [Br07, 5.1/5.3]. If π is the trivial

representation 1 or the Steinberg representation St, then γ = 1 and πI(1)

is the character (0, 1) or
(−1,−1) respectively.

4.3. Let π ∈ Modsm(k[G]). Since u ∈ G normalizes the group I(1), one has I(1)uI(1) = uI(1). It

follows that the convolution action of the Hecke operator U (resp. U2) on πI(1)

is therefore induced
by the action of u (resp. u2 on π). Similarly, the group I(1) is normalized by the Iwahori subgroup

I and I/I(1) ≃ T. It follows that the convolution action of the operators Tt, t ∈ T on πI(1)

is the
factorization of the T(Zp)-action on π.

4.4. Recall from [PS, Def. 7.4.1] the definition of the mod p spherical module M(1)

Fp
. Let A(1)

Fp

denote the maximal commutative subring of H(1)

Fp
(associated with the dominant orientation, say).

ThenM(1)

Fp
= A(1)

Fp
as A(1)

Fp
-modules and the missing action of the Hecke operator Ts is then given

by a mod p and pro-p analogue (based on results of M.-F. Vignéras) of the classical Demazure
operator. For more details, we refer to loc.cit. Recall also from [PS, 7.4.2] the spherical map

Sph : (V
(1)

T̂,0
/W0)(k) // {left H(1)

Fp
-modules}/ ∼,

given as

Sph(v) = class ofM(1)

Fp,z(v)
:=M(1)

Fp
⊗

Z(H(1)

Fp
),z(v)

Fp,

5Our formulas differ from [V04, 4.2/4.3] by χ(·) ↔ χ(·)−1, since we are working with left modules; also compare
with the explicit calculation with right convolution given in [V04, Appendix A.5].
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where z(v) ∈ SpecZ(H(1)

Fp
) denotes the image of v under the mod p pro-p Iwahori-Satake isomor-

phism [PS, 7.2.1]

SpecS
(1)

Fp
: V

(1)

T̂,0
/W0

∼ // SpecZ(H(1)

Fp
). (1)

Let Sphss be the map Sph followed by semisimplification.

Recall also the twisting action of Z∨(k) on semisimple H(1)

Fp
-modules [PS, 7.5.6]: let (η, z) ∈

Z∨(k). In the case of regular γ, the actions of X,Y, U2 get multiplied by z, z, z2 respectively and
the component γ gets multiplied by η; in the case of non-regular γ, the action of U gets multiplied
by z, the action of Ts remains unchanged and the component γ gets multiplied by η.

4.5. Lemma. The map Sphss is Z∨(k)-equivariant.

Proof. This is [PS, Prop. 7.5.3].

4.6. We identify Q×
p with the center Z(G) in the usual way. A (smooth) character ζ : Z(G) =

Q×
p → k× is determined by its value ζ(p−1) ∈ k× and its restriction ζ|Z×

p
. Since the latter is trivial

on the subgroup 1+pZp, we may view it as a character of F×
p ; we will write ζ|F×

p
for this restriction

in the following. Thus the group of characters of Z(G) gets identified with the group of k-points
of the group scheme Z∨ = (F×

p )
∨ ×Gm:

Z(G)∨
∼−→ Z∨(k), ζ 7→ (ζ|F×

p
, ζ(p−1)). (2)

The mod p pro-p-Iwahori Satake isomorphism (1) allows us to view Z(H(1)

Fp
)-modules M (and

therefore also H(1)

Fp
-modules) as quasi-coherent sheaves S(M) on V

(1)

T̂,0
/W0. The rule M 7→ S(M)

is the mod p parametrization functor P : Mod(H(1)

Fp
) → QCoh(V

(1)

T̂,0
/W0) from [PS, Def. 7.3.4] in

the special case F = Qp.

4.7. Lemma. Suppose that π ∈ Modsm(k[G]) has a central character ζ : Z(G) → k×. Then the

Satake parameter S(πI(1)

) of πI(1) ∈ Mod(H(1)

Fp
) has central character ζ, i.e. it is supported on the

closed subscheme
(V

(1)

T̂,0
/W0)(ζ|

F×p
,ζ(p−1)) ⊂ V

(1)

T̂,0
/W0.

Proof. This is [PS, Prop. 7.5.4] in the case F = Qp.

Next, recall the twisting action of the group Z∨(k) on the standard H(1)

Fq
-modules M (and their

simple constituents) from 4.4, which we write as M.(η, z) for (η, z) ∈ Z∨(k).

4.8. Proposition. Let π ∈ Modladm(k[G]) be irreducible or a reducible principal series repre-
sentation. Let η : Q×

p → k× be a character and view it as a pair in Z∨(k) via formula (2).
Then

(π ⊗ η)I
(1)

= πI(1)

.(η|F×
p
, η(p−1))

as H(1)

Fp
-modules.

Proof. For future reference, we remark that the statement holds true, mutatis mutandis, with Qp

replaced by a finite extension. We therefore give a proof and references that work in this gener-
ality. An irreducible locally admissible representation, being a finitely generated k[G]-module, is
admissible [Em10, 2.2.19]. A principal series representation (irreducible or not) is always admis-
sible [Em10, 4.1.7]. The list of irreducible admissible smooth G-representations is given in [H11b,
Thm. 1.1]. There are four families: principal series representations, supersingular representations,
characters and twists of the Steinberg representation.

We first suppose that π is a principal series representation (irreducible or not), i.e. of the form
IndGB(χ) with a character χ = χ1 ⊗ χ2. Then π ⊗ η ≃ IndGB(χ1η ⊗ χ2η). We use the results from

4.2 (which hold over a finite extension, cf. [V04]). The modules πI(1)

and (π ⊗ η)I
(1)

are standard
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modules in the components γ := {χ|T, χs|T} and γ(η|F×
p
) respectively. Suppose that γ is regular.

We choose the ordering (χ|T, χs|T) and standard coordinates x, y. Then

IndGB(χ)
I(1)

= M(0, χ2(p
−1), χ1(p

−1)χ2(p
−1), χ|T)

and
IndGB(χ1η ⊗ χ2η)

I(1)

= M(0, χ2(p
−1)η(p−1), χ1(p

−1)χ2(p
−1)η(p−2), (χ|T).(η|F×

p
)).

This shows (π ⊗ η)I
(1)

= πI(1)

.(η|F×
p
, η(p−1)) in the regular case. Suppose that γ is non-regular.

Then
IndGB(χ)

I(1)

= M(χ2(p
−1), χ1(p

−1)χ2(p
−1), χ|T)

and
IndGB(χ1η ⊗ χ2η)

I(1)

= M(χ2(p
−1)η(p−1), χ1(p

−1)χ2(p
−1)η(p−2), (χ|T).(η|F×

p
)).

This shows (π ⊗ η)I
(1)

= πI(1)

.(η|F×
p
, η(p−1)) in the non-regular case.

We now treat the case where π is a character or a twist of the Steinberg representation. Consider
the exact sequence

1→ 1→ IndGB(1)→ St→ 1.

According to [V04, 4.4] the sequence of invariants

(S) : 1→ 1
I(1)

→ IndGB(1)
I(1)

→ StI
(1)

→ 1

is still exact and 1I(1)

resp. StI
(1)

is the trivial character (0, 1) resp. sign character (−1,−1) in the
Iwahori component γ = 1. Tensoring the first exact sequence with η produces the exact sequence

1→ η → IndGB(1)⊗ η → St⊗ η → 1.

Since the restriction η|Z×
p
is trivial on 1 + pZp, one has (η ◦ det)|I(1) = 1 and so, as a sequence of

k-vector spaces with k-linear maps, the sequence of invariants

1→ ηI
(1)

→ (IndGB(1)⊗ η)I
(1)

→ (St⊗ η)I
(1)

→ 1

coincides with the sequence (S). It is therefore an exact sequence of H(1)

Fp
-modules, with outer

terms being characters of H(1)

Fp
. From the discussion above, we deduce

(IndGB(1)⊗ η)I
(1)

= IndGB(1)
I(1)

.(η|F×
p
, η(p)−1) = M(η(p−1), η(p−2), 1.(η|F×

p
)).

It follows then from [V04, 1.1] that ηI
(1)

must be the trivial character (0, η(p−1)) in the component

1.(η|F×
p
) and (St⊗η)I

(1)

must be the sign character (−1,−η(p−1)) in the component 1.(η|F×
p
). This

implies

ηI
(1)

= 1
I(1)

.(η|F×
p
, η(p)−1) and (St⊗ η)I

(1)

= StI
(1)

.(η|F×
p
, η(ϖ)−1).

This proves the claim in the cases π = 1 or π = St. If, more generally, π = η′ is a general character
of G, then

(π ⊗ η)I
(1)

= (η′η)I
(1)

= 1
I(1)

.((η′η)|F×
q
, (η′η)(p)−1) = πI(1)

.(η|F×
p
, η(p)−1).

On the other hand, if π = St⊗ η′ is a twist of Steinberg, then

(π ⊗ η)I
(1)

= (St⊗ (η′η))I
(1)

= StI
(1)

.((η′η)|F×
p
, (η′η)(p)−1) = πI(1)

.(η|F×
p
, η(p)−1).

It remains to treat the case where π is a supersingular representation. In this case π ⊗ η is

also supersingular and the two modules πI(1)

and (π⊗ η)I
(1)

are supersingular H(1)

Fp
-modules [V04,

4.9]. Let γ be the component of the module πI(1)

. By 4.3, the component of (π ⊗ η)I
(1)

equals

γ(η|F×
p
). Moreover, if U2 acts on πI(1)

via the scalar z2 ∈ k×, then U2 acts on (π ⊗ η)I
(1)

via

z2(η ◦ det)(u2) = z2η(p)
−2, cf. 4.3. Since the supersingular modules are uniquely characterized by

their component and their U2-action, we obtain (π ⊗ η)I
(1)

= πI(1)

.(η|F×
p
, η(p)−1), as claimed.
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4.9. Let p ≥ 5. We let Modladmζ (k[G]) be the full subcategory of Modsm(k[G]) consisting of locally
admissible representations having central character ζ. By work of Paškūnas [Pas13], the blocks
b of the category Modladmζ (k[G]), defined as certain equivalence classes of simple objects, can be
parametrized by the set of isomorphism classes [ρ] of semisimple continuous Galois representations

ρ : Gal(Qp/Qp) → Ĝ(k) having determinant det ρ = ωζ, i.e. by the k-points of Xζ . There are
three types of blocks. Blocks of type 1 are supersingular blocks. Each such block contains only one
irreducible G-representation, which is supersingular. Blocks of type 2 contain only two irreducible
representations. These two representations are two generic principal series representations of the
form IndGB(χ1 ⊗ χ2ω

−1) and IndGB(χ2 ⊗ χ1ω
−1) (where χ1χ2 ̸= 1, ω±1). There are four blocks

of type 3 which correspond to the four exceptional points. In the even case, each such block
contains only three irreducible representations. These representations are of the form η,St ⊗ η
and IndGB(ω ⊗ ω−1) ⊗ η. In the odd case, each block of type 3 contains only one irreducible
representation. It is of the form IndGB(χ⊗ χω−1).

4.10. Let p ≥ 5. Paškūnas’ parametrization [ρ] 7→ b[ρ] is compatible with Breuil’s semisimple mod
p local Langlands correspondence

ρ 7→ π(ρ)

for the group G [Br07, Be11], in the sense that if ρ has determinant ωζ, then the simple constituents
of the G-representation π(ρ) lie in the block b[ρ] of Modladmζ (k[G]). The correspondence and the
parametrizations (for varying ζ) commute with twists: for a character η : Q×

p → k×, π(ρ ⊗ η) =
π(ρ)⊗ η and b[ρ] ⊗ η = b[ρ⊗η].

4.11. Fix a character ζ : Z(G) = Q×
p → k×, corresponding to a point (ζ|F×

p
, ζ(p−1)) ∈ Z∨(k)

under the identification Z(G)∨ ∼= Z∨(k) from 4.6. Recall the spherical moduleM(1)

Fp
from 4.4. Its

Satake parameter S(M(1)

Fp
) is a quasi-coherent module on the affine variety V

(1)

T̂,0
/W0. It restricts to

a quasi-coherent module S(M(1)

Fp
)ζ on the closed subvariety (V

(1)

T̂,0
/W0)ζ of V

(1)

T̂,0
/W0. On the other

hand, we may view the semisimple local Langlands correspondence with character ζ for Hecke
modules as a function

x 7→ π(ρx)
I(1)

on the set Xζ(k).

Theorem. Suppose p ≥ 5. There exists a finite morphism of k-schemes

Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ

such that the quasi-coherent OXζ
-module Lζ∗S(M(1)

Fp
)ζ interpolates the semisimple mod p Lang-

lands correspondence: for all x ∈ Xζ(k), there is an isomorphism of H(1)

Fp
-modules

((
Lζ∗S(M(1)

Fp
)ζ
)
⊗OXζ

k(x)
)ss ∼= π(ρx)

I(1)

.

Note that
((

Lζ∗S(M(1)

Fp
)ζ
)
⊗OXζ

k(x)
)ss

=
(
M(1)

Fp
⊗

Z(H(1)

Fp
)
(S

(1)

Fp
)−1(OL−1

ζ (x))
)ss

, by unravel-

ling all definitions involved.

4.12. The connected components of (V
(1)

T̂,0
/W0)ζ are either regular and then of type A1 ∪0 A1,

or non-regular and then of type A1. The morphism Lζ appearing in the theorem depends on the
choice of an order of the two affine lines in each regular component. It is surjective and quasi-finite.

Moreover, writing Lγ
ζ for its restriction to the connected component (V γ

T̂,0
/W0)ζ ⊂ (V

(1)

T̂,0
/W0)ζ ,

one has:

(e) Even case. All connected components are of type A1 ∪0 A1, except for the two ‘exterior’
components which are of type A1. Lγ

ζ is an open immersion for any γ.
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(o) Odd case. All connected components are of type A1 ∪0 A1. Lζ is an open immersion on all
connected components, except for the two ‘exterior’ ones. On an ‘exterior’ component γ, the
restriction of Lγ

ζ to one irreducible component A1 is an open immersion, and its restriction to
the open complement Gm is a degree 2 finite flat covering of its image, with branched locus
equal to the intersection of this image with the exceptional locus of Xζ .

4.13. We set L :=
∐

ζ Lζ . This is the morphism

L : V
(1)

T̂,0
/W0 −→ X

referred to in the introduction.

4.14. Note that the semisimple mod p Langlands correspondence associates with any semisimple
ρ : Gal(Qp/Qp) → Ĝ(k) a semisimple smooth G-representation π(ρ) of length 1, 2 or 3, hence

whose semisimple H(1)

Fp
-module of I(1)-invariants π(ρ)I

(1)

has length 1, 2 or 3. On the other hand,

the antispherical map

Sph : (V
(1)

T̂,0
/W0)(k) // {left H(1)

Fp
-modules}

has an image consisting ofH(1)

Fp
-modules are of length 1 or 2, cf. [PS, 7.5.6]. Theorem 4.11 combined

with the properties 4.12 of the morphism Lζ provide the following case-by-case elucidation of the

H(1)

Fp
-modules π(ρ)I

(1)

.

4.15. Corollary. Let x ∈ Xζ(k), corresponding to ρx : Gal(Qp/Qp) → Ĝ(k). Then the H(1)

Fp
-

module π(ρ)I
(1)

admits the following explicit description.

(i) If x ∈ Xirred
ζ (k), then the fibre L−1

ζ (x) = {v} has cardinality 1 and

π(ρx)
I(1)

≃ Sph(v).

It is irreducible and supersingular.

(ii) If x ∈ Xred
ζ (k) \ {the four exceptional points}, then L−1

ζ (x) = {v1, v2} has cardinality 2 and

π(ρx)
I(1)

≃ Sph(v1)⊕ Sph(v2).

It has length 2.

(iiie) If x ∈ Xred
ζ (k) is exceptional in the even case, then L−1

ζ (x) = {v1, v2} has cardinality 2 and

π(ρx)
I(1)

≃ Sph(v1)
ss ⊕ Sph(v2).

It has length 3.

(iiio) If x ∈ Xred
ζ (k) is exceptional in the odd case, then L−1

ζ (x) = {v} has cardinality 1 and

π(ρx)
I(1)

≃ Sph(v)⊕ Sph(v).

It has length 2.

4.16. Now we proceed to the proof of 4.11, 4.12 and 4.15.

We start by defining the morphism Lζ at the level of k-points. Let v ∈ (V
(1)

T̂,0
/W0)ζ(k) and let

the connected component which contains v indexed by γ ∈ T∨/W0.

1. Suppose that γ is regular. Then Sph(v) = Sphγ(v) is a simple two-dimensional Hγ

Fp
-module,

cf. [PS, Thm. 7.4.6]. Let π ∈ Modsm(k[G]) be the simple module, unique up to isomorphism, such

that πI(1) ≃ Sphγ(v), cf. 4.2. Then π ∈ Modladmζ (k[G]) with

ζ = (ζ|F×
p
, ζ(p−1)) = (γ|F×

p
, z2)
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by 4.7. Let b be the block of Modladmζ (k[G]) which contains π. We define Lζ(v) to be the point of
Xζ(k) which corresponds to b.

2. Suppose that γ is non-regular.

(a) If v ∈ D(2)γ(k), then Sph(v) = Sphγ(2)(v) is a simple two-dimensional Hγ

Fp
-module, cf.

[PS, Thm. 7.4.10]. As in the regular case, there is a simple module π, unique up to isomorphism,

such that πI(1) ≃ Sphγ(2)(v). It has central character ζ = (γ|F×
p
, z2) and there is a block b of

Modladmζ (k[G]) which contains π. We define Lζ(v) to be the point of Xζ(k) which corresponds to
b.

(b) If v ∈ D(1)γ(k), then Sph(v)ss is the direct sum of the two characters forming the antispher-
ical pair Sphγ(1)(v) = {(0, z1), (−1,−z1)} where z2 = z21 , cf. [PS, Thm. 7.4.10]. As in the regular

case, there are two simple modules π1 and π2, unique up to isomorphism, such that πI(1)

1 ≃ (0, z1)

and πI(1)

2 ≃ (−1,−z1) and π1, π2 have central character ζ = (γ|F×
p
, z2). Moreover, we claim that

there is a unique block b of Modladmζ (k[G]) which contains both π1 and π2. Indeed, if γ = {1⊗ 1}
and z1 = 1, then π1 = 1 and π2 = St, cf. 4.2. Then by 4.8 it follows more generally that if
γ = {ωr ⊗ ωr}, then π1 = η and π2 = St ⊗ η with η = (η|F×

p
, η(p−1)) := (ωr, z1). Consequently

π1, π2 are contained in a unique block b of type 3, cf. 4.9. We define Lζ(v) to be the point of Xζ(k)
which corresponds to b.

Thus we have a well-defined map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k).

We show property (i) of 4.15. Let x ∈ X irred
ζ (k) and suppose Lζ(v) = x. Then bx is a

supersingular block, contains a unique irreducible representation π, which is supersingular, and

π = π(ρx), cf. 4.9-4.10. By definition of Lζ , one has Sph(v) ≃ πI(1)

. Since the spherical map Sph
is 1 : 1 over supersingular modules, cf. [PS, Thm. 7.4.6/ Thm. 7.4.10], such a preimage v of x exists

and is uniquely determined by x. Summarizing, we have L−1
ζ (x) = {v} and Sph(v) ≃ π(ρx)

I(1)

.
This is property (i).

As a next step, we take a second character η : Q×
p → k× and show that the diagram

(V
(1)

T̂,0
/W0)ζ(k)

Lζ
//

≃.η

��

Xζ(k)

≃ (·)⊗η

��

(V
(1)

T̂,0
/W0)ζη2(k)

Lζη2
// Xζη2(k)

commutes. Here, the vertical arrows are the bijections coming from 2.7 and 3.2. To verify the

commutativity, let v ∈ (V
(1)

T̂,0
/W0)ζ(k) and let its connected component be indexed by γ ∈ T∨/W0.

Suppose that γ is regular or that γ is non-regular with v ∈ D(2)γ(k). Let π be the simple G-

module with πI(1) ≃ Sph(v) and let b[ρ] be the block corresponding to the point Lζ(v). By the

equivariance property 4.5, one has Sph(v.η) ≃ Sph(v).η. Taking I(1)-invariants is compatible with
twist, cf. 4.8, and so Lζη2(v.η) corresponds to the block which contains the representation π ⊗ η,
i.e. to b[ρ] ⊗ η = b[ρ⊗η], cf. 4.10, and so Lζη2(v.η) = [ρ⊗ η] = Lζ(v).η.

If v ∈ D(1)γ(k), let π1 and π2 be the simple modules such that (π1 ⊕ π2)
I(1) ≃ Sphγ(v)ss. As

before, we conclude from Sph(v.η)ss ≃ Sph(v)ss ⊗ η that Lζη2(v.η) corresponds to the block which
contains π1 ⊗ η and π2 ⊗ η and that Lζη2(v.η) = Lζ(v).η. The commutativity of the diagram is
proved.

Thus, we are reduced to prove that the map Lζ comes from a morphism of k-schemes satisfying
4.11 and the remaining parts of 4.15 in the two basic cases of a character ζ such that ζ(p−1) = 1
and ζ|F×

p
∈ {1, ω−1}. This is established in the next two subsections.
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5 The morphism Lζ in the basic even case

Let ζ : Q×
p → k× be the trivial character. Here we show that the map of sets Lζ : (V

(1)

T̂,0
/W0)ζ(k)→

Xζ(k) that we have defined in 4.16 satisfies properties (ii) and (iiie) of 4.15, and we define a

morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides with the previous map of sets

at the level of k-points. By construction, it will have the properties 4.12. This will complete the
proof of 4.15, 4.12 and 4.11 in the case of an even character.

5.1. We verify the properties (ii) and (iiie). We work over an irreducible component P1 with label
” Symr ⊗deta | Symp−3−r ⊗detr+1+a ” where 0 ≤ r ≤ p − 3 and 0 ≤ a ≤ p − 2, cf. 3.3. On
this component, we choose an affine coordinate x around the double point having Symr ⊗deta

as one of its Serre weights. Away from this point, we have x ̸= 0 and the corresponding Galois
representation has the form

ρx =

(
unr(x)ωr+1 0

0 unr(x−1)

)
⊗ η

with η = ωa. By [Be11, 1.3] or [Br07, 4.11], we have

π(ρx) = π(r, x, η)ss ⊕ π([p− 3− r], x−1, ωr+1η)ss =: π1 ⊕ π2

where [p− 3− r] denotes the unique integer in {0, ..., p− 2} which is congruent to p− 3− r modulo
p− 1. Now suppose that Lζ(v) = x. We distinguish two cases.

1. The generic case 0 < r < p − 3. In this case, the point x lies on one of the ‘interior’
components of the chain Xζ , which has no exceptional points. The length of π(ρx) is 2. Indeed,
π1 = π(r, x, η) and π2 = π(p−3−r, x−1, ωr+1η) are two irreducible principal series representations
[Br07, Thm. 4.4]. The block bx is of type 2 and contains only these two irreducible representations,
cf. 4.9-4.10. We may write

π1 = IndGB(χ)⊗ η

with χ = unr(x) ⊗ ωr unr(x−1), according to [Br07, Rem. 4.4(ii)]. By our assumptions on r, the
character χ|T = 1 ⊗ ωr is regular (i.e. different from its s-conjugate). We conclude from 4.8 and

4.2 that πI(1)

1 is a simple 2-dimensional standard module in the regular component represented by
the character (1⊗ ωr).(η|F×

p
) = (η|F×

p
)⊗ (η|F×

p
)ωr ∈ T∨. Similarly, we may write

π2 = IndGB(χ)⊗ ωr+1η

where now χ = unr(x−1) ⊗ ωp−3−r unr(x). By our assumptions on r, the character χ|T =

1 ⊗ ωp−3−r is regular and we conclude, as above, that the I(1)-invariants πI(1)

2 form a simple 2-
dimensional standard module in the regular component represented by the character (η|F×

p
)ωr+1⊗

(η|F×
p
)ωr+1ωp−3−r ∈ T∨. Note that the component of πI(1)

1 is different from the component of

πI(1)

2 , by our assumptions on r.

We conclude from Lζ(v) = x that either Sph(v) = πI(1)

1 or Sph(v) = πI(1)

2 . Since for γ regular,
the map Sphγ is a bijection onto all simple Hγ

Fp
-modules, cf. [PS, Thm. 7.4.6], one finds that

L−1
ζ (x) = {v1, v2} has cardinality 2 and

Sph(v1)⊕ Sph(v2) ≃ π(ρx)
I(1)

.

This settles property (ii) of 4.15 in the generic case.

2. The boundary cases r ∈ {0, p− 3}. In this case, the point x lies on one of the two ‘exterior’
components of Xζ . On such a component, we will denote the variable x rather by z1, which is the
notation6 which we used already in 3.3.

(a) Suppose that z1 ̸= ±1. The length of π(ρz1) is 2. Indeed, as in the generic case, π1 =
π(r, z1, η) and π2 = π(p−3−r, z−1

1 , ωr+1η) are two irreducible principal series representations. The

6The reason for this notation will become clear in the discussion of the non-regular case in 5.2.
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block bz1 is of type 2 and contains only these two irreducible representations. It follows, as above,

that their invariants πI(1)

1 and πI(1)

2 are simple 2-dimensional standard modules, in the components
represented by (η|F×

p
) ⊗ (η|F×

p
)ωr ∈ T∨ and (η|F×

p
)ωr+1 ⊗ (η|F×

p
)ωr+1ωp−3−r ∈ T∨ respectively.

Since r ∈ {0, p − 3}, one of these components is regular, the other non-regular. In particular,

the two components are different. We conclude from Lζ(v) = z1 that either Sph(v) = πI(1)

1 or

Sph(v) = πI(1)

2 . Since for non-regular γ, the map Sphγ(2) is a bijection from D(2)γ(k) onto all
simple standard Hγ

Fp
-modules, cf. [PS, Thm. 7.4.10], we may conclude as in the generic case:

L−1
ζ (z1) = {v1, v2} has cardinality 2 and

Sph(v1)⊕ Sph(v2) ≃ π(ρz1)
I(1)

.

This settles property 4.15 (ii) in the remaining case z1 ̸= ±1.
(b) Suppose now that z1 = ±1, i.e. we are at one of the four exceptional points. We will

verify property (iiie). The length of π(ρz1) is 3. Indeed, the representation π(0,±1, η) is a twist of
the representation π(0, 1, 1) (note that π(r, z1, η) ≃ π(r,−z1,unr(−1)η) according to [Br07, Rem.
4.4(v)]), which itself is an extension of 1 by St, cf. [Br07, Thm. 4.4(iii)]. As in the case (a), the
representation π2 = π(p−3,±1, ωη) is an irreducible principal series representation. The block bz1
is of type 3 and contains only these three irreducible representations. The invariants πI(1)

1 form a

direct sum of two spherical characters in a non-regular component γ, whereas the invariants πI(1)

2

form a simple standard module in a regular component, as before. Since for non-regular γ, the
map Sphγ(1) is a bijection from D(1)γ(k) onto all spherical pairs of characters of Hγ

Fp
, cf. [PS,

Thm. 7.4.10], we may conclude that L−1
ζ (z1) = {v1, v2} has cardinality 2 with v1 ∈ D(1)γ(k) and

Sphγ(1)(v1)
ss = πI(1)

1 . In particular,

Sph(v1)
ss ⊕ Sph(v2) ≃ π(ρx)

I(1)

.

This settles property 4.15 (iiie).

5.2. We define a morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides on k-points

with the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k). We work over a connected component of

(V
(1)

T̂,0
/W0)ζ , indexed by some γ ∈ T∨/W0. Let v be a k-point of this component.

Since ζ|F×
p

= 1, the connected components of (V
(1)

T̂,0
/W0)ζ are indexed by the fibre (·)|−1

F×
p
(1).

This fibre consists of the p−3
2 regular components, represented by the characters of T

χk = ωk ⊗ ω−k

for k = 1, ..., p−3
2 , and of the two non-regular components, given by χ0 and χ p−1

2
, cf. 2.2. We

distinguish two cases. Note that z2 = ζ(p−1) = 1.

1. The regular case 0 < k < p−1
2 . We fix the order γ = (χk, χ

s
k) on the set γ and choose the

standard coordinates x, y. According to [PS, 7.4.3], our regular connected component identifies
with two affine lines intersecting at the origin:

VT̂,0,1 ≃ A1 ∪0 A1.

Suppose that v = (0, 0) is the origin, so that Sph(v) is a supersingular module. Let π(r, 0, η) be the
corresponding supersingular representation. It corresponds to the irreducible Galois representation
ρ(r, η) = ind(ωr+1

2 )⊗ η, in the notation of [Be11, 1.3], whence Lζ(v) = [ρ(r, η)]. According to 4.2,

the component of the Hecke module π(r, 0, η)I
(1)

is given by (ωr ⊗ 1) · (η|F×
p
). Setting η|F×

p
= ωa,

this implies (ωr ⊗ 1) · (η|F×
p
) = ωr+a ⊗ ωa = χk and hence a = −k and r = 2k. Therefore the

Serre weights of the irreducible representation ρ(r, η) are {Sym2k ⊗det−k,Symp−1−2k ⊗detk}, cf.
[Br07, 1.9].

Comparing these pairs of Serre weights with the list 3.3 shows that the p−3
2 points

{origin (0, 0) on the component (χk, χ
s
k)}
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for 0 < k < p−1
2 are mapped successively to the p−3

2 double points of the chain Xζ .

Fix 0 < k < p−1
2 and consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on the irreducible component P1 whose label includes the weight
Sym2k ⊗det−k (i.e. on the component ” Sym2k ⊗ det−k | Symp−3−2k ⊗detk+1 ”). We fix an affine
coordinate on this P1 around Q, which we will also call x (there will be no risk of confusion with
the standard coordinate above!). Away from Q, the affine coordinate x ̸= 0 parametrizes Galois
representations of the form

ρx =

(
unr(x)ω2k+1 0

0 unr(x−1)

)
⊗ η

with η := ω−k. As we have seen above, π(ρx) = π(2k, x, η)⊕ π(p− 3− 2k, x−1, ωr+1η) =: π1 ⊕ π2.
Moreover, π1 = IndGB(χ)⊗ η with χ = unr(x)⊗ ω2k unr(x−1). Since

(1⊗ ω2k).(η|F×
p
) = ω−k ⊗ ωk = χs

k ∈ T∨,

we deduce from the regular case of 4.2 that

πI(1)

1 = M(0, x, 1, χs
k)

is a simple 2-dimensional standard module. Note that M(0, x, 1, χs
k) = M(x, 0, 1, χk) according to

[V04, Prop. 3.2].
Now suppose that v = (x, 0), x ̸= 0, denotes a point on the x-line of A1

k ∪0 A1
k. In particular,

Sphγ(v) = M(x, 0, 1, χk). By our discussion, the point Lζ((x, 0)) corresponds to the block which
contains π1. Since π1 lies in the block parametrized by [ρx], cf. 4.10, it follows that

Lζ((x, 0)) = [ρx] = x ∈ Gm ⊂ P1 ⊂ Xζ .

Since (0, 0) maps to Q, i.e. to the point at x = 0, the map Lζ identifies the whole affine x-line
A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the affine x-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q lies also on the irreducible component P1 whose labelling
includes the other weight of Q, i.e. the weight Symp−1−2k ⊗ detk. We fix an affine coordinate y on
this P1 around Q. Away from Q, the coordinate y ̸= 0 parametrizes Galois representations of the
form

ρx =

(
unr(y)ωp−2k 0

0 unr(y−1)

)
⊗ η

with η := ωk. As in the first case, π(ρy) contains π1 := π(p − 1 − 2k, y, η) = IndGB(χ) ⊗ η as a
direct summand, where now χ = unr(y)⊗ ωp−1−2k unr(y−1). Since

(1⊗ ωp−1−2k).(η|F×
p
) = ωk ⊗ ω−k = χk ∈ T∨,

we deduce, as above, that πI(1)

1 = M(0, y, 1, χk) is a simple 2-dimensional standard module.
Now suppose that v = (0, y), y ̸= 0, denotes a point on the y-line of A1

k ∪0 A1
k. In particular,

Sphγ(v) = M(0, y, 1, χk). By our discussion, the point Lζ((0, y)) corresponds to the block which
contains π1. Since π1 lies in the block parametrized by [ρy], cf. 4.10, it follows that

Lζ((0, y)) = [ρy] = y ∈ Gm ⊂ P1 ⊂ Xζ .

Since (0, 0) maps to Q, i.e. to the point at y = 0, the map Lζ identifies the whole affine y-line
A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 with the affine y-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each regular connected component of (V
(1)

T̂,0
/W0)ζ in

the scheme Xζ , which coincides on k-points with the restriction of the map of sets Lζ .
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2. The non-regular case k ∈ {0, p−1
2 }. We choose the Steinberg coordinate z1. According to

[PS, 7.4.4], our non-regular connected component identifies with an affine line :

VT̂,0,z2
/W0 ≃ A1.

Suppose that v = (0) is the origin, so that Sph(v) is a supersingular module. Let π(r, 0, η)
be the corresponding supersingular representation so that Lζ(v) = [ρ(r, η)]. Exactly as in the
regular case, we may conclude that the Serre weights of the irreducible representation ρ(r, η)
are {Sym2k ⊗det−k,Symp−1−2k ⊗detk}. For the two values of k = 0 and k = p−1

2 we find

{Sym0,Symp−1} and {Sym0⊗ det
p−1
2 ,Symp−1⊗ det

p−1
2 } respectively. Comparing with the list

3.3 shows that the 2 points

{origin (0) on the component (χk = χs
k)}

for k ∈ {0, p−1
2 } are mapped to the 2 smooth points in X irred

ζ , which lie on the two ‘exterior’
components of Xζ , cf. 3.3.

Fix k ∈ {0, p−1
2 } and consider the point

Q = Lζ(origin (0) on the component γ = (χk = χs
k)).

As we have just seen, Q lies on an ‘exterior’ irreducible component P1 whose label includes the
weight Sym0⊗detk. We fix an affine coordinate on this P1 around Q, which we call z1 (there will
be no risk of confusion with the Steinberg coordinate above!). Away from Q, the affine coordinate
z1 ̸= 0 parametrizes Galois representations of the form

ρz1 =

(
unr(z1)ω 0

0 unr(z−1
1 )

)
⊗ η

with η := ωk. As in the regular case, π(ρz1) = π(0, z1, η)
ss ⊕ π(p − 3, z−1

1 , ωη)ss. Moreover,
π(0, z1, η) = IndGB(χ)⊗ η with χ = unr(z1)⊗ unr(z−1

1 ) 7. Since

(1⊗ 1).(η|F×
p
) = ωk ⊗ ωk = χk = χs

k ∈ T∨,

we deduce from the non-regular case of 4.2 that π(0, z1, η)
I(1)

= M(z1, 1, χk) is a 2-dimensional
standard module. Moreover, the standard module is simple if and only if χ ̸= χs, i.e. if and only
if z1 ̸= ±1.

Now let v = z1 ̸= 0 denote a nonzero point on our connected component A1 = VT̂,0,1/W0.

Suppose that z1 ̸= ±1, i.e. v ∈ D(2)γ . In particular, Sph(v) = M(z1, 1, γ) is irreducible. By our
discussion, the point Lζ(z1) corresponds to the block (a block of type 2) which contains π(0, z1, η).
Suppose that z1 = ±1, i.e. v ∈ D(1)γ . In particular, Sphss(v) = M(z1, 1, χk)

ss and again,
Lζ(z1) corresponds to the block (now a block of type 3) which contains the simple constituents of
π(0, z1, η)

ss. In both cases, we conclude

Lζ(z1) = [ρz1 ] = z1 ∈ Gm ⊂ P1 ⊂ Xζ .

Since (0) maps to Q, i.e. to the point at z1 = 0, the map Lζ identifies the whole z1-line A1 =
VT̂,0,1/W0 with the z1-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each non-regular connected component of (V
(1)

T̂,0
/W0)ζ

in the scheme Xζ , which coincides on k-points with the restriction of the map of sets Lζ .

6 The morphism Lζ in the basic odd case

Let ζ := ω−1 : Q×
p → k×. Here we show that the map of sets Lζ : (V

(1)

T̂,0
/W0)ζ(k) → Xζ(k) that

we have defined in 4.16 satisfies properties (ii) and (iiio) of 4.15, and we define a morphism of

k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides with the previous map of sets at the level of

k-points. By construction, it will have the properties 4.12. This will complete the proof of 4.15,
4.12 and 4.11 in the case of an odd character.

7The representations π(0, z1, η) constitute the unramified principal series of G.
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6.1. We verify properties (ii) and (iiio). We work over an irreducible component P1 with label
” Symr ⊗deta | Symp−3−r ⊗detr+1+a ” where 1 ≤ r ≤ p − 2 and 0 ≤ a ≤ p − 2, cf. 3.4. We
distinguish two cases.

1. The generic case r ̸= p − 2. In this case, the irreducible component of Xζ we consider is
an ‘interior’ component and has no exceptional points. On this component, we choose an affine
coordinate x around the double point having Symr ⊗deta as one of its Serre weights. Away from
this point, we have x ̸= 0 and the corresponding Galois representation has the form

ρx =

(
unr(x)ωr+1 0

0 unr(x−1)

)
⊗ η

with η = ωa. As before, we have

π(ρx) = π(r, x, η)ss ⊕ π([p− 3− r], x−1, ωr+1η)ss.

The length of π(ρx) is 2. Indeed, by our assumptions on r, the principal series representations
π(r, x, η) and π(p − 3 − r, x−1, ωr+1η) are irreducible and the block bx contains only these two
irreducible representations. We may follow the argument of the generic case of 5.1 word for word
and deduce property 4.15 (ii).

2. The two boundary cases r = p− 2. In this case, the irreducible component is one of the two

‘exterior’ components with labels ” Symp−2 | ” Sym−1 ”” or ”” Sym−1 det
p−1
2 ” | Symp−2 det

p−1
2 ”.

Points of the open locus Xred
ζ lying on such a component correspond to twists of unramified Galois

representations of the form

ρx+x−1 =

(
unr(x) 0

0 unr(x−1)

)
⊗ η

with η = 1 or η = ω
p−1
2 . Let us concentrate on one of the two components, i.e. let us fix η.

Mapping an unramified Galois representation ρx+x−1 to t := x + x−1 ∈ k identifies this open
locus with the t-line A1 ⊂ P1. We have

π(ρt) = π(p− 2, x, η)ss ⊕ π(p− 2, x−1, η)ss =: π1 ⊕ π2

since [p − 3 − (p − 2)] = p − 2 (indeed, p − 3 − (p − 2) = −1 ≡ p − 2 mod (p − 1)). The length
of π(ρt) is 2. Indeed, π1 = π(p − 2, x, η) and π2 = π(p − 2, x−1, η) are two irreducible principal
series representations and the block bt contains only these two irreducible representations. They
are isomorphic if and only if x = ±1, i.e. if and only if t = ±2 is an exceptional point. In this
case, bt contains only one irreducible representation and is of type 3, otherwise it is of type 2.

We may write
π1 = IndGB(χ)⊗ η

with χ = unr(x) ⊗ ωp−2 unr(x−1). Similarly for π2. The character χ|F×
p

= 1 ⊗ ωp−2 is regular

(i.e. different from its s-conjugate) and we are in the regular case of 4.2. We conclude that

πI(1)

1 = M(0, x, 1, (1⊗ωp−2).η) and πI(1)

2 = M(0, x−1, 1, (1⊗ωp−2).η) are both simple 2-dimensional
standard modules in the regular component γ represented by the character (1 ⊗ ωp−2).(η|F×

p
) =

(η|F×
p
) ⊗ (η|F×

p
)ωp−2 ∈ T∨. They are isomorphic if and only if t = ±2. We choose an order

γ = ((η|F×
p
) ⊗ (η|F×

p
)ωp−2, (η|F×

p
)ωp−2 ⊗ (η|F×

p
)) on the set γ. Then from Lζ(v) = t we get that

either Sphγ(v) = πI(1)

1 or Sphγ(v) = πI(1)

2 . Since for regular γ, the map Sphγ is a bijection onto
all simple Hγ

Fp
-modules, one finds that L−1

ζ (t) = {v1, v2} has cardinality 2 if t ̸= ±2 and then

Sph(v1)⊕ Sph(v2) ≃ π(ρt)
I(1)

.

This settles property 4.15 (ii). In turn, if t = ±2 is an exceptional point, then L−1
ζ (t) = {v} has

cardinality 1 and

Sph(v)⊕ Sph(v) ≃ π(ρt)
I(1)

.

This settles property 4.15 (iiio).
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6.2. We define a morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides on k-points

with the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k). We work over a connected component of

(V
(1)

T̂,0
/W0)ζ , indexed by some γ ∈ T∨/W0. Let v be a k-point of this component.

Since ζ|F×
p
= ω−1, the connected components of (V

(1)

T̂,0
/W0)ζ are indexed by the fibre (·)|−1

F×
p
(ω−1).

This fibre consists of the p−1
2 regular components, represented by the characters

χk = ωk−1 ⊗ ω−k

for k = 1, ..., p−1
2 , cf. 2.2. Recall that z2 = ζ(p) = 1.

Fix an order γ = (χk, χ
s
k) on the set γ and choose standard coordinates x, y. According to [PS,

7.4.8], our regular connected component identifies with two affine lines intersecting at the origin:

VT̂,0,1 ≃ A1 ∪0 A1.

Suppose that v = (0, 0) is the origin, so that Sph(v) is a supersingular module. Let π(r, 0, η) be the
corresponding supersingular representation. It corresponds to the irreducible Galois representation
ρ(r, η), in the notation of [Be11, 1.3], whence Lζ(v) = [ρ(r, η)]. According to 4.2, the component

of π(r, 0, η)I
(1)

is given by (ωr ⊗ 1) · (η|F×
p
). Setting η|F×

p
= ωa, this implies (ωr ⊗ 1) · (η|F×

p
) =

ωr+a ⊗ ωa = χk and hence a = −k and r = 2k − 1. The Serre weights of the irreducible
representation ρ(r, η) are therefore {Sym2k−1⊗det−k,Symp−2k ⊗detk−1}, cf. [Br07, 1.9].

Comparing these pairs of Serre weights with the list 3.4 shows that the p−1
2 points

{origin (0, 0) on the component (χk, χ
s
k)}

for k = 1, ..., p−1
2 are mapped successively to the p−1

2 double points of the chain Xζ . We distinguish
two cases.

1. The generic case 1 < k < p−1
2 . In this case, the argument proceeds as in the regular case of

5.2. Consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on an ‘interior’ irreducible component P1 whose label includes the
weight Sym2k−1⊗det−k. We fix an affine coordinate on this P1 around Q, which we will also call
x. Away from Q, the affine coordinate x ̸= 0 parametrizes Galois representations of the form

ρx =

(
unr(x)ω2k 0

0 unr(x−1)

)
⊗ η

with η := ω−k. As we have seen above, π(ρx) = π(2k−1, x, η)⊕π(p−3−2k+1, x−1, ω2kη) =: π1⊕π2.
Moreover, π1 = IndGB(χ)⊗ η with χ = unr(x)⊗ ω2k−1 unr(x−1). Since

(1⊗ ω2k−1).(η|F×
p
) = ω−k ⊗ ωk−1 = χs

k ∈ T∨,

we deduce from the regular case of 4.2 that πI(1)

1 = M(0, x, 1, χs
k) is a simple 2-dimensional standard

module. Note that M(0, x, 1, χs
k) = M(x, 0, 1, χk) according to [V04, Prop. 3.2].

Now suppose that v = (x, 0), x ̸= 0, denotes a nonzero point on the x-line of A1 ∪0 A1. In
particular, Sphγ(v) = M(x, 0, 1, χk). Our discussion shows that the point Lζ((x, 0)) corresponds
to the block which contains π1. Since π1 lies in the block parametrized by [ρx], cf. 4.10, it follows
that

Lζ((x, 0)) = [ρx] = x ∈ Gm ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at x = 0, the map Lζ identifies the whole affine x-line
A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the affine x-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q also lies on the irreducible component whose labelling
includes the other weight of Q, i.e. the weight Symp−2k ⊗detk−1. We fix an affine coordinate y on
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this P1 around Q. Away from Q, the coordinate y ̸= 0 parametrizes Galois representations of the
form

ρy =

(
unr(y)ωp−2k+1 0

0 unr(y−1)

)
⊗ η

with η := ωk−1. As in the first case, π(ρy) contains π1 := π(p− 2k, y, η) = IndGB(χ)⊗ η as a direct
summand, where now χ = unr(y)⊗ ωp−2k unr(y−1). Since

(1⊗ ωp−2k).(η|F×
p
) = ωk−1 ⊗ ω−k = χk ∈ T∨,

we deduce from the regular case of 4.2 that πI(1)

1 = M(0, y, 1, χk) is a simple 2-dimensional standard
module.

Now suppose that v = (0, y), y ̸= 0, denotes a nonzero point on the y-line of A1 ∪0 A1. In
particular, Sphγ(v) = M(0, y, 1, χk). Our discussion shows that the point Lζ((0, y)) corresponds
to the block which contains π1, parametrized by [ρy]. Hence

Lζ((0, y)) = [ρy] = y ∈ Gm ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at y = 0, the map Lζ identifies the whole y-line A1 =
{(0, y) : y ∈ k} ⊂ VT̂,0,1 with the affine y-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each connected component (V γ

T̂,0
/W0)ζ of (V

(1)

T̂,0
/W0)ζ

such that γ = (χk, χ
s
k) with 1 < k < p−1

2 , in the scheme Xζ , which coincides on k-points with the
restriction of the map of sets Lζ .

2. The two boundary cases k ∈ {1, p−1
2 }. Consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on an ‘interior’ irreducible component P1 whose label includes the

weight Sym1⊗det−1 (for k = 1) or the weight Sym1⊗det
p−3
2 (for k = p−1

2 ). We fix an affine
coordinate on this P1 around Q, which we will call z. Away from Q, the coordinate z ̸= 0
parametrizes Galois representations of the form

ρz =

(
unr(z)ω2 0

0 unr(z−1)

)
⊗ η

with η = ω−1 or η = ω
p−3
2 .

Let k = 1, i.e. η = ω−1. Following the argument in the generic case word for word, we may
conclude that Lζ identifies the x-line A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the z-line A1 ⊂ P1 ⊂ Xζ .

Let k = p−1
2 , i.e. η = ω

p−3
2 . As in the generic case, we may conclude that Lζ identifies the

y-line A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 with the z-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q lies also on the irreducible component P1 whose labelling

includes the other weight of Q, i.e. the weight Symp−2 (for k = 1) or the weight Symp−2⊗det
p−1
2

(for k = p−1
2 ). These are the two ‘exterior’ components. Points of the open locus Xred

ζ lying on
such a component correspond to unramified (up to twist) Galois representations of the form

ρt =

(
unr(z) 0

0 unr(z−1)

)
⊗ η

where η = 1 (for k = 1) or η = ω
p−1
2 (for k = p−1

2 ) and with t = z + z−1 ∈ A1 ⊂ P1. As
in the boundary case of 6.1, we have π(ρt) = π(p − 2, z, η) ⊕ π(p − 2, z−1, η) =: π1 ⊕ π2 and
these are irreducible principal series representations. We may write π1 = IndGB(χ) ⊗ η with χ =
unr(z)⊗ωp−2 unr(z−1). The character χ|F×

p
= 1⊗ωp−2 is regular (i.e. different from its s-conjugate)

and we are in the regular case of 4.2. We conclude that

πI(1)

1 = M(0, z, 1, (1⊗ ωp−2).η)
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is a simple 2-dimensional standard module in the regular component represented by the character

(1⊗ ωp−2).(η|F×
p
) = (η|F×

p
)⊗ (η|F×

p
)ωp−2 = (η|F×

p
)⊗ (η|F×

p
)ω−1 ∈ T∨.

This latter character equals χ1 for η = 1 and (χ p−1
2
)s for η = ω

p−1
2 (indeed, note that p−1

2 ≡ −
p−1
2

mod p− 1).
Now suppose that k = 1, i.e. η = 1. Let v = (0, y), y ̸= 0, be a nonzero point on the y-line of

A1 ∪0 A1. In particular, Sphγ(v) = M(0, y, 1, χ1). Our discussion shows that the point Lζ((0, y))
corresponds to the block which contains π1, i.e. which is parametrized by [ρt]. It follows that

Lζ((0, y)) = [ρt] = t = y + y−1 ∈ A1 ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at t = ∞, the map of sets Lζ maps the k-points of
the whole affine y-line A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 to the k-points of the whole ‘left exterior’

component P1 ⊂ Xζ via the formula

A1 −→ P1

y 7−→
{

y + y−1 if y ̸= 0
∞ = Q if y = 0.

This formula is algebraic: indeed, for y ∈ A1 \ {±i} (where ±i are the roots of the polynomial
f(y) = y2 + 1), we have y + y−1 ̸= 0 and (y + y−1)−1 = y/(y2 + 1), which is equal to 0 at y = 0.
Moreover, it glues at the origin (0, 0) with the open immersion of the x-line of VT̂,0,1 = A1 ∪0 A1

in Xζ defined above, since both map (0, 0) to Q. We take the resulting morphism of k-schemes

A1∪0A1 → Xζ as the definition of Lζ on the connected component (V
(χ1,χ

s
1)

T̂,0
/W0)ζ of (V

(1)

T̂,0
/W0)ζ .

Note that its restriction to the open subset {y ̸= 0} in the y-line A1 is the morphism Gm → A1

corresponding to the ring extension

k[t] −→ k[y, y−1] = k[t][y]/(y2 − ty + 1),

and that the discriminant t2 − 4 of y2 − ty + 1 ∈ k[t][y] vanishes precisely at the two exceptional
points t = ±2.

Suppose k = p−1
2 , i.e. η = ω

p−1
2 . Let v = (x, 0), x ̸= 0, denote a nonzero point on the x-line of

A1 ∪0 A1. In particular,

Sphγ(v) = M(0, x, 1, (χ p−1
2
)s) = M(x, 0, 1, χ p−1

2
).

Our discussion shows that the point Lζ((x, 0)) corresponds to the block which contains π1, i.e.
which is parametrized by [ρt]. It follows that Lζ((x, 0)) = [ρt] = t = x + x−1 ∈ A1 ⊂ P1. Since
(0, 0) maps to the point Q at t =∞, the map of sets Lζ maps the k-points of the whole affine x-line
A1 = {(x, 0) : y ∈ k} ⊂ VT̂,0,1 to the k-points of the whole ‘right exterior’ component P1 ⊂ Xζ via
the formula

A1 −→ P1

x 7−→
{

x+ x−1 if x ̸= 0
∞ = Q if x = 0.

This formula is algebraic. Moreover, it glues at the origin (0, 0) with the open immersion of the
y-line of VT̂,0,1 = A1 ∪0 A1 in Xζ defined above, since both map (0, 0) to Q. We take the resulting

morphism of k-schemes A1 ∪0 A1 → Xζ as the definition of Lζ on the connected component

(V
(χ p−1

2
,(χ p−1

2
)s)

T̂,0
/W0)ζ of (V

(1)

T̂,0
/W0)ζ .

7 An interpolation of the semisimple mod p correspondence

In this subsection we continue to assume p ≥ 5.
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7.1. Recall the mod p parametrization functor P from 4.6. For ζ ∈ Z∨(k), let Modζ(H(1)

Fp
) be

the full subcategory of Mod(H(1)

Fp
) whose objets are the H(1)

Fp
-modules M whose Satake parameter

S(M) is supported on the closed subscheme (V
(1)

T̂,0
/W0)ζ ⊂ V

(1)

T̂,0
/W0. A H(1)

Fp
-module M lies in

the category Modζ(H(1)

Fp
) if and only if: M is only supported in γ-components where γ|F×

p
= ζ|F×

p

and the operator U2 acts on M via the Gm-part of ζ. Then P induces a mod p ζ-parametrization
functor

Pζ : Modζ(H(1)

Fp
) // QCoh((V

(1)

T̂,0
/W0)ζ).

Let ζ ∈ Z∨(k). We have the functor

Lζ∗ : QCoh((V
(1)

T̂,0
/W0)ζ) // QCoh(Xζ)

push-forward along the k-morphism Lζ : (V
(1)

T̂,0
/W0)ζ → Xζ from 4.11. Finally recall that for

ζ ∈ Z∨(k), the functor of I(1)-invariants (·)I(1)

: Modsm(k[G])→ Mod(H(1)

Fp
) induces a functor

(·)I
(1)

ζ : Modsmζ (k[G])→ Modζ(H(1)

Fp
),

by 4.7.

7.2. Definition. Let ζ ∈ Z∨(k). The mod p ζ-Langlands parametrization functor is the functor
LζPζ := Lζ∗ ◦ Pζ :

Modζ(H(1)

Fq
)

��

QCoh(Xζ)

Identifying ζ with a central character of G, the functor LζPζ extends to the category Modsmζ (k[G])

by precomposing with the functor (·)I(1)

ζ : Modsmζ (k[G]) → Modζ(H(1)

Fp
). This gives the functor

LζPζ ◦(·)I
(1)

ζ :

Modsmζ (k[G])

��

QCoh(Xζ).

7.3. Theorem. Suppose F = Qp with p ≥ 5. Fix a character ζ : Z(G) = Q×
p → k×, corresponding

to a point (ζ|F×
p
, ζ(p−1)) ∈ Z∨(k) under the identification Z(G)∨ ∼= Z∨(k) from 4.6.

The mod p ζ-Langlands parametrization functor LζPζ interpolates the Langlands parametriza-

tion of the blocks of the category Modladmζ (k[G]), cf. 4.9 : for all x ∈ Xζ(k) and for all π ∈ b[ρx],

LζPζ(π
I(1)

) =

{
ix∗(π

I(1)

) if x is not an exceptional point in the odd case

ix∗(π
I(1)

)⊕2 otherwise
∈ QCoh(Xζ)

where ix : Spec(k)→ Xζ is the k-point x.

Proof. By definition of a block of a category as a certain equivalence class of simple objects [Pas13],

if π ∈ b[ρx] then in particular π is simple. Then πI(1)

is simple too, and hence has a central

character. Therefore Pζ(π
I(1)

) is the underlying k-vector space of πI(1)

supported at the k-point

v ∈ (V
(1)

T̂,0
/W0)ζ corresponding to its central character under the isomorphism S

(1)

Fp
, which lies

on some connected component γ. Suppose dimk(π
I(1)

) = 2. Then πI(1)

is isomorphic to the
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simple standard module of Hγ

Fp
with central character v, i.e. to Sphγ(v), and hence Lζ(v) = x

by definition of the map of sets Lζ(k). Suppose dimk(π
I(1)

) = 1. Then πI(1)

is one of the two
spherical characters of Hγ

Fp
whose restriction to the center Z(Hγ

Fp
) is equal to v, i.e. it is one of

the simple constituents of (Sphγ(v))ss, and hence again Lζ(v) = x by definition of the map of sets
Lζ(k). Now if x is not an exceptional point in an odd case, then Lζ is an open immersion at v,
and otherwise it has ramification index 2 at v. The theorem follows.
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Cédric Pépin, LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93 430 Villetaneuse, France

E-mail address: cpepin@math.univ-paris13.fr

Tobias Schmidt, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

E-mail address: toschmidt@uni-wuppertal.de

23

https://www.imo.universite-paris-saclay.fr/~breuil/PUBLICATIONS/New-York.pdf
https://www.imo.universite-paris-saclay.fr/~breuil/PUBLICATIONS/New-York.pdf
https://mediaspace.unipd.it/channel/School+
on+Serre+conjectures+and+the+p-adic+Langlands+program/119214951
cpepin@math.univ-paris13.fr
toschmidt@uni-wuppertal.de

	Introduction
	Mod p Satake parameters with fixed central character
	Mod p Langlands parameters with fixed determinant 
	A morphism from Hecke to Galois
	The morphism L in the basic even case
	The morphism L in the basic odd case
	An interpolation of the semisimple mod p correspondence

