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Abstract
Let p > 5 and let Z (7-[%1)) be the center of the mod p pro-p-Iwahori Hecke algebra of
P

GL2(Qp). Let ¢ be a central character of GL2(Qp). Let X¢ be the projective curve parametriz-
ing 2-dimensional mod p semi-simple representations of the absolute Galois group Gal(Q,/Q,)

with determinant w{. We construct a quotient morphism of schemes .Z; : Spec Z ('H%) )e = Xc.
We then show that the correspondence between the specialization M%l) of the spherical H%l)-
prZ P

module M%l) from in closed points z € Spec Z(?—%l) )¢ and the Galois representation p., ()
p p

is the semi-simple mod p local Langlands correspondence for the group GL2(Q)).
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1 Introduction

Background. The mod p (and the p-adic) Langlands correspondence for GL2(Q,,) was conjectured
by Breuil, and has been fully established by Colmez-Dospinescu-Paskiinas [CDP14], building on
work of Breuil, Colmez, Emerton, Kisin, Pasktnas and many others. Its semisimple version was
established by Breuil in [Br03]. It is an explicit map p — m(p), from the set of semisimple contin-
uous representations of Gal(Q,/Q,) on 2-dimensional F,-vector spaces, to the set of semisimple
smooth representations of GL2(Q,) on F,-vector spaces.

Set G := GL2(Qyp), let Z(G) = Q be the center of G and ¢ : Z(G) — F; be a central
character. Assume p > 5. In [DEG22], Dotto-Emerton-Gee introduce a curve X over F,, (denoted
by X in loc.cit.), which is a chain of projective lines with ordinary double points and of length
(p£1)/2, where the sign is equal to —¢(—1). The definition of X is motivated by the Galois side
of Breuil’s semisimple correspondence: the closed Fp—points of X parametrize isomorphism classes
of semisimple 2-dimensional continuous representations of Gal(@p /Q,) over F,, with determinant

w(:
X¢(F,) = {semisimple continuous p : Gal(Q,/Q,) — EITQ(E,) with det p = w(}/ ~ .



Here w is the mod p cyclotomic character and 614\2 is the Langlands dual group of GL5 over Fp.
See [DEG22] 1.4] for further discussion on the curve X¢. In the the sequel, we let X be the disjoint
union over all X¢, base changed to F,,.

Let I € G be the standard pro-p Iwahori subgroup consisting of integral matrices which are

upper unipotent mod p, and let ’H%l) is the pro-p-Iwahori Hecke algebra of G with coefficients in
P

F,. By work of Ollivier [O09], the functor of I()-invariants 7 + 7/ “ is an equivalence from the
category of mod p smooth representations of G which are generated by their I(V-invariants, to

the category of H%l)—modules. Thus the composed map p — ﬂ(p)l(l) is a correspondence from
P —

the set of semisimple mod p 2-dimensional continuous representations of Gal(Q,/Q,) to the set

of semisimple ’H( )_modules. We refer to this latter correspondence as the semisimple mod p local

Langlands correspondence for Hecke modules.

Statement of the result. Let Z(?—l(l)) be the center of the algebra 7—[( . It is fibered over
the central characters ¢ of GL2(Q,). In [PS] 7.4.1], we constructed the mod D spherlcal module
M( ). It is a distinguished 7-[( )_action on a maximal commutative subring of ’H , which is a

P

mod p analogue (plus extension to the pro-p Iwahori level) of the classical (antl)spherlcal module
appearing in complex Kazhdan-Lusztig theory [KL87, 3.9]. The quasi-coherent module associated

to M%l) on Spec Z (H%l)), when specialized at closed points, gives rise to a parametrization of all
irreducible H%l)—modules. This is the spherical map from [PS, 7.4.2]. We recall the definition of
M%) and the spherical map in below.

Here we prove the following theorem. For a closed point z € Spec Z (H%l)), viewed as a character

ZHP) S F , we denote by M the semisimplication of the HW module
F p Fp,2z F

— ) I
Fpoz F, ®Z(’H£)),z Fyp.

Theorem (cf. Theorem {4.11).  Let G = GL2(Q,) with p > 5. There exists, for any ¢, a
quotient morphism of Fp-schemes

Z¢ : Spec Z(H%))C — X¢,
with the following property: given a closed point z € Spec Z(’H%l))g, the correspondence

Mg 4 pae)

between the ’H ) _module ./\/l( * and the Galois representation P2 (=) associated to the point

Fp,z

Ze(z) € X is the semzszmple mod p local Langlands correspondence for Hecke modules.

_ We remark straightaway that the morphism Z is first defined set-theoretically on the level of
Fp-points and many of its properties follow already from this definition.

The above result implies an interesting interpolation property (see Cor. [4.15]). For simplicity,

we also write /\/l( ) for the quas1 coherent module on the affine variety Spec Z (7—[( )) associated to

the Z (7—[( )) module ./\/l . Let .Z be the union over all .Z;. Let .Z, /\/l( ) be pushforward along

. On the other hand, we may view the semisimple Langlands correspondence for Hecke modules
(1)
as a function * — 7(p;)Y on the set X(F,). In this situation, the above theorem implies that

the quasi-coherent O x-module X*Mﬁl), interpolates the semisimple Langlands correspondence:
P
for any z € X (F,), one has an isomorphism of H%l)—modules
P

JiSY

(LMD 2o k(@) = (o)



As a byproduct of our constructions, we also obtain an interpolation of Pasktinas’ parametriza-
tion of the blocks of the category Modladm(Fp [G]) of locally admissible smooth G-representations

over IF‘ with central character ¢ [Pas13]. See . 3| for the precise statement.
More details on the construction. The construction of the morphism .Z is a consequence of

our results from [PS] on the geometry of the generic pro-p-Iwahori-Hecke algebra (with coefficients
in the ring Z[q] where q is a formal variable) for GL2(Q,), specialized at q = p = 0 € F,. To

give more details, let G be the Langlands dual group of GLg over F,, with maximal torus T. We
consider the special fibre at q = 0 of the Vinberg fibration V4 4 Al associated to T C G followed
by base change to F,. This yields the F,-semigroup scheme

Vi o = SingDiagy x5, Gm,

where SingDiag, . 5 represents the semigroup of singular diagonal 2 x 2-matrices over E” cf. [PS
7.1]. Let TV be the finite abelian group dual to T = T(F,), and consider the extended semigroup

Vel =TV x Va4

It has a natural diagonal Wy-action. In [PS, 7.2.1] we established the mod p pro-p-Iwahori Satake
isomorphism

Spec ,5%(;) : V%())/WO —=— Spec Z(’H%)))

identifying the center Z (7—[%1)) with the ring of regular functions on the quotient V%l()) /Wo. Tt
P i

encodes the duality between GLy and the dual group G. The morphism .Z is then a composition
of the inverse of Spec Yﬁ(l) with a certain morphism L (see below) from V%l()) /Wp to X:
P )

% := Lo (Spec 5%(1))_1

The morphism L = []. L¢ is fibered over the central characters ¢ of GL2(Q,). Each morphism
1
Le: (VT(’())/Wok — X¢

is first defined set-theoretically on the level of F-points. This uses Pagkiinas’ parametrization of the
blocks of the category Modlgadm (F,[G]) from [Pas13] and is responsible for our restriction to p > 5.
The interpolation property of the map . with respect to the p-adic Langlands correspondence
follows already from this definition. Then one checks on each connected component of (V,I(}g /Wo)es

that L¢ extends to a morphism of varieties. In fact, any fibre (Vi(,l()) /Wo)¢ is a naturally ordered

union of connected components, which genericallyﬂ are equal to two affine lines A'UpA! intersecting
at the origin. It turns out that L. is locally given by the toric construction of the projective line: it
identifies the open subset G,,, in the "first” irreducible component A' of the connected component
A Ug A with the open subset G,, in "second” irreducible component A' of the "next” connected
component A' Uy A! via the map z — 27!, thus forming a P'. This produces an irreducible
component of the chain X.

Organization of the article. In section 2 we recall some results from [PS], notably that the
quotient Vi(,l()) /W is naturally fibered over the central characters ¢ of GL3(Q,). In section 3 we

recall some properties of X.. Whereas in [DEG22] the irreducible components of X, are labeled
by certain cuspidal types, we chose a labelling of irreducible components by certain pairs of Serre
weights, which is inspired from [Em19}E| and which is more suitable for our purposes. In section
4 we state the existence and interpolation properties of the morphism L¢. We define Ls on the

(1))

IThere occur also connected components equal to A! corresponding to non-regular components of Spec Z (H

2The idea of relating the curve X and the spherical module ./Vl( ) came to the authors when listening to the talk

[Em19], and led to the first preprint [PS2| in 2020. We thank M. Emerton for this enlightening talk. This article is
a revised version of [PS2].



level of E,—points and reduce the verification of being a morphism of varieties to two basic cases.
In section 5 resp. 6 we prove all stated properties of L¢ in the two basic even resp. odd cases.
This is the main technical work of the paper. Finally, in section 7 we explain the interpolation of
Pasktunas’ block parametrization.

Notation. We fix an algebraic closure @p of Q, and let k£ be its residue field, an algebraic
closure F, of F,. We let G = GL2(Q,). We let T denote the diagonal torus in GLy and W) its
Weyl group. Let T = T(F,). If H is a finite group, then H" := Hom(H,k*). Finally, G denotes
the dual group of GLs over k, with maximal torus T.

2 Mod p Satake parameters with fixed central character

We recall some results from [PS], 7.5] in the special case F' = Q,.

2.1. Let w: F — k™ be given by the embedding F, C k. The group (IF?)V = (w) is cyclic of
order p—1. Any element w” gives rise to a non-regular character of T via w” (t1,t2) := w" (t1)w" (t2)
for all (t1,t2) € T =T x F). Composition with multiplication in T" produces an action of (F)"
on TV, which factors through the quotient T /W:

TV /Wy x (IE‘qX)v — TV /W, (7,w") = .
A Wy-orbit v € TV/W, is called regular if it consists of two elements. Otherwise, it is called
non-regular. If v € TV /W is regular (non-regular), then yw" is regular (non-regular).

2.2. We may restrict characters to the subgroup F,' ~ {diag(a,a) : a € F’} C T and this gives a

homomorphism TV — (F;)V which factors into a restriction map
TV/WO — (F;)V7 Y= ’Y|JF;-

The relation to the (IF¥)Y-action on the source TV /Wj is (va)hF; = 7|F; w?". We recall the fibers

of the restriction map v — 7|m;~ Let (')‘71

Fy

of w™" on TV /W, induces a bijection with the fibre (-) I;Xl(l) The fibre

(w?") be the fibre at a square element w?”. The action

q

() [E‘i;}(l) = {1 X 1} H{UJ ®U.}_1’w2 ®w—27 .“7&)%3 ®w—q%3}H{wq%l ®w_%l}

has cardinality p# and, in the above list, we have chosen a representative in TV for each element
in the fibre. The Wy-orbits represented by the characters w” @w ™" for r =1, ..., 1’2;3, are all regular
Wy-orbits. The two orbits at the two ends of the list are non-regular orbits. Since the action of
w™" preserves regular (non-regular) orbits, any fibre at a square element (there are 25% such fibres)

2
has the same structure. On the other hand, let ()|];X1 r=1)
P

(w be the fibre at a non-square element
w?"~1. The action of w™" induces a bijection with the fibre ()|]I:Xl (w™1). The fibre
P

O™ ={lew wew?..w7 ' gw "7}
p
has cardinality % and we have chosen a representative in TV for each element in the fibre. All
elements of the fibre are regular Wy-orbits. Since the action of w™" preserves regular (non-regular)
P

orbits, any fibre at a non-square element (there are %1 such fibres) has the same structure.

2.3. We have the commutative k-semigroup scheme
1 . .
V,f("()) =T x V’T‘,O =T x SingDiagy s XG,,.

cf. [PS| 7.5.3]. It has a natural Wy-action: the natural action of Wy on the factors TV and
SingDiag, ., and the trivial one on G,,. In addition to this, there is a commuting action of the

k-group scheme
2V = (F))" x Gp,



on Vrf(,lé: the (constant finite diagonalizable) group (F)¢)" acts only on the factor T and in the

way described in an element zy € G,, acts trivially on TV, by multiplication with the diagonal
matrix diag(zo,20) on SingDiag,,, and by multiplication with the square 22 on G,,. Therefore

the quotient V%l()) /Wy inherits a ZV-action. We have a decomposition
1) —
VaoWo= I Vao 11 Vig.o/ Wo.
’YE(T\//WO)X'eg ’YE(TV/WD)non-reg

In this optic, the (F;)V—action is by permutations on the index set TV /Wy. It preserves the

subsets of regular and non-regular components. The G,,-action on V%l()) /W preserves connected
components. '

2.4. According to [PS| 7.5.4], we have two projection morphisms
(1)
V’I‘,o/ Wo
pry %
T /W, G
Composing pryv y,, with the restriction map (-)\F; s TV /Wo — (F))Y, setting
0= ((lex o Drrw, ) X P,

yields
1
Vil /Wo

Ja
ZV.
The relation to the ZV-action on the source V’T(‘T()) /Wy is given by the formula
O(z.(w", 20)) = 0(x)(W?", 22) = 0(z)(wW", 20)?
for x € V%?)/WO and (w",29) € ZV. The following definition is [PS, Def. 7.5.1].

2.5. Definition. Let ( € ZV. The space of mod p Satake parameters with central character ¢ is
the k-scheme

(Vao/Wo)e :=071(¢C).

2.6. Let ¢ = (Clsx,22) € 2V(k) = (F)Y x k*. Denote by (Vi')/Wy)., the fibre of prg  at
z9 € k. Recall from [PS| 7.5.5] that

(1) _ o o
(VT,O/WO)C - H V0,2 H Vi 0,2/ Wo-
’YG(TV/WU)regW\F; :C|[FI>7< ’YG(TV/WO)xmmregﬁ\F; :C|[FI>7<

There are standard coordinates x,y such that Vi o Al Ug A, two affine lines crossing at the
origin. There is a Steinberg coordinate z; such that

Vi 0.,/ Wo = Al

2.7. Lemma. Let (,n € ZV. The action of n on V%l())/Wo induces an isomorphism of k-schemes

(Vaia/ W) = (Va'o/Wo)cys-

Proof. This is [PS|, Lem. 7.5.2]. O



3 Mod p Langlands parameters with fixed determinant

3.1. We normalize local class field theory Q) — Gal(Q,/Q,)*" by sending p to a geometric
Frobenius. In this way, we identify the k-valued smooth characters of Gal(Q,/Q,) and of Q-
Finally, w : Q; — k™ denotes the extension of the character w : F) — k™ to Q, satisfying
w(p) = 1, and unr(z) : Q; — k* denotes the character trivial on F,’ and sending p to x.

3.2. Let ¢ : QF — K be a character. Recall from [DEG22| the projective curve X; over

F, whose F,-points parametrize (isomorphism classes of) two-dimensional semisimple continuous
Galois representations over k with determinant w(:

X¢ (k) = {semisimple continuous p : Gal(Q,/Q,) — G(k) with detp= wC}/ ~.

The curve X, is a chain of projective lines over k of length p—fl, whose irreducible components
intersect at ordinary double points. The sign +1 is equal to —((—1). We refer to ¢ in the case
—((—=1) = —1 resp. —((—1) = +1 as an even character resp. odd character. From now on, we let
X denote its base change to k. There is a finite set of closed points X, é"Cd C X¢ which correspond

to the classes of irreducible representations. Its open complement X éed =X\ X é”ed parametrizes

the reducible representations (i.e. direct sums of characters). Let n : Gal(Q,/Q,) — k* be a
character. Since det(p ® n) = (det p)n?, twisting representations with 7 induces an isomorphism

()@ Xe = Xepe

Hence one is reduced to consider only two ‘basic’ cases: the even case where ((p) =1 and ¢ |F; =1
and the odd case where ((p) = 1 and C|F§ = w™!. Indeed, if C\F; = w" for some even r, then
choosing  with n(p)? = ((p)~! and Mex = w™ %, one finds that ((n?)(p) = 1 and (§02)|F§ =1; if
C|F; = w" for some odd r, then choosing 1 with 7(p)? = ((p)~! and 77|IF; = w’#, one finds that
(€n*)(p) =1 and ((0*)|px =™

3.3. We make explicit some structure elements of X¢ in the even case ((p) = 1 and ¢ |F§ = 1.

Every irreducible component of X is isomorphic to P! and there are 251 components. They are

2
labelled by pairs of Serre weights of the following form:

Sym® | Sym? ®®det
Sym? @ det ™! | SymP™® @ det?

Sym* @ det 2 | Sym” 7 ®det?

Sym? ™ ® det" = | Sym'® det"z .

The component with label ” Sym”| Sym? ™ ® det” intersects the next component at the point
of X é”ed parametrizing the irreducible Galois representation whose associated Serre weights are
{Sym? @ det™ ", Sym? 3 @ det}. The component with label ” Sym? ® det ™ | Sym?™° @ det®” in-
tersects the next component at the point of X Z"Gd parametrizing the irreducible Galois represen-
tation whose associated Serre weights are {Sym4 ®det ™2, Sym?° @ detz}. Continuing in this way,
one finds % points of X é”ed, which correspond to the 712;3 double points of the chain X.. There
are two more points in X, é"ed: they are smooth points, each one lies on one of the two ‘exterior’

components and corresponds there to the irreducible Galois representation whose associated Serre
weights are {Sym’, Sym?~'} and {Sym° ®detp2;l,Symp71 ®det%1} respectively. So Xér”d has
cardinality % Suppose we are on one of the two exterior components P'. There is a canonical
affine coordinate z; on the open complement of the double point, identifying this open complement

with Al. We call the four points where z; = +1 the four exceptional points of X.

3.4. We make explicit some structure elements of X¢ in the odd case {(p) = 1 and C\F; =w

Every irreducible component of X is isomorphic to P! and there are p—;l components. Except for



the two outer components, they are labelled by pairs of Serre weights of the following form:

Symp—Z | » Sym—l 2
Sym? ™ @ det | Sym' ® det ™!
Sym? % @ det? | Sym?® ® det 2
Sym' ® det "z | Sym”*® det"x
—1 —1
? Sym ™' ® det“z 7 | Sym’?® det" = .

The weight Sym™" does not exist, which is why we put it into quotation marks, so the first and
the last line of the above table consist of only of one weight. On the geometric side, this reflects
the fact that these lines describe the two outer components. Each of them intersects the rest of
the chain in only one point.

The component with label ” Sym?~2 | ” Sym™'”” intersects the next component at the point

of X érmd parametrizing the irreducible Galois representation whose associated Serre weights are
{Sym' ® det™*, SymP~2}. The component with label ” Sym? % @ det | Sym' ®det™'” intersects
the next component at the point of Xé”ed parametrizing the irreducible Galois representation

whose associated Serre weights are {Sym3 ®det™2, SymP~* ®det}. Continuing in this way, one
finds %71 points of X é-”ed, which correspond to the prl double points of the chain X¢. There are

no more points in X é”ed and X gred has cardinality p—;l. Suppose we are on one of the two exterior

components P!. There is a canonical affine coordinate ¢ on the open complement of the double
point, identifying this open complement with A'. We call the four points where t = 42 the four
exceptional points of X¢.

4 A morphism from Hecke to Galois

4.1. We let I C G be the standard Iwahori subgroup of G consisting of integral matrices which
are upper triangular mod p. Let I() C I be its p-Sylow subgroup, i.e. matrices which are upper

unipotent mod p. We identify Wy with the subgroup of G generated by the matrix s = ( (1) (1) ) .

We let W) = (T x X,(T)) x Wy be the extended Iwahori-Weyl group, wheren X(T) = Z x Z
equals the cocharacter lattice of T. We identify cocharacters with a subgroup of diagonal matrices
in the usual way, i.e. (1,0) — diag(p~*,1) and (0,1) > diag(1,p~1).

We also put

(0 p! 4 (01 (Pt oo (10
u-<1 0>, U _(p0>’ us-(o 1) su = 0 pt )

Moreover, u? = diag(p~*, p~*)[f] Since

0 pt a b 01\ [ d ptle
1 0 c d p 0/ \pb a
the element u € G normalizes the group 7). Note that v = (1,0)s € W,

4.2. Let ’H%l) be the pro-p-Iwahori-Hecke algebra of G relativ to I(!) with coefficients in k = F,, cf.

[V04]. It equals the convolution k-algebra generated by the I (M_double cosets in G. A system of
representatives for these double cosets is given by W) and we denote the Hecke operator attached
tow € W by T,,. The T, form a k-basis of ’H%l). We write U :=T,,.

3The Galois representations living on the two exterior components in the odd case are unramified (up to twist),
i.e. of type p = ( ung(m) unr((:]r:*l) ) ® 1 and t equals the ‘trace of Frobenius’  + z~1. Hence t = 42 if and
only if x = £1.

4Note that our element u equals the element u~! in [Bell],[Br07] and [V04].



Recall further that 7—[%1) decomposes into a product of algebras ’H% indexed by the elements
P P
v € TV /Wy, cf. [V04, 3.1]. For simplicity, we denote the image of U and T in a direct factor
H% by the same letters. In the case of a regular orbit 7, one chooses an ordering (x|r, x*|r)
P
on the set 7. The associated standard coordinates X,Y & H% compute the center Z (H% ) as
P p

F,[U?[X,Y]/(XY), cf. [V04] 2.2]. Vignéras® standard module M(z,y,z, x|r) is then the unique
H%p—module, where the central elements X,Y,U? act as the scalars x,y, z € F,, respectively [V04]
2.3]. In the case of a non-regular orbit 7, the center Z(H%p) is generated by U? and a certain
second element Z. Vignéras’ standard module M (a, z, x|r) is then the unique H%p—module, where
the central elements Z, U? act as the scalars a, 2 € E, respectively [V04, 1.4].

We denote by Mod®" (k[G]) the category of smooth G-representations over k. We have the
functor of IM-invariants 7 — 7! from Mod™ (k[G]) to the category Mod(Hg)). It gives a

bijection between the irreducible G-representations and the irreducible H%l)—modules. Thereby,

P
supersingular representations correspond to supersingular Hecke modules [V04].

We recall the T(M-invariants for some classes of representations. If 7 = Indg (x) is a principal

series representation with xy = x1 ® x2, then 1" is a standard module in the component y =
{x|T, x|} In the case of a regular orbit -y, one chooses an ordering (x|r, x*|r) on the set v and
associated standard coordinates. Then

md§ ()™ = M(0, x(su), x(u?), x|) = M0, x2(p~"), x1(p~ ) x2 (™), XIr)-

In the case of a non-regular orbit v we obtain

md$ ()" = M(x(su), x(u®), xIr) = M(x2(p™), x1 (0™ )x2(p™1), xIr)-

These standard modules are irreducible if and only if x # x* [V04] 4.2/ 4.3]E|

If 7 = w(r,0,n) is a standard supersingular representation with parameter r = 0,...,p — 1

and a character n : Q — k™, then oY s a supersingular module in the component v =
{x, x°} represented by the character x := (W" ® 1) - (77|]F; ), cf. [Bx07, 5.1/5.3]. If 7 is the trivial

representation 1 or the Steinberg representation St, then v = 1 and 71" is the character (0,1) or
(=1, —1) respectively.

4.3. Let m € Mod®™ (k[G]). Since u € G normalizes the group I, one has IMul™M) = 4T, Tt
follows that the convolution action of the Hecke operator U (resp. U?) on ! @ is therefore induced

by the action of u (resp. u? on 7). Similarly, the group I (1) is normalized by the Iwahori subgroup

I and I/IM) ~ T. Tt follows that the convolution action of the operators Ty,t € T on 71" s the
factorization of the T(Z,)-action on 7.

4.4. Recall from [PS| Def. 7.4.1] the definition of the mod p spherical module M%. Let .A%))
denote the maximal commutative subring of ’H% (associated with the dominant orientation, say).
Then ./\/l%p) = A%lp) as A%)—modules and the missing action of the Hecke operator T is then given
by a mod p and pro-p analogue (based on results of M.-F. Vignéras) of the classical Demazure
operator. For more details, we refer to loc.cit. Recall also from [PS| 7.4.2] the spherical map

Sph : (VA /Wo) (k) —— {left HL”-modules}/ ~,

given as

Sph(v) = class of M%v)vz(v) = M%y) ®Z(7'l%1)),z(v) Fp»

50ur formulas differ from [V04] 4.2/4.3] by x(-) <+ x(-) ™}, since we are working with left modules; also compare
with the explicit calculation with right convolution given in [V04] Appendix A.5].



where z(v) € Spec Z (H%l)) denotes the image of v under the mod p pro-p Iwahori-Satake isomor-
phism [PS], 7.2.1]
1 1 ~ 1
Spec&”ﬁ(p) : V%())/WO ——— Spec Z(H%p)). (1)

Let Sph® be the map Sph followed by semisimplification.

Recall also the twisting action of ZV(k) on semisimple ’H%l)—modules [PS 7.5.6]: let (n,z) €

ZV (k). In the case of regular ~, the actions of X,Y,U? get multiplied by z, z, 22 respectively and
the component  gets multiplied by 7; in the case of non-regular v, the action of U gets multiplied
by z, the action of Ts remains unchanged and the component v gets multiplied by 7.

4.5. Lemma. The map Sph* is ZV(k)-equivariant.
Proof. This is [PS, Prop. 7.5.3]. O

4.6. We identify Q) with the center Z(G) in the usual way. A (smooth) character ¢ : Z(G) =
Q, — k> is determined by its value C(p~?1) € kX and its restriction C|Z; . Since the latter is trivial
on the subgroup 1+ pZ,, we may view it as a character of F,;; we will write ¢ |]F; for this restriction

in the following. Thus the group of characters of Z(G) gets identified with the group of k-points
of the group scheme ZV = (F))Y x G,y,:

Z(G)Y = 2V (k), ¢ (Clex . Clp™)- (2)

The mod p pro-p-Iwahori Satake isomorphism allows us to view Z (’H%l))—modules M (and
P
therefore also ’H%l)—modules) as quasi-coherent sheaves S(M) on Vf(lg /Woy. The rule M — S(M)

is the mod p parametrization functor P : Mod(’;’-l%1 ) — QCOh(V%lg/WO) from [PS, Def. 7.3.4] in

the special case F' = Q.

4.7. Lemma. Suppose that m € Mod™ (k[G]) has a central character ¢ : Z(G) — k*. Then the
)

Satake parameter S(?TI(U) of Y e Mod(’H% ) has central character , i.e. it is supported on the
P
closed subscheme

() 1)
(V’T‘,O/WO)(Q[Fg L)) © VT,O/WO'
Proof. This is [PS, Prop. 7.5.4] in the case F = Q,. L)

Next, recall the twisting action of the group ZV (k) on the standard H%l)—modules M (and their
simple constituents) from which we write as M.(n, z) for (n,2) € ZV (k).

4.8. Proposition. Let 7 € Modladm(k;[G]) be irreducible or a reducible principal series repre-
sentation. Let 1 : QF — k™ be a character and view it as a pair in ZV (k) via formula @)
Then

) (1) _
(ren™ =2 (g n(p~)
as H%l)—modules,

Proof. For future reference, we remark that the statement holds true, mutatis mutandis, with Q,
replaced by a finite extension. We therefore give a proof and references that work in this gener-
ality. An irreducible locally admissible representation, being a finitely generated k[G]-module, is
admissible [Em10, 2.2.19]. A principal series representation (irreducible or not) is always admis-
sible [Em10} 4.1.7]. The list of irreducible admissible smooth G-representations is given in [H11Dbl
Thm. 1.1]. There are four families: principal series representations, supersingular representations,
characters and twists of the Steinberg representation.

We first suppose that 7 is a principal series representation (irreducible or not), i.e. of the form
Ind$ () with a character y = y1 ® x2. Then 7 ® n ~ Ind§(x17 ® x217). We use the results from

(which hold over a finite extension, cf. [V04]). The modules 7! @ and (r@n)! * are standard



modules in the components v := {x|r, x*|r} and 7(77|F;) respectively. Suppose that ~ is regular.
We choose the ordering (x|r, x°|r) and standard coordinates x,y. Then

md$ ()" = MO0, x2(07), x1 (0 x2 (0™, x|7)

and
ndf (xan @ xan)’ = MO, x2(p™ (e~ x1 (™ xa (0™ 2), (xlr) - (1l ).

This shows (7 ® 77)1(1) = ﬂl(l).(nhps ,m(p~1)) in the regular case. Suppose that + is non-regular.
Then

md§00"" = M), xa e )xa™).xlr)
and

mdf (xan @ xom)'" = M @) @™ )xa @0 =), (xlo)-(1lx)-

This shows (7 ® n)!" = 71" (e, n(p~!)) in the non-regular case.
We now treat the case where 7 is a character or a twist of the Steinberg representation. Consider

the exact sequence
1—1— d§(1) — St — 1.

According to [V04l 4.4] the sequence of invariants
(8):1—- 17" 5 mdg1)" = st!" 1

. . [COI .. . .
is still exact and 17 resp. St’ " is the trivial character (0,1) resp. sign character (—1,—1) in the
Iwahori component v = 1. Tensoring the first exact sequence with n produces the exact sequence

1-n—IndG(1)®n—Sten— 1.

Since the restriction 77|Z§ is trivial on 1 + pZ,, one has (n o det)|;1) = 1 and so, as a sequence of
k-vector spaces with k-linear maps, the sequence of invariants

1o S5 mdém) en’™ - Sten’ -1

coincides with the sequence (S). It is therefore an exact sequence of 'H%l)—modules, with outer
p

terms being characters of ’Hg). From the discussion above, we deduce
p

(md§ (1)@m= mdG "™ (1lp ) ™) = MueY).0072), Linlg)).

Tt follows then from [V04] 1.1] that 77[(1) must be the trivial character (0,7(p~!)) in the component
1.(77|F;) and (St®n)lm must be the sign character (—1, —n(p~1)) in the component 1.(7]\F; ). This
implies

7

(1) (1) _ (1) _
nt =1 (g n(p) ™) and (Sten)t T =StT L (nlpx,n(w) Y.

This proves the claim in the cases 7 = 1 or 7 = St. If, more generally, m# = 7’ is a general character
of GG, then

7 7

(mam™ =@mn" =1 (Mg M@ ™) =7 @l nm) 7).

On the other hand, if 7 = St ® i’ is a twist of Steinberg, then

(ron)™ = ste @) =st" (e, @) =7 (1l n@) 7).

It remains to treat the case where 7 is a supersingular representation. In this case ™ ® n is
also supersingular and the two modules 7! “ and (r@n)! “ are supersingular ’H%l)—modules [V04,

4.9]. Let v be the component of the module ol By the component of (7 ® 77)1(1) equals

'y(n|]F;). Moreover, if U2 acts on 7! via the scalar 2, € k*, then U? acts on (r® 77)1“) via
za(nodet)(u?) = zan(p)~2, cf. Since the supersingular modules are uniquely characterized by

their component and their U?-action, we obtain (7 ® 77)1(1) = wl(l).(n|m7n(p)*1), as claimed. [O
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4.9. Let p > 5. We let Modlcadm(k[G]) be the full subcategory of Mod™™ (k[G]) consisting of locally
admissible representations having central character (. By work of Pagkiinas [PasI3|, the blocks
b of the category Mod?dm(k:[G])7 defined as certain equivalence classes of simple objects, can be
parametrized by the set of isomorphism classes [p] of semisimple continuous Galois representations

p: Gal(Q,/Qp) — G (k) having determinant det p = w(, i.e. by the k-points of X¢. There are
three types of blocks. Blocks of type 1 are supersingular blocks. Each such block contains only one
irreducible G-representation, which is supersingular. Blocks of type 2 contain only two irreducible
representations. These two representations are two generic principal series representations of the
form Ind%(x1 ® yow™") and Ind%(y2 ® xyaw™!) (where x1x2 # 1,w*!). There are four blocks
of type 3 which correspond to the four exceptional points. In the even case, each such block
contains only three irreducible representations. These representations are of the form 7, St ® n
and Ind$(w ® w™') ® . In the odd case, each block of type 3 contains only one irreducible
representation. It is of the form Ind%(y ® yw™!).

4.10. Let p > 5. Pagkiinas’ parametrization [p] — b, is compatible with Breuil’s semisimple mod
p local Langlands correspondence

p = 7(p)

for the group G [Br(7, [Bell], in the sense that if p has determinant w(, then the simple constituents
of the G-representation m(p) lie in the block by, of Mod?dm(k‘[G]). The correspondence and the
parametrizations (for varying ¢) commute with twists: for a character n : Q5 — k*, m(p®@n) =
m(p) ® 1 and by ® 1 = bjpey)-

4.11. Fix a character ¢ : Z(G) = Q; — k*, corresponding to a point (§|F;,C(p_1)) e ZY(k)
under the identification Z(G)Y = ZV (k) from Recall the spherical module M%l) from Its

Satake parameter S (M%l)) is a quasi-coherent module on the affine variety V%lé /Wo. It restricts to
P B

a quasi-coherent module S (Mg))c on the closed subvariety (V%l()) /Wo)¢ of V%l()) /Wp. On the other

hand, we may view the semisimple local Langlands correspondence with character ¢ for Hecke

modules as a function
7
z = 7(pz)

on the set X (k).

Theorem. Suppose p > 5. There exists a finite morphism of k-schemes

Le: (V%())/Wo)c — X¢

such that the quasi-coherent O x -module Lg*S(Mg))C interpolates the semisimple mod p Lang-
P

lands correspondence: for all x € X (k), there is an isomorphism of ’H%l)—modules
p

7

((LeeSMD)) @ox, k) 2= (o)

1 SS 1 _ SS
Note that ((LC*S(M%p))C) ®ox, k:(x)) = (M%) ®Z(ng) (j%(p)) I(OLEI(JC))> , by unravel-

ling all definitions involved.

4.12. The connected components of (V%l())/Wo)g are either regular and then of type A' Uy Al,

or non-regular and then of type A'. The morphism L¢ appearing in the theorem depends on the
choice of an order of the two affine lines in each regular component. It is surjective and quasi-finite.

Moreover, writing L/ for its restriction to the connected component (V% o /Wo)¢e C (V%l()) /Wo)es

one has:

(e) Even case. All connected components are of type Al Uy Al, except for the two ‘exterior’
components which are of type Al. LZ is an open immersion for any +.

11



(o) Odd case. All connected components are of type Al Uy Al. L¢ is an open immersion on all
connected components, except for the two ‘exterior’ ones. On an ‘exterior’ component -y, the
restriction of LZ to one irreducible component A! is an open immersion, and its restriction to
the open complement G,, is a degree 2 finite flat covering of its image, with branched locus
equal to the intersection of this image with the exceptional locus of X.

4.13. We set L := HC L¢. This is the morphism
.M
L: V’T‘,O/WO — X

referred to in the introduction.

4.14. Note that the semisimple mod p Langlands correspondence associates with any semisimple
p : Gal(Q,/Qp) — G(k) a semisimple smooth G-representation m(p) of length 1,2 or 3, hence
whose semisimple H%l)—module of IM-invariants 7(p)! “ has length 1,2 or 3. On the other hand,

the antispherical map

Sph : (V%lg/Wo)(k) — {left ’H%l)—modules}

has an image consisting of ’H%l)—modules are of length 1 or 2, cf. [PS] 7.5.6]. Theorem|4.11|combined
r
with the properties of the morphism L¢ provide the following case-by-case elucidation of the
’H%l)—modules m(p)!".
P

4.15. Corollary. Let x € X¢(k), corresponding to p, : Gal(Q,/Qp) — @(k) Then the ’H%l)—
module w(p)I(l) admits the following explicit description.

(i) If x € Xé”"“l(k), then the fibre Lgl(x) = {v} has cardinality 1 and

ey
m(px)" =~ Sph(v).
It is irreducible and supersingular.

(i) If x € Xge‘i(k) \ {the four exceptional points}, then Lc_l(x) = {v1,v2} has cardinality 2 and

7(pa)!" ~ Sph(v1) & Sph(vs).
It has length 2.

(ivie) If x € Xged(k) is exceptional in the even case, then Lgl(x) = {v1,v2} has cardinality 2 and

e .
W(Pz)l = Sph(v1)®™ @& Sph(vs).
It has length 3.
(iiio) If x € Xged(k) is exceptional in the odd case, then Lgl(x) = {v} has cardinality 1 and

eh)
m(pz)" " =~ Sph(v) & Sph(v).
It has length 2.

4.16. Now we proceed to the proof of .11 [£.12] and [£.15
We start by defining the morphism L. at the level of k-points. Let v € (Vél()) /Wo)c(k) and let

the connected component which contains v indexed by v € TV /W.

1. Suppose that 7 is regular. Then Sph(v) = Sph”(v) is a simple two-dimensional 7—[% -module,
P

cf. [PS, Thm. 7.4.6]. Let 7 € Mod®" (k[G]) be the simple module, unique up to isomorphism, such
that 7wl ~ Sph” (v), cf. Then 7 € Modlgdm(k[G]) with

¢ = (e ) = (Vg 22)

12



by Let b be the block of Mod?dm(k[G}) which contains 7. We define L¢(v) to be the point of
X¢ (k) which corresponds to b.

2. Suppose that ~ is non-regular.

(a) If v € D(2),(k), then Sph(v) = Sph?(2)(v) is a simple two-dimensional HI -module, cf.
[PS| Thm. 7.4.10]. As in the regular case, there is a simple module 7, unique up to isomorphism,

such that 1" ~ Sph”(2)(v). It has central character { = (7|F;,ZQ) and there is a block b of
Modlcadm(k[G]) which contains . We define L¢(v) to be the point of X (k) which corresponds to
b.

(b) If v € D(1),(k), then Sph(v) is the direct sum of the two characters forming the antispher-
ical pair Sph”(1)(v) = {(0,21), (=1, —21)} where z5 = 22, cf. [PS, Thm. 7.4.10]. As in the regular
case, there are two simple modules 7; and 75, unique up to isomorphism, such that 7/ “ (0, 21)
and ﬂé(m ~ (=1, —z) and 71, 72 have central character ( = (’Y|F;,22)- Moreover, we claim that
there is a unique block b of Modlcadm(k[G]) which contains both 7; and 7e. Indeed, if v = {1 ® 1}
and z; = 1, then m; = 1 and 7 = St, cf. [£2] Then by [f.§ it follows more generally that if
v ={w" ®w"}, then m = n and my = St @ n with n = (77|]F;7n(p71)) = (w", z1). Consequently
my, T2 are contained in a unique block b of type 3, cf. We define L¢(v) to be the point of X¢ (k)
which corresponds to b.

Thus we have a well-defined map of sets L : (Visl()]/Wo)C(k) — X (k).

We show property (i) of Let z € X(i:”ed(k) and suppose L¢(v) = z. Then b, is a
supersingular block, contains a unique irreducible representation 7, which is supersingular, and

7w =m(ps), cf. By definition of L, one has Sph(v) ~ ! ' Since the spherical map Sph

is 1 : 1 over supersingular modules, cf. [PS, Thm. 7.4.6/ Thm. 7.4.10], such a preimage v of x exists
and is uniquely determined by . Summarizing, we have Lgl(x) = {v} and Sph(v) ~ W(px>1<l).

This is property (i).

As a next step, we take a second character 7 : Q; — k* and show that the diagram

(VD /Wo) (k) —— X¢(k)

-"lz ZJ((-)GM

VD W) e () 2 X oo (k)
T,0/ "V 0)Cn? ¢n?

commutes. Here, the vertical arrows are the bijections coming from and To verify the
commutativity, let v € ( %1()) /Wo)¢(k) and let its connected component be indexed by v € TV /W.
Suppose that ~ is regular or that v is non-regular with v € D(2),(k). Let m be the simple G-
module with 7/ ~ Sph(v) and let by, be the block corresponding to the point L¢(v). By the
equivariance property one has Sph(v.n) ~ Sph(v).n. Taking IM-invariants is compatible with
twist, cf. and so L¢,2(v.n) corresponds to the block which contains the representation m ® 7,
i.e. to by, ® 1 = by, cf. and so Ley2(v.n) = [p@n] = Le(v)..

If v € D(1),(k), let m; and 7 be the simple modules such that (m; @ 71'2)1(1> ~ Sph”(v)®. As
before, we conclude from Sph(v.n)* ~ Sph(v)*™ ® 1 that L¢,2(v.n) corresponds to the block which
contains m; ® 7 and o ® 1 and that L¢,2(v.n) = L¢(v).n. The commutativity of the diagram is
proved.

Thus, we are reduced to prove that the map L comes from a morphism of k-schemes satisfying
and the remaining parts of in the two basic cases of a character ¢ such that ((p~1) =1
and C|F; € {1,w™'}. This is established in the next two subsections.
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5 The morphism L, in the basic even case

Let ¢ : Q5 — k& be the trivial character. Here we show that the map of sets L : (V,igl())/WO)C(k) —
X¢(k) that we have defined in satisfies properties (ii) and (iiie) of 4.15| and we define a
morphism of k-schemes L : (V'I‘lo /Wo)¢ — X¢ which coincides with the previous map of sets

at the level of k-points. By construction, it will have the properties [{.12] This will complete the
proof of [4.15] [4.12] and [4.11] in the case of an even character.

5.1. We verify the properties (ii) and (iiie). We work over an irreducible component P! with label
7 Sym” ® det® | Sym?P 3" @det" ™" where 0 < r < p—3and 0 < a < p—2, cf. On
this component, we choose an affine coordinate z around the double point having Sym” ® det®
as one of its Serre weights. Away from this point, we have x # 0 and the corresponding Galois

representation has the form
_( unr(z)wm ! 0
Pz = ( 0 unr(z~1) ©n

with 7 = w®. By [Belll, 1.3] or [Br(7, 4.11], we have
(pz) = m(rz, ) @n(lp -3 —rl,a7 W) = m & m

where [p — 3 —r] denotes the unique integer in {0, ..., p — 2} which is congruent to p — 3 —r modulo
p — 1. Now suppose that L¢(v) = . We distinguish two cases.

1. The generic case 0 < r < p — 3. In this case, the point = lies on one of the ‘interior’
components of the chain X, which has no exceptional points. The length of 7(p,) is 2. Indeed,
7 = 7(r,z,n) and g = w(p—3—r, =1, w"1n) are two irreducible principal series representations
[Br07, Thm. 4.4]. The block b, is of type 2 and contains only these two irreducible representations,
cf. We may write

m =IndG(x) ®n

with ¥ = unr(z) ® w” unr(z~1), according to [Br07, Rem. 4.4(ii)]. By our assumptions on r, the
character x|t = 1 ® w" is regular (i.e. different from its s-conjugate). We conclude from and
that 7! “isa simple 2-dimensional standard module in the regular component represented by
the character (1 ® w’”).(77|]pr) = (77|]F;) ® (77|]F§ Jw™ € TV. Similarly, we may write

Ty = Indg(x) Quw'lp

where now y = unr(z7!) ® w?P 3 "unr(z). By our assumptions on r, the character x|r =
1 ® wP~3~" is regular and we conclude, as above, that the I(V)-invariants 775(1) form a simple 2-

dimensional standard module in the regular component represented by the character (U\F; YJwtl ®

)

(g ) TLlwP=3=" € TV. Note that the component of 71" is different from the component of

7 .
75, by our assumptions on 7.

We conclude from L¢(v) = « that either Sph(v) = ﬂ{(l) or Sph(v) = 71'5(1). Since for 7 regular,
the map Sph” is a bijection onto all simple ’H% -modules, cf. [PS, Thm. 7.4.6], one finds that
Lgl(x) = {v1,v9} has cardinality 2 and

Sph(vy) @ Sph(vs) = 7(ps) .

This settles property (ii) of in the generic case.

2. The boundary cases r € {0,p — 3}. In this case, the point z lies on one of the two ‘exterior’
components of X;. On such a component, we will denote the variable x rather by z;, which is the
notatiorﬂ which we used already in

(a) Suppose that z; # £1. The length of m(p,,) is 2. Indeed, as in the generic case, m =
7(r,z1,n) and mo = w(p—3—7r, 2] 1,w"+177) are two irreducible principal series representations. The

6The reason for this notation will become clear in the discussion of the non-regular case in

14



block b,, is of type 2 and contains only these two irreducible representations. It follows, as above,

that their invariants 7/ “ and 7751) are simple 2-dimensional standard modules, in the components
represented by (1]gx) ® (nlpx)w" € TV and (0] Jwtt @ (77|]F;)wT+1wp_3_7" € TV respectively.
Since r € {0,p — 3}, one of these components is regular, the other non-regular. In particular,

the two components are different. We conclude from L¢(v) = z; that either Sph(v) = 771[(1) or

Sph(v) = 775(1). Since for non-regular -y, the map Sph”(2) is a bijection from D(2),(k) onto all
simple standard ’H% -modules, cf. [PS, Thm. 7.4.10], we may conclude as in the generic case:
P

Lc_l(zl) = {v1,v2} has cardinality 2 and

Sph(vy) @ Sph(vy) ~ W(pzl)I(l).

This settles property (ii) in the remaining case z; # +1.

(b) Suppose now that z; = =£1, i.e. we are at one of the four exceptional points. We will
verify property (iiie). The length of 7(p,,) is 3. Indeed, the representation (0, +1,7) is a twist of
the representation 7(0,1,1) (note that 7 (r, z1,n) ~ m(r, —z1, unr(—1)n) according to [Br07, Rem.
4.4(v)]), which itself is an extension of 1 by St, cf. [Br07, Thm. 4.4(iii)]. As in the case (a), the
representation mo = w(p — 3, £1,wn) is an irreducible principal series representation. The block b,,

is of type 3 and contains only these three irreducible representations. The invariants 7/ “ form a

. . . . . ey
direct sum of two spherical characters in a non-regular component v, whereas the invariants 72

form a simple standard module in a regular component, as before. Since for non-regular -, the
map Sph”(1) is a bijection from D(1),(k) onto all spherical pairs of characters of 7—[% , cf. [PS,
P

Thm. 7.4.10], we may conclude that Lgl(zl) = {v1,v2} has cardinality 2 with v; € D(1),(k) and

Sph”(1)(vy)™ = 7r{m. In particular,

. ®
Sph(v1)™ @ Sph(vs) = m(p,)" .

This settles property (iiie).

5.2. We define a morphism of k-schemes L : (V,I(,l()) /Wo)¢ — X which coincides on k-points

with the map of sets L¢ : ( ,T(?l())/WO)C(k) — X¢(k). We work over a connected component of

(V%l()) /Wo)c¢, indexed by some v € TV /Wy. Let v be a k-point of this component.

Since §|F; = 1, the connected components of (V%T())/WO)C are indexed by the fibre (-) ];;1(1)

This fibre consists of the % regular components, represented by the characters of T
Xk =w' Qw*

for k = 1,..., %, and of the two non-regular components, given by xo and xp-1, cf. We
2
distinguish two cases. Note that zo = ((p~!) = 1.
1. The reqular case 0 < k < %. We fix the order v = (xx,x}) on the set v and choose the
standard coordinates x,y. According to [PS| 7.4.3], our regular connected component identifies
with two affine lines intersecting at the origin:

Va

o Al 1
o1 =~ AlUp AL

Suppose that v = (0, 0) is the origin, so that Sph(v) is a supersingular module. Let 7 (r,0,7n) be the
corresponding supersingular representation. It corresponds to the irreducible Galois representation
p(r,n) = ind(wy ) @, in the notation of [Belll 1.3], whence L¢(v) = [p(r,n)]. According to

the component of the Hecke module W(T,O,U)I(l) is given by (W™ ®1) - (77|F; ). Setting 77|]F; = w,
this implies (W" ® 1) - (n\m) = W ® w* = y, and hence a = —k and r = 2k. Therefore the

Serre weights of the irreducible representation p(r,n) are {Sym** @ det™*, Sym?~'~%* @ det"}, cf.
[B:07, 1.9].
Comparing these pairs of Serre weights with the list shows that the % points

{origin (0,0) on the component (X%, x%)}

15



for 0 < k < % are mapped successively to the % double points of the chain X.

Fix 0 <k < % and consider the double point
@ = L¢(origin (0,0) on the component v = (x&, X%))-

As we have just seen, @ lies on the irreducible component P! whose label includes the weight
Sym** @ det ™" (i.e. on the component ” Sym®* @ det ™ | Sym?*~2* @ det"™! »). We fix an affine
coordinate on this P! around @, which we will also call  (there will be no risk of confusion with
the standard coordinate above!). Away from @, the affine coordinate x # 0 parametrizes Galois

representations of the form
2k+1
unr(x)w 0
o = ( (=) > ®1n

0 unr(z~1)

with 1 := w ™. As we have seen above, 7(p,) = 7(2k,z,1) ®7(p — 3 — 2k, 2z~ 1, w™n) = m O ™.
Moreover, m; = Ind%(x) ® 1 with x = unr(z) ® w?* unr(z~!). Since

1®w™).(nlpx) =w ™ @w' =x; € TV,

we deduce from the regular case of [£.2] that

7
™

= M(0,z,1,x3)

is a simple 2-dimensional standard module. Note that M (0,z,1, x5) = M(z,0,1, xx) according to
[V04l, Prop. 3.2].

Now suppose that v = (z,0),z # 0, denotes a point on the z-line of A} Uy A}. In particular,
Sph”(v) = M(z,0,1, x). By our discussion, the point L¢((z,0)) corresponds to the block which
contains ;. Since 7 lies in the block parametrized by [p.], cf. it follows that

Le((2,0) = [pz] =2 € G, P C Xo.

Since (0,0) maps to @, i.e. to the point at = 0, the map L¢ identifies the whole affine z-line
Al ={(z,0) : x € k} C V4 ,, with the affine 2-line A* C P! C X,.

On the other hand, the double point @ lies also on the irreducible component P' whose labelling
includes the other weight of Q, i.e. the weight Sym? 172 @ det®. We fix an affine coordinate y on
this P! around Q. Away from (), the coordinate y # 0 parametrizes Galois representations of the

form o
_{ unr(y)wP~ 0
fa = ( 0 unr(y—1) ©n

with 7 := w*. As in the first case, (p,) contains 7 := w(p — 1 — 2k,y,7) = nd%(y) ® 7 as a

direct summand, where now y = unr(y) ® w?~*~2* unr(y~—!). Since

(1@wP 1 72M) (n]px) =w* @w™ =y, € TY,

we deduce, as above, that 77{(1) = M(0,y,1, xx) is a simple 2-dimensional standard module.

Now suppose that v = (0,y),y # 0, denotes a point on the y-line of A}, Uy A}. In particular,
Sph”(v) = M(0,y,1, xx). By our discussion, the point L¢((0,y)) corresponds to the block which
contains 7. Since m; lies in the block parametrized by [p,], cf. m it follows that

Lc((0,9) = [py] =y € G C P! C X

Since (0,0) maps to @, i.e. to the point at y = 0, the map L. identifies the whole affine y-line
A ={(0,y) : y € k} C Vz,, with the affine y-line A* C P* C X,.

In this way, we get an open immersion of each regular connected component of (V,I(,l()) /Wo)¢ in

the scheme X, which coincides on k-points with the restriction of the map of sets L.
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2. The non-regular case k € {0, %} We choose the Steinberg coordinate z;. According to
[PS| 7.4.4], our non-regular connected component identifies with an affine line :

VT,O,ZQ/WO ~ Al

Suppose that v = (0) is the origin, so that Sph(v) is a supersingular module. Let 7(r,0,7)
be the corresponding supersingular representation so that L¢(v) = [p(r,n)]. Exactly as in the
regular case, we may conclude that the Serre weights of the irreducible representation p(r,n)

are {Sym?* @ det ™", Sym? 1% @ det"}. For the two values of k = 0 and k = =1 we find
{Sym?, Sym?~*} and {Symo®det]%1,Symp_1 ®det%} respectively. Comparing with the list

shows that the 2 points
{origin (0) on the component (xx = x%)}

for k € {0, ’72;1} are mapped to the 2 smooth points in Xérred, which lie on the two ‘exterior’
components of X¢, cf.

Fix k € {0, 2%} and consider the point
@ = L¢(origin (0) on the component v = (xx = X3))-

As we have just seen, @Q lies on an ‘exterior’ irreducible component P! whose label includes the
weight Sym" ® det”. We fix an affine coordinate on this P! around @, which we call z; (there will
be no risk of confusion with the Steinberg coordinate above!). Away from @, the affine coordinate
z1 # 0 parametrizes Galois representations of the form

unr(z; )w 0 )

Pz = _1, | ®n
= ( 0 unr(z;h)

with 1 := w®. As in the regular case, m(p,,) = m(0,21,1)* @ 7(p — 3,27 5, wn)*>. Moreover,
7(0, z1,7) = Ind§(x) ® 1 with x = unr(z;) ® unr(z; 1) |7l Since

1®1).(nlpx) =w* ®w* = xp = xi € T,

we deduce from the non-regular case of that (0, zl,n)l(l) = M(z1,1, xx) is a 2-dimensional
standard module. Moreover, the standard module is simple if and only if x # x?®, i.e. if and only

Now let v = z; # 0 denote a nonzero point on our connected component Al = T.0.1 /Wo.
Suppose that z; # %1, i.e. v € D(2),. In particular, Sph(v) = M (21, 1,7) is irreducible. By our
discussion, the point L¢(z1) corresponds to the block (a block of type 2) which contains 7(0, z1,7).
Suppose that z; = %1, i.e. v € D(1),. In particular, Sph*™(v) = M(z1,1, xx)® and again,
L¢(z1) corresponds to the block (now a block of type 3) which contains the simple constituents of
7(0, z1,m)%. In both cases, we conclude

Le(21) = [psy] = 21 € G, C P! C X,
Since (0) maps to @, i.e. to the point at z; = 0, the map L, identifies the whole z;-line A! =
Vi 0.1/Wo with the z1-line A’ € P! C X.

In this way, we get an open immersion of each non-regular connected component of (Vi(,lg) /Wo)c
in the scheme X, which coincides on k-points with the restriction of the map of sets L.

6 The morphism L; in the basic odd case

Let ¢ :=w™' : QF — k*. Here we show that the map of sets L : (V,I(,l())/m))g(k) — X¢(k) that
we have defined in satisfies properties (ii) and (iiio) of and we define a morphism of
k-schemes L : (V,I(‘l0 /Wo)¢ — X¢ which coincides with the previous map of sets at the level of

k-points. By construction, it will have the properties This will complete the proof of
12 and L1l in the case of an odd character.

"The representations 7 (0, 21, 7n) constitute the unramified principal series of G.
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6.1. We verify properties (ii) and (iiio). We work over an irreducible component P! with label
? Sym” ®@det® | SymP " @det" ™ T*” where 1 <r < p—-2and 0 < a < p—2, cf. We
distinguish two cases.

1. The generic case r # p — 2. In this case, the irreducible component of X we consider is
an ‘interior’ component and has no exceptional points. On this component, we choose an affine
coordinate x around the double point having Sym” ® det® as one of its Serre weights. Away from
this point, we have = % 0 and the corresponding Galois representation has the form

~( unr(z)w™ ! 0
p== ( 0 unr(z1) ©n
with n = w®. As before, we have
m(pz) = 7(r,z,n)* & m(p—3—r],x H w )™,

The length of 7(p,) is 2. Indeed, by our assumptions on r, the principal series representations
7(r,z,m) and 7(p — 3 — r,x~ 1, w " 1y) are irreducible and the block b, contains only these two
irreducible representations. We may follow the argument of the generic case of word for word

and deduce property (ii).
2. The two boundary cases r = p — 2. In this case, the irreducible component is one of the two
1 -1
‘exterior’ components with labels ” Sym?~2 | ” Sym™*”” or ?” Sym ™! det’= 7 | Sym?P~? det™> 7,
Points of the open locus X éed lying on such a component correspond to twists of unramified Galois

representations of the form
_( unr(z) 0
Prta—1 = < 0 unr(x—l) > @1

withnp=1o0rn= w”z . Let us concentrate on one of the two components, i.e. let us fix 7.
Mapping an unramified Galois representation p, .1 to t := x + 2~ € k identifies this open
locus with the t-line A! C P'. We have

ﬂ-(pt) = 7T(p - ana 77)SS 2 W(p - 273;_1) 77)SS =iT1 S 2

since [p—3—(p—2)] =p—2 (indeed, p—3—(p—2) = -1 =p—2 mod (p—1)). The length
of m(py) is 2. Indeed, m = 7(p — 2,2,m) and m = 7(p — 2,271, 7n) are two irreducible principal
series representations and the block b; contains only these two irreducible representations. They
are isomorphic if and only if z = 41, i.e. if and only if ¢ = £2 is an exceptional point. In this
case, by contains only one irreducible representation and is of type 3, otherwise it is of type 2.

We may write

m = Indg(x) ©1
with ¥ = unr(z) ® wP~2unr(z~!). Similarly for m3. The character Xpx =1@® wP~? is regular
(i.e. different from its s-conjugate) and we are in the regular case of We conclude that
77{(1) = M(0,z,1, (1®wP~2).n) and wg(l) = M (0,271, 1, (1®wP~2).n) are both simple 2-dimensional
standard modules in the regular component 7 represented by the character (1 ® wp_2).(17|F§) =
(lgx) ® (77|F§)wp_2 € TV. They are isomorphic if and only if ¢ = +2. We choose an order
7 = ((nlpx) ® (77|]F;)o.)p*27 (e JwP™? @ (nlgx)) on the set 7. Then from L¢(v) =t we get that
either Sph”(v) = ﬂf(l) or Sph”(v) = 775(1). Since for regular v, the map Sph” is a bijection onto
all simple 7—[%p—rnodules7 one finds that Lgl(t) = {v1,v2} has cardinality 2 if ¢ # +2 and then
Sph(v1) & Sph(vz) = m(pe)" .

This settles property (ii). In turn, if ¢t = £2 is an exceptional point, then Lc_l(t) = {v} has
cardinality 1 and

Sph(v) @ Sph(v) ~ 7 (p)" .

This settles property (iiio).
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6.2. We define a morphism of k-schemes L¢ : (Vi(}é /Wo)¢ — X which coincides on k-points
with the map of sets L¢ : (V'I(“T())/WO)C(]{) — X¢(k). We work over a connected component of
(VFIE%())/WO)C, indexed by some v € TV/Wj. Let v be a k-point of this component.

Since C|F; = w™ !, the connected components of (V,i(ﬂf())/Wo)g are indexed by the fibre () 1;51 (w™h).
This fibre consists of the % regular components, represented by the characters

Xk = wk—l ®w—k

for k=1,..., p—;l, cf. Recall that zo = {(p) = 1.

Fix an order v = (x&, x7) on the set v and choose standard coordinates x,y. According to [PS|

7.4.8], our regular connected component identifies with two affine lines intersecting at the origin:
~ Al 1
V’f‘,o,l ~ A" Ug A",

Suppose that v = (0,0) is the origin, so that Sph(v) is a supersingular module. Let 7 (r,0,7n) be the

corresponding supersingular representation. It corresponds to the irreducible Galois representation

p(r,n), in the notation of [Belll, 1.3], whence L¢(v) = [p(r,n)]. According to the component

of = (r,0, 77)[(1)

is given by (w" ® 1) - (n\F;). Setting n|F; = w?, this implies (w" ® 1) - (77|pr) =
W @ w* = x; and hence a = —k and r = 2k — 1. The Serre weights of the irreducible
representation p(r,7) are therefore {Sym?* ! @ det™", Sﬁp% ®det* 1}, cf. [Br07, 1.9].

Comparing these pairs of Serre weights with the list [3.4| shows that the pT_l points
{origin (0,0) on the component (xx,x})}

fork=1,..., p—;l are mapped successively to the 1’2;1 double points of the chain X.. We distinguish
two cases.

1. The generic case 1 < k < %. In this case, the argument proceeds as in the regular case of
b-2] Consider the double point

@ = L¢(origin (0,0) on the component v = (xx, X%))-

As we have just seen, @ lies on an ‘interior’ irreducible component P' whose label includes the
weight Sym?*~! @ det™*. We fix an affine coordinate on this P! around @, which we will also call
x. Away from @, the affine coordinate x # 0 parametrizes Galois representations of the form

_( unr(z)w?* 0
P = ( 0 unr(z~1) > ©n

ka

with 17 := w™*. As we have seen above, 7(p,) = 7(2k—1,z,n)®m(p—3—2k+1, 271, w?n) =: 1, &m.

Moreover, 71 = Ind%(x) ® 7 with x = unr(z) ® w?* ' unr(z~1). Since

1@ ) .(g) =0 @ =x; e TY,

we deduce from the regular case of that ﬂ{(l) = M(0,z,1, x;) is a simple 2-dimensional standard
module. Note that M(0,z, 1, x5) = M(z,0,1, xx) according to [V04, Prop. 3.2].

Now suppose that v = (z,0), = # 0, denotes a nonzero point on the x-line of Al Uy Al. In
particular, Sph” (v) = M(z,0,1, x). Our discussion shows that the point L¢((x,0)) corresponds
to the block which contains 1. Since 71 lies in the block parametrized by [p.], cf. it follows
that

Le((2,0)) = [ps] =2 € Gy, C PL.

Since (0,0) maps to @, i.e. to the point at x = 0, the map L¢ identifies the whole affine z-line
Al ={(z,0) : x € k} C V4 ,, with the affine 2-line A* C P* C X,.

On the other hand, the double point @ also lies on the irreducible component whose labelling
includes the other weight of @, i.e. the weight Sym?~2* @ det”~!. We fix an affine coordinate y on
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this P! around Q. Away from @, the coordinate y # 0 parametrizes Galois representations of the

form » -
_( unr(y)wP™ 0
Py = < 0 unr(y~1) ) ®n

with 7 := w*~1. As in the first case, 7(p,) contains 7, := 7(p — 2k, y,7) = Ind%(x) @7 as a direct
summand, where now x = unr(y) ® wP~2* unr(y~1). Since

(1 ®Wp72k)~(77|1p;) =" @w T =X €T,

we deduce from the regular case of[4.2|that 7/ RV (0,9, 1, x) is a simple 2-dimensional standard
module.

Now suppose that v = (0,y), y # 0, denotes a nonzero point on the y-line of A! Uy Al. In
particular, Sph”(v) = M(0,y, 1, xx). Our discussion shows that the point L¢((0,y)) corresponds
to the block which contains 71, parametrized by [p,]. Hence

Lc((0,9) = [py] =y € G,,, € P

Since (0,0) maps to @, i.e. to the point at y = 0, the map L. identifies the whole y-line A! =
{(0,y) : y € k} C Vg, , with the affine y-line A' C P! C X.

In this way, we get an open immersion of each connected component (V% o /Wo)¢ of (V%l()) /Wo)c¢

such that v = (xx, x3) with 1 < k < ’72;1, in the scheme X, which coincides on k-points with the
restriction of the map of sets L¢.

2. The two boundary cases k € {1, %1} Consider the double point
Q = L¢(origin (0,0) on the component v = (X%, X%))-

As we have just seen, @ lies on an ‘interior’ irreducible component P! whose label includes the

weight Sym' @ det™" (for k = 1) or the weight Sym® ® det7 (for k = %) We fix an affine

coordinate on this P! around @, which we will call z. Away from @, the coordinate z # 0
parametrizes Galois representations of the form

p—3

withn=wlorn=w>z.
Let k =1, i.e. n = w™!. Following the argument in the generic case word for word, we may
conclude that L¢ identifies the a-line A' = {(2,0) : @ € k} C Vi ,, with the z-line A' C P! C X.

Let k = ”2;1, ie. n = w2, As in the generic case, we may conclude that L. identifies the

y-line Al = {(0,y) :y € k} C Vi o, with the z-line Al Cc P! C X..

On the other hand, the double point @ lies also on the irreducible component P! whose labelling

includes the other weight of @, i.e. the weight Sym?~? (for k = 1) or the weight Sym? ™% ® det "z
(for k = %_1) These are the two ‘exterior’ components. Points of the open locus X éed lying on

such a component correspond to unramified (up to twist) Galois representations of the form

o — ( um(r)(z) 0 >®n

unr(z71)

where n = 1 (for k = 1) or n = w"= (for k = 221y and with ¢ = 2 + 271 € A! € PL. As
in the boundary case of we have m(p;) = 7(p — 2,2,m) @ w(p — 2,271,n) = m & m and
these are irreducible principal series representations. We may write m; = Indg(x) ® n with y =
unr(z)®wP~2 unr(z~1). The character X|1F; = 1ewP~2isregular (i.e. different from its s-conjugate)
and we are in the regular case of We conclude that

Y = M(0,2,1,(1® wP~2).n)
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is a simple 2-dimensional standard module in the regular component represented by the character
1@ w™).(nlgx) = (lpx) © (g )w? ™ = (Mlgx) @ (Mlgx)w™" € T,

This latter character equals x1 for = 1 and (XpT—l)S forn = wir (indeed, note that % = —%
mod p — 1).

Now suppose that k = 1, i.e. n =1. Let v = (0,y), y # 0, be a nonzero point on the y-line of
Al Ug A, In particular, Sph” (v) = M(0,y, 1, x1). Our discussion shows that the point L¢((0,y))

corresponds to the block which contains 7y, i.e. which is parametrized by [p:]. It follows that
Le((0,y) =[p) =t =y+y ' € Al CP.

Since (0,0) maps to Q, i.e. to the point at t = oo, the map of sets L¢ maps the k-points of
the whole affine y-line A' = {(0,y) : y € k} C V4 0.1 to the k-points of the whole ‘left exterior’

component P! C X, via the formula

Al — P!
y+y ' ify#0
y = {oo:Q if y = 0.

This formula is algebraic: indeed, for y € A!\ {#i} (where 4 are the roots of the polynomial
fly)=y?>+1), wehave y +y L #0 and (y +y~1)~! = y/(y*> + 1), which is equal to 0 at y = 0.
Moreover, it glues at the origin (0,0) with the open immersion of the z-line of Vg o, = Al Ug Al
in X¢ defined above, since both map (0,0) to Q. We take the resulting morphism of k-schemes

AlUpA! — X, as the definition of L¢ on the connected component (V,T(,XJ’Xi)/WO)C of (V%%/WO)C.

Note that its restriction to the open subset {y # 0} in the y-line A! is the morphism G,,, — A!
corresponding to the ring extension

k[t] — K[y, y~ '] = K[t)[y]/(v* — ty + 1),

and that the discriminant t? — 4 of y? — ty + 1 € k[t][y] vanishes precisely at the two exceptional
points t = £2.

Suppose k = p—;l, ie.p= wh . Let v = (2,0), x # 0, denote a nonzero point on the z-line of
Al Ug A'. In particular,

Sph’Y(U) = M(O,.’E, L (XPT—l)S) = M(:L’, 0,1, XPT_l)'

Our discussion shows that the point L¢((z,0)) corresponds to the block which contains 71, i.e.
which is parametrized by [p;]. It follows that L¢((z,0)) = [ps] =t =+ 2~ € A* C P'. Since
(0,0) maps to the point @ at ¢ = co, the map of sets L maps the k-points of the whole affine z-line
Al ={(z,0):y €k} C Vo1 to the k-points of the whole ‘right exterior” component P! C X, via
the formula

Al — P!
. 4ot ifax#0
. o=@ ifx=0.

This formula is algebraic. Moreover, it glues at the origin (0,0) with the open immersion of the

y-line of Vg (| = Al Up A in X, defined above, since both map (0,0) to Q. We take the resulting

morphism of k-schemes A' Uy Al — X¢ as the definition of L; on the connected component
(X%l’(xz%)s) (1)

Vzo /Wo)¢ of (Vg o/Wo)e-

7 An interpolation of the semisimple mod p correspondence

In this subsection we continue to assume p > 5.

21



7.1. Recall the mod p parametrization functor P from |4 E For ¢ € ZV(k), let ModC(H(})) be
the full subcategory of Mod(?—l( )) whose objets are the ’H( )—modules M whose Satake parameter
S(M) is supported on the closed subscheme (VT O/W )¢ C V( )/W A 7—[( ) -module M lies in
the category Mod, (H%) if and only if: M is onl}; supported in *y—components where *y|]pr =( |]F;

and the operator U? acts on M via the G,,-part of (. Then P induces a mod p (-parametrization
functor

P Modc(’Hg) —— QUoh((VL!)/Wo)e).
Let ¢ € ZY(k). We have the functor

Le. : QCoh((V{!) /Wo)c) —— QCoh(X)

push-forward along the k-morphism L¢ : ( %%/Wo)g — X¢ from 4.11] Finally recall that for
¢ € 2V(k), the functor of I(M-invariants (~)I(1) : Mod®™ (k[G]) — Mod(’Hg)) induces a functor

(OF"  ModZ™ ([G) — Modc (H{),

by 7]

7.2. Definition. Let ( € ZV(k). The mod p ¢-Langlands parametrization functor is the functor
L(PC = LC* [¢] PC .

Modg(H(l))

|

QCoh(X¢)

Identifying ¢ with a central character of G, the functor L¢P extends to the category Modi™ (k[G])
by precomposing with the functor (~)£<1) : Modg™ (k[G]) — MOdg(H%)). This gives the functor
LcPeo()f

Mod?™ (k[G])

J

7.3. Theorem. Suppose F' = Q, withp > 5. Fiz a character ¢ : Z(G) = QX — kx, corresponding

to a point (C\F; ,C(p™1)) € ZY(k) under the identification Z(GQ)Y = ZV(k fmm
The mod p (-Langlands parametrization functor Iﬁc interpolates the Langlands parametriza-

tion of the blocks of the category Mod?dm(k[G]), cf. s forall x € X¢(k) and for all m € by, 3,

7 iw*(wl(l)) if T is not an exceptional point in the odd case
L<P<(7T ) = 1(1))@2

T (T

. € QCoh(X¢)
otherwise

where iy : Spec(k) — X is the k-point x.

Proof. By definition of a block of a category as a certain equivalence class of simple objects [Pas13],
if m € bj,,) then in particular 7 is simple. Then o s simple too, and hence has a central

character. Therefore P (! (U) is the underlying k-vector space of 7! @ supported at the k-point

v E (V,I(,l())/ Wo)¢ corresponding to its central character under the isomorphism Y%l), which lies
’ P
on some connected component . Suppose dimy (7! (1)) = 2. Then 7! is isomorphic to the
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simple standard module of 7—[% with central character v, i.e. to Sph”(v), and hence L¢(v) = x

by definition of the map of sets L¢(k). Suppose dimk(wl(l)) = 1. Then 7! is one of the two

spherical characters of 7—[% whose restriction to the center Z (”H% ) is equal to v, i.e. it is one of
p P

the simple constituents of (Sph”(v))*, and hence again L¢(v) = x by definition of the map of sets
L¢(k). Now if z is not an exceptional point in an odd case, then L, is an open immersion at v,
and otherwise it has ramification index 2 at v. The theorem follows. O
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