Semisimple Langlands for $G L_{2}\left(\mathbb{Q}_{p}\right)$ and $\bmod p$ Hecke modules

Cédric PEPIN and Tobias SCHMIDT

December 22, 2023

Abstract

Let $p \geq 5$ and let $Z\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$ be the center of the $\bmod p$ pro- p-Iwahori Hecke algebra of $\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$. Let X be the projective curve parametrizing 2 -dimensional $\bmod p$ semi-simple representations of the absolute Galois group $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$. We construct a quotient morphism of schemes $\operatorname{Spec} Z\left(\mathcal{H}_{\overline{\mathrm{F}}_{p}}^{(1)}\right) \rightarrow X$. We then show that the correspondence between the specialization $\mathcal{M}_{z}^{(1)}$ of the spherical $\mathcal{H}_{\mathbb{P}_{p}}^{(1)}$-module $\mathcal{M}^{(1)}$ from [PS in closed points $z \in \operatorname{Spec} Z\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$ and the Galois representation $\rho_{x(z)}$ is the semi-simple $\bmod p$ local Langlands correspondence for the group $\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$.

Contents

1 Introduction 1
$2 \operatorname{Mod} p$ Satake parameters with fixed central character 3
3 Mod p Langlands parameters with fixed determinant 5
4 A morphism from Hecke to Galois 7
5 The morphism L_{ζ} in the basic even case 12
6 The morphism L_{ζ} in the basic odd case 16
7 An interpolation of the semisimple mod p correspondence 20

1 Introduction

Background. The mod p (and the p-adic) Langlands correspondence for $\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$ was conjectured by Breuil, and has been fully established by Colmez-Dospinescu-Paškūnas CDP14, building on work of Breuil, Colmez, Emerton, Kisin, Paškūnas and many others. Its semisimple version was established by Breuil in Br03. It is an explicit map $\rho \mapsto \pi(\rho)$, from the set of semisimple continuous representations of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ on 2-dimensional $\overline{\mathbb{F}}_{p}$-vector spaces, to the set of semisimple smooth representations of $\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$ on $\overline{\mathbb{F}}_{p}$-vector spaces.

Set $G:=\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$, let $Z(G)=\mathbb{Q}_{p}^{\times}$be the center of G and $\zeta: Z(G) \rightarrow \overline{\mathbb{F}}_{p}^{\times}$be a central character. Assume $p \geq 5$. In DEG22, Dotto-Emerton-Gee introduce a curve X_{ζ} over \mathbb{F}_{p} (denoted by X in loc.cit.), which is a chain of projective lines with ordinary double points and of length $(p \pm 1) / 2$, where the sign is equal to $-\zeta(-1)$. The definition of X_{ζ} is motivated by the Galois side of Breuil's semisimple correspondence: the closed $\overline{\mathbb{F}}_{p}$-points of X_{ζ} parametrize isomorphism classes of semisimple 2-dimensional continuous representations of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ over $\overline{\mathbb{F}}_{p}$ with determinant $\omega \zeta$:

$$
X_{\zeta}\left(\overline{\mathbb{F}}_{p}\right) \cong\left\{\text { semisimple continuous } \rho: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \widehat{\mathbf{G L}_{2}}\left(\overline{\mathbb{F}}_{p}\right) \text { with } \operatorname{det} \rho=\omega \zeta\right\} / \sim ;
$$

here ω is the mod p cyclotomic character. See [DEG22, 1.4] for further discussion on the curve X_{ζ}. In the the sequel, we let X be the disjoint union over all X_{ζ}, base changed to $\overline{\mathbb{F}}_{p}$.

Let $I^{(1)} \subset G$ be the standard pro- p Iwahori subgroup consisting of integral matrices which are upper unipotent $\bmod p$, and let $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$ is the pro- p-Iwahori Hecke algebra of G with coefficients in $\overline{\mathbb{F}}_{p}$. By work of Ollivier O09, the functor of $I^{(1)}$-invariants $\pi \mapsto \pi^{I^{(1)}}$ is an equivalence from the category of mod p smooth representations of G which are generated by their $I^{(1)}$-invariants, to the category of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules. Thus the composed map $\rho \mapsto \pi(\rho)^{I^{(1)}}$ is a correspondence from the set of semisimple mod p 2-dimensional continuous representations of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ to the set of semisimple $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules.

Statement of the result. Let $Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$ be the center of the algebra $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$. In [PS, 7.4.1], we constructed the mod p spherical module $\mathcal{M}_{\mathbb{F}_{p}}^{(1)}$. It is a distinguished $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$-action on a maximal commutative subring of $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$, which is a $\bmod p$ analogue (plus extension to the pro- p Iwahori level) of the classical (anti)spherical module appearing in complex Kazhdan-Lusztig theory KL87, 3.9]. The quasi-coherent module associated to $\mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)}$ on $\operatorname{Spec} Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$, when specialized at closed points, gives rise to a parametrization of all irreducible $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules [PS, 7.4.9/7.4.15].

Here we prove the following (cf. Theorem 4.9):
Theorem. Let $G=\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$ with $p \geq 5$. There exists a quotient morphism of $\overline{\mathbb{F}}_{p}$-schemes

$$
\mathscr{L}: \operatorname{Spec} Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right) \longrightarrow X
$$

with the following property: given a closed point $z \in \operatorname{Spec} Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$, the correspondence between the $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-module $\mathcal{M}_{z}^{(1)}$, equal to the specialization of $\mathcal{M}^{(1)}$ in the central character z, and the Galois representation $\rho_{x(z)}$, is the semisimple mod p local Langlands correspondence.

Thus, the quasi-coherent \mathcal{O}_{X}-module $\mathscr{L}_{*} \mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)}$, equal to the push-forward of $\mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)}$ along \mathscr{L}, interpolates the semisimple Langlands correspondence: for all $x \in X\left(\overline{\mathbb{F}}_{p}\right)$, one has an isomorphism of $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$-modules

$$
\left(\mathscr{L}_{*} \mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)} \otimes_{\mathcal{O}_{X}} k(x)\right)^{\mathrm{ss}}=\left(\mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)} \otimes_{Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)} \mathcal{O}_{\mathscr{L}^{-1}(x)}\right)^{\mathrm{ss}} \cong \pi\left(\rho_{x}\right)^{I^{(1)}}
$$

As a byproduct of our constructions, we also obtain an interpolation of Paškūnas' parametrization of the blocks of the category $\operatorname{Mod}_{\zeta}^{\mathrm{ladm}}\left(\overline{\mathbb{F}}_{p}[G]\right)$ of locally admissible smooth G-representations over $\overline{\mathbb{F}}_{p}$ with central character ζ Pas13. See 7.3 for the precise statement.

More details on the construction. The construction of the morphism \mathscr{L} is a consequence of our results from [PS] on the geometry of the generic pro- p-Iwahori-Hecke algebra (with coefficients in the ring $\mathbb{Z}[\mathbf{q}]$ where \mathbf{q} is a formal variable) for $\mathbf{G L}_{2}\left(\mathbb{Q}_{p}\right)$, specialized at $\mathbf{q}=p=0 \in \overline{\mathbb{F}}_{p}$. To give more details, let $\widehat{\mathbf{G}}$ be the Langlands dual group of $\mathbf{G L}_{2}$ over $\overline{\mathbb{F}}_{p}$, with maximal torus $\widehat{\mathbf{T}}$. We consider the special fibre at $\mathbf{q}=0$ of the Vinberg fibration $V_{\widehat{\mathbf{T}}} \xrightarrow{\mathbf{q}} \mathbb{A}^{1}$ associated to $\widehat{\mathbf{T}} \subset \widehat{\mathbf{G}}$ followed by base change to $\overline{\mathbb{F}}_{p}$. This yields the $\overline{\mathbb{F}}_{p}$-semigroup scheme

$$
V_{\widehat{\mathbf{T}}, 0}:=\operatorname{SingDiag}_{2 \times 2} \times_{\overline{\mathbb{F}}_{p}} \mathbb{G}_{m},
$$

where $\operatorname{SingDiag}_{2 \times 2}$ represents the semigroup of singular diagonal 2×2-matrices over $\overline{\mathbb{F}}_{p}$, cf. PS , 7.1]. Let \mathbb{T}^{\vee} be the finite abelian group dual to $\mathbb{T}=\mathbf{T}\left(\mathbb{F}_{p}\right)$, and consider the extended semigroup

$$
V_{\widehat{\mathbf{T}}, 0}^{(1)}:=\mathbb{T}^{\vee} \times V_{\widehat{\mathbf{T}}, 0} .
$$

It has a natural diagonal W_{0}-action. In $\left.\mathrm{PS}, 7.2 .2\right]$ we established the $\bmod p$ pro- p-Iwahori Satake isomorphism

$$
\operatorname{Spec} \mathscr{S}_{\overline{\mathbb{F}}_{p}}^{(1)}: V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0} \xrightarrow{\sim} \operatorname{Spec} Z\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)
$$

identifying the center $Z\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$ with the ring of regular functions on the quotient $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$. It encodes the duality between $\mathbf{G} \mathbf{L}_{2}$ and the dual group $\widehat{\mathbf{G}}$. The morphism \mathscr{L} is then a composition of the inverse of $\operatorname{Spec} \mathscr{S}_{\mathbb{\mathbb { F }}_{p}}^{(1)}$ with a certain morphism L (see below) from $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ to X :

$$
\mathscr{L}:=L \circ\left(\operatorname{Spec} \mathscr{S}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)^{-1} .
$$

Organization of the article. In section 2 we recall some results from PS , notably that the quotient $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ is naturally fibered over the central characters ζ of $\mathbf{G} \mathbf{L}_{2}\left(\mathbb{Q}_{p}\right)$. Any fibre $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ is a naturally ordered union of connected components, which generically ${ }^{1}$ are equal to two affine lines $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$ intersecting at the origin. In section 3 we recall some properties of X_{ζ}. Whereas in DEG22 the irreducible components of X_{ζ} are labeled by certain cuspidal types, we choose a labelling of irreducible components by certain pairs of Serre weights, which is inspired from Em19 ${ }^{2}$ and which is more suitable for our purposes. In section 4 we state the existence and properties of a distinguished morphism

$$
L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}
$$

and set $L:=\coprod_{\zeta} L_{\zeta}$. We first define the morphism L_{ζ} on the level of $\overline{\mathbb{F}}_{p}$-points. This uses Paškūnas' parametrization of the blocks of the category $\operatorname{Mod}_{\zeta}^{\operatorname{ladm}}\left(\overline{\mathbb{F}}_{p}[G]\right)$ from Pas13. The morphism L_{ζ} is locally given by the toric construction of the projective line: it identifies the open subset \mathbb{G}_{m} in the "first" irreducible component \mathbb{A}^{1} of the connected component $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$ with the open subset \mathbb{G}_{m} in "second" irreducible component \mathbb{A}^{1} of the "next" connected component $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$ via the map $z \mapsto z^{-1}$, thus forming a \mathbb{P}^{1}. We reduce the case of a general central character ζ to two basic cases according to a certain parity of ζ. In sections 5,6 we prove all stated properties of the morphism L_{ζ} in the basic cases. Finally, in section 7 we explain the interpolation of the semisimple mod p correspondence.

Notation. We fix an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p} and let k be its residue field, an algebraic closure $\overline{\mathbb{F}}_{p}$ of \mathbb{F}_{p}. We let $G=\mathbf{G} \mathbf{L}_{2}\left(\mathbb{Q}_{p}\right)$. We let \mathbf{T} denote the diagonal torus in $\mathbf{G L}_{2}$ and W_{0} its Weyl group. Let $\mathbb{T}=\mathbf{T}\left(\mathbb{F}_{p}\right)$. If H is a finite group, then $H^{\vee}:=\operatorname{Hom}\left(H, k^{\times}\right)$. Finally, $\widehat{\mathbf{G}}$ denotes the dual group of $\mathbf{G} \mathbf{L}_{2}$ over k, with maximal torus $\widehat{\mathbf{T}}$.

2 Mod p Satake parameters with fixed central character

We recall some results from [PS, 7.5] in the special case $F=\mathbb{Q}_{p}$.
2.1. Let $\omega: \mathbb{F}_{p}^{\times} \rightarrow k^{\times}$be given by the embedding $\mathbb{F}_{p} \subset k$. The group $\left(\mathbb{F}_{p}^{\times}\right)^{\vee}=\langle\omega\rangle$ is cyclic of order $p-1$. Any element ω^{r} gives rise to a non-regular character of \mathbb{T} via $\omega^{r}\left(t_{1}, t_{2}\right):=\omega^{r}\left(t_{1}\right) \omega^{r}\left(t_{2}\right)$ for all $\left(t_{1}, t_{2}\right) \in \mathbb{T}=\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$. Composition with multiplication in \mathbb{T}^{\vee} produces an action of $\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$ on \mathbb{T}^{\vee}, which factors through the quotient $\mathbb{T}^{\vee} / W_{0}$:

$$
\mathbb{T}^{\vee} / W_{0} \times\left(\mathbb{F}_{q}^{\times}\right)^{\vee} \longrightarrow \mathbb{T}^{\vee} / W_{0},\left(\gamma, \omega^{r}\right) \mapsto \gamma \omega^{r}
$$

If $\gamma \in \mathbb{T}^{\vee} / W_{0}$ is regular (non-regular), then $\gamma \omega^{r}$ is regular (non-regular).
2.2. We may restrict characters to the subgroup $\mathbb{F}_{p}^{\times} \simeq\left\{\operatorname{diag}(a, a): a \in \mathbb{F}_{p}^{\times}\right\} \subset \mathbb{T}$ and this gives a homomorphism $\mathbb{T}^{\vee} \rightarrow\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$ which factors into a restriction map

$$
\mathbb{T}^{\vee} / W_{0} \rightarrow\left(\mathbb{F}_{p}^{\times}\right)^{\vee},\left.\gamma \mapsto \gamma\right|_{\mathbb{F}_{p}^{\times}}
$$

The relation to the $\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$-action on the source $\mathbb{T}^{\vee} / W_{0}$ is $\left.\left(\gamma \omega^{r}\right)\right|_{\mathbb{F}_{p}^{\times}}=\left.\gamma\right|_{\mathbb{F}_{p}^{\times}} \omega^{2 r}$. We recall the fibers of the restriction map $\left.\gamma \mapsto \gamma\right|_{\mathbb{F}_{q}^{\times}}$. Let $\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}\left(\omega^{2 r}\right)$ be the fibre at a square element $\omega^{2 r}$. The action

[^0]of ω^{-r} on $\mathbb{T}^{\vee} / W_{0}$ induces a bijection with the fibre $\left.(\cdot)\right|_{\mathbb{F}_{q}^{\times}} ^{-1}(1)$. The fibre
$$
\left.(\cdot)\right|_{\mathbb{F}_{q}^{\times}} ^{-1}(1)=\{1 \otimes 1\} \coprod\left\{\omega \otimes \omega^{-1}, \omega^{2} \otimes \omega^{-2}, \ldots, \omega^{\frac{q-3}{2}} \otimes \omega^{-\frac{q-3}{2}}\right\} \coprod\left\{\omega^{\frac{q-1}{2}} \otimes \omega^{-\frac{q-1}{2}}\right\}
$$
has cardinality $\frac{p+1}{2}$ and, in the above list, we have chosen a representative in \mathbb{T}^{\vee} for each element in the fibre. The W_{0}-orbits represented by the characters $\omega^{r} \otimes \omega^{-r}$ for $r=1, \ldots, \frac{p-3}{2}$, are all regular W_{0}-orbits. The two orbits at the two ends of the list are non-regular orbits. Since the action of ω^{-r} preserves regular (non-regular) orbits, any fibre at a square element (there are $\frac{p-1}{2}$ such fibres) has the same structure. On the other hand, let $\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}\left(\omega^{2 r-1}\right)$ be the fibre at a non-square element $\omega^{2 r-1}$. The action of ω^{-r} induces a bijection with the fibre $\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}\left(\omega^{-1}\right)$. The fibre
$$
\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}\left(\omega^{-1}\right)=\left\{1 \otimes \omega^{-1}, \omega \otimes \omega^{-2}, \ldots, \omega^{\frac{p-1}{2}-1} \otimes \omega^{-\frac{p-1}{2}}\right\}
$$
has cardinality $\frac{p-1}{2}$ and we have chosen a representative in \mathbb{T}^{\vee} for each element in the fibre. All elements of the fibre are regular W_{0}-orbits. Since the action of ω^{-r} preserves regular (non-regular) orbits, any fibre at a non-square element (there are $\frac{p-1}{2}$ such fibres) has the same structure.
2.3. We have the commutative k-semigroup scheme
$$
V_{\widehat{\mathbf{T}}, 0}^{(1)}=\mathbb{T}^{\vee} \times V_{\widehat{\mathbf{T}}, 0}=\mathbb{T}^{\vee} \times \text { SingDiag }_{2 \times 2} \times \mathbb{G}_{m}
$$
cf. [PS, 7.5.3]. It has a natural W_{0}-action: the natural action of W_{0} on the factors \mathbb{T}^{\vee} and SingDiag ${ }_{2 \times 2}$ and the trivial one on \mathbb{G}_{m}. In addition to this, there is a commuting action of the k-group scheme
$$
\mathcal{Z}^{\vee}:=\left(\mathbb{F}_{p}^{\times}\right)^{\vee} \times \mathbb{G}_{m}
$$
on $V_{\widehat{\mathbf{T}}, 0}^{(1)}$: the (constant finite diagonalizable) group $\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$ acts only on the factor \mathbb{T}^{\vee} and in the way described in 2.1 an element $z_{0} \in \mathbb{G}_{m}$ acts trivially on \mathbb{T}^{\vee}, by multiplication with the diagonal matrix $\operatorname{diag}\left(z_{0}, z_{0}\right)$ on $\operatorname{SingDiag}_{2 \times 2}$ and by multiplication with the square z_{0}^{2} on \mathbb{G}_{m}. Therefore the quotient $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ inherits a \mathcal{Z}^{\vee}-action. We have a decomposition
$$
V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}=\coprod_{\gamma \in\left(\mathbb{T}^{\vee} / W_{0}\right)_{\mathrm{reg}}} V_{\widehat{\mathbf{T}}, 0} \coprod_{\gamma \in\left(\mathbb{T}^{\vee} / W_{0}\right)_{\text {non-reg }}} V_{\widehat{\mathbf{T}}, 0} / W_{0} .
$$

In this optic, the $\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$-action is by permutations on the index set $\mathbb{T}^{\vee} / W_{0}$. It preserves the subsets of regular and non-regular components. The \mathbb{G}_{m}-action on $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ preserves connected components.
2.4. Recall from [PS, 7.5.6] the spherical map

$$
\text { Sph : }\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)(k) \longrightarrow\left\{\text { left } \mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)} \text {-modules }\right\} / \sim
$$

and the twisting action of $\mathcal{Z}^{\vee}(k)$ on semisimple $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules. Let $\mathrm{Sph}^{\text {ss }}$ be the map Sph followed by semisimplification.
2.5. Lemma. The map $\mathrm{Sph}^{\mathrm{ss}}$ is $\mathcal{Z}^{\vee}(k)$-equivariant.

Proof. This is [PS, 7.5.2].
2.6. According to $\mathrm{PS}, 7.5 .4$], we have two projection morphisms

Composing $\operatorname{pr}_{\mathbb{T}^{\vee} / W_{0}}$ with the restriction map $\left.(\cdot)\right|_{\mathbb{E}_{p}^{\times}}: \mathbb{T}^{\vee} / W_{0} \rightarrow\left(\mathbb{F}_{p}^{\times}\right)^{\vee}$, setting

$$
\theta:=\left(\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} \circ \operatorname{pr}_{\mathbb{T}^{\vee}} / W_{0}\right) \times \operatorname{pr}_{\mathbb{G}_{m}}
$$

yields

$$
\begin{gathered}
V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0} \\
\downarrow \theta \\
\mathcal{Z}^{\vee}
\end{gathered}
$$

The relation to the \mathcal{Z}^{\vee}-action on the source $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ is given by the formula

$$
\theta\left(x .\left(\omega^{r}, z_{0}\right)\right)=\theta(x)\left(\omega^{2 r}, z_{0}^{2}\right)=\theta(x)\left(\omega^{r}, z_{0}\right)^{2}
$$

for $x \in V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ and $\left(\omega^{r}, z_{0}\right) \in \mathcal{Z}^{\vee}$. The following definition is [PS, 7.5.1].
2.7. Definition. Let $\zeta \in \mathcal{Z}^{\vee}$. The space of $\bmod p$ Satake parameters with central character ζ is the k-scheme

$$
\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}:=\theta^{-1}(\zeta) .
$$

2.8. Let $\zeta=\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, z_{2}\right) \in \mathcal{Z}^{\vee}(k)=\left(\mathbb{F}_{p}^{\times}\right)^{\vee} \times k^{\times}$. Denote by $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{z_{2}}$ the fibre of $\mathrm{pr}_{\mathbb{G}_{m}}$ at $z_{2} \in k^{\times}$. Recall from [PS, 7.5.5] that

$$
\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}=\coprod_{\gamma \in\left(\mathbb{T}^{\vee} / W_{0}\right)_{\text {reg }},\left.\gamma\right|_{\mathbb{E}_{p}^{\times}}=\left.\zeta\right|_{\mathbb{P}_{p}^{\times}}} V_{\widehat{\mathbf{T}}, 0, z_{2}} \coprod_{\gamma \in\left(\mathbb{T}^{\vee} / W_{0}\right)_{\text {non-reg }},\left.\gamma\right|_{\mathbb{F}_{p}^{\times}}=\left.\zeta\right|_{\mathbb{R}_{p}^{\times}}} V_{\widehat{\mathbf{T}}, 0, z_{2}} / W_{0} .
$$

There are standard coordinates x, y such that $V_{\widehat{\mathbf{T}}, 0, z_{2}} \simeq \mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$, two affine lines crossing at the origin. There is a Steinberg coordinate z_{1} such that

$$
V_{\widehat{\mathbf{T}}, 0, z_{2}} / W_{0} \simeq \mathbb{A}^{1}
$$

2.9. Lemma. Let $\zeta, \eta \in \mathcal{Z}^{\vee}$. The action of η on $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ induces an isomorphism of k-schemes $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \simeq\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta \eta^{2}}$.

Proof. This is PS, 7.5.2].

3 Mod p Langlands parameters with fixed determinant

3.1. We normalize local class field theory $\mathbb{Q}_{p}^{\times} \rightarrow \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)^{\text {ab }}$ by sending p to a geometric Frobenius. In this way, we identify the k-valued smooth characters of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ and of \mathbb{Q}_{p}^{\times}. Finally, $\omega: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$denotes the extension of the character $\omega: \mathbb{F}_{p}^{\times} \rightarrow k^{\times}$to \mathbb{Q}_{p}^{\times}satisfying $\omega(p)=1$, and $\operatorname{unr}(x): \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$denotes the character trivial on \mathbb{F}_{p}^{\times}and sending p to x.
3.2. Let $\zeta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$be a character. Recall from DEG22 the projective curve X_{ζ} over \mathbb{F}_{p} whose $\overline{\mathbb{F}}_{p}$-points parametrize (isomorphism classes of) two-dimensional semisimple continuous Galois representations over k with determinant $\omega \zeta$:

$$
X_{\zeta}(k) \cong\left\{\text { semisimple continuous } \rho: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \widehat{\mathbf{G}}(k) \text { with } \operatorname{det} \rho=\omega \zeta\right\} / \sim
$$

The curve X_{ζ} is a chain of projective lines over k of length $\frac{p \pm 1}{2}$, whose irreducible components intersect at ordinary double points. The sign ± 1 is equal to $-\zeta(-1)$. We refer to ζ in the case $-\zeta(-1)=-1$ resp. $-\zeta(-1)=+1$ as an even character resp. odd character. From now on, we let X_{ζ} denote its base change to k. There is a finite set of closed points $X_{\zeta}^{\text {irred }} \subset X_{\zeta}$ which correspond to the classes of irreducible representations. Its open complement $X_{\zeta}^{\text {red }}=X_{\zeta} \backslash X_{\zeta}^{\text {irred }}$ parametrizes
the reducible representations (i.e. direct sums of characters). Let $\eta: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow k^{\times}$be a character. Since $\operatorname{det}(\rho \otimes \eta)=(\operatorname{det} \rho) \eta^{2}$, twisting representations with η induces an isomorphism

$$
(\cdot) \otimes \eta: X_{\zeta} \xrightarrow{\sim} X_{\zeta \eta^{2}}
$$

Hence one is reduced to consider only two 'basic' cases: the even case where $\zeta(p)=1$ and $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=1$ and the odd case where $\zeta(p)=1$ and $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-1}$. Indeed, if $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{r}$ for some even r, then choosing η with $\eta(p)^{2}=\zeta(p)^{-1}$ and $\left.\eta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-\frac{r}{2}}$, one finds that $\left(\zeta \eta^{2}\right)(p)=1$ and $\left.\left(\zeta \eta^{2}\right)\right|_{\mathbb{F}_{p}^{\times}}=1$; if $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{r}$ for some odd r, then choosing η with $\eta(p)^{2}=\zeta(p)^{-1}$ and $\left.\eta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-\frac{r+1}{2}}$, one finds that $\left(\zeta \eta^{2}\right)(p)=1$ and $\left.\left(\zeta \eta^{2}\right)\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-1}$.
3.3. We make explicit some structure elements of X_{ζ} in the even case $\zeta(p)=1$ and $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=1$. Every irreducible component of X_{ζ} is isomorphic to \mathbb{P}^{1} and there are $\frac{p-1}{2}$ components. They are labelled by pairs of Serre weights of the following form:

$$
\left.\begin{array}{c|c}
\operatorname{Sym}^{0} & \operatorname{Sym}^{p-3} \otimes \operatorname{det} \\
\operatorname{Sym}^{2} \otimes \operatorname{det}^{-1} & \operatorname{Sym}^{p-5} \otimes \operatorname{det}^{2} \\
\operatorname{Sym}^{4} \otimes \operatorname{det}^{-2} & \operatorname{Sym}^{p-7} \otimes \operatorname{det}^{3} \\
\vdots & \vdots
\end{array}\right] \begin{gathered}
\\
\operatorname{Sym}^{p-3} \otimes \operatorname{det}^{\frac{p+1}{2}}
\end{gathered} \quad \operatorname{Sym}^{0} \otimes \operatorname{det}^{\frac{p-1}{2}} .
$$

The component with label $" \operatorname{Sym}^{0} \mid \operatorname{Sym}^{p-3} \otimes$ det" intersects the next component at the point of $X_{\zeta}^{\text {irred }}$ parametrizing the irreducible Galois representation whose associated Serre weights are $\left\{\operatorname{Sym}^{2} \otimes \operatorname{det}^{-1}, \operatorname{Sym}^{p-3} \otimes \operatorname{det}\right\}$. The component with label $" \operatorname{Sym}^{2} \otimes \operatorname{det}^{-1} \mid \operatorname{Sym}^{p-5} \otimes \operatorname{det}^{2} "$ intersects the next component at the point of $X_{\zeta}^{\text {irred }}$ parametrizing the irreducible Galois representation whose associated Serre weights are $\left\{\mathrm{Sym}^{4} \otimes \operatorname{det}^{-2}, \mathrm{Sym}^{p-5} \otimes \operatorname{det}^{2}\right\}$. Continuing in this way, one finds $\frac{p-3}{2}$ points of $X_{\zeta}^{\text {irred }}$, which correspond to the $\frac{p-3}{2}$ double points of the chain X_{ζ}. There are two more points in $X_{\zeta}^{\text {irred }}$: they are smooth points, each one lies on one of the two 'exterior' components and corresponds there to the irreducible Galois representation whose associated Serre weights are $\left\{\operatorname{Sym}^{0}, \operatorname{Sym}^{p-1}\right\}$ and $\left\{\operatorname{Sym}^{0} \otimes \operatorname{det}^{\frac{p-1}{2}}, \operatorname{Sym}^{p-1} \otimes \operatorname{det}^{\frac{p-1}{2}}\right\}$ respectively. So $X_{\zeta}^{\text {irred }}$ has cardinality $\frac{p+1}{2}$. Suppose we are on one of the two exterior components \mathbb{P}^{1}. There is a canonical affine coordinate z_{1} on the open complement of the double point, identifying this open complement with \mathbb{A}^{1}. We call the four points where $z_{1}= \pm 1$ the four exceptional points of X_{ζ}.
3.4. We make explicit some structure elements of X_{ζ} in the odd case $\zeta(p)=1$ and $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-1}$. Every irreducible component of X_{ζ} is isomorphic to \mathbb{P}^{1} and there are $\frac{p+1}{2}$ components. They are labelled by pairs of Serre weights of the following form:

$$
\begin{array}{c|c}
\operatorname{Sym}^{p-2} & " \operatorname{Sym}^{-1} " \\
\operatorname{Sym}^{p-4} \otimes \operatorname{det} & \operatorname{Sym}^{1} \otimes \operatorname{det}^{-1} \\
\operatorname{Sym}^{p-6} \otimes \operatorname{det}^{2} & \operatorname{Sym}^{3} \otimes \operatorname{det}^{-2} \\
\vdots & \vdots
\end{array}
$$

The component with label " $\mathrm{Sym}^{p-2} \mid$ " $\mathrm{Sym}^{-1} "$ " intersects the next component at the point of $X_{\zeta}^{\text {irred }}$ parametrizing the irreducible Galois representation whose associated Serre weights are $\left\{\operatorname{Sym}^{1} \otimes \operatorname{det}^{-1}, \operatorname{Sym}^{p-2}\right\}$. The component with label " $\operatorname{Sym}^{p-4} \otimes \operatorname{det} \mid \operatorname{Sym}^{1} \otimes \operatorname{det}^{-1} "$ intersects the next component at the point of $X_{\zeta}^{\text {irred }}$ parametrizing the irreducible Galois representation whose associated Serre weights are $\left\{\mathrm{Sym}^{3} \otimes \operatorname{det}^{-2}, \operatorname{Sym}^{p-4} \otimes \operatorname{det}\right\}$. Continuing in this way, one finds $\frac{p-1}{2}$ points of $X_{\zeta}^{\text {irred }}$, which correspond to the $\frac{p-1}{2}$ double points of the chain X_{ζ}. There are no more points in $X_{\zeta}^{\mathrm{i} r r e d}$ and $X_{\zeta}^{\mathrm{irrred}}$ has cardinality $\frac{p-1}{2}$. Suppose we are on one of the two exterior components \mathbb{P}^{1}. There is a canonical affine coordinate t on the open complement of the double
point, identifying this open complement with \mathbb{A}^{1}. We call the four points where $t= \pm 2$ the four exceptional points of $X_{\zeta} \cdot{ }^{3}$

4 A morphism from Hecke to Galois

4.1. We let $I \subset G$ be the standard Iwahori subgroup of G consisting of integral matrices which are upper triangular mod p. Let $I^{(1)} \subset I$ be its p-Sylow subgroup, i.e. matrices which are upper unipotent $\bmod p$. We identify W_{0} with the subgroup of G generated by the matrix $s=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. We also put

$$
u=\left(\begin{array}{cc}
0 & p^{-1} \\
1 & 0
\end{array}\right), \quad u^{-1}=\left(\begin{array}{cc}
0 & 1 \\
p & 0
\end{array}\right), \quad u s=\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right), \quad s u=\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right)
$$

Moreover, $u^{2}=\operatorname{diag}\left(p^{-1}, p^{-1}\right){ }^{4}$ Since

$$
\left(\begin{array}{cc}
0 & p^{-1} \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
p & 0
\end{array}\right)=\left(\begin{array}{cc}
d & p^{-1} c \\
p b & a
\end{array}\right)
$$

the element $u \in G$ normalizes the group $I^{(1)}$.
4.2. Let $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$ be the pro- p Iwahori-Hecke algebra of G relativ to $I^{(1)}$ with coefficients in $k=$ $\overline{\mathbb{F}}_{p}$. We denote by $\operatorname{Mod}^{\mathrm{sm}}(k[G])$ the category of smooth G-representations over k. We have the functor of $I^{(1)}$-invariants $\pi \mapsto \pi^{I^{(1)}}$ from $\operatorname{Mod}^{\mathrm{sm}}(k[G])$ to the category $\operatorname{Mod}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$. It gives a bijection between the irreducible G-representations and the irreducible $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$-modules. Thereby, supersingular representations correspond to supersingular Hecke modules V04.

We recall the $I^{(1)}$-invariants for some classes of representations. If $\pi=\operatorname{Ind}_{B}^{G}(\chi)$ is a principal series representation with $\chi=\chi_{1} \otimes \chi_{2}$, then $\pi^{I^{(1)}}$ is a standard module in the component $\gamma:=$ $\left\{\left.\chi\right|_{\mathbb{T}},\left.\chi^{s}\right|_{\mathbb{T}}\right\}$. In the regular case, one chooses the ordering $\left(\left.\chi\right|_{\mathbb{T}},\left.\chi^{s}\right|_{\mathbb{T}}\right)$ on the set γ and standard coordinates x, y. Then

$$
\operatorname{Ind}_{B}^{G}(\chi)^{I^{(1)}}=M\left(0, \chi(s u), \chi\left(u^{2}\right),\left.\chi\right|_{\mathbb{T}}\right)=M\left(0, \chi_{2}\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right),\left.\chi\right|_{\mathbb{T}}\right)
$$

In the non-regular case we obtain

$$
\operatorname{Ind}_{B}^{G}(\chi)^{I^{(1)}}=M\left(\chi(s u), \chi\left(u^{2}\right),\left.\chi\right|_{\mathbb{T}}\right)=M\left(\chi_{2}\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right),\left.\chi\right|_{\mathbb{T}}\right)
$$

These standard modules are irreducible if and only if $\chi \neq \chi^{s}$ V04, 4.2/4.3].5
If $\pi=\pi(r, 0, \eta)$ is a standard supersingular representation with parameter $r=0, \ldots, p-1$ and a character $\eta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$, then $\pi^{I^{(1)}}$ is a supersingular module in the component $\gamma=$ $\left\{\chi, \chi^{s}\right\}$ represented by the character $\chi:=\left(\omega^{r} \otimes 1\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$, cf. [Br07, 5.1/5.3]. If π is the trivial representation $\mathbb{1}$ or the Steinberg representation St, then $\gamma=1$ and $\pi^{I^{(1)}}$ is the character $(0,1)$ or $(-1,-1)$ respectively.
4.3. Let $\pi \in \operatorname{Mod}^{\mathrm{sm}}(k[G])$. Since $u \in G$ normalizes the group $I^{(1)}$, one has $I^{(1)} u I^{(1)}=u I^{(1)}$. It follows that the convolution action of the Hecke operator U (resp. U^{2}) on $\pi^{I^{(1)}}$ is therefore induced by the action of u (resp. u^{2} on π). Similarly, the group $I^{(1)}$ is normalized by the Iwahori subgroup I and $I / I^{(1)} \simeq \mathbb{T}$. It follows that the convolution action of the operators $T_{t}, t \in \mathbb{T}$ on $\pi^{I^{(1)}}$ is the factorization of the $\mathbf{T}\left(\mathbb{Z}_{p}\right)$-action on π.

[^1]4.4. We identify \mathbb{Q}_{p}^{\times}with the center $Z(G)$ in the usual way. A (smooth) character $\zeta: Z(G)=$ $\mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$is determined by its value $\zeta\left(p^{-1}\right) \in k^{\times}$and its restriction $\left.\zeta\right|_{\mathbb{Z}_{p}^{\times}}$. Since the latter is trivial on the subgroup $1+p \mathbb{Z}_{p}$, we may view it as a character of \mathbb{F}_{p}^{\times}; we will write $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}$for this restriction in the following. Thus the group of characters of $Z(G)$ gets identified with the group of k-points of the group scheme $\mathcal{Z}^{\vee}=\left(\mathbb{F}_{p}^{\times}\right)^{\vee} \times \mathbb{G}_{m}$:
$$
Z(G)^{\vee} \xrightarrow{\sim} \mathcal{Z}^{\vee}(k), \zeta \mapsto\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, \zeta\left(p^{-1}\right)\right) .
$$

Recall from [PS, 7.2.2] the mod p pro- p-Iwahori Satake isomorphism

$$
\operatorname{Spec} \mathscr{S}_{\overline{\mathbb{F}}_{p}}^{(1)}: V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0} \xrightarrow{\sim} \operatorname{Spec} Z\left(\mathcal{H}_{\mathbb{\mathbb { F }}_{p}}^{(1)}\right)
$$

It allows us to view $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules M as quasi-coheren sheaves $S(M)$ on $V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$. The rule $M \mapsto$ $S(M)$ is the $\bmod p$ parametrization functor $P: \operatorname{Mod}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right) \rightarrow \mathrm{QCoh}\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)$ from [PS, 7.3.6] in the special case $F=\mathbb{Q}_{p}$.
4.5. Lemma. Suppose that $\pi \in \operatorname{Mod}^{\mathrm{sm}}(k[G])$ has a central character $\zeta: Z(G) \rightarrow k^{\times}$. Then the Satake parameter $S\left(\pi^{I^{(1)}}\right)$ of $\pi^{I^{(1)}} \in \operatorname{Mod}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$ has central character ζ, i.e. it is supported on the closed subscheme

$$
\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, \zeta\left(p^{-1}\right)\right)} \subset V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0} .
$$

Proof. This is [PS, 7.5.4] in the case $F=\mathbb{Q}_{p}$.
Next, recall the twisting action of the group $\mathcal{Z}^{\vee}(k)$ on the standard $\mathcal{H}_{\overline{\mathbb{F}}_{q}}^{(1)}$-modules and their simple constituents from 2.4.
4.6. Proposition. Let $\pi \in \operatorname{Mod}^{\operatorname{ladm}}(k[G])$ be irreducible or a reducible principal series representation. Let $\eta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$be a character. Then

$$
(\pi \otimes \eta)^{I^{(1)}}=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta\left(p^{-1}\right)\right)
$$

as $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules.
Proof. For future reference, we remark that the statement holds true, mutatis mutandis, with \mathbb{Q}_{p} replaced by a finite extension. We therefore give a proof and references that work in this generality. An irreducible locally admissible representation, being a finitely generated $k[G]$-module, is admissible [Em10, 2.2.19]. A principal series representation (irreducible or not) is always admissible Em10, 4.1.7]. The list of irreducible admissible smooth G-representations is given in H11b, Thm. 1.1]. There are four families: principal series representations, supersingular representations, characters and twists of the Steinberg representation.

We first suppose that π is a principal series representation (irreducible or not), i.e. of the form $\operatorname{Ind}_{B}^{G}(\chi)$ with a character $\chi=\chi_{1} \otimes \chi_{2}$. Then $\pi \otimes \eta \simeq \operatorname{Ind}_{B}^{G}\left(\chi_{1} \eta \otimes \chi_{2} \eta\right)$. We use the results from 4.2 (which hold for general F, cf. [PS, 7.5.8]. The modules $\pi^{I^{(1)}}$ and $(\pi \otimes \eta)^{I^{(1)}}$ are standard modules in the components $\gamma:=\left\{\left.\chi\right|_{\mathbb{T}},\left.\chi^{s}\right|_{\mathbb{T}}\right\}$ and $\gamma\left(\left.\eta\right|_{\mathbb{T}_{p}^{\times}}\right)$respectively. Suppose that γ is regular. We choose the ordering $\left(\left.\chi\right|_{\mathbb{T}},\left.\chi^{s}\right|_{\mathbb{T}}\right)$ and standard coordinates x, y. Then

$$
\operatorname{Ind}_{B}^{G}(\chi)^{I^{(1)}}=M\left(0, \chi_{2}\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right), \chi \mid \mathbb{T}\right)
$$

and

$$
\operatorname{Ind}_{B}^{G}\left(\chi_{1} \eta \otimes \chi_{2} \eta\right)^{I^{(1)}}=M\left(0, \chi_{2}\left(p^{-1}\right) \eta\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right) \eta\left(p^{-2}\right),(\chi \mid \mathbb{T}) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)\right)
$$

This shows $(\pi \otimes \eta)^{I^{(1)}}=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta\left(p^{-1}\right)\right)$ in the regular case. Suppose that γ is non-regular. Then

$$
\operatorname{Ind}_{B}^{G}(\chi)^{I^{(1)}}=M\left(\chi_{2}\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right),\left.\chi\right|_{\mathbb{T}}\right)
$$

and

$$
\operatorname{Ind}_{B}^{G}\left(\chi_{1} \eta \otimes \chi_{2} \eta\right)^{I^{(1)}}=M\left(\chi_{2}\left(p^{-1}\right) \eta\left(p^{-1}\right), \chi_{1}\left(p^{-1}\right) \chi_{2}\left(p^{-1}\right) \eta\left(p^{-2}\right),\left(\left.\chi\right|_{\mathbb{T}}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)\right)
$$

This shows $(\pi \otimes \eta)^{I^{(1)}}=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta\left(p^{-1}\right)\right)$ in the non-regular case.
We now treat the case where π is a character or a twist of the Steinberg representation. Consider the exact sequence

$$
1 \rightarrow \mathbb{1} \rightarrow \operatorname{Ind}_{B}^{G}(1) \rightarrow \mathrm{St} \rightarrow 1
$$

According to [V04, 4.4] the sequence of invariants

$$
(S): 1 \rightarrow \mathbb{1}^{I^{(1)}} \rightarrow \operatorname{Ind}_{B}^{G}(1)^{I^{(1)}} \rightarrow \mathrm{St}^{I^{(1)}} \rightarrow 1
$$

is still exact and $\mathbb{1}^{I^{(1)}}$ resp. $\mathrm{St}^{I^{(1)}}$ is the trivial character $(0,1)$ resp. sign character $(-1,-1)$ in the Iwahori component $\gamma=1$. Tensoring the first exact sequence with η produces the exact sequence

$$
1 \rightarrow \eta \rightarrow \operatorname{Ind}_{B}^{G}(1) \otimes \eta \rightarrow \mathrm{St} \otimes \eta \rightarrow 1
$$

Since the restriction $\left.\eta\right|_{\mathbb{Z}_{p}^{\times}}$is trivial on $1+p \mathbb{Z}_{p}$, one has $\left.(\eta \circ$ det $)\right|_{I^{(1)}}=1$ and so, as a sequence of k-vector spaces with k-linear maps, the sequence of invariants

$$
1 \rightarrow \eta^{I^{(1)}} \rightarrow\left(\operatorname{Ind}_{B}^{G}(1) \otimes \eta\right)^{I^{(1)}} \rightarrow(\mathrm{St} \otimes \eta)^{I^{(1)}} \rightarrow 1
$$

coincides with the sequence (S). It is therefore an exact sequence of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules, with outer terms being characters of $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$. From the discussion above, we deduce

$$
\left(\operatorname{Ind}_{B}^{G}(1) \otimes \eta\right)^{I^{(1)}}=\operatorname{Ind}_{B}^{G}(1)^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(p)^{-1}\right)=M\left(\eta\left(p^{-1}\right), \eta\left(p^{-2}\right), 1 \cdot\left(\left.\eta\right|_{\mathbb{E}_{p}^{\times}}\right)\right)
$$

It follows then from V04, 1.1] that $\eta^{I^{(1)}}$ must be the trivial character $\left(0, \eta\left(p^{-1}\right)\right)$ in the component $1 .\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$and $(\operatorname{St} \otimes \eta)^{I^{(1)}}$ must be the sign character $\left(-1,-\eta\left(p^{-1}\right)\right)$ in the component $1 .\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$. This implies

$$
\eta^{I^{(1)}}=\mathbb{1}^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(p)^{-1}\right) \quad \text { and } \quad(\mathrm{St} \otimes \eta)^{I^{(1)}}=\mathrm{St}^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(\varpi)^{-1}\right)
$$

This proves the claim in the cases $\pi=\mathbb{1}$ or $\pi=$ St. If, more generally, $\pi=\eta^{\prime}$ is a general character of G, then

$$
(\pi \otimes \eta)^{I^{(1)}}=\left(\eta^{\prime} \eta\right)^{I^{(1)}}=\mathbb{1}^{I^{(1)}} \cdot\left(\left.\left(\eta^{\prime} \eta\right)\right|_{\mathbb{F}_{q}^{\times}},\left(\eta^{\prime} \eta\right)(p)^{-1}\right)=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(p)^{-1}\right)
$$

On the other hand, if $\pi=\mathrm{St} \otimes \eta^{\prime}$ is a twist of Steinberg, then

$$
(\pi \otimes \eta)^{I^{(1)}}=\left(\mathrm{St} \otimes\left(\eta^{\prime} \eta\right)\right)^{I^{(1)}}=\mathrm{St}^{I^{(1)}} \cdot\left(\left.\left(\eta^{\prime} \eta\right)\right|_{\mathbb{F}_{p}^{\times}},\left(\eta^{\prime} \eta\right)(p)^{-1}\right)=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(p)^{-1}\right)
$$

It remains to treat the case where π is a supersingular representation. In this case $\pi \otimes \eta$ is also supersingular and the two modules $\pi^{I^{(1)}}$ and $(\pi \otimes \eta)^{I^{(1)}}$ are supersingular $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules V04, 4.9]. Let γ be the component of the module $\pi^{I^{(1)}}$. By 4.3, the component of $(\pi \otimes \eta)^{I^{(1)}}$ equals $\gamma\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$. Moreover, if U^{2} acts on $\pi^{I^{(1)}}$ via the scalar $z_{2} \in k^{\times}$, then U^{2} acts on $(\pi \otimes \eta)^{I^{(1)}}$ via $z_{2}(\eta \circ \operatorname{det})\left(u^{2}\right)=z_{2} \eta(p)^{-2}$, cf. 4.3. Since the supersingular modules are uniquely characterized by their component and their U^{2}-action, we obtain $(\pi \otimes \eta)^{I^{(1)}}=\pi^{I^{(1)}} \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta(p)^{-1}\right)$, as claimed.
4.7. Let $p \geq 5$. We let $\operatorname{Mod}_{\zeta}^{\mathrm{ladm}}(k[G])$ be the full subcategory of $\operatorname{Mod}^{\mathrm{sm}}(k[G])$ consisting of locally admissible representations having central character ζ. By work of Paškūnas Pas13, the blocks b of the category $\operatorname{Mod}_{\zeta}^{\text {ladm }}(k[G])$, defined as certain equivalence classes of simple objects, can be parametrized by the set of isomorphism classes $[\rho]$ of semisimple continuous Galois representations $\rho: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \widehat{\mathbf{G}}(k)$ having determinant $\operatorname{det} \rho=\omega \zeta$, i.e. by the k-points of X_{ζ}. There are three types of blocks. Blocks of type 1 are supersingular blocks. Each such block contains only one irreducible G-representation, which is supersingular. Blocks of type 2 contain only two irreducible
representations. These two representations are two generic principal series representations of the form $\operatorname{Ind}_{B}^{G}\left(\chi_{1} \otimes \chi_{2} \omega^{-1}\right)$ and $\operatorname{Ind}_{B}^{G}\left(\chi_{2} \otimes \chi_{1} \omega^{-1}\right)\left(\right.$ where $\left.\chi_{1} \chi_{2} \neq 1, \omega^{ \pm 1}\right)$. There are four blocks of type 3 which correspond to the four exceptional points. In the even case, each such block contains only three irreducible representations. These representations are of the form $\eta, \mathrm{St} \otimes \eta$ and $\operatorname{Ind}_{B}^{G}\left(\omega \otimes \omega^{-1}\right) \otimes \eta$. In the odd case, each block of type 3 contains only one irreducible representation. It is of the form $\operatorname{Ind}_{B}^{G}\left(\chi \otimes \chi \omega^{-1}\right)$.
4.8. Let $p \geq 5$. Paškūnas' parametrization $[\rho] \mapsto b_{[\rho]}$ is compatible with Breuil's semisimple mod p local Langlands correspondence

$$
\rho \mapsto \pi(\rho)
$$

for the group G Br07, Be 11 , in the sense that if ρ has determinant $\omega \zeta$, then the simple constituents of the G-representation $\pi(\rho)$ lie in the block $b_{[\rho]}$ of $\operatorname{Mod}_{\zeta}^{\operatorname{ladm}}(k[G])$. The correspondence and the parametrizations (for varying ζ) commute with twists: for a character $\eta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}, \pi(\rho \otimes \eta)=$ $\pi(\rho) \otimes \eta$ and $b_{[\rho]} \otimes \eta=b_{[\rho \otimes \eta]}$.
4.9. Theorem. Suppose $p \geq$ 5. Fix a character $\zeta: Z(G)=\mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$, corresponding to a point $\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, \zeta\left(p^{-1}\right)\right) \in \mathcal{Z}^{\vee}(k)$ under the identification $\mathcal{Z}(G)^{\vee} \cong \mathcal{Z}^{\vee}(k)$ from 4.4. There exists a finite morphism of k-schemes

$$
L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}
$$

such that the quasi-coherent $\mathcal{O}_{X_{\zeta}}$-module

$$
\left.L_{\zeta *} S\left(\mathcal{M}_{\mathbb{F}_{p}}^{(1)}\right)\right|_{\left(V_{\mathbb{\mathbf { T }}, 0}^{(1)} / W_{0}\right)_{\zeta}}
$$

equal to the push-forward along L_{ζ} of the restriction to $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \subset V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$ of the Satake parameter $S\left(\mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$ interpolates the $I^{(1)}$-invariants of the semisimple $\bmod p$ Langlands correspondence

$$
\begin{array}{llll}
X_{\zeta}(k) & \longrightarrow & \operatorname{Mod}_{\zeta}^{\operatorname{ladm}}(k[G]) & \longrightarrow \\
M o d\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right) \\
x & \longmapsto \pi\left(\rho_{x}\right) & \longmapsto \pi\left(\rho_{x}\right)^{I^{(1)}},
\end{array}
$$

in the sense that for all $x \in X_{\zeta}(k)$,

$$
\left(\left(\left.L_{\zeta *} S\left(\mathcal{M}_{\mathbb{F}_{p}}^{(1)}\right)\right|_{\left(V_{\mathbb{T}, 0}^{(1)} / W_{0}\right)_{\zeta}}\right) \otimes_{\mathcal{O}_{X_{\zeta}}} k(x)\right)^{\mathrm{ss}}=\left(\mathcal{M}_{\mathbb{\mathbb { F }}_{p}}^{(1)} \otimes_{Z\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)}\left(\mathscr{S}_{\mathbb{\mathbb { F }}_{p}}^{(1)}\right)^{-1}\left(\mathcal{O}_{L_{\zeta}^{-1}(x)}\right)\right)^{\mathrm{ss}} \cong \pi\left(\rho_{x}\right)^{I^{(1)}}
$$

in $\operatorname{Mod}\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$.
4.10. The connected components of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ are either regular and then of type $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$, or non-regular and then of type \mathbb{A}^{1}. The morphism L_{ζ} appearing in the theorem depends on the choice of an order of the two affine lines in each regular component. It is surjective and quasi-finite. Moreover, writing L_{ζ}^{γ} for its restriction to the connected component $\left(V_{\widehat{\mathbf{T}}, 0}^{\gamma} / W_{0}\right)_{\zeta} \subset\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$, one has:
(e) Even case. All connected components are of type $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$, except for the two 'exterior' components which are of type $\mathbb{A}^{1} . L_{\zeta}^{\gamma}$ is an open immersion for any γ.
(o) Odd case. All connected components are of type $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1} . L_{\zeta}$ is an open immersion on all connected components, except for the two 'exterior' ones. On an 'exterior' component γ, the restriction of L_{ζ}^{γ} to one irreducible component \mathbb{A}^{1} is an open immersion, and its restriction to the open complement \mathbb{G}_{m} is a degree 2 finite flat covering of its image, with branched locus equal to the intersection of this image with the exceptional locus of X_{ζ}.
4.11. We set $L:=\coprod_{\zeta} L_{\zeta}$. This is the morphism

$$
L: V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0} \longrightarrow X
$$

referred to in the introduction.
4.12. Note that the semisimple mod p Langlands correspondence associates with any semisimple $\rho: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \widehat{\mathbf{G}}(k)$ a semisimple smooth G-representation $\pi(\rho)$ of length 1,2 or 3 , hence whose semisimple $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}$-module of $I^{(1)}$-invariants $\pi(\rho)^{I^{(1)}}$ has length 1,2 or 3 . On the other hand, the antispherical map

$$
\text { Sph : }\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)(k) \longrightarrow\left\{\text { left } \mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)} \text {-modules }\right\}
$$

has an image consisting of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules are of length 1 or 2 , cf. [PS, 7.4.9] and [PS, 7.4.15]. Theorem 4.9 combined with the properties 4.10 of the morphism L_{ζ} provide the following case-bycase elucidation of the $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules $\pi(\rho)^{I^{(T)}}$.
4.13. Corollary. Let $x \in X_{\zeta}(k)$, corresponding to $\rho_{x}: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \widehat{\mathbf{G}}(k)$. Then the $\mathcal{H}_{\mathbb{F}_{p}}^{(1)}-$ module $\pi(\rho)^{I^{(1)}}$ admits the following explicit description.
(i) If $x \in X_{\zeta}^{\text {irred }}(k)$, then the fibre $L_{\zeta}^{-1}(x)=\{v\}$ has cardinality 1 and

$$
\pi\left(\rho_{x}\right)^{I^{(1)}} \simeq \operatorname{Sph}(v)
$$

It is irreducible and supersingular.
(ii) If $x \in X_{\zeta}^{r e d}(k) \backslash\{$ the four exceptional points $\}$, then $L_{\zeta}^{-1}(x)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 and

$$
\pi\left(\rho_{x}\right)^{I^{(1)}} \simeq \operatorname{Sph}\left(v_{1}\right) \oplus \operatorname{Sph}\left(v_{2}\right)
$$

It has length 2.
(iiie) If $x \in X_{\zeta}^{r e d}(k)$ is exceptional in the even case, then $L_{\zeta}^{-1}(x)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 and

$$
\pi\left(\rho_{x}\right)^{I^{(1)}} \simeq \operatorname{Sph}\left(v_{1}\right)^{\mathrm{ss}} \oplus \operatorname{Sph}\left(v_{2}\right)
$$

It has length 3.
(iiio) If $x \in X_{\zeta}^{\text {red }}(k)$ is exceptional in the odd case, then $L_{\zeta}^{-1}(x)=\{v\}$ has cardinality 1 and

$$
\pi\left(\rho_{x}\right)^{I^{(1)}} \simeq \operatorname{Sph}(v) \oplus \operatorname{Sph}(v)
$$

It has length 2.
4.14. Now we proceed to the proof of 4.9, 4.10 and 4.13

We start by defining the morphism L_{ζ} at the level of k-points. Let $v \in\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k)$ and let its connected component be indexed by $\gamma \in \mathbb{T}^{\vee} / W_{0}$.

1. Suppose that γ is regular. Then $\operatorname{Sph}(v)=\operatorname{Sph}^{\gamma}(v)$ is a simple two-dimensional $\mathcal{H}_{\mathbb{F}_{p}}^{\gamma}$-module, cf. [PS, 7.4.9]. Let $\pi \in \operatorname{Mod}^{\mathrm{sm}}(k[G])$ be the simple module, unique up to isomorphism, such that $\pi^{I^{(1)}} \simeq \operatorname{Sph}^{\gamma}(v)$, cf. 4.2. Then $\pi \in \operatorname{Mod}_{\zeta}^{\operatorname{ladm}}(k[G])$ with

$$
\zeta=\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, \zeta\left(p^{-1}\right)\right)=\left(\left.\gamma\right|_{\mathbb{F}_{p}^{\times}}, z_{2}\right)
$$

by 4.5. Let b be the block of $\operatorname{Mod}_{\zeta}^{\text {ladm }}(k[G])$ which contains π. We define $L_{\zeta}(v)$ to be the point of $X_{\zeta}(k)$ which corresponds to b.
2. Suppose that γ is non-regular.
(a) If $v \in D(2)_{\gamma}(k)$, then $\operatorname{Sph}(v)=\operatorname{Sph}^{\gamma}(2)(v)$ is a simple two-dimensional $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$-module, cf. [PS, 7.4.15]. As in the regular case, there is a simple module π, unique up to isomorphism, such that $\pi^{I^{(1)}} \simeq \operatorname{Sph}^{\gamma}(2)(v)$. It has central character $\zeta=\left(\left.\gamma\right|_{\mathbb{F}_{p}^{\times}}, z_{2}\right)$ and there is a block b of $\operatorname{Mod}_{\zeta}^{\text {ladm }}(k[G])$ which contains π. We define $L_{\zeta}(v)$ to be the point of $X_{\zeta}(k)$ which corresponds to b.
(b) If $v \in D(1)_{\gamma}(k)$, then $\operatorname{Sph}(v)^{\mathrm{ss}}$ is the direct sum of the two characters forming the antispherical pair $\operatorname{Sph}^{\gamma}(1)(v)=\left\{\left(0, z_{1}\right),\left(-1,-z_{1}\right)\right\}$ where $z_{2}=z_{1}^{2}$, cf. PS, 7.4.15]. As in the regular case, there are two simple modules π_{1} and π_{2}, unique up to isomorphism, such that $\pi_{1}^{I^{(1)}} \simeq\left(0, z_{1}\right)$ and $\pi_{2}^{I^{(1)}} \simeq\left(-1,-z_{1}\right)$ and π_{1}, π_{2} have central character $\zeta=\left(\left.\gamma\right|_{\mathbb{F}_{p}^{\times}}, z_{2}\right)$. Moreover, we claim that there is a unique block b of $\operatorname{Mod}_{\zeta}^{\operatorname{ladm}}(k[G])$ which contains both π_{1} and π_{2}. Indeed, if $\gamma=\{1 \otimes 1\}$ and $z_{1}=1$, then $\pi_{1}=\mathbb{1}$ and $\pi_{2}=\mathrm{St}$, cf. 4.2. Then by 4.6 it follows more generally that if $\gamma=\left\{\omega^{r} \otimes \omega^{r}\right\}$, then $\pi_{1}=\eta$ and $\pi_{2}=\operatorname{St} \otimes \eta$ with $\eta=\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}, \eta\left(p^{-1}\right)\right):=\left(\omega^{r}, z_{1}\right)$. Consequently π_{1}, π_{2} are contained in a unique block b of type 3 , cf. 4.7. We define $L_{\zeta}(v)$ to be the point of $X_{\zeta}(k)$ which corresponds to b.

Thus we have a well-defined map of sets $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k) \longrightarrow X_{\zeta}(k)$.
We show property (i) of 4.13 . Let $x \in X_{\zeta}^{\text {irred }}(k)$ and suppose $L_{\zeta}(v)=x$. Then b_{x} is a supersingular block, contains a unique irreducible representation π, which is supersingular, and $\pi=\pi\left(\rho_{x}\right)$, cf. 4.7.4.8. By definition of L_{ζ}, one has $\operatorname{Sph}(v) \simeq \pi^{I^{(1)}}$. Since the spherical map Sph is 1: 1 over supersingular modules, cf. [PS, 7.4.9] and [PS, 7.4.15], such a preimage v of x exists and is uniquely determined by x. Summarizing, we have $L_{\zeta}^{-1}(x)=\{v\}$ and $\operatorname{Sph}(v) \simeq \pi\left(\rho_{x}\right)^{I^{(1)}}$. This is property (i).

As a next step, we take a second character $\eta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$and show that the diagram

commutes. Here, the vertical arrows are the bijections coming from 2.9 and 3.2 , To verify the commutativity, let $v \in\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k)$ and let its connected component be indexed by $\gamma \in \mathbb{T}^{\vee} / W_{0}$. Suppose that γ is regular or that γ is non-regular with $v \in D(2)_{\gamma}(k)$. Let π be the simple G module with $\pi^{I^{(1)}} \simeq \operatorname{Sph}(v)$ and let $b_{[\rho]}$ be the block corresponding to the point $L_{\zeta}(v)$. By the equivariance property 2.5 , one has $\operatorname{Sph}(v \cdot \eta) \simeq \operatorname{Sph}(v) . \eta$. Taking $I^{(1)}$-invariants is compatible with twist, cf. 4.6, and so $\overline{L_{\zeta \eta^{2}}}(v . \eta)$ corresponds to the block which contains the representation $\pi \otimes \eta$, i.e. to $b_{[\rho]} \otimes \eta=b_{[\rho \otimes \eta]}$, cf. 4.8, and so $L_{\zeta \eta^{2}}(v . \eta)=[\rho \otimes \eta]=L_{\zeta}(v) . \eta$.

If $v \in D(1)_{\gamma}(k)$, let π_{1} and π_{2} be the simple modules such that $\left(\pi_{1} \oplus \pi_{2}\right)^{I^{(1)}} \simeq \operatorname{Sph}^{\gamma}(v)^{\mathrm{ss}}$. As before, we conclude from $\operatorname{Sph}(v . \eta)^{\mathrm{ss}} \simeq \operatorname{Sph}(v)^{\mathrm{ss}} \otimes \eta$ that $L_{\zeta \eta^{2}}(v . \eta)$ corresponds to the block which contains $\pi_{1} \otimes \eta$ and $\pi_{2} \otimes \eta$ and that $L_{\zeta \eta^{2}}(v . \eta)=L_{\zeta}(v) . \eta$. The commutativity of the diagram is proved.

Thus, we are reduced to prove that the map L_{ζ} comes from a morphism of k-schemes satisfying 4.9 and the remaining parts of 4.13 in the two basic cases of a character ζ such that $\zeta\left(p^{-1}\right)=1$ and $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}} \in\left\{1, \omega^{-1}\right\}$. This is established in the next two subsections.

5 The morphism L_{ζ} in the basic even case

Let $\zeta: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$be the trivial character. Here we show that the map of sets $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k) \rightarrow$ $X_{\zeta}(k)$ that we have defined in 4.14 satisfies properties (ii) and (iiie) of 4.13, and we define a morphism of k-schemes $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}$ which coincides with the previous map of sets at the level of k-points. By construction, it will have the properties 4.10 . This will complete the proof of $4.13,4.10$ and 4.9 in the case of an even character.
5.1. We verify the properties (ii) and (iiie). We work over an irreducible component \mathbb{P}^{1} with label $"$ Sym $^{r} \otimes \operatorname{det}^{a} \mid \operatorname{Sym}^{p-3-r} \otimes \operatorname{det}^{r+1+a} "$ where $0 \leq r \leq p-3$ and $0 \leq a \leq p-2$, cf. 3.3 On this component, we choose an affine coordinate x around the double point having $\operatorname{Sym}^{r} \otimes \operatorname{det}^{a}$
as one of its Serre weights. Away from this point, we have $x \neq 0$ and the corresponding Galois representation has the form

$$
\rho_{x}=\left(\begin{array}{cc}
\operatorname{unr}(x) \omega^{r+1} & 0 \\
0 & \operatorname{unr}\left(x^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta=\omega^{a}$. By [Be11, 1.3] or [Br07, 4.11], we have

$$
\pi\left(\rho_{x}\right)=\pi(r, x, \eta)^{\mathrm{ss}} \oplus \pi\left([p-3-r], x^{-1}, \omega^{r+1} \eta\right)^{\mathrm{ss}}=: \pi_{1} \oplus \pi_{2}
$$

where $[p-3-r]$ denotes the unique integer in $\{0, \ldots, p-2\}$ which is congruent to $p-3-r$ modulo $p-1$. Now suppose that $L_{\zeta}(v)=x$. We distinguish two cases.

1. The generic case $0<r<p-3$. In this case, the point x lies on one of the 'interior' components of the chain X_{ζ}, which has no exceptional points. The length of $\pi\left(\rho_{x}\right)$ is 2 . Indeed, $\pi_{1}=\pi(r, x, \eta)$ and $\pi_{2}=\pi\left(p-3-r, x^{-1}, \omega^{r+1} \eta\right)$ are two irreducible principal series representations [Br07, Thm. 4.4]. The block b_{x} is of type 2 and contains only these two irreducible representations, cf. 4.74.8. We may write

$$
\pi_{1}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta
$$

with $\chi=\operatorname{unr}(x) \otimes \omega^{r} \operatorname{unr}\left(x^{-1}\right)$, according to Br07, Rem. 4.4(ii)]. By our assumptions on r, the character $\left.\chi\right|_{\mathbb{T}}=1 \otimes \omega^{r}$ is regular (i.e. different from its s-conjugate). We conclude from 4.6 and 4.2 that $\pi_{1}^{I^{(1)}}$ is a simple 2-dimensional standard module in the regular component represented by the character $\left(1 \otimes \omega^{r}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r} \in \mathbb{T}^{\vee}$. Similarly, we may write

$$
\pi_{2}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \omega^{r+1} \eta
$$

where now $\chi=\operatorname{unr}\left(x^{-1}\right) \otimes \omega^{p-3-r} \operatorname{unr}(x)$. By our assumptions on r, the character $\left.\chi\right|_{\mathbb{T}}=$ $1 \otimes \omega^{p-3-r}$ is regular and we conclude, as above, that the $I^{(1)}$-invariants $\pi_{2}^{I^{(1)}}$ form a simple 2dimensional standard module in the regular component represented by the character $\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r+1} \otimes$ $\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r+1} \omega^{p-3-r} \in \mathbb{T}^{\vee}$. Note that the component of $\pi_{1}^{I^{(1)}}$ is different from the component of $\pi_{2}^{I^{(1)}}$, by our assumptions on r.

We conclude from $L_{\zeta}(v)=x$ that either $\operatorname{Sph}(v)=\pi_{1}^{I^{(1)}}$ or $\operatorname{Sph}(v)=\pi_{2}^{I^{(1)}}$. Since for γ regular, the map Sph^{γ} is a bijection onto all simple $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$-modules, cf. [PS, 7.4.9], one finds that $L_{\zeta}^{-1}(x)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 and

$$
\operatorname{Sph}\left(v_{1}\right) \oplus \operatorname{Sph}\left(v_{2}\right) \simeq \pi\left(\rho_{x}\right)^{I^{(1)}}
$$

This settles property (ii) of 4.13 in the generic case.
2. The boundary cases $r \in\{0, p-3\}$. In this case, the point x lies on one of the two 'exterior' components of X_{ζ}. On such a component, we will denote the variable x rather by z_{1}, which is the notation ${ }^{6}$ which we used already in 3.3 .
(a) Suppose that $z_{1} \neq \pm 1$. The length of $\pi\left(\rho_{z_{1}}\right)$ is 2 . Indeed, as in the generic case, $\pi_{1}=$ $\pi\left(r, z_{1}, \eta\right)$ and $\pi_{2}=\pi\left(p-3-r, z_{1}^{-1}, \omega^{r+1} \eta\right)$ are two irreducible principal series representations. The block $b_{z_{1}}$ is of type 2 and contains only these two irreducible representations. It follows, as above, that their invariants $\pi_{1}^{I^{(1)}}$ and $\pi_{2}^{I^{(1)}}$ are simple 2-dimensional standard modules, in the components represented by $\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r} \in \mathbb{T}^{\vee}$ and $\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r+1} \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{r+1} \omega^{p-3-r} \in \mathbb{T}^{\vee}$ respectively. Since $r \in\{0, p-3\}$, one of these components is regular, the other non-regular. In particular, the two components are different. We conclude from $L_{\zeta}(v)=z_{1}$ that either $\operatorname{Sph}(v)=$ $\pi_{1}^{I^{(1)}}$ or $\operatorname{Sph}(v)=\pi_{2}^{I^{(1)}}$. Since for non-regular γ, the map $\operatorname{Sph}^{\gamma}(2)$ is a bijection from $D(2)_{\gamma}(k)$ onto all simple standard $\mathcal{H}_{\mathbb{F}_{p}}^{\gamma}$-modules, cf. [PS, 7.4.15], we may conclude as in the generic case: $L_{\zeta}^{-1}\left(z_{1}\right)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 and

$$
\operatorname{Sph}\left(v_{1}\right) \oplus \operatorname{Sph}\left(v_{2}\right) \simeq \pi\left(\rho_{z_{1}}\right)^{I^{(1)}}
$$

[^2]This settles property 4.13 (ii) in the remaining case $z_{1} \neq \pm 1$.
(b) Suppose now that $z_{1}= \pm 1$, i.e. we are at one of the four exceptional points. We will verify property (iiie). The length of $\pi\left(\rho_{z_{1}}\right)$ is 3 . Indeed, the representation $\pi(0, \pm 1, \eta)$ is a twist of the representation $\pi(0,1,1)$ (note that $\pi\left(r, z_{1}, \eta\right) \simeq \pi\left(r,-z_{1}, \operatorname{unr}(-1) \eta\right)$ according to Br07, Rem. $4.4(\mathrm{v})]$), which itself is an extension of $\mathbb{1}$ by St, cf. Br07, Thm. 4.4(iii)]. As in the case (a), the representation $\pi_{2}=\pi(p-3, \pm 1, \omega \eta)$ is an irreducible principal series representation. The block $b_{z_{1}}$ is of type 3 and contains only these three irreducible representations. The invariants $\pi_{1}^{I^{(1)}}$ form a direct sum of two spherical characters in a non-regular component γ, whereas the invariants $\pi_{2}^{I^{(1)}}$ form a simple standard module in a regular component, as before. Since for non-regular γ, the map $\operatorname{Sph}^{\gamma}(1)$ is a bijection from $D(1)_{\gamma}(k)$ onto all spherical pairs of characters of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$, cf. [PS, 7.4.15], we may conclude that $L_{\zeta}^{-1}\left(z_{1}\right)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 with $v_{1} \in D(1)_{\gamma}(k)$ and $\operatorname{Sph}^{\gamma}(1)\left(v_{1}\right)^{\mathrm{ss}}=\pi_{1}^{I^{(1)}}$. In particular,

$$
\operatorname{Sph}\left(v_{1}\right)^{\mathrm{ss}} \oplus \operatorname{Sph}\left(v_{2}\right) \simeq \pi\left(\rho_{x}\right)^{I^{(1)}}
$$

This settles property 4.13 (iiie).
5.2. We define a morphism of k-schemes $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}$ which coincides on k-points with the map of sets $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k) \longrightarrow X_{\zeta}(k)$. We work over a connected component of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$, indexed by some $\gamma \in \mathbb{T}^{\vee} / W_{0}$. Let v be a k-point of this component.

Since $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=1$, the connected components of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ are indexed by the fibre $\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}(1)$. This fibre consists of the $\frac{p-3}{2}$ regular components, represented by the characters of \mathbb{T}

$$
\chi_{k}=\omega^{k} \otimes \omega^{-k}
$$

for $k=1, \ldots, \frac{p-3}{2}$, and of the two non-regular components, given by χ_{0} and $\chi_{\frac{p-1}{2}}$, cf. 2.2 . We distinguish two cases. Note that $z_{2}=\zeta\left(p^{-1}\right)=1$.

1. The regular case $0<k<\frac{p-1}{2}$. We fix the order $\gamma=\left(\chi_{k}, \chi_{k}^{s}\right)$ on the set γ and choose the standard coordinates x, y. According to [PS, 7.4.8], our regular connected component identifies with two affine lines intersecting at the origin:

$$
V_{\widehat{\mathbf{T}}, 0,1} \simeq \mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}
$$

Suppose that $v=(0,0)$ is the origin, so that $\operatorname{Sph}(v)$ is a supersingular module. Let $\pi(r, 0, \eta)$ be the corresponding supersingular representation. It corresponds to the irreducible Galois representation $\rho(r, \eta)=\operatorname{ind}\left(\omega_{2}^{r+1}\right) \otimes \eta$, in the notation of [Be11, 1.3], whence $L_{\zeta}(v)=[\rho(r, \eta)]$. According to 4.2, the component of the Hecke module $\pi(r, 0, \eta)^{I^{(1)}}$ is given by $\left(\omega^{r} \otimes 1\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$. Setting $\left.\eta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{a}$, this implies $\left(\omega^{r} \otimes 1\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\omega^{r+a} \otimes \omega^{a}=\chi_{k}$ and hence $a=-k$ and $r=2 k$. Therefore the Serre weights of the irreducible representation $\rho(r, \eta)$ are $\left\{\operatorname{Sym}^{2 k} \otimes \operatorname{det}^{-k}, \operatorname{Sym}^{p-1-2 k} \otimes \operatorname{det}^{k}\right\}$, cf. [Br07, 1.9].

Comparing these pairs of Serre weights with the list 3.3 shows that the $\frac{p-3}{2}$ points

$$
\left\{\text { origin }(0,0) \text { on the component }\left(\chi_{k}, \chi_{k}^{s}\right)\right\}
$$

for $0<k<\frac{p-1}{2}$ are mapped successively to the $\frac{p-3}{2}$ double points of the chain X_{ζ}.
Fix $0<k<\frac{p-1}{2}$ and consider the double point

$$
Q=L_{\zeta}\left(\text { origin }(0,0) \text { on the component } \gamma=\left(\chi_{k}, \chi_{k}^{s}\right)\right) .
$$

As we have just seen, Q lies on the irreducible component \mathbb{P}^{1} whose label includes the weight $\mathrm{Sym}^{2 k} \otimes \operatorname{det}^{-k}$ (i.e. on the component $" \mathrm{Sym}^{2 k} \otimes \operatorname{det}^{-k} \mid \mathrm{Sym}^{p-3-2 k} \otimes \operatorname{det}^{k+1} "$). We fix an affine coordinate on this \mathbb{P}^{1} around Q, which we will also call x (there will be no risk of confusion with
the standard coordinate above!). Away from Q, the affine coordinate $x \neq 0$ parametrizes Galois representations of the form

$$
\rho_{x}=\left(\begin{array}{cc}
\operatorname{unr}(x) \omega^{2 k+1} & 0 \\
0 & \operatorname{unr}\left(x^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta:=\omega^{-k}$. As we have seen above, $\pi\left(\rho_{x}\right)=\pi(2 k, x, \eta) \oplus \pi\left(p-3-2 k, x^{-1}, \omega^{r+1} \eta\right)=: \pi_{1} \oplus \pi_{2}$. Moreover, $\pi_{1}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ with $\chi=\operatorname{unr}(x) \otimes \omega^{2 k} \operatorname{unr}\left(x^{-1}\right)$. Since

$$
\left(1 \otimes \omega^{2 k}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\omega^{-k} \otimes \omega^{k}=\chi_{k}^{s} \in \mathbb{T}^{\vee},
$$

we deduce from the regular case of 4.2 that

$$
\pi_{1}^{I^{(1)}}=M\left(0, x, 1, \chi_{k}^{s}\right)
$$

is a simple 2-dimensional standard module. Note that $M\left(0, x, 1, \chi_{k}^{s}\right)=M\left(x, 0,1, \chi_{k}\right)$ according to (V04, Prop. 3.2].

Now suppose that $v=(x, 0), x \neq 0$, denotes a point on the x-line of $\mathbb{A}_{k}^{1} \cup_{0} \mathbb{A}_{k}^{1}$. In particular, $\operatorname{Sph}^{\gamma}(v)=M\left(x, 0,1, \chi_{k}\right)$. By our discussion, the point $L_{\zeta}((x, 0))$ corresponds to the block which contains π_{1}. Since π_{1} lies in the block parametrized by [ρ_{x}], cf. 4.8. it follows that

$$
L_{\zeta}((x, 0))=\left[\rho_{x}\right]=x \in \mathbb{G}_{m} \subset \mathbb{P}^{1} \subset X_{\zeta}
$$

Since $(0,0)$ maps to Q, i.e. to the point at $x=0$, the map L_{ζ} identifies the whole affine x-line $\mathbb{A}^{1}=\{(x, 0): x \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the affine x-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

On the other hand, the double point Q lies also on the irreducible component \mathbb{P}^{1} whose labelling includes the other weight of Q, i.e. the weight $\operatorname{Sym}^{p-1-2 k} \otimes \operatorname{det}^{k}$. We fix an affine coordinate y on this \mathbb{P}^{1} around Q. Away from Q, the coordinate $y \neq 0$ parametrizes Galois representations of the form

$$
\rho_{x}=\left(\begin{array}{cc}
\operatorname{unr}(y) \omega^{p-2 k} & 0 \\
0 & \operatorname{unr}\left(y^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta:=\omega^{k}$. As in the first case, $\pi\left(\rho_{y}\right)$ contains $\pi_{1}:=\pi(p-1-2 k, y, \eta)=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ as a direct summand, where now $\chi=\operatorname{unr}(y) \otimes \omega^{p-1-2 k} \operatorname{unr}\left(y^{-1}\right)$. Since

$$
\left(1 \otimes \omega^{p-1-2 k}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\omega^{k} \otimes \omega^{-k}=\chi_{k} \in \mathbb{T}^{\vee},
$$

we deduce, as above, that $\pi_{1}^{I^{(1)}}=M\left(0, y, 1, \chi_{k}\right)$ is a simple 2-dimensional standard module.
Now suppose that $v=(0, y), y \neq 0$, denotes a point on the y-line of $\mathbb{A}_{k}^{1} \cup_{0} \mathbb{A}_{k}^{1}$. In particular, $\operatorname{Sph}^{\gamma}(v)=M\left(0, y, 1, \chi_{k}\right)$. By our discussion, the point $L_{\zeta}((0, y))$ corresponds to the block which contains π_{1}. Since π_{1} lies in the block parametrized by $\left[\rho_{y}\right]$, cf. 4.8 , it follows that

$$
L_{\zeta}((0, y))=\left[\rho_{y}\right]=y \in \mathbb{G}_{m} \subset \mathbb{P}^{1} \subset X_{\zeta} .
$$

Since $(0,0)$ maps to Q, i.e. to the point at $y=0$, the map L_{ζ} identifies the whole affine y-line $\mathbb{A}^{1}=\{(0, y): y \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the affine y-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

In this way, we get an open immersion of each regular connected component of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ in the scheme X_{ζ}, which coincides on k-points with the restriction of the map of sets L_{ζ}.
2. The non-regular case $k \in\left\{0, \frac{p-1}{2}\right\}$. We choose the Steinberg coordinate z_{1}. According to [PS, 7.4.10], our non-regular connected component identifies with an affine line :

$$
V_{\widehat{\mathbf{T}}, 0, z_{2}} / W_{0} \simeq \mathbb{A}^{1}
$$

Suppose that $v=(0)$ is the origin, so that $\operatorname{Sph}(v)$ is a supersingular module. Let $\pi(r, 0, \eta)$ be the corresponding supersingular representation so that $L_{\zeta}(v)=[\rho(r, \eta)]$. Exactly as in the regular case, we may conclude that the Serre weights of the irreducible representation $\rho(r, \eta)$ are $\left\{\operatorname{Sym}^{2 k} \otimes \operatorname{det}^{-k}, \operatorname{Sym}^{p-1-2 k} \otimes \operatorname{det}^{k}\right\}$. For the two values of $k=0$ and $k=\frac{p-1}{2}$ we find
$\left\{\operatorname{Sym}^{0}, \operatorname{Sym}^{p-1}\right\}$ and $\left\{\operatorname{Sym}^{0} \otimes \operatorname{det}^{\frac{p-1}{2}}, \operatorname{Sym}^{p-1} \otimes \operatorname{det}^{\frac{p-1}{2}}\right\}$ respectively. Comparing with the list 3.3 shows that the 2 points

$$
\left\{\operatorname{origin}(0) \text { on the component }\left(\chi_{k}=\chi_{k}^{s}\right)\right\}
$$

for $k \in\left\{0, \frac{p-1}{2}\right\}$ are mapped to the 2 smooth points in $X_{\zeta}^{\mathrm{i} r r e d}$, which lie on the two 'exterior' components of X_{ζ}, cf. 3.3 .

Fix $k \in\left\{0, \frac{p-1}{2}\right\}$ and consider the point

$$
Q=L_{\zeta}\left(\text { origin }(0) \text { on the component } \gamma=\left(\chi_{k}=\chi_{k}^{s}\right)\right)
$$

As we have just seen, Q lies on an 'exterior' irreducible component \mathbb{P}^{1} whose label includes the weight $\operatorname{Sym}^{0} \otimes \operatorname{det}^{k}$. We fix an affine coordinate on this \mathbb{P}^{1} around Q, which we call z_{1} (there will be no risk of confusion with the Steinberg coordinate above!). Away from Q, the affine coordinate $z_{1} \neq 0$ parametrizes Galois representations of the form

$$
\rho_{z_{1}}=\left(\begin{array}{cc}
\operatorname{unr}\left(z_{1}\right) \omega & 0 \\
0 & \operatorname{unr}\left(z_{1}^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta:=\omega^{k}$. As in the regular case, $\pi\left(\rho_{z_{1}}\right)=\pi\left(0, z_{1}, \eta\right)^{\mathrm{ss}} \oplus \pi\left(p-3, z_{1}^{-1}, \omega \eta\right)^{\mathrm{ss}}$. Moreover, $\pi\left(0, z_{1}, \eta\right)=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ with $\chi=\operatorname{unr}\left(z_{1}\right) \otimes \operatorname{unr}\left(z_{1}^{-1}\right){ }^{7}$. Since

$$
(1 \otimes 1) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\omega^{k} \otimes \omega^{k}=\chi_{k}=\chi_{k}^{s} \in \mathbb{T}^{\vee},
$$

we deduce from the non-regular case of 4.2 that $\pi\left(0, z_{1}, \eta\right)^{I^{(1)}}=M\left(z_{1}, 1, \chi_{k}\right)$ is a 2-dimensional standard module. Moreover, the standard module is simple if and only if $\chi \neq \chi^{s}$, i.e. if and only if $z_{1} \neq \pm 1$.

Now let $v=z_{1} \neq 0$ denote a nonzero point on our connected component $\mathbb{A}^{1}=V_{\widehat{\mathbf{T}}, 0,1} / W_{0}$. Suppose that $z_{1} \neq \pm 1$, i.e. $v \in D(2)_{\gamma}$. In particular, $\operatorname{Sph}(v)=M\left(z_{1}, 1, \gamma\right)$ is irreducible. By our discussion, the point $L_{\zeta}\left(z_{1}\right)$ corresponds to the block (a block of type 2) which contains $\pi\left(0, z_{1}, \eta\right)$. Suppose that $z_{1}= \pm 1$, i.e. $v \in D(1)_{\gamma}$. In particular, $\operatorname{Sph}^{\mathrm{ss}}(v)=M\left(z_{1}, 1, \chi_{k}\right)^{\mathrm{ss}}$ and again, $L_{\zeta}\left(z_{1}\right)$ corresponds to the block (now a block of type 3) which contains the simple constituents of $\pi\left(0, z_{1}, \eta\right)^{\text {ss }}$. In both cases, we conclude

$$
L_{\zeta}\left(z_{1}\right)=\left[\rho_{z_{1}}\right]=z_{1} \in \mathbb{G}_{m} \subset \mathbb{P}^{1} \subset X_{\zeta} .
$$

Since (0) maps to Q, i.e. to the point at $z_{1}=0$, the map L_{ζ} identifies the whole z_{1}-line $\mathbb{A}^{1}=$ $V_{\widehat{\mathbf{T}}, 0,1} / W_{0}$ with the z_{1}-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

In this way, we get an open immersion of each non-regular connected component of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ in the scheme X_{ζ}, which coincides on k-points with the restriction of the map of sets L_{ζ}.

6 The morphism L_{ζ} in the basic odd case

Let $\zeta:=\omega^{-1}: \mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$. Here we show that the map of sets $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k) \rightarrow X_{\zeta}(k)$ that we have defined in 4.14 satisfies properties (ii) and (iiio) of 4.13, and we define a morphism of k-schemes $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}$ which coincides with the previous map of sets at the level of k-points. By construction, it will have the properties 4.10 . This will complete the proof of 4.13 , 4.10 and 4.9 in the case of an odd character.
6.1. We verify properties (ii) and (iiio). We work over an irreducible component \mathbb{P}^{1} with label $" \operatorname{Sym}^{r} \otimes \operatorname{det}^{a} \mid \operatorname{Sym}^{p-3-r} \otimes \operatorname{det}^{r+1+a} "$ where $1 \leq r \leq p-2$ and $0 \leq a \leq p-2$, cf. 3.4. We distinguish two cases.

1. The generic case $r \neq p-2$. In this case, the irreducible component of X_{ζ} we consider is an 'interior' component and has no exceptional points. On this component, we choose an affine

[^3]coordinate x around the double point having $\operatorname{Sym}^{r} \otimes \operatorname{det}^{a}$ as one of its Serre weights. Away from this point, we have $x \neq 0$ and the corresponding Galois representation has the form
\[

\rho_{x}=\left($$
\begin{array}{cc}
\operatorname{unr}(x) \omega^{r+1} & 0 \\
0 & \operatorname{unr}\left(x^{-1}\right)
\end{array}
$$\right) \otimes \eta
\]

with $\eta=\omega^{a}$. As before, we have

$$
\pi\left(\rho_{x}\right)=\pi(r, x, \eta)^{\mathrm{ss}} \oplus \pi\left([p-3-r], x^{-1}, \omega^{r+1} \eta\right)^{\mathrm{ss}}
$$

The length of $\pi\left(\rho_{x}\right)$ is 2 . Indeed, by our assumptions on r, the principal series representations $\pi(r, x, \eta)$ and $\pi\left(p-3-r, x^{-1}, \omega^{r+1} \eta\right)$ are irreducible and the block b_{x} contains only these two irreducible representations. We may follow the argument of the generic case of 5.1 word for word and deduce property 4.13 (ii).
2. The two boundary cases $r=p-2$. In this case, the irreducible component is one of the two 'exterior' components with labels " $\operatorname{Sym}^{p-2} \mid " \operatorname{Sym}^{-1} " "$ or ""Sym ${ }^{-1} \operatorname{det}^{\frac{p-1}{2} "} \left\lvert\, \operatorname{Sym}^{p-2} \operatorname{det}^{\frac{p-1}{2}} "\right.$. Points of the open locus $X_{\zeta}^{\text {red }}$ lying on such a component correspond to twists of unramified Galois representations of the form

$$
\rho_{x+x^{-1}}=\left(\begin{array}{cc}
\operatorname{unr}(x) & 0 \\
0 & \operatorname{unr}\left(x^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta=1$ or $\eta=\omega^{\frac{p-1}{2}}$. Let us concentrate on one of the two components, i.e. let us fix η.
Mapping an unramified Galois representation $\rho_{x+x^{-1}}$ to $t:=x+x^{-1} \in k$ identifies this open locus with the t-line $\mathbb{A}^{1} \subset \mathbb{P}^{1}$. We have

$$
\pi\left(\rho_{t}\right)=\pi(p-2, x, \eta)^{\mathrm{ss}} \oplus \pi\left(p-2, x^{-1}, \eta\right)^{\mathrm{ss}}=: \pi_{1} \oplus \pi_{2}
$$

since $[p-3-(p-2)]=p-2$ (indeed, $p-3-(p-2)=-1 \equiv p-2 \bmod (p-1))$. The length of $\pi\left(\rho_{t}\right)$ is 2 . Indeed, $\pi_{1}=\pi(p-2, x, \eta)$ and $\pi_{2}=\pi\left(p-2, x^{-1}, \eta\right)$ are two irreducible principal series representations and the block b_{t} contains only these two irreducible representations. They are isomorphic if and only if $x= \pm 1$, i.e. if and only if $t= \pm 2$ is an exceptional point. In this case, b_{t} contains only one irreducible representation and is of type 3 , otherwise it is of type 2 .

We may write

$$
\pi_{1}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta
$$

with $\chi=\operatorname{unr}(x) \otimes \omega^{p-2} \operatorname{unr}\left(x^{-1}\right)$. Similarly for π_{2}. The character $\left.\chi\right|_{\mathbb{F}_{p}^{\times}}=1 \otimes \omega^{p-2}$ is regular (i.e. different from its s-conjugate) and we are in the regular case of 4.2 . We conclude that $\pi_{1}^{I^{(1)}}=M\left(0, x, 1,\left(1 \otimes \omega^{p-2}\right) \cdot \eta\right)$ and $\pi_{2}^{I^{(1)}}=M\left(0, x^{-1}, 1,\left(1 \otimes \omega^{p-2}\right) \cdot \eta\right)$ are both simple 2-dimensional standard modules in the regular component γ represented by the character $\left(1 \otimes \omega^{p-2}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=$ $\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{p-2} \in \mathbb{T}^{\vee}$. They are isomorphic if and only if $t= \pm 2$. We choose an order $\gamma=\left(\left(\left.\eta\right|_{\mathbb{E}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{p-2},\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{p-2} \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)\right)$on the set γ. Then from $L_{\zeta}(v)=t$ we get that either $\operatorname{Sph}^{\gamma}(v)=\pi_{1}^{I^{(1)}}$ or $\operatorname{Sph}^{\gamma}(v)=\pi_{2}^{I^{(1)}}$. Since for regular γ, the map $\operatorname{Sph}^{\gamma}$ is a bijection onto all simple $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$-modules, cf. [PS, 7.4.9], one finds that $L_{\zeta}^{-1}(t)=\left\{v_{1}, v_{2}\right\}$ has cardinality 2 if $t \neq \pm 2$ and then

$$
\operatorname{Sph}\left(v_{1}\right) \oplus \operatorname{Sph}\left(v_{2}\right) \simeq \pi\left(\rho_{t}\right)^{I^{(1)}}
$$

This settles property 4.13 (ii). In turn, if $t= \pm 2$ is an exceptional point, then $L_{\zeta}^{-1}(t)=\{v\}$ has cardinality 1 and

$$
\operatorname{Sph}(v) \oplus \operatorname{Sph}(v) \simeq \pi\left(\rho_{t}\right)^{I^{(1)}}
$$

This settles property 4.13 (iiio).
6.2. We define a morphism of k-schemes $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \longrightarrow X_{\zeta}$ which coincides on k-points with the map of sets $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}(k) \longrightarrow X_{\zeta}(k)$. We work over a connected component of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$, indexed by some $\gamma \in \mathbb{T}^{\vee} / W_{0}$. Let v be a k-point of this component.

Since $\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{-1}$, the connected components of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ are indexed by the fibre $\left.(\cdot)\right|_{\mathbb{F}_{p}^{\times}} ^{-1}\left(\omega^{-1}\right)$. This fibre consists of the $\frac{p-1}{2}$ regular components, represented by the characters

$$
\chi_{k}=\omega^{k-1} \otimes \omega^{-k}
$$

for $k=1, \ldots, \frac{p-1}{2}$, cf. 2.2. Recall that $z_{2}=\zeta(p)=1$.
Fix an order $\gamma=\left(\chi_{k}, \chi_{k}^{s}\right)$ on the set γ and choose standard coordinates x, y. According to [PS, 7.4.8], our regular connected component identifies with two affine lines intersecting at the origin:

$$
V_{\widehat{\mathbf{T}}, 0,1} \simeq \mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}
$$

Suppose that $v=(0,0)$ is the origin, so that $\operatorname{Sph}(v)$ is a supersingular module. Let $\pi(r, 0, \eta)$ be the corresponding supersingular representation. It corresponds to the irreducible Galois representation $\rho(r, \eta)$, in the notation of Be11, 1.3], whence $L_{\zeta}(v)=[\rho(r, \eta)]$. According to 4.2, the component of $\pi(r, 0, \eta)^{I^{(1)}}$ is given by $\left(\omega^{r} \otimes 1\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)$. Setting $\left.\eta\right|_{\mathbb{F}_{p}^{\times}}=\omega^{a}$, this implies $\left(\omega^{r} \otimes 1\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=$ $\omega^{r+a} \otimes \omega^{a}=\chi_{k}$ and hence $a=-k$ and $r=2 k-1$. The Serre weights of the irreducible representation $\rho(r, \eta)$ are therefore $\left\{\operatorname{Sym}^{2 k-1} \otimes \operatorname{det}^{-k}, \operatorname{Sym}^{p-2 k} \otimes \operatorname{det}^{k-1}\right\}$, cf. Br07, 1.9].

Comparing these pairs of Serre weights with the list 3.4 shows that the $\frac{p-1}{2}$ points

$$
\left\{\text { origin }(0,0) \text { on the component }\left(\chi_{k}, \chi_{k}^{s}\right)\right\}
$$

for $k=1, \ldots, \frac{p-1}{2}$ are mapped successively to the $\frac{p-1}{2}$ double points of the chain X_{ζ}. We distinguish two cases.

1. The generic case $1<k<\frac{p-1}{2}$. In this case, the argument proceeds as in the regular case of 5.2 Consider the double point

$$
Q=L_{\zeta}\left(\text { origin }(0,0) \text { on the component } \gamma=\left(\chi_{k}, \chi_{k}^{s}\right)\right)
$$

As we have just seen, Q lies on an 'interior' irreducible component \mathbb{P}^{1} whose label includes the weight $\operatorname{Sym}^{2 k-1} \otimes \operatorname{det}^{-k}$. We fix an affine coordinate on this \mathbb{P}^{1} around Q, which we will also call x. Away from Q, the affine coordinate $x \neq 0$ parametrizes Galois representations of the form

$$
\rho_{x}=\left(\begin{array}{cc}
\operatorname{unr}(x) \omega^{2 k} & 0 \\
0 & \operatorname{unr}\left(x^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta:=\omega^{-k}$. As we have seen above, $\pi\left(\rho_{x}\right)=\pi(2 k-1, x, \eta) \oplus \pi\left(p-3-2 k+1, x^{-1}, \omega^{2 k} \eta\right)=: \pi_{1} \oplus \pi_{2}$. Moreover, $\pi_{1}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ with $\chi=\operatorname{unr}(x) \otimes \omega^{2 k-1} \operatorname{unr}\left(x^{-1}\right)$. Since

$$
\left(1 \otimes \omega^{2 k-1}\right) \cdot\left(\left.\eta\right|_{\mathbb{E}_{p}^{\times}}\right)=\omega^{-k} \otimes \omega^{k-1}=\chi_{k}^{s} \in \mathbb{T}^{\vee}
$$

we deduce from the regular case of 4.2 that $\pi_{1}^{I^{(1)}}=M\left(0, x, 1, \chi_{k}^{s}\right)$ is a simple 2-dimensional standard module. Note that $M\left(0, x, 1, \chi_{k}^{s}\right)=M\left(x, 0,1, \chi_{k}\right)$ according to [V04, Prop. 3.2].

Now suppose that $v=(x, 0), x \neq 0$, denotes a nonzero point on the x-line of $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$. In particular, $\operatorname{Sph}^{\gamma}(v)=M\left(x, 0,1, \chi_{k}\right)$. Our discussion shows that the point $L_{\zeta}((x, 0))$ corresponds to the block which contains π_{1}. Since π_{1} lies in the block parametrized by $\left[\rho_{x}\right]$, cf. 4.8, it follows that

$$
L_{\zeta}((x, 0))=\left[\rho_{x}\right]=x \in \mathbb{G}_{m} \subset \mathbb{P}^{1}
$$

Since $(0,0)$ maps to Q, i.e. to the point at $x=0$, the map L_{ζ} identifies the whole affine x-line $\mathbb{A}^{1}=\{(x, 0): x \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the affine x-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

On the other hand, the double point Q also lies on the irreducible component whose labelling includes the other weight of Q, i.e. the weight $\operatorname{Sym}^{p-2 k} \otimes \operatorname{det}^{k-1}$. We fix an affine coordinate y on this \mathbb{P}^{1} around Q. Away from Q, the coordinate $y \neq 0$ parametrizes Galois representations of the form

$$
\rho_{y}=\left(\begin{array}{cc}
\operatorname{unr}(y) \omega^{p-2 k+1} & 0 \\
0 & \operatorname{unr}\left(y^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta:=\omega^{k-1}$. As in the first case, $\pi\left(\rho_{y}\right)$ contains $\pi_{1}:=\pi(p-2 k, y, \eta)=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ as a direct summand, where now $\chi=\operatorname{unr}(y) \otimes \omega^{p-2 k} \operatorname{unr}\left(y^{-1}\right)$. Since

$$
\left(1 \otimes \omega^{p-2 k}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\omega^{k-1} \otimes \omega^{-k}=\chi_{k} \in \mathbb{T}^{\vee}
$$

we deduce from the regular case of 4.2 that $\pi_{1}^{I^{(1)}}=M\left(0, y, 1, \chi_{k}\right)$ is a simple 2-dimensional standard module.

Now suppose that $v=(0, y), y \neq 0$, denotes a nonzero point on the y-line of $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$. In particular, $\operatorname{Sph}^{\gamma}(v)=M\left(0, y, 1, \chi_{k}\right)$. Our discussion shows that the point $L_{\zeta}((0, y))$ corresponds to the block which contains π_{1}, parametrized by $\left[\rho_{y}\right]$. Hence

$$
L_{\zeta}((0, y))=\left[\rho_{y}\right]=y \in \mathbb{G}_{m} \subset \mathbb{P}^{1} .
$$

Since $(0,0)$ maps to Q, i.e. to the point at $y=0$, the map L_{ζ} identifies the whole y-line $\mathbb{A}^{1}=$ $\{(0, y): y \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the affine y-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

In this way, we get an open immersion of each connected component $\left(V_{\widehat{\mathbf{T}}, 0}^{\gamma} / W_{0}\right)_{\zeta}$ of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ such that $\gamma=\left(\chi_{k}, \chi_{k}^{s}\right)$ with $1<k<\frac{p-1}{2}$, in the scheme X_{ζ}, which coincides on k-points with the restriction of the map of sets L_{ζ}.
2. The two boundary cases $k \in\left\{1, \frac{p-1}{2}\right\}$. Consider the double point

$$
Q=L_{\zeta}\left(\text { origin }(0,0) \text { on the component } \gamma=\left(\chi_{k}, \chi_{k}^{s}\right)\right) .
$$

As we have just seen, Q lies on an 'interior' irreducible component \mathbb{P}^{1} whose label includes the weight $\operatorname{Sym}^{1} \otimes \operatorname{det}^{-1}($ for $k=1)$ or the weight $\operatorname{Sym}^{1} \otimes \operatorname{det}^{\frac{p-3}{2}}$ (for $k=\frac{p-1}{2}$). We fix an affine coordinate on this \mathbb{P}^{1} around Q, which we will call z. Away from Q, the coordinate $z \neq 0$ parametrizes Galois representations of the form

$$
\rho_{z}=\left(\begin{array}{cc}
\operatorname{unr}(z) \omega^{2} & 0 \\
0 & \operatorname{unr}\left(z^{-1}\right)
\end{array}\right) \otimes \eta
$$

with $\eta=\omega^{-1}$ or $\eta=\omega^{\frac{p-3}{2}}$.
Let $k=1$, i.e. $\eta=\omega^{-1}$. Following the argument in the generic case word for word, we may conclude that L_{ζ} identifies the x-line $\mathbb{A}^{1}=\{(x, 0): x \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the z-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

Let $k=\frac{p-1}{2}$, i.e. $\eta=\omega^{\frac{p-3}{2}}$. As in the generic case, we may conclude that L_{ζ} identifies the y-line $\mathbb{A}^{1}=\{(0, y): y \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ with the z-line $\mathbb{A}^{1} \subset \mathbb{P}^{1} \subset X_{\zeta}$.

On the other hand, the double point Q lies also on the irreducible component \mathbb{P}^{1} whose labelling includes the other weight of Q, i.e. the weight Sym^{p-2} (for $k=1$) or the weight $\operatorname{Sym}^{p-2} \otimes \operatorname{det}^{\frac{p-1}{2}}$ (for $k=\frac{p-1}{2}$). These are the two 'exterior' components. Points of the open locus $X_{\zeta}^{\text {red }}$ lying on such a component correspond to unramified (up to twist) Galois representations of the form

$$
\rho_{t}=\left(\begin{array}{cc}
\operatorname{unr}(z) & 0 \\
0 & \operatorname{unr}\left(z^{-1}\right)
\end{array}\right) \otimes \eta
$$

where $\eta=1$ (for $k=1$) or $\eta=\omega^{\frac{p-1}{2}}$ (for $k=\frac{p-1}{2}$) and with $t=z+z^{-1} \in \mathbb{A}^{1} \subset \mathbb{P}^{1}$. As in the boundary case of 6.1, we have $\pi\left(\rho_{t}\right)=\pi(p-2, z, \eta) \oplus \pi\left(p-2, z^{-1}, \eta\right)=: \pi_{1} \oplus \pi_{2}$ and these are irreducible principal series representations. We may write $\pi_{1}=\operatorname{Ind}_{B}^{G}(\chi) \otimes \eta$ with $\chi=$ $\operatorname{unr}(z) \otimes \omega^{p-2} \operatorname{unr}\left(z^{-1}\right)$. The character $\left.\chi\right|_{\mathbb{F}_{p}^{\times}}=1 \otimes \omega^{p-2}$ is regular (i.e. different from its s-conjugate) and we are in the regular case of 4.2 . We conclude that

$$
\pi_{1}^{I^{(1)}}=M\left(0, z, 1,\left(1 \otimes \omega^{p-2}\right) \cdot \eta\right)
$$

is a simple 2-dimensional standard module in the regular component represented by the character

$$
\left(1 \otimes \omega^{p-2}\right) \cdot\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right)=\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{p-2}=\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \otimes\left(\left.\eta\right|_{\mathbb{F}_{p}^{\times}}\right) \omega^{-1} \in \mathbb{T}^{\vee} .
$$

This latter character equals χ_{1} for $\eta=1$ and $\left(\chi_{\frac{p-1}{2}}\right)^{s}$ for $\eta=\omega^{\frac{p-1}{2}}$ (indeed, note that $\frac{p-1}{2} \equiv-\frac{p-1}{2}$ $\bmod p-1$).

Now suppose that $k=1$, i.e. $\eta=1$. Let $v=(0, y), y \neq 0$, be a nonzero point on the y-line of $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$. In particular, $\operatorname{Sph}^{\gamma}(v)=M\left(0, y, 1, \chi_{1}\right)$. Our discussion shows that the point $L_{\zeta}((0, y))$ corresponds to the block which contains π_{1}, i.e. which is parametrized by $\left[\rho_{t}\right]$. It follows that

$$
L_{\zeta}((0, y))=\left[\rho_{t}\right]=t=y+y^{-1} \in \mathbb{A}^{1} \subset \mathbb{P}^{1} .
$$

Since $(0,0)$ maps to Q, i.e. to the point at $t=\infty$, the map of sets L_{ζ} maps the k-points of the whole affine y-line $\mathbb{A}^{1}=\{(0, y): y \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ to the k-points of the whole 'left exterior' component $\mathbb{P}^{1} \subset X_{\zeta}$ via the formula

$$
\begin{array}{rll}
\mathbb{A}^{1} & \longrightarrow \mathbb{P}^{1} \\
y & \longmapsto\left\{\begin{array}{cl}
y+y^{-1} & \text { if } y \neq 0 \\
\infty=Q & \text { if } y=0
\end{array}\right.
\end{array}
$$

This formula is algebraic: indeed, for $y \in \mathbb{A}^{1} \backslash\{ \pm i\}$ (where $\pm i$ are the roots of the polynomial $f(y)=y^{2}+1$), we have $y+y^{-1} \neq 0$ and $\left(y+y^{-1}\right)^{-1}=y /\left(y^{2}+1\right)$, which is equal to 0 at $y=0$. Moreover, it glues at the origin $(0,0)$ with the open immersion of the x-line of $V_{\widehat{\mathbf{T}}, 0,1}=\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$ in X_{ζ} defined above, since both map $(0,0)$ to Q. We take the resulting morphism of k-schemes $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1} \rightarrow X_{\zeta}$ as the definition of L_{ζ} on the connected component $\left(V_{\widehat{\mathbf{T}}, 0}^{\left(\chi_{1}, \chi_{1}^{s}\right)} / W_{0}\right)_{\zeta}$ of $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$. Note that its restriction to the open subset $\{y \neq 0\}$ in the y-line \mathbb{A}^{1} is the morphism $\mathbb{G}_{m} \rightarrow \mathbb{A}^{1}$ corresponding to the ring extension

$$
k[t] \longrightarrow k\left[y, y^{-1}\right]=k[t][y] /\left(y^{2}-t y+1\right),
$$

and that the discriminant $t^{2}-4$ of $y^{2}-t y+1 \in k[t][y]$ vanishes precisely at the two exceptional points $t= \pm 2$.

Suppose $k=\frac{p-1}{2}$, i.e. $\eta=\omega^{\frac{p-1}{2}}$. Let $v=(x, 0), x \neq 0$, denote a nonzero point on the x-line of $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$. In particular,

$$
\operatorname{Sph}^{\gamma}(v)=M\left(0, x, 1,\left(\chi_{\frac{p-1}{2}}\right)^{s}\right)=M\left(x, 0,1, \chi_{\frac{p-1}{2}}\right)
$$

Our discussion shows that the point $L_{\zeta}((x, 0))$ corresponds to the block which contains π_{1}, i.e. which is parametrized by $\left[\rho_{t}\right]$. It follows that $L_{\zeta}((x, 0))=\left[\rho_{t}\right]=t=x+x^{-1} \in \mathbb{A}^{1} \subset \mathbb{P}^{1}$. Since $(0,0)$ maps to the point Q at $t=\infty$, the map of sets L_{ζ} maps the k-points of the whole affine x-line $\mathbb{A}^{1}=\{(x, 0): y \in k\} \subset V_{\widehat{\mathbf{T}}, 0,1}$ to the k-points of the whole 'right exterior' component $\mathbb{P}^{1} \subset X_{\zeta}$ via the formula

$$
\begin{aligned}
\mathbb{A}^{1} & \longrightarrow \mathbb{P}^{1} \\
x & \longmapsto \begin{cases}x+x^{-1} & \text { if } x \neq 0 \\
\infty=Q & \text { if } x=0 .\end{cases}
\end{aligned}
$$

This formula is algebraic. Moreover, it glues at the origin $(0,0)$ with the open immersion of the y-line of $V_{\widehat{\mathbf{T}}, 0,1}=\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1}$ in X_{ζ} defined above, since both map $(0,0)$ to Q. We take the resulting morphism of k-schemes $\mathbb{A}^{1} \cup_{0} \mathbb{A}^{1} \rightarrow X_{\zeta}$ as the definition of L_{ζ} on the connected component

7 An interpolation of the semisimple mod p correspondence

In this subsection we continue to assume $p \geq 5$.
7.1. Recall the mod p parametrization functor P from 4.4. For $\zeta \in \mathcal{Z}^{\vee}(k)$, let $\operatorname{Mod}_{\zeta}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$ be the full subcategory of $\operatorname{Mod}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$ whose objets are the $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-modules M whose Satake parameter $S(M)$ is supported on the closed subscheme $\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \subset V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}$. A $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}$-module M lies in
the category $\operatorname{Mod}_{\zeta}\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$ if and only if: M is only supported in γ-components where $\left.\gamma\right|_{\mathbb{E}_{p}^{\times}}=\left.\zeta\right|_{\mathbb{E}_{p}^{\times}}$ and the operator U^{2} acts on M via the \mathbb{G}_{m}-part of ζ. Then P induces a $\bmod p \zeta$-parametrization functor

$$
P_{\zeta}: \operatorname{Mod}_{\zeta}\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right) \longrightarrow \mathrm{Q} \operatorname{Coh}\left(\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}\right)
$$

Let $\zeta \in \mathcal{Z}^{\vee}(k)$. We have the functor

$$
L_{\zeta *}: \operatorname{QCoh}\left(\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}\right) \longrightarrow \mathrm{QCoh}\left(X_{\zeta}\right)
$$

push-forward along the k-morphism $L_{\zeta}:\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta} \rightarrow X_{\zeta}$ from 4.9 . Finally recall that for $\zeta \in \mathcal{Z}^{\vee}(k)$, the functor of $I^{(1)}$-invariants $(\cdot)^{I^{(1)}}: \operatorname{Mod}^{\mathrm{sm}}(k[G]) \rightarrow \operatorname{Mod}\left(\mathcal{H}_{\mathbb{F}_{p}}^{(1)}\right)$ induces a functor

$$
(\cdot)_{\zeta}^{I^{(1)}}: \operatorname{Mod}_{\zeta}^{\mathrm{sm}}(k[G]) \rightarrow \operatorname{Mod}_{\zeta}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)
$$

by 4.5
7.2. Definition. Let $\zeta \in \mathcal{Z}^{\vee}(k)$. The $\bmod p \zeta$-Langlands parametrization functor is the functor $\mathrm{L}_{\zeta} \mathrm{P}_{\zeta}:=L_{\zeta *} \circ P_{\zeta}:$

Identifying ζ with a central character of G, the functor $\mathrm{L}_{\zeta} \mathrm{P}_{\zeta}$ extends to the category $\operatorname{Mod}_{\zeta}^{\mathrm{sm}}(k[G])$ by precomposing with the functor $(\cdot)_{\zeta}^{I^{(1)}}: \operatorname{Mod}_{\zeta}^{\mathrm{sm}}(k[G]) \rightarrow \operatorname{Mod}_{\zeta}\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$. This gives the functor $\mathrm{L}_{\zeta} \mathrm{P}_{\zeta} \circ(\cdot)_{\zeta}^{I^{(1)}}:$

7.3. Theorem. Suppose $F=\mathbb{Q}_{p}$ with $p \geq 5$. Fix a character $\zeta: Z(G)=\mathbb{Q}_{p}^{\times} \rightarrow k^{\times}$, corresponding to a point $\left(\left.\zeta\right|_{\mathbb{F}_{p}^{\times}}, \zeta\left(p^{-1}\right)\right) \in \mathcal{Z}^{\vee}(k)$ under the identification $\mathcal{Z}(G)^{\vee} \cong \mathcal{Z}^{\vee}(k)$ from 4.4 .

The mod $p \zeta$-Langlands parametrization functor $\mathrm{L}_{\zeta} \mathrm{P}_{\zeta}$ interpolates the Langlands parametrization of the blocks of the category $\operatorname{Mod}_{\zeta}^{\operatorname{ladm}}(k[G])$, cf. 4.7 : for all $x \in X_{\zeta}(k)$ and for all $\pi \in b_{\left[\rho_{x}\right]}$,

$$
\mathrm{L}_{\zeta} \mathrm{P}_{\zeta}\left(\pi^{I^{(1)}}\right)=\left\{\begin{array}{ll}
i_{x *}\left(\pi^{I^{(1)}}\right) & \text { if } x \text { is not an exceptional point in the odd case } \\
i_{x *}\left(\pi^{I^{(1)}}\right)^{\oplus 2} & \text { otherwise }
\end{array} \in \mathrm{QCoh}\left(X_{\zeta}\right)\right.
$$

where $i_{x}: \operatorname{Spec}(k) \rightarrow X_{\zeta}$ is the k-point x.
Proof. By definition of a block of a category as a certain equivalence class of simple objects [Pas13], if $\pi \in b_{\left[\rho_{x}\right]}$ then in particular π is simple. Then $\pi^{I^{(1)}}$ is simple too, and hence has a central character. Therefore $P_{\zeta}\left(\pi^{I^{(1)}}\right)$ is the underlying k-vector space of $\pi^{I^{(1)}}$ supported at the k-point $v \in\left(V_{\widehat{\mathbf{T}}, 0}^{(1)} / W_{0}\right)_{\zeta}$ corresponding to its central character under the isomorphism $\mathscr{S}_{\overline{\mathbb{F}}_{p}}^{(1)}$, which lies on some connected component γ. Suppose $\operatorname{dim}_{k}\left(\pi^{I^{(1)}}\right)=2$. Then $\pi^{I^{(1)}}$ is isomorphic to the simple standard module of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$ with central character v, i.e. to $\operatorname{Sph}^{\gamma}(v)$, and hence $L_{\zeta}(v)=x$ by definition of the map of sets $L_{\zeta}(k)$. Suppose $\operatorname{dim}_{k}\left(\pi^{I^{(1)}}\right)=1$. Then $\pi^{I^{(1)}}$ is one of the two spherical characters of $\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}$ whose restriction to the center $Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{\gamma}\right)$ is equal to v, i.e. it is one of the simple constituents of $\left(\operatorname{Sph}^{\gamma}(v)\right)^{\text {ss }}$, and hence again $L_{\zeta}(v)=x$ by definition of the map of sets $L_{\zeta}(k)$. Now if x is not an exceptional point in an odd case, then L_{ζ} is an open immersion at v, and otherwise it has ramification index 2 at v. The theorem follows.

References

[Be11] L. Berger, La correspondance de Langlands locale p-adique pour $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Astérisque 339 (2011), 157-180.
[Br03] C. Brevil, Sur quelques representations modulaires et p-adiques de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$. II, J. Inst. Math. Jussieu 2 (2003), no. 2, 165-188.
[Br07] C. Brevil, Representations of Galois and of GL_{2} in characteristic p, Course at Columbia University 2007, https://www.imo.universite-paris-saclay.fr/~breuil/PUBLICATIONS/New-York. pdf.
[CDP14] P. Colmez, G. Dospinescu, V. Paškūnas, The p-adic local Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Camb. J. Math. 1(2), 1-47, 2014.
[Em10] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Asterisque 331 (2010), 335-381.
[DEG22] A. Dotto, M. Emerton, T. Gee, Localization of smooth p-power torsion representations of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Preprint 2022, arXiv:2207.04671.
[Em19] M. Emerton, Localizing $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-representations, Talk at Padova School on Serre conjectures and the p-adic Langlands program 2019, https://mediaspace.unipd.it/channel/School+ on+Serre+conjectures+and+the +p -adic+Langlands+program/119214951.
[H11b] F. Herzig, The classification of irreducible admissible mod p representations of a p-adic GL_{n}, Inventiones Math. 186(2), pages 373-434.
[KL87] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1), 153-215, 1987.
[O09] R. Ollivier, Le foncteur des invariants sous l'action du pro-p-Iwahori de $G L(2, F)$, J. für die reine und angewandte Mathematik 635 (2009), 149-185.
[Pas13] V. Paškūnas, The image of Colmez's Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1-191.
[PS] C. Pépin, T. Schmidt, Generic and Mod p Kazhdan-Lusztig Theory for $G L_{2}$, Preprint 2021, arXiv:2007.01364v2. To appear in: Representation Theory.
[PS2] C. Pépin, T. Schmidt, A semisimple mod p Langlands correspondence in families for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Preprint 2020, arXiv: 2009.07328.
[V04] M.-F. Vigneras Representations modulo p of the p-adic group $G L(2, F)$, Compositio Math. 140 (2004) 333-358.

Cédric Pépin, LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
E-mail address: cpepin@math.univ-paris13.fr
Tobias Schmidt, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
E-mail address: toschmidt@uni-wuppertal.de

[^0]: ${ }^{1}$ There occur also connected components equal to \mathbb{A}^{1} corresponding to non-regular components of $\operatorname{Spec} Z\left(\mathcal{H}_{\overline{\mathbb{F}}_{p}}^{(1)}\right)$.
 ${ }^{2}$ The idea of relating the curve X and the spherical module $\mathcal{M}_{\overline{\mathbb{F}}_{p}}^{(1)}$ came to the authors when listening to the talk [Em19], and led to the first preprint [PS2] in 2020. We thank M. Emerton for this enlightening talk. This article is a revised version of PS2].

[^1]: ${ }^{3}$ The Galois representations living on the two exterior components in the odd case are unramified (up to twist), i.e. of type $\rho=\left(\begin{array}{cc}\operatorname{unr}(x) & 0 \\ 0 & \operatorname{unr}\left(x^{-1}\right)\end{array}\right) \otimes \eta$ and t equals the 'trace of Frobenius' $x+x^{-1}$. Hence $t= \pm 2$ if and only if $x= \pm 1$.
 ${ }^{4}$ Note that our element u equals the element u^{-1} in (Be11, Br07] and V04].
 ${ }^{5}$ Our formulas differ from [V04, 4.2/4.3] by $\chi(\cdot) \leftrightarrow \chi(\cdot)^{-1}$, since we are working with left modules; also compare with the explicit calculation with right convolution given in V04 Appendix A.5].

[^2]: ${ }^{6}$ The reason for this notation will become clear in the discussion of the non-regular case in 5.2

[^3]: ${ }^{7}$ The representations $\pi\left(0, z_{1}, \eta\right)$ constitute the unramified principal series of G.

