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Abstract. Let G be a connected split reductive group over a finite extension L of Qp,
denote by X the flag variety of G, and let G “ GpLq. In this paper we prove that

formal models X of the rigid analytic flag variety Xrig are D:

X,k-affine for certain sheaves

of arithmetic differential operators D:

X,k. Furthermore, we show that the category of
admissible locally analytic G-representations with trivial central character is naturally
anti-equivalent to a full subcategory of the category of G-equivariant families pMX,kq of

modules MX,k over D:

X,k on the projective system of all formal models X of Xrig.
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1. Introduction

Let L{Qp be a finite extension with ring of integers o “ oL. In [32] the authors introduced

certain sheaves of differential operators1 D:

n,k on a family of semistable formal models Xn

of the rigid-analytic projective line over L (the notion of formal model is in the sense of [7,

Def. 4 in sec. 7.4]). A key result there is that Xn is D:

n,k-affine. Moreover, it was shown
in loc. cit. how admissible locally L-analytic representations with trivial infinitesimal
character of the L-analytic group GL2pLq, or rather their associated coadmissible modules,
can be described in terms of GL2pLq-equivariant projective systems of coherent sheaves

Mn over D:
n,n. We generalized the construction of the sheaves D:

n,k to higher-dimensional
formal schemes, which are not necessarily semi-stable, in [22].

In this paper we generalize the previous results on D:-affinity, as well as the representation
theoretic results to (not necessarily semistable) formal models of general flag varieties of
split reductive groups. So let G0 be a connected split reductive group scheme over o,
and denote by X0 the formal completion of the flag scheme X0 of G0. We then consider
a formal admissible blow-up X of X0. In section 2 we briefly recall the definition of the
sheaves of differential operators D:

X,k as introduced in [22]. Here k is an integer which we
call the congruence level. It is bounded below by a non-negative integer kX which depends
on the blow-up morphism XÑ X0. Our first main result is then

Theorem 1 (cf. 4.3.3). For all k ě kX the formal scheme X is D:

X,k-affine.

This means that the global sections functor furnishes an equivalence of categories between
coherent modules over D:

X,k and finitely presented modules over the ring H0pX,D:

X,kq.

It is shown that H0pX,D:

X,kq can be identified with the central reduction DanpGpkq˝qθ0
of Emerton’s analytic distribution algebra DanpGpkq˝q of the wide open rigid-analytic
kth congruence subgroup Gpkq˝ of G0, cf. [15, 5.2, 5.3], [28, 5.3]. The functor M ù

L oc:X,kpMq :“ D:

X,kbDanpGpkq˝qθ0M is quasi-inverse to the global sections functor. Compare

[5, 11, 12] for the classical setting of modules over the Lie algebra of G “ G0ˆSpecpoqSpecpLq
and localization on the flag variety X of G.

As in [32] our main motivation for this result concerns locally analytic representations.
The category of admissible locally analytic representations of the locally L-analytic group
G :“ GpLq with trivial infinitesimal character θ0 is anti-equivalent to the category of

1These sheaves were denoted rD:

n,k in [32] to distinguish them from the sheaves of arithmetic differential
operators introduced by P. Berthelot. For ease of notation, we have decided to drop the tilde throughout
this paper.
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coadmissible modules over DpG,Lqθ0 , the central reduction of the locally L-analytic dis-
tribution algebra DpG,Lq of G at θ0.

On the geometric side, we consider the (semisimple) Bruhat-Tits building B of G [9, 10].
This is a simplicial complex whose dimension equals the semisimple rank of G and which
is equipped with an action of G. Most important for our purposes is the G-stable subset
of B of so-called special vertices. To any such vertex v the theory of Bruhat and Tits
associates a reductive group scheme Gv over o whose generic fiber comes equipped with
a canonical isomorphism to G. (The group scheme G0 we considered before can be taken
to be one of those group schemes Gv0 , say.) The flag scheme Xv,0 of Gv therefore has
the property that its generic fiber is canonically isomorphic to X2. Passing to formal
completions we thus obtain a family of smooth formal schemes Xv,0, indexed by the set
of special vertices of B, which is equipped with a G-action. Furthermore, we consider
for every special vertex v the set Fv of all admissible blow-ups X of Xv,0, and we define
Fv Ă Fv ˆ N to be the set of pairs pX, kq with X P Fv and k ě kX. There is a natural
partial ordering on F :“

š

v Fv which makes this a directed set (5.3.2), and F :“
š

v Fv

naturally carries a G-action, cf. 5.3.3 for details.

A coadmissible G-equivariant arithmetic D-module on F consists of a family

M “ pMX,kqpX,kqPF

of coherent D:

X,k-modules MX,k satisfying certain compatibility properties, cf. 5.3.8. In
particular, these properties make it possible to form the projective limit

ΓpM q :“ lim
ÐÝ

pX,kqPF
H0
pX,MX,kq

which, as we show, carries the structure of a coadmissible DpG,Lqθ0-module. On the
other hand, given a coadmissible DpG,Lqθ0-module M we let V “ M 1 be its continuous
dual, which is an admissible locally analytic representation of G. We then let Mv,k be the
continuous dual of the subspace VGvpkq˝´an Ă V of Gvpkq

˝-analytic vectors in V . For any

pX, kq P Fv we have the coherent D:

X,k-module

L oc:X,kpMv,kq “ D:

X,k bDanpGvpkq˝qθ0 Mv,k .

We denote the family of all those modules by L ocGpMq. Our main result is then

Theorem 2 (cf. 5.3.12). The functors L ocG and Γ are quasi-inverse equivalences between
the category of coadmissible DpG,Lqθ0-modules and the category C G

F of coadmissible G-
equivariant arithmetic D-modules on F .

2The index “0” of Xv,0 indicates that we think of Xv,0 as the bottom layer of the tower of admissible
blow-ups of this scheme.



4 CHRISTINE HUYGHE, DEEPAM PATEL, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

The projective limit X8 :“ lim
ÐÝXPF X is the Zariski-Riemann space attached to Xrig. The

latter space is in turn isomorphic (as a ringed space, after inverting p on the structure
sheaf) to the adic space attached to Xrig, cf. [41, Thm. 4 in sec. 2, Thm. 4 in sec. 3]. One

can also form the projective limit D8 of the sheaves D:

X,k which is then a G-equivariant
sheaf of p-adically complete rings of differential operators on X8, cf. 5.2.24. Similarly,
for any object M “ pMX,kq in C G

F one can form the projective limit M8 of the sheaves
MX,k which is then a G-equivariant D8-module. The assignment M ù M8 is a faithful
functor from C G

F to the category of G-equivariant D8-modules, cf. 5.3.16. We remark
that it is possible to modify the target category by way of equipping the objects with the
structure of locally convex D8-modules (and by requiring morphisms to be continuous),3

so as to obtain a fully faithful functor M ù M8, cf. 5.3.17.

In a final section we illustrate this localization theory by computing the D:

X,k-modules
associated to certain classes of locally analytic representations.

In this paper we only treat the case of the central character θ0, but there is an extension
of this theorem available for characters more general than θ0 by using twisted versions
of the sheaves D:

X,k. Moreover, the construction of the sheaf D:
8 carries over to general

smooth rigid-analytic (or adic) spaces over L. These questions will be addressed in future
work.

We would also like to mention that K. Ardakov and S. Wadsley are developing a theory
of D-modules on general rigid-analytic spaces, cf. [1, 3, 2]. In their work they consider
deformations of the sheaves of crystalline differential operators (as in [4]), whereas we take
as a starting point deformations of Berthelot’s rings of arithmetic differential operators.
That the rings of differential operators considered by us are close in spirit to the theory
of rigid cohomology will, as we hope, open a way to use techniques and results from rigid
cohomology to investigate locally analytic representations. A first example for such an
interaction can be found in [32, sec. 7].

Notation. L denotes a finite extension of Qp, with ring of integers o and uniformizer
$. Let q be the cardinality of the residue field o{p$q which we also denote by Fq. G0

denotes a split connected reductive group scheme over o and B0 Ă G0 a Borel subgroup
scheme. We let G “ G0 ˆSpecpoq SpecpLq be the generic fiber of G0. The Lie algebra of
G0 is denoted by go. If X is a smooth scheme over Specpoq, we denote by TX its relative
tangent sheaf, i.e., TX “ TX{Specpoq. If X (resp. X) is a scheme (resp. formal scheme)
over Specpoq (resp. Spfpoq), a coherent sheaf of ideals I Ă OX (resp. I Ă OX) is said
to be open (w.r.t. the p-adic topology) if $ is locally nilpotent on SpecpOX{Iq (resp.
SpfpOX{Iq). A scheme (or a formal scheme) over Specpoq (resp. Spfpoq) which arises
from blowing up an open ideal sheaf on X (resp. X) will be called an admissible blow-up
of X (resp. admissible formal blow-up of X). If X denotes a scheme over o, we always

3Equipping D-modules with locally convex structures is a common technique in the theory of complex
analytic D8-modules, cf. [33, 38].
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denote by X the completion of X along its special fiber X ˆSpecpoq SpecpFqq. The set of
non-negative integers will be denoted by N (in particular, our convention is such that N
contains zero). If V is a topological vector space over L, then V 1 “ Homcont

L pV, Lq denotes
space of continuous linear forms on V , and when we write V 1b , then the subscript ”b”
indicates that we equip this space with the strong topology of bounded convergence. If
not said otherwise, all modules are tacitly assumed to be left modules.

Acknowledgments. C.H. and M.S. benefited from an invitation to MSRI during the Fall
2014 and thank this institution for excellent working conditions. M.S. gratefully acknowl-
edges the support of the Institut de Recherche Mathématique Avancée (IRMA) of the
University of Strasbourg during a stay in research in June 2016. We would also like to
thank the anonymous referees for their careful reading and very helpful reports from which
this paper has greatly benefited.

2. The sheaves D pk,mq
X and pD pk,mq

X

While sections 3-6 of this paper are only about flag varieties and their formal models,
we work in this section in somewhat greater generality, as this is more natural for the
material considered here. For more details about the constructions discussed below, as
well as the proofs of the main result of this section, we refer the reader to [22].

2.1. Differential operators with levels and congruence levels. Here we briefly re-
call the local description of Berthelot’s sheaf D pmq of differential operators of level m.
Moreover, we introduce a kind of deformation of this sheaf, to be denoted by D pk,mq,
where k P N is what we call a congruence level. For k “ 0 we have D p0,mq “ D pmq. As
will become apparent in section 3.3, this terminology is motivated by the relation of these
sheaves, in the case of flag varieties, to principal congruence subgroups. In the special
case of the projective line, the sheaves with congruence levels have been introduced in
[32], and similar constructions also appeared earlier in [4].

Let X0 be a smooth scheme over o and X0 the associated formal scheme, i.e., the com-
pletion of X0 along the special fiber X0 ˆSpecpoq SpecpFqq. The usual sheaf of relative
differential operators [18, 16.8] on X0 over o will be denoted by DX0{Specpoq (without su-
perscripts as ‘decorations’). Let U0 be an affine open subset of X0, endowed with local
coordinates x1, . . . , xM , and let B1, . . . , BM be the corresponding derivations. Denote by
m a fixed non-negative integer. For a non-negative integer νl, we let qpmqνl

be the quotient

of the euclidean division of νl by pm, i.e., qpmqνl
“ t

νl
pm

u. Then we set

(2.1.1) B
xνlypmq
l “ qpmqνl

!B
rνls
l ,

where, as usual, B
rνls
l P ΓpU0,DU0{Specpoqq is such that l!B

rνls
l “ B

νl
l . For ν “ pν1, . . . , νMq P

NM , we put Bxνypmq “
śM

l“1 B
xνlypmq
l , Brνs “

śM
l“1 B

rνls
l , and |ν| “ ν1 ` . . .` νM .
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Denote by D pmq
X0

:“ D pmq
X0{Specpoq Ă DX0{Specpoq the ring of level m differential operators of

Berthelot, cf. [6, sec. 2] (from now on we agree on omitting the base scheme Specpoq in
the notation as in [6, 2.2.3]). Then we have the following description in local coordinates:

ΓpU0,D
pmq
X0
q “

#

ă8
ÿ

ν

aνB
xνypmq | aν P ΓpU0,OX0q

+

,

as follows from [6, 2.2.5]. Now let k P N be another non-negative integer (the congruence

level mentioned above). We then define a subring ΓpU0,D
pk,mq
X0

q Ă ΓpU0,D
pmq
X0
q by setting

(2.1.2) ΓpU0,D
pk,mq
X0

q “

#

ă8
ÿ

ν

$k|ν|aνB
xνy
| aν P ΓpU0,OX0q

+

.

It is straightforward to see that this is indeed a subring of ΓpU0,D
pmq
X0
q. And, as the

notation already suggests, it is not hard to show that these rings glue together to give a

subsheaf D pk,mq
X0

of D pmq
X0

.

Remark 2.1.3. Let X0,η “ X0 ˆSpecpoq SpecpLq be the generic fiber of X0 which is an

open subset of X0. We note that for any pair pk,mq P N2 the inclusion D pk,mq
X0

Ă DX0

induces a canonical isomorphism D pk,mq
X0

ˇ

ˇ

ˇ

X0,η

“ DX0

ˇ

ˇ

ˇ

X0,η

“ DX0,η , because $ is invertible

on X0,η. Any of the sheaves D pk,mq
X0

therefore extends the sheaf DX0,η to the whole scheme
X0.

2.2. Differential operators with levels and congruence levels on blow-ups.

2.2.1. Lifting the sheaves to blow-ups. Denote by pr : X Ñ X0 an admissible blow-
up. That is to say, X is obtained by blowing up a sheaf of ideals I Ă OX0 containing
some power of $, say $k. In particular, the blow-up morphism pr induces a canonical
isomorphism Xη » X0,η between the generic fibers, cf. 2.1.3 for the notation.

The sheaf pr´1
´

D pk,mq
X0

¯

on X is again a sheaf of rings, and it follows from 2.1.3 that

there is a canonical isomorphism pr´1
´

D pk,mq
X0

¯
ˇ

ˇ

ˇ

Xη
“ DXη . In particular, OXη is naturally

a module over pr´1
´

D pk,mq
X0

¯ˇ

ˇ

ˇ

Xη
. Now the question arises for which congruence levels

k P N this module structure extends to a module structure on OX over pr´1
´

D pk,mq
X0

¯

.

Since functions on X are determined by their restriction to Xη, any such extension of
module structure is unique. As in [22, 2.1.10] one shows that the condition $k P I
implies that OX carries a natural structure of a module over pr´1

´

D pk,mq
X0

¯

. Therefore,

the sheaf
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(2.2.2) D pk,mq
X :“ pr˚D pk,mq

X0
“ OX bpr´1pOX0

q pr´1
´

D pk,mq
X0

¯

can be equipped with a multiplication which extends the sheaf of rings structure of

pr´1
´

D pk,mq
X0

¯

. Explicitly, if B1, B2 are both derivations and local sections of pr´1
´

D pk,mq
X0

¯

,

and if f1, f2 are local sections of OX , then pf1bB1q ¨ pf2bB2q “ f1B1pf2qbB2`f1f2bB1B2.
We set

(2.2.3) kX “ min
I

mintk P N | $k
P Iu ,

where the first minimum is taken over all open ideal sheaves I such that the blow-up of I
is isomorphic to X (over X0). Suppose U0 Ă X0 is an affine open subset which is endowed
with local coordinates x1, . . . , xM . Consider an affine open subset U Ă pr´1pU0q Ă X.

Then we have the following description of the sections of D pk,mq
X over U :

(2.2.4) ΓpU,D pk,mq
X q “

#

ă8
ÿ

ν

$k|ν|aνB
xνypmq | aν P ΓpU,OXq

+

.

2.2.5. Filtrations on D pk,mq
X . Using this description, we observe that the sheaf D pk,mq

X

is filtered by the order of differential operators. More precisely, if d P N is given, we

define the subsheaf D pk,mq
X,d as follows. Let V Ă X be any open subset. Then ΓpV,D pk,mq

X,d q

consists of those elements P P ΓpV,D pk,mq
X q such that for any open affine U0 Ă X0 as

above, and for any open affine U Ă V X pr´1pU0q, the restriction P |U is of the form
ř

|ν|ďd$
k|ν|aνB

xνypmq with aν P ΓpU,OXq and where, as usual, |ν| “ ν1 ` . . . ` νM . There

are canonical isomorphisms D pk,mq
X,d “ pr˚D pk,mq

X0,d
. We put

(2.2.6) TX,k :“ $kpr˚pTX0q Ă pr˚pTX0q ,

and we denote by

Sympmq
pTX,kq “

à

d

Sym
pmq
d pTX,kq

the graded level m symmetric algebra generated by the sheaf TX,k, cf. [21, sec. 1.2]. If
U0 is affine endowed with local coordinates x1, . . . , xM as before, and ξ1, . . . , ξM a basis of
TX0 restricted to U0, then using notations of 2.1.1 one has for an open affine U Ă pr´1pU0q
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ΓpU, Sym
pmq
d pTX,kqq “

à

|ν|“d

OpUq$kdξxνypmq .

In [22, 2.2.2] we show the following

Proposition 2.2.7. Suppose k ě kX . Then the associated graded algebra of D pk,mq
X for

the filtration by the order of differential operators is isomorphic to Sympmq
pTX,kq.

2.2.8. p-adic completions. We denote the completion of X0 and X along their special

fibers by X0 and X, respectively, and we let pD pk,mq
X be the p-adic completion of D pk,mq

X

which we consider as a sheaf on the formal scheme X. For fixed k ě kX , cf. 2.2.3, we also
define

D:

X,k “ lim
ÝÑ
m

pD pk,mq
X,Q .

Remark. We emphasize that the sheaves D pk,mq
X , pD pk,mq

X , D:

X,k do not only depend on X,
resp. X, but in an essential way on the blow-up morphism to X0, resp. X0.

In this paper we will only be working with formal schemes X which are completions along
their special fibers of admissible blow-ups X Ñ X0 of a smooth scheme X0 over Specpoq.
In this regard we have the following

Proposition 2.2.9. Let X Ñ X0 be an admissible formal blow-up, obtained by blowing
up an open ideal sheaf I Ă OX0. Then there is an open ideal sheaf I Ă OX0 such that I
is the restriction of the p-adic completion of I to X0, and X is therefore the completion
of the blow-up X of I along its special fiber.

Proof. We remark that X0 being smooth over o implies that it is locally noetherian, which
is all we need for this statement to hold. Consider the quotient sheaf Q “ OX0{I and the
canonical surjection

σ : OX0 ÝÑ Q

of sheaves on X0, and let i : X0 Ñ X0 be the closed embedding of the special fiber. This is
a morphism of ringed spaces. We consider the corresponding map of sheaves OX0 Ñ i˚OX0

which we compose with i˚σ to obtain the morphism of sheaves on X0

τ : OX0 Ñ i˚Q .

Our first goal is to show that τ is surjective. Let U Ă X0 be an affine open subscheme,
and U Ă X0 be the completion along its special fiber. We have $nQU “ 0 for some n P N,
and hence $nQU “ 0. The restriction of the surjection σ to U thus factors as

σ|U : OX0 |U “ OU ÝÑ OU bo o{p$
n
q ÝÑ Q|U .
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Since OU is the restriction to U of the p-adic completion of OU , we see that the canonical

map OU Ñ i˚OU induces an isomorphism OU bo o{p$
nq

»
ÝÑ i˚

´

OU bo o{p$
nq

¯

and

therefore a surjection

OU � OU bo o{p$
n
q “ i˚

´

OU bo o{p$
n
q

¯

� i˚pQ|Uq “ pi˚Qq|U .

Of course, this map is the same as τ |U , and τ |U is thus surjective. Therefore, τ is surjective.
Put I “ kerpτq and consider the tautological exact sequence of coherent sheaves on X0

0 ÝÑ I ÝÑ OX0 ÝÑ i˚Q ÝÑ 0 .

By [16, 10.8.8], the completion functor is exact on coherent sheaves, and the previous
exact sequence thus yields an exact sequence of sheaves on X0

0 ÝÑ pI|X0 ÝÑ OX0

σ
ÝÑ Q ÝÑ 0 .

This shows that I is the restriction to X0 of the p-adic completion of I. The very definition
of admissible formal blow-up, cf. [7, Def.3 in sec. 8.2] shows that then X is equal to the
formal completion along its special fiber of the blow-up of I. �

Given an admissible formal blow-up XÑ X0 we put

(2.2.10) kX “ min
I

mintk P N | $N
P Iu ,

where the first minimum is taken over all open ideal sheaves I Ă OX0 such that the
blow-up of I is isomorphic to X (over X0).

Convention 2.2.11. In the remainder of this paper, whenever we consider the sheaves

D pk,mq
X on the admissible blow-up X of X0 we tacitly assume that k ě kX . Similarly,

whenever we consider the sheaves pD pk,mq
X , pD pk,mq

X,Q , or D:

X,k on the admissible formal blow-
up X of X0 we tacitly assume that k ě kX.

We will also need the following result from [22, 2.2.2, 2.3.3]:

Theorem 2.2.12. Let π : X1 Ñ X be a morphism over X0 between admissible formal
blow-ups of X0, and let k ě maxtkX, kX1u.

(i) pD pk,mq
X,Q and D:

X,k are coherent sheaves of rings. Moreover, pD pk,mq
X,Q has noetherian rings

of sections over all open affine subsets.

(ii) There is a canonical isomorphism π˚D
:

X1,k “ D:

X,k. If M 1 is a coherent D:

X1,k-module,

then Rjπ˚M 1 “ 0 for j ą 0. The functor π˚ induces an exact functor from the category
of coherent modules over D:

X1,k to the category of coherent modules over D:

X,k.
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3. Formal models of flag varieties

3.1. Models, formal models, and group actions.

3.1.1. Models and formal models. For the remainder of this paper G0 denotes a split
connected reductive group scheme over o and B0 Ă G0 a Borel subgroup scheme. The Lie
algebra of G0 is denoted by go. By

X0 “ B0zG0

we denote the flag scheme of G0, which is smooth and projective over o [14, Exp. XXVI,
Cor. 3.5], and we let X0 be the completion of X0 along its special fiber X0ˆSpecpoqSpecpFqq.
By G “ G0 ˆSpecpoq SpecpLq (resp. B) we denote the generic fiber of G0 (resp. B0), and
we let g be the Lie algebra of G. The flag variety BzG of G will be denoted by X, and
we let Xrig be the rigid-analytic space associated by the GAGA functor to X, cf. [7,
5.4]. Any admissible formal o-scheme X (in the sense of [7, Def. 1 in sec. 7.4]) whose
associated rigid-analytic space is isomorphic to Xrig will be called a formal model of Xrig,
or simply a formal model of the flag variety associated to G, cf. [7, Def. 4 in sec. 7.4].
For any two formal models X1,X2 of Xrig there is a third formal model X1 and admissible
formal blow-up morphisms X1 Ñ X1 and X1 Ñ X2, cf. [7, Remark 10 in sec. 8.2]. In
particular, for every formal model X there is a formal model X1 and admissible formal
blow-up morphisms X1 Ñ X and X1 Ñ X0.

3.1.2. Group actions. We equip X0 with the translation action on the right by G0, i.e.,

X0 ˆSpecpoq G0 Ñ X0 , pB0g, hq ÞÑ B0gh .

The right action of G0 on X0 induces a right action4 of G on X. We fix once and for all
a very ample line bundle OX0p1q on X0 over Specpoq.

3.2. Preliminaries on blow-ups of the flag scheme X0. Let pr : X Ñ X0 be an
admissible blow-up, and let I Ă X0 be the ideal sheaf that is blown up. The inverse
image ideal sheaf pr´1pIq ¨OX is an invertible sheaf on X which we denote by OX{X0p1q,
cf. [19, ch. II, 7.13]. By [17, remark after 8.1.3] the blow-up morphism is projective, and
X is thus itself projective over o.

Lemma 3.2.1. There is a0 P Zą0 such that the line bundle

LX “ OX{X0p1q b pr˚
´

OX0pa0q

¯

on X is very ample over Specpoq, and it is very ample over X0.

4We remark that the flag schemes, or flag varieties, considered in [32] and [29] are also equipped with
right group actions. This will be of some importance later when we consider certain ring homomorphisms.
Namely, those ring homomorphisms are indeed homomorphisms and not anti-homomorphisms, cf. 3.3.7.
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Proof. By [19, ch. II, ex. 7.14 (b)], the sheaf

L “ OX{X0p1q b pr˚
´

OX0pa0q

¯

is very ample on X over Specpoq for suitable a0 ą 0. We fix such an a0. By [17, 4.4.10
(v)] it is then also very ample over X0. �

3.2.2. Twisting by LX . We fix a0 P Zą0 such that the line bundle LX from 3.2.1 is
very ample over Specpoq. In the following we will always use this line bundle to ‘twist’
OX-modules. If F is a OX-module and r P Z we thus put

Fprq “ F bOX LbrX .

Some caveat is in order when we deal with sheaves which are equipped with both a left

and a right OX-module structure (which may not coincide). For instance, if Fd “ D pk,mq
X,d ,

cf. 2.2.5, then we let

Fdprq “ D pk,mq
X,d prq “ D pk,mq

X,d bOX LbrX ,

where we consider Fd “ D pk,mq
X,d as a right OX-module. Similarly we put

D pk,mq
X prq “ D pk,mq

X bOX LbrX ,

where we consider D pk,mq
X as a right OX-module. Then we have D pk,mq

X prq “ lim
ÝÑd

Fdprq.

When we consider the associated graded sheaf of D pk,mq
X prq, it is with respect to the

filtration by the Fdprq. The sheaf D pk,mq
X prq is a coherent left D pk,mq

X -module since it is

locally isomorphic with D pk,mq
X as D pk,mq

X -module.

Lemma 3.2.3. Let pr : X Ñ X0 and pr1 : X 1 Ñ X0 be admissible blow-ups of X0, and
let π : X 1 Ñ X be a morphism over X0, i.e., pr ˝ π “ pr1. Furthermore, let k, k1 be two
non-negative integers (not necessarily greater or equal to kX or kX 1).

(i) In the case π˚OX 1 “ OX , one has

$k1´kTX,k “ π˚pTX 1,k1q

as subsheaves of TX bo L (cf. 2.2.6 for the definition of TX,k).

(ii) The group action of G0 on X0 induces a morphism go Ñ H0pX0,TX0q of Lie algebras
over o. This map induces an OX0-linear map α : OX0 bo go Ñ TX0. The map $kpr˚α :
OX bo $

kgo Ñ TX,k is an OX-linear map which in turn induces a morphism $kgo Ñ
H0pX,TX,kq of Lie algebras over o.
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(iii) If X is normal, then π˚OX 1 “ OX . This holds, in particular, if X “ X0 and π is the
blow-up morphism X 1 Ñ X0.

Proof. The assertion (i) follows from the projection formula and the fact that

$k1´kπ˚TX,k “ TX 1,k1

by definition of the sheaves, if k1 ě k. Otherwise, we have π˚TX,k “ $k´k1TX 1,k1 .

(ii) The first assertion is [13, II, §4, 4.4] (note that in loc. cit. the map is an anti-
homomorphism because in loc. cit. the group acts from the left on the scheme in question).
The remaining assertions are immediate consequences of the first assertion.

(iii) Let I Ă OX0 be the ideal that is blown up to obtain X. The sheaf S “
À

dě0 Id
is naturally a subsheaf of the sheaf of polynomial algebras OX0rts, and is thus a sheaf of
integral domains, since X0 is integral. Therefore, X is integral too. The same holds for
X 1. Since pr1 is projective (cf. the beginning of this subsection), and since pr ˝ π “ pr1,
we conclude that π is projective too, by [17, 5.5.5]. Now let J Ă OX be the ideal sheaf
which is blown up to obtain X 1. As J contains a power of $, the vanishing locus of J is
contained in the special fiber of X, and π is hence an isomorphism on the generic fibers,
and hence birational. π is thus a projective birational morphism between noetherian
integral schemes. The assertion follows now from Zariski’s Main Theorem, cf. [19, 11.4
in ch. III] and its proof. �

We remind the reader of our convention 2.2.11 regarding the congruence level k.

Proposition 3.2.4. Let π : X 1 Ñ X be a morphism over X0 of admissible blow-ups of

X0 (as in 3.2.3). If k ě maxtkX , kX 1u and if π˚OX 1 “ OX , then π˚

´

D pk,mq
X 1

¯

“ D pk,mq
X .

Proof. The sheaves D pk,mq
X0,d

of differential operators of order ď d are locally free of finite

rank, and so are the sheaves D pk,mq
X,d , by construction. We can thus apply the projection

formula and get

π˚

´

D pk,mq
X 1,d

¯

“ D pk,mq
X,d .

The claim follows because the direct image commutes with inductive limits on a noetherian
space. �

3.3. Global sections of D pk,mq
X , pD pk,mq

X , and D:

X,k.

3.3.1. Congruence group schemes. We let Gpkq denote the k-th scheme-theoretic congru-
ence subgroup of the group scheme G0 [42, sec. 1], [43, 2.8]. So Gp0q “ G0 and Gpk ` 1q
equals the dilatation, in the sense of [8, 3.2], of the trivial subgroup of GpkqˆSpecpoqSpecpFqq
on Gpkq. In particular, if Gpkq “ Spec ort1, . . . , tN s with a set of parameters ti for the unit
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section of Gpkq, then Gpk ` 1q “ Spec or t1
$
, . . . , tN

$
s. The o-group scheme Gpkq is again

smooth, has Lie algebra equal to $kgo and its generic fibre coincides with the generic
fibre of G0.

3.3.2. Divided power enveloping algebras. We denote by DpmqpGpkqq the distribution
algebra of the smooth o-group scheme Gpkq of level m [28, 4.1.3]. It is noetherian and
admits the following explicit description. Let go “ n´o ‘ to ‘ no be a triangular decom-
position of go. We fix basis elements pfiq, phjq and peiq of the o-modules n´o , to and no
respectively. Then DpmqpGpkqq equals the o-subalgebra of Upgq “ Uopgoq bo L generated
by the elements

(3.3.3) qpmqν !
p$keqν

ν!
¨ q
pmq
ν1 !$k|ν1|

ˆ

h

ν 1

˙

¨ q
pmq
ν2 !

p$kfqν
2

ν2!
.

An element of this type has order d “ |ν| ` |ν 1| ` |ν2|, and the o-span of elements of order

ď d form an o-submodule D
pmq
d pGpkqq Ă DpmqpGpkqq, and DpmqpGpkqq becomes in this

way a filtered o-algebra. In the case of the group GL2 we considered the same algebra in
[32, 3.3.1] (denoted differently there). DpmqpGpkqq is a noetherian ring [28, 4.1.13], and

so is its p-adic completion pDpmqpGpkqq [26]. The ring DpmqpGpkqq obviously contains the
enveloping algebra Uop$

kgoq of $kgo over o, and the inclusion Uop$
kgoq Ñ DpmqpGpkqq

induces an isomorphism of L-algebras Upgq
»
ÝÑ DpmqpGpkqq bo L. Denote by Zpgq the

center of Upgq, and let θ0 : Zpgq Ñ L be the character with which the center acts on
the trivial one-dimensional representation of g. We are now going to use a key result by
Beilinson and Bernstein from [5].

Proposition 3.3.4. (i) Let pr : X Ñ X0 be an admissible blow-up. There is a unique
filtered L-algebra homomorphism

(3.3.5) QX,k,L : Upgq ÝÑ H0
pX,D pk,mq

X q bo L ,

such that the following diagram is commutative

(3.3.6) g� _

��

// H0pX,TX,kq bo L

��

Upgq // // H0pX,D pk,mq
X q bo L

Here, the upper horizontal map is obtained from the map $kgo Ñ H0pX,TX,kq in 3.2.3 by
tensoring with L. The vertical map on the right is induced by the canonical homomorphism

of sheaves TX,k Ñ D pk,mq
X .
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(ii) QX,k,L is surjective and its kernel is the two-sided ideal Upgq kerpθ0q so that QX,k,L in-

duces an isomorphism Upgqθ0
»
ÝÑ H0pX,D pk,mq

X qboL, where Upgqθ0 “ Upgq{Upgq kerpθ0q.

Proof. We first note that by 3.2.4 and 3.2.3 we have pr˚pD
pk,mq
X q “ D pk,mq

X0
and there-

fore H0pX,D pk,mq
X q “ H0pX0,D

pk,mq
X0

q. Flat base change gives us H0pX0,D
pk,mq
X0

q bo L “
H0pX,DXq bo L, where DX is the sheaf of differential operators on the flag variety X.
The existence and uniqueness of QX,k,L follow from the universal property of Upgq. The
assertions about the surjectivity and kernel of this map are simply restatements of [5,
Lemme 3], cf. also [20, 11.2.2]. �

Proposition 3.3.7. Let pr : X Ñ X0 be an admissible blow-up. There is a canonical
homomorphism of filtered o-algebras

(3.3.8) Q
pk,mq
X : DpmqpGpkqq ÝÑ H0

pX,D pk,mq
X q ,

such that the following diagram is commutative

(3.3.9) DpmqpGpkqq
� _

��

// H0pX,D pk,mq
X q

��

Upgq // // H0pX,D pk,mq
X q bo L

Here, the lower horizontal map is the map QX,k,L in 3.3.5. In particular, the map Q
pk,mq
X

induces an isomorphism

´

DpmqpGpkqq bo L
¯

{

´

DpmqpGpkqq bo L
¯

kerpθ0q
»
ÝÑ H0

pX,D pk,mq
X q bo L .

Proof. We begin with a remark on sheaves of filtered o-algebras and their associated
sheaves of Rees rings. This material, in the setting of rings, instead of sheaves of rings,
is well-known (cf. [27, ch. 12, §6], [24, ch. I, §4]), and its version for sheaves is entirely
analogous. A sheaf of filtered o-algebra A with positive filtration pFdAqdě0 and o Ă F0A
gives rise to the sheaf of graded rings RpAq :“ ‘dě0FdAtd, its associated sheaf of Rees
rings. This is a sheaf of subrings of the polynomial algebra Arts over A. The sheaf of Rees
rings is equipped with the filtration by the sheaves of subgroups RdpAq “ ‘di“0FiAti Ă
RpAq. Specialising RpAq in an element λ P o yields a sheaf of filtered subrings Aλ of
A. Precisely, Aλ equals the image under the homomorphism of sheaves of rings RpAq Ñ
A, t ÞÑ λ. We equip Aλ “

ř

dě0 λ
dFdA with the filtration induced by A.

Claim 3.3.10. If the sheaf of graded rings grpAq, associated with the filtration pFdAqd,
is flat over o, then for all d
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FdpAλq “
ÿ

0ďiďd

λiFiA .

Proof of the claim. The right hand side is obviously contained in the left hand side. So
we only have to show the other inclusion. Consider an element x P FdpAλq, and write it

as x “
řn
i“0 λ

ixi with n ě d and xi P FiA for i “ 0, . . . , n. Put x1 “
řd
i“0 λ

ixi. Then
x1 is contained in the right hand side, and it suffices to see that x2 “ x ´ x1 lies in the
right hand side too. Set y “

řn
i“d`1 λ

i´d´1xi so that x2 “ λd`1y. If y does not lie in
FdA, then choose j ą d such that y P FjAzFj´1A. Then the symbol σpyq :“ y ` Fj´1A
in FjA{Fj´1A is nonzero, but λd`1σpyq “ λd`1y ` Fj´1A “ x2 ` Fj´1A is zero in grjA,
since x2 lies in FdpAλq Ă FdA Ă Fj´1A. Because we assume that grpAq is flat over o, this
implies that λd`1 “ 0, i.e., λ “ 0. But then x “ x0 is contained in the right hand side.
On the other hand, if y lies in FdpAq, then x2 “ λd`1y lies in the right hand side. �

For fixed λ, the formation of Aλ is functorial in A. We now consider the canonical
homomorphism of filtered o-algebras

Qm : DpmqpGp0qq ÝÑ H0
pX0,D

pmq
X0
q

appearing in [28, 4.4.5]. It comes by functoriality from the right G0-action on X0. After
tensoring with L the morphism Qm is equal to the map QX0,0,L of 3.3.5. Given an o-
algebra A we will denote by A the corresponding constant sheaf on X0. The map Qm

then gives rise to an homomorphism of associated constant sheaves of filtered o-algebras

Q
m

: DpmqpGp0qq ÝÑ H0
pX0,D

pmq
X0
q .

We compose this map with the canonical map of sheaves H0pX0,D
pmq
X0
q Ñ D pmq

X0
and

obtain a homomorphism of sheaves of filtered o-algebras

DpmqpGp0qq ÝÑ D pmq
X0

.

To this map we now apply the remark regarding Rees rings (and sheaves of Rees rings)
we made in the beginning. That is, we pass to the sheaves of Rees rings associated
with the filtrations (on the domain and target of this map), and then we specialize the
parameter on both sides to t “ $k. This gives a filtered homomorphism of sheaves of
filtered o-algebras

DpmqpGp0qq
$k
ÝÑ

´

D pmq
X0

¯

$k
.
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The definition of the filtration on DpmqpGpkqq, cf. 3.3.2, together with 3.3.10, imply that
DpmqpGp0qq$k “ DpmqpGpkqq as filtered subrings of DpmqpGp0qq, and it follows from this
that there is a canonical identification

DpmqpGp0qq
$k
“ DpmqpGpkqq .

The explicit description of sections over open affine subsets U0 Ă X0 in 2.1.2, together

with 3.3.10, imply that the sheaf pD pmq
X0
q$k coincides with D pk,mq

X0
as filtered subsheaves of

D pmq
X0

. We obtain thus a homomorphism of sheaves of filtered o-algebras

DpmqpGpkqq ÝÑ D pk,mq
X0

.

Taking global sections we obtain a homomorphism of filtered o-algebras

H0
´

X0, D
pmq
pGpkqq

¯

ÝÑ H0
pX0,D

pk,mq
X0

q

As X0 is connected, the domain of this map is DpmqpGpkqq. Moreover, in the situation
considered here, we can apply 3.2.3 (iii) and get that pr˚OX “ OX0 . We can thus use

3.2.4 and conclude that H0pX,D pk,mq
X q “ H0pX0,D

pk,mq
X0

q. This gives the homomorphism
of filtered o-algebras

Q
pk,mq
X : DpmqpGpkqq Ñ H0

pX,D pk,mq
X q ,

as claimed. The last assertion follows now from 3.3.4 (ii). �

We put Apk,mqX “ OX bo D
pmqpGpkqq, and we equip this sheaf with the skew ring multi-

plication (smash product) coming from the action of DpmqpGpkqq on OX via Q
pk,mq
X . This

is a sheaf of associative o-algebras.5 This sheaf has a natural filtration whose associated
graded equals the OX-algebra OX bo Sympmq

pLiepGpkqqq [28, Cor. 4.4.7 (iii)]. In partic-

ular, Apk,mqX has noetherian sections over open affines. The map Q
pk,mq
X induces a unique

OX-linear map ξ
pk,mq
X : Apk,mqX Ñ D pk,mq

X which is also a morphism of sheaves of filtered
o-algebras.

Proposition 3.3.11. The homomorphism ξ
pk,mq
X : Apk,mqX Ñ D pk,mq

X is surjective.

Proof. We are going to adapt the argument of [28, 4.4.8.2 (ii)]. The homomorphism is

filtered. Applying Sympmq to the surjection in (ii) of 3.2.3 we obtain a surjection

5The point here is that the algebra DpmqpGpkqq is an integral form of the universal enveloping algebra
Upgq and its action on OX is induced by the usual action of Upgq on OX,Q. Since elements from g act as
derivations one may form Sweedler’s smash product algebra OX,Q#Upgq [39, 7.2], cf. also [27, 1.7.10]. It

is associative and hence so is the subalgebra Apk,mqX .
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OX bo Sympmq
pLiepGpkqq Ñ Sympmq

pTX,kq

which equals the associated graded homomorphism by 2.2.7. Hence the homomorphism
is surjective as claimed. �

Proposition 3.3.12. Let M be a coherent left Apk,mqX -module.

(i) H0pX,Apk,mqX q “ DpmqpGpkqq.

(ii) There is a surjection Apk,mqX p´rq‘s ÑM of Apk,mqX -modules for suitable r, s ě 0.

(iii) For any i ě 0 the group H ipX,Mq is a finitely generated DpmqpGpkqq-module.

(iv) The ring H0pX,D pk,mq
X q is a finitely generated DpmqpGpkqq-module and hence noether-

ian.

Proof. Points (i)-(iii) are a restatement of [29, 3.3]. By 3.3.11 the sheaf D pk,mq
X is a coherent

Apk,mqX -module to which we can apply assertion (iii) with i “ 0. This proves statement
(iv). �

3.3.13. Passing to the completion. We now consider the formal scheme X which is the
formal completion of X along its special fiber. We are interested in certain properties of

the sheaves of rings pD pk,mq
X and D:

X,k introduced in 2.2.2. Put

pDpmqpGpkqqL,θ0 “
´

pDpmqpGpkqq bo L
¯

{

´

pDpmqpGpkqq bo L
¯

kerpθ0q .

This is the same central reduction considered in [32, sec. 3.3.1] for the group GL2.

In the proposition below, and in the remainder of this paper, certain rigid-analytic ‘wide
open’ groups Gpkq˝ will be important. To define them, consider first the formal completion
Gpkq of the group scheme Gpkq along its special fiber, which is a formal group scheme (of

topologically finite type) over Spfpoq. Then let pGpkq˝ be the completion of Gpkq along
its unit section Spfpoq Ñ Gpkq, and denote by Gpkq˝ its associated rigid-analytic space,
which is a rigid-analytic group.

Wide-open rigid-analytic groups play a special role in M. Emerton’s approach to locally
analytic representations of p-adic groups, cf. [15]. The analytic distribution algebra of
Gpkq˝ is defined to be the continuous dual space of the space of rigid-analytic functions
on Gpkq˝, i.e.,

Dan
pGpkq˝q :“ OGpkq˝pGpkq˝q1b “ Homcont

L

´

OGpkq˝pGpkq˝q, L
¯

b
,
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which is equipped with the strong topology. This is a topological L-algebra of compact
type. In [15, sec. 5.2] Emerton gives a description of this ring as the inductive limit of

completions of the rings pDpmqpGpkqq bo L, i.e.,

(3.3.14) Dan
pGpkq˝q » lim

ÝÑ
m

pDpmqpGpkqq bo L .

This is an isomorphism of topological L-algebras of compact type, cf. [15, 5.2.6, 5.3.11],
[28, 5.3.1].

Proposition 3.3.15. (i) The homomorphism Q
pk,mq
X induces an algebra isomorphism

pDpmqpGpkqqL,θ0
»
ÝÑ H0

pX, pD pk,mq
X,Q q .

(ii) H0pX,D:

X,kq and DanpGpkq˝qθ0 are canonically isomorphic topological L-algebras.

Proof. (i) For the purpose of this proof put kerpθ0qo “ DpmqpGpkqq X kerpθ0q. Because
DpmqpGpkqq is an o-form of Upgq, it follows that kerpθ0qo bo L “ kerpθ0q. Now set
DpmqpGpkqqθ0 :“ DpmqpGpkqq{DpmqpGpkqq kerpθ0qo and

DpmqpGpkqqL,θ0 :“
´

DpmqpGpkqq bo L
¯

{

´

DpmqpGpkqq bo L
¯

kerpθ0q .

We then have DpmqpGpkqqθ0 bo L “ DpmqpGpkqqL,θ0 . By 3.3.7, the homomorphism of

o-algebras Q
pk,mq
X induces a homomorphism

Q
pk,mq
X,θ0

: DpmqpGpkqqθ0 Ñ H0
pX,D pk,mq

X q ,

and the induced morphism

Q
pk,mq
X,θ0

bo L : DpmqpGpkqqL,θ0 Ñ H0
pX,D pk,mq

X q bo L

is an isomorphism of L-algebras. By 3.3.12 the ring H0pX,D pk,mq
X q is a finitely generated

DpmqpGpkqqθ0-module. We have now shown that all assumption in [29, Lemma 3.5] hold
in the context considered here. By the very assertion of [29, Lemma 3.5] we find that

Q
pk,mq
X,θ0

gives rise to an isomorphism

pDpmqpGpkqqL,θ0
»
ÝÑ pH0

pX,D pk,mq
X q bo L ,

where pH0pX,D pk,mq
X q is the p-adic completion of H0pX,D pk,mq

X q. By 4.2.1, we have a canon-

ical isomorphism pH0pX,D pk,mq
X q » H0pX, pD pk,mq

X q. (We note that his does not introduce
a circular argument, as section 4 is only about sheaves of differential operators and their
modules, and there is no connection made to distribution algebras.)
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(ii) Follows from (i) and the isomorphism 3.3.14 �

4. Localization on X via D:

X,k

The general line of arguments developed here follows fairly closely [30]. As in the previous
section, pr : X Ñ X0 denotes an admissible blow-up of X0 “ B0zG0, and X Ñ X0 is
the induced morphism between the completions of X and X0 along their special fibers,
respectively. The number k ě kX “ kX, cf. 2.2.3, 2.2.10, is fixed throughout this section

so that the sheaves of rings D pk,mq
X , pD pk,mq

X , and D:

X,k are defined.

4.1. Cohomology of coherent D pk,mq
X -modules.

Lemma 4.1.1. Let E be an abelian sheaf on X. For all i ą dimX one has H ipX, Eq “ 0.

Proof. Since the space X is noetherian the result follows from Grothendieck’s vanishing
theorem [19, Thm. 2.7]. �

We recall that the sheaf D pk,mq
X has been equipped with a filtration, cf. 2.2.5. We denote

by gr
´

D pk,mq
X

¯

the associated sheaf of graded rings.

Proposition 4.1.2. There is a natural number r0 such that for all r ě r0 and all i ě 1
one has

(4.1.3) H i
´

X, gr
´

D pk,mq
X

¯

prq
¯

“ 0 .

Proof. Since LX is very ample over o by 3.2.1, the Serre theorems [19, II.5.17/III.5.2] imply
that there is a number u0 such that for all u ě u0 the module OXpuq is generated by global
sections and has no higher cohomology. After this remark we prove the proposition along
the lines of [30, Prop. 2.2.1]. By [30, 1.6.1], the tangent sheaf TX0 is is generated by its
global sections, and hence there is an OX0-linear surjection pOX0q

‘a Ñ TX0 for a suitable
natural number a. Applying pprq˚ and multiplying by $k gives an OX-linear surjection
pOXq

‘a » $kpOXq
‘a Ñ TX,k. By functoriality we get a surjective morphism of algebras

C :“ Sympmq
ppOXq

‘a
q ÝÑ Sympmq

pTX,kq .

The target of this map equals gr
´

D pk,mq
X

¯

according to 2.2.7. It therefore suffices to prove

the following: given a coherent C-module E , there is a number r0 such that for all r ě r0

and i ě 1, one has H ipX, Eprqq “ 0. Since E is C-coherent, it is a quasi-coherent OX-
module. Because X is noetherian, E equals the union over its OX-coherent submodules
Ei [16, 9.4.9]. Again, since E is C-coherent and C has noetherian sections over open affines
[21, 1.3.6], there is a C-linear surjection C bOX Ei Ñ E . Choose a number s0 such that
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Eip´s0q is generated by global sections. We obtain a OX-linear surjection OXps0q
‘a0 Ñ Ei

for a number a0. This yields a C-linear surjection

C0 :“ Cps0q
‘a0 ÝÑ E .

The OX-module C0 is graded and each homogeneous component equals a sum of copies
of OXps0q. It follows that H ipX, C0prqq “ 0 for all r ě u0 ´ s0 and all i ě 1. The rest of
the argument proceeds now as in [30, 2.2.1]. �

Corollary 4.1.4. Let r0 be the number occuring in the preceding proposition. For all
r ě r0 and all i ě 1 one has

(4.1.5) H i
´

X,D pk,mq
X prq

¯

“ 0 .

Proof. For d ě 0 we let Fd “ D pk,mq
X,d . We consider the exact sequence

(4.1.6) 0 Ñ Fd´1 Ñ Fd Ñ grd

´

D pk,mq
X

¯

Ñ 0

(where F´1 :“ 0) from which we deduce the exact sequence

(4.1.7) 0 Ñ Fd´1prq Ñ Fdprq Ñ grd

´

D pk,mq
X

¯

prq Ñ 0

because tensoring with a line bundle is an exact functor. Since cohomology commutes
with direct sums, we have for all r ě r0 and i ě 1 that

H i
pX, grd

´

D pk,mq
X

¯

prqq “ 0

according to the preceding proposition. Using the sequence 4.1.7 we can then deduce by
induction on d that for all r ě r0 and i ě 1

H i
pX,Fdprqq “ 0 .

Because cohomology commutes with inductive limits on a noetherian scheme we obtain
the asserted vanishing result. �

Proposition 4.1.8. Let E be a coherent D pk,mq
X -module.

(i) There is a number r “ rpEq P Z and s P Zě0 and an epimorphism of D pk,mq
X -modules



D:-AFFINITY OF FORMAL MODELS OF FLAG VARIETIES 21

´

D pk,mq
X p´rq

¯‘s

� E .

(ii) There is r1pEq P Z such that for all r ě r1pEq and all i ą 0

H i
´

X, Eprq
¯

“ 0 .

Proof. (i) As X is a noetherian scheme, E is the inductive limit of its coherent subsheaves.

There is thus a coherent OX-submodule F Ă E which generates E as a D pk,mq
X -module,

i.e., there is an epimorphism of sheaves

D pk,mq
X bOX F α

ÝÑ E ,

where D pk,mq
X is considered with its right OX-module structure. Next, there is r ą 0 such

that the sheaf

Fprq “ F bOX LbrX

is generated by its global sections. Hence there is s ą 0 and an epimorphism O‘s
X � Fprq,

and thus an epimorphism of OX-modules

pOXp´rqq
‘s � F .

From this morphism we get an epimorphism of D pk,mq
X -modules

´

D pk,mq
X p´rq

¯‘s

“ D pk,mq
X bOXn pOXp´rqq

‘s � D pk,mq
X bOX F α

ÝÑ E .

(ii) Consider for i ě 1 the following assertion paiq: for any coherent D pk,mq
X -module E ,

there is a number ripEq such that for all r ě ripEq and all i ď j one has HjpX, Eprqq “ 0.
For i ą dimX the assertion holds, cf. 4.1.1. Suppose the statement pai`1q holds. Using

(i) we find an epimorphism of D pk,mq
X -modules

β : C0 :“
´

D pk,mq
X ps0q

¯‘s

� E

for numbers s0 P Z and s ě 0. By 2.2.7, the kernel R “ kerpβq is a coherent D pk,mq
X -

module. Recall the number r0 of the preceding corollary. For any r ě maxpr0´s0, ri`1pRqq
we have the exact sequence

0 “ H i
pX, C0prqq ÝÑ H i

pX, Eprqq ÝÑ H i`1
pX,Rprqq “ 0
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which shows H ipX, Eprqq “ 0 for these r. So we may take as ripEq any of these r which is
larger than ri`1pEq and obtain the statement paiq. In particular, pa1q holds which proves
(ii). �

Proposition 4.1.9. (i) Fix r P Z. There is c1 “ c1prq P Zě0 such that for all i ą 0 the

cohomology group H ipX,D pk,mq
X prqq is annihilated by pc1.

(ii) Let E be a coherent D pk,mq
X -module. There is c2 “ c2pEq P Zě0 such that for all i ą 0

the cohomology group H ipX, Eq is annihilated by pc2.

Proof. (i) Since the blow-up morphism pr : X Ñ X0 becomes an isomorphism over X0ˆoL

any coherent module over D pk,mq
X b Q induces a coherent module over the sheaf of usual

differential operators on X0 ˆo L. By [5] we conclude that the global section functor

on X is exact for coherent D pk,mq
X bZ Q-modules. In particular, the cohomology group

H ipX,D pk,mq
X prqq is p-torsion. To see that the torsion is bounded, we deduce from 3.3.11

that D pk,mq
X prq is a coherent module over Apk,mqX . According to 3.3.12, H ipX,D pk,mq

X prqq is
therefore finitely generated over DpmqpGpkqq. Now consider a finite set of generators of

H ipX,D pk,mq
X prqq as DpmqpGpkqq-module. These are annihilated by a finite power pc1,i of

p, and since there are only finitely many integers i ą 0 with non-zero H ipX,D pk,mq
X prqq,

cf. 4.1.1, we can take c2 :“ maxtc2,i | i ě 0u.

(ii) We consider for any i ě 1 the following assertion paiq: for any coherent D pk,mq
X -module

E , there is a number ripEq such that the groups HjpX, Eq, i ď j are all annihilated by
pripEq. For i ą dimX the assertion is true, cf. 4.1.1. Let us assume that pai`1q holds and

consider an arbitrary coherent D pk,mq
X -module E . Acccording to 4.1.8 we have a D pk,mq

X -
linear surjection

E0 :“ D pk,mq
X prq‘s ÝÑ E

for numbers r P Z and s ě 0. Let E 1 be the kernel. We have an exact sequence

H i
pX, E0q

ι
Ñ H i

pX, Eq δ
Ñ H i`1

pX, E 1q .

Then pc1prq annihilates the image of ι according to (i) and pri`1pE 1q annihilates the image
of δ according to pai`1q. So we may take as ripEq any number greater than the maximum
of ri`1pEq and c1prq ` ri`1pE 1q and obtain the statement paiq. In particular, pa1q holds
which proves (ii). �

4.2. Cohomology of coherent pD pk,mq
X,Q -modules. We denote by Xj the reduction of X

modulo pj`1.
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Proposition 4.2.1. Let E be a coherent D pk,mq
X -module on X and pE “ lim

ÐÝj
E{pj`1E its

p-adic completion, which we consider as a sheaf on X.

(i) For all i ě 0 one has H ipX, pEq “ lim
ÐÝj

H i pXj, E{pj`1Eq.

(ii) For all i ą 0 one has H ipX, pEq “ H ipX, Eq.

(iii) H0pX, pEq “ lim
ÐÝj

H0pX, Eq{pj`1H0pX, Eq.

Proof. Put Ej “ E{pj`1E . Let Et be the subsheaf defined by

EtpUq “ EpUqtor ,

where the right hand side denotes the group of torsion elements in EpUq. This is indeed
a sheaf (and not only a presheaf) because X is a noetherian space. Furthermore, Et is

a D pk,mq
X -submodule of E . Because the sheaf D pk,mq

X has noetherian rings of sections over

open affine subsets of X, cf. 2.2.12, the submodule Et is a coherent D pk,mq
X -module. Et is

thus generated by a coherent OX-submodule F of Et. The submodule F is annihilated by

a fixed power pc of p, and so is Et. Put G “ E{Et, which is again a coherent D pk,mq
X -module.

Using 4.1.9, we can then assume, after possibly replacing c by a larger number, that

paq pcEt “ 0 ,
pbq for all i ą 0 : pcH ipX, Eq “ 0 ,
pcq for all i ą 0 : pcH ipX,Gq “ 0 .

From here on the proof of the proposition is exactly as in [32, 4.2.1]. �

Proposition 4.2.2. Let E be a coherent pD pk,mq
X -module.

(i) There is r1pE q P Z such that for all r ě r1pE q there is s P Zě0 and an epimorphism

of pD pk,mq
X -modules

´

pD pk,mq
X p´rq

¯‘s

� E .

(ii) There is r2pE q P Z such that for all r ě r2pE q and all i ą 0

H i
´

X,E prq
¯

“ 0 .

Proof. (i) Because E is a coherent pD pk,mq
X -module, and because H0pU, pD pk,mq

X q is a noe-
therian ring for all open affine subsets U Ă X, cf. 2.2.12, the torsion submodule Et Ă E

is again a coherent pD pk,mq
X -module. As X is quasi-compact, there is c P Zě0 such that

pcEt “ 0. Put G “ E {Et and G0 “ G {pG . For j ě c one has an exact sequence
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0 Ñ G0
pj`1

ÝÑ Ej`1 Ñ Ej Ñ 0 .

We note that the sheaf G0 is a coherent module over pD pk,mq
X {p pD pk,mq

X . We view X as a closed
subset of X and denote the closed embedding temporarily by i. Because the canonical
map of sheaves of rings

(4.2.3) D pk,mq
X {pD pk,mq

X
»
ÝÑ i˚

´

pD pk,mq
X {p pD pk,mq

X

¯

is an isomorphism, i˚G0 can be considered a coherent D pk,mq
X -module via this isomorphism.

Hence we can apply 4.1.8 to i˚G0 and deduce that there is r2pG0q such that for all r ě r2pG0q

one has

H1
pX,G0prqq “ H1

pX, i˚G0prqq “ 0 .

The canonical maps

(4.2.4) H0
pX,Ej`1prqq ÝÑ H0

pX,Ejprqq

are thus surjective for r ě r2pG0q and j ě c. Similarly, Ec is a coherent module over

D pk,mq
X {pcD pk,mq

X -module, in particular a coherent D pk,mq
X -module. By 4.1.8 there is r1pEcq

such that for every r ě r1pEcq there is s P Zě0 and a surjection

λ :
´

D pk,mq
X {pcD pk,mq

X

¯‘s

� Ecprq .

Let r1pE q “ maxtr2pG0q, r1pEcqu, and assume from now on that r ě r1pE q. Let e1, . . . , es
be the standard basis of the domain of λ, and use 4.2.4 to lift each λpetq, 1 ď t ď s, to
an element of

lim
ÐÝ
j

H0
pX,Ejprqq » H0

pX,zE prqq ,

by 4.2.1 (i). But zE prq “ pE prq, and pE “ E , as follows from [6, 3.2.3 (v)]. This defines a
morphism

´

pD pk,mq
X

¯‘s

ÝÑ E prq

which is surjective because, modulo pc, it is a surjective morphism of sheaves coming from

coherent pD pk,mq
X -modules by reduction modulo pc, cf. [6, 3.2.2 (ii)].
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(ii) We deduce from 4.1.4 and 4.2.1 that for all i ą 0

H i
´

X, pD pk,mq
X prq

¯

“ 0 ,

whenever r ě r0, where r0 is as in 3.2.1. Since the sheaf pD pk,mq
X is coherent, cf. 3.3.15,

and X is a noetherian space of finite dimension, the statement in (ii) can now be deduced
by descending induction on i exactly as in the proof of part (ii) of 4.1.8. �

Proposition 4.2.5. Let E be a coherent pD pk,mq
X -module.

(i) There is c “ cpE q P Zě0 such that for all i ą 0 the cohomology group H ipX,E q is
annihilated by pc.

(ii) H0pX,E q “ lim
ÐÝj

H0pX,E q{pjH0pX,E q.

Proof. (i) Let r P Z. By 4.2.1 we have for i ą 0 that

H i
pX, pD pk,mq

X p´rqq “ H i
pX,D pk,mq

X p´rqq ,

and this is annihilated by a finite power of p, by 4.1.9. The proof now proceeds by
descending induction exactly as in the proof of part (ii) of 4.1.9.

(ii) Let Et Ă E be the subsheaf of torsion elements and G “ E {Et. Then the discussion in
the beginning of the proof of 4.2.1 shows that there is c P Zě0 such that pcEt “ 0. Part (i)
gives that pcH1pX,E q “ pcH1pX,G q “ 0, after possibly increasing c. Now we can apply
the same reasoning as in the proof of 4.2.1 (iii) to conclude that assertion (ii) is true. �

4.2.6. Let Cohp pD pk,mq
X q (resp. Cohp pD pk,mq

X,Q q) be the category of coherent pD pk,mq
X -modules

(resp. pD pk,mq
X,Q -modules). Let Cohp pD pk,mq

X qQ be the category of coherent pD pk,mq
X -modules up

to isogeny. We recall that this means that Cohp pD pk,mq
X qQ has the same class of objects as

Cohp pD pk,mq
X q, and for any two objects M and N one has

Hom
Cohp pD

pk,mq
X

qQ
pM,N q “ Hom

Cohp pD
pk,mq
X

q
pM,N q bZ Q .

Proposition 4.2.7. (i) The functor M ù MQ “ M bZ Q induces an equivalence

between Cohp pD pk,mq
X qQ and Cohp pD pk,mq

X,Q q.

(ii) For every coherent D:

X,k-module M there is m ě 0 and a coherent pD pk,mq
X,Q -module Mm

and an isomorphism of D:

X,k-modules

ε : D:

X,k b pD
pk,mq
X,Q

Mm
»
ÝÑ M .
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If pm1,Mm1 , ε
1q is another such triple, then there is l ě maxtm,m1u and an isomorphism

of pD pk,lq
X,Q -modules

εl : pD pk,lq
X,Q b pD

pk,mq
X,Q

Mm
»
ÝÑ pD pk,lq

X,Q b pD
pk,m1q
X,Q

Mm1

such that ε1 ˝
´

idD:
X,k
b εl

¯

“ ε.

Proof. (i) This is [6, 3.4.5]. Note that the sheaf pD pk,mq
X satisfies the conditions in [6, 3.4.1],

by 3.3.15. We point out that the formal scheme X in [6, sec. 3.4] is not supposed to be
smooth over a discrete valuation ring, but only locally noetherian, cf. [6, sec. 3.3].

(ii) This is [6, 3.6.2]. In this reference the formal scheme is supposed to be noetherian
and quasi-separated, but not necessarily smooth over a discrete valuation ring. �

Theorem 4.2.8. Let E be a coherent pD pk,mq
X,Q -module (resp. D:

X,k-module).

(i) There is rpE q P Z such that for all r ě rpE q there is s P Zě0 and an epimorphism of
pD pk,mq
X,Q -modules (resp. D:

X,k-modules)

´

pD pk,mq
X,Q p´rq

¯‘s

� E p resp.
´

D:

X,kp´rq
¯‘s

� E q .

(ii) For all i ą 0 one has H ipX,E q “ 0.

Proof. (a) We first show both assertions (i) and (ii) for a coherent pD pk,mq
X,Q -module E . By

4.2.7 (i) there is a coherent pD pk,mq
X -module F such that F bZ Q “ E . We use 4.2.2 to

find for every r ě r1pF q a surjection

´

pD pk,mq
X p´rq

¯‘s

� F ,

for some s (depending on r). Tensoring with Q gives then the desired surjection onto E .
Hence assertion (i). Furthermore, for i ą 0

H i
pX,E q “ H i

pX,F q bZ Q “ 0 ,

by 4.2.5, and this proves (ii).

(b) Now suppose E is a coherent D:

X,k-module. By 4.2.7 (ii) there is m ě 0 and a coherent

module Em over pD pk,mq
X,Q and an isomorphism of D:

X,k-modules

D:

X,k b pD
pk,mq
X,Q

Em
»
ÝÑ E .
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Now use what we have just shown for Em in (a) and get the sought for surjection after

tensoring with D:

X,k. This proves the first assertion. We have

E “ D:

X,k b pD
pk,mq
X,Q

Em “ lim
ÝÑ
`ěm

pD pk,lq
X,Q b pD

pk,mq
X,Q

Em “ lim
ÝÑ
`ěm

E`

where E` “ pD pk,lq
X,Q b pD

pk,mq
X,Q

Em is a coherent pD pk,lq
X,Q -module. Then we have for i ą 0

H i
pX,E q “ lim

ÝÑ
`ěm

H i
pX,E`q “ 0 ,

by part (a). And this proves assertion (ii). �

4.3. X is pD pk,mq
X,Q -affine and D:

X,k-affine.

Proposition 4.3.1. (i) Let E be a coherent pD pk,mq
X,Q -module. Then E is generated by its

global sections as pD pk,mq
X,Q -module. Furthermore, E has a resolution by finite free pD pk,mq

X,Q -
modules.

(ii) Let E be a coherent D:

X,k-module. Then E is generated by its global sections as D:

X,k-

module. H0pX,E q is a H0pX,D:

X,kq-module of finite presentation. Furthermore, E has a

resolution by finite free D:

X,k-modules.

Proof. (i) Using 4.2.8 it remains to see that any pD pk,mq
X,Q -module of type pD pk,mq

X,Q p´rq admits

a linear surjection p pD pk,mq
X,Q q‘s Ñ pD pk,mq

X,Q p´rq for suitable s ě 0. We argue as in [21, 5.1].

Let M :“ H0pX,D pk,mq
X p´rqq, a finitely generated DpmqpGpkqq-module by 3.3.12. Consider

the linear map of D pk,mq
X -modules equal to the composite

D pk,mq
X bDpmqpGpkqqM Ñ D pk,mq

X b
H0pX,D

pk,mq
X q

M Ñ D pk,mq
X p´rq

where the first map is the surjection induced by the map Q
pk,mq
X appearing in 3.3.7. Let E

be the cokernel of the composite map. Since DpmqpGpkqq is noetherian, the source of the

map is coherent and hence E is coherent. Moreover, E b Q “ 0 since D pk,mq
X p´rq b Q is

generated by global sections [5]. All in all, there is i with piE “ 0. Now choose a linear
surjection pDpmqpGpkqqq‘s ÑM . We obtain the exact sequence of coherent modules

pD pk,mq
X q

‘s
Ñ D pk,mq

X p´rq Ñ E Ñ 0 .

Passing to p-adic completions (which is exact in our situation [6, 3.2]) and inverting p
yields the linear surjection
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p pD pk,mq
X,Q q

‘s
Ñ pD pk,mq

X,Q p´rq .

This shows (i).

(ii) This follows from (i) exactly as in [21]. �

4.3.2. The functors L oc
pk,mq
X and L oc:X,k. Let E be a finitely generated H0pX, pD pk,mq

X,Q q-

module (resp. a finitely presented H0pX,D:

X,kq-module). Then we let L oc
pk,mq
X pEq (resp.

L oc:X,kpEq) be the sheaf on X associated to the presheaf

U ù pD pk,mq
X,Q pUq bH0pX, pDk,m

k,Q q
E presp. U ù D:

X,kpUq bH0pX,D:
X,k
q
E q .

It is obvious that L oc
pk,mq
X (resp. L oc:X,k) is a functor from the category of finitely

generated H0pX, pD pk,mq
X,Q q-modules (resp. finitely presented H0pX,D:

X,kq-modules) to the

category of sheaves of modules over pD pk,mq
X,Q (resp. D:

X,k).

Theorem 4.3.3. (i) The functors L oc
pk,mq
X and H0 (resp. L oc:X,k and H0) are quasi-

inverse equivalences between the categories of finitely generated H0pX, pD pk,mq
X,Q q-modules

and coherent pD pk,mq
X,Q -modules (resp. finitely presented H0pX,D:

X,kq-modules and coherent

D:

X,k-modules).

(ii) The functor L oc
pk,mq
X (resp. L oc:X,k) is an exact functor.

Proof. The proof of (i) uses the same arguments as the proof of [30, 2.3.7]. The second
assertion then follows because any equivalence between abelian categories is exact. �

5. Localization of representations of GpLq

Although we do recall a few basic facts in the beginning of this section, we assume from
now on some familiarity with the theory of locally analytic representations as developed
by P. Schneider and J. Teitelbaum [36, 37], and we also make use of the point of view
introduced by M. Emerton in [15].

For the sake of convenience, all representations which we consider in this section are on
topological L-vector spaces, and all modules over distribution algebras are topological L-
vector spaces. We thus assume throughout this section that the so-called coefficient field,
cf. [36, beginning of sec. 2], usually denoted by K in papers like [36, 37], over which those
topological vector spaces are defined, is equal to our base field L. However, all results in
this section also hold when the representations (or the modules over distribution algebras)
are topological K-vector spaces, where K{L is a complete and discretely valued extension
(such that the valuation topology on K induces the valuation topology on L), cf. 5.3.19.
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5.1. Locally analytic representations and distribution algebras.

5.1.1. The module associated to a locally analytic representation. In the following we will
be interested in locally analytic representations of the compact locally L-analytic group
G0 “ G0poq. Let C lapG0, Lq be the space of L-valued locally L-analytic functions on G0,
and let

DpG0, Lq :“ C la
pG0, Lq

1
b

be its strong dual, i.e. its continuous dual space equipped with the strong topology, which
carries the structure of a Fréchet-Stein algebra [37, 5.1]. The product of δ1, δ2 P DpG0, Lq
is defined by

pδ1 ¨ δ2qpfq “ δ1

´

x ÞÑ δ2py ÞÑ fpxyqq
¯

,

for f P C lapG0, Lq. Given an admissible locally analytic representation V of G0, cf. [37,
sec. 6], we let M :“ V 1b be its strong dual, which is, by the very definition of “admissible
representation”, a coadmissible module over DpG0, Lq. Explicitly, if we denote by g.v the
action of g P G0 on v P V , then the DpG0, Lq-module structure on M is given by

pδ ¨mqpvq “ δ
´

g ÞÑ mpg´1.vq
¯

,

for m PM and δ P DpG0, Lq. For g P G0 the delta distribution δg P DpG0, Lq is defined by
δgpfq “ fpgq. These delta distributions are invertible in DpG0, Lq, and the map g ÞÑ δg
is an injective group homomorphism from G0 into the group of units of DpG0, Lq.
We also recall that the category of coadmissibleDpG0, Lq-modules is a full abelian subcate-
gory of all abstract DpG0, Lq-modules [37, Thm. 5.1] and, by construction, anti-equivalent
to the category of admissible locally analytic G0-representations.

5.1.2. The distribution algebras DpGpkq˝, G0q. Recall the wide open congruence sub-
group Gpkq˝ introduced in 3.3.13 and its analytic distribution algebra DanpGpkq˝q “
OpGpkq˝q1b. Given a continuous representation W of G0, one can consider the subspace
WGpkq˝´an Ă W of Gpkq˝-analytic vectors, cf. [15, 3.4.1]. This applies to the action
of G0 on the space CctspG0, Lq of continuous L-valued functions given by the formula
pg.fqpxq “ fpg´1xq. With this notation, one has a canonical isomorphism of topological
L-vector spaces

(5.1.3) lim
ÝÑ
k

Ccts
pG0, LqGpkq˝´an

»
ÝÑ C la

pG0, Lq

Following the notation introduced in [15, proof of 5.3.1] we denote by DpGpkq˝, G0q the
strong dual of the space of Gpkq˝-analytic vectors of CctspG0, Lq, i.e.,
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DpGpkq˝, G0q :“ pCcts
pG0, LqGpkq˝´anq

1
b .

The ring DpGpkq˝, G0q naturally contains DanpGpkq˝q. Moreover, the delta distributions
δg, for g in the normal subgroup Gk`1 :“ Gpkq˝poq “ Gpk ` 1qpoq of G0, are contained in
this subring too. One obtains a decomposition of DpGpkq˝, G0q as a DanpGpkq˝q-module:

(5.1.4) DpGpkq˝, G0q “ ‘gPG0{Gk`1
Dan

pGpkq˝qδg ,

cf. [15, proof of 5.3.1]. This is a topological direct sum decomposition in the sense that
the subspace topology of DanpGpkq˝q is equal to its topology as an L-algebra of compact
type, and the topology on DpGpkq˝, G0q is equal to the product topology on the right
of 5.1.4. Dualizing the isomorphism 5.1.3 then yields an isomorphism of topological L
algebras

DpG0, Lq
»
ÝÑ lim

ÐÝ
k

DpGpkq˝, G0q .

This is the weak Fréchet-Stein structure on the locally analytic distribution algebra
DpG0, Lq as introduced by Emerton in [15, Prop. 5.3.1]. In an obviously similar man-
ner we may define the ring DpGpkq˝, G0qθ0 and obtain an isomorphism DpG0, Lqθ0

»
ÝÑ

lim
ÐÝk

DpGpkq˝, G0qθ0 .

5.1.5. Let V be again an admissible locally analytic representation of G0, and M “ V 1b
be as in 5.1.1. The subspace VGpkq˝´an Ă V is naturally a nuclear Fréchet space [15, 6.1.6],
and we let Mk :“ pVGpkq˝´anq

1
b be its strong dual. It is a space of compact type and a

topological DpGpkq˝, G0q-module which is finitely generated [15, 6.1.13]. According to [15,
6.1.20] the modules Mk :“ pVGpkq˝´anq

1 form a pDpGpkq˝, G0qqkPN-sequence, in the sense
of [15, 1.2.8], for the coadmissible module M relative to the weak Fréchet-Stein structure
on DpG0, Lq. This implies that one has

(5.1.6) Mk “ DpGpkq˝, G0qb̂DpG0,LqM

as DpGpkq˝, G0q-modules for any k. Here, the completed tensor product is understood in
the sense of [15, Lem. 1.2.3].

Lemma 5.1.7. (i) The DpGpkq˝, G0q-module Mk is finitely presented.

(ii) There are natural isomorphisms

DpGpk ´ 1q˝, G0q bDpGpkq˝,G0qMk
»
ÝÑMk´1 .

(iii) The natural map DpGpkq˝, G0q bDpG0,LqM
»
ÝÑMk is bijective.
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Proof. The points (i) and (ii) can be proved exactly as [32, 5.2.4]. For (iii) we consider the
DpGpkq˝, G0q-submodule generated inside Mk by M . It clearly forms a dense subspace and
is closed according to [32, 5.1.1 (ii)]. Hence the map in question is surjective. Moreover,
this argument shows that the finitely generated DpGpkq˝, G0q-module Mk is generated by
finitely many elements in the image of M . To prove injectivity of the map in question, we
abbreviate A :“ DpG0, Lq and Ak :“ DpGpkq˝, G0q and consider an element b1bx1` . . .`
bs b xs P Ak bAM such that b1x1 ` . . .` bsxs “ 0 in Mk. Consider the homomorphism

pAsk1qk1 ÝÑ pMk1qk1 , pa1, . . . , asq ÞÑ a1x1 ` . . .` asxs

where k1 ě k. Let N be the kernel of the corresponding map of coadmissible mod-
ules As Ñ M . By the above surjectivity argument, there are finitely many elements

pc
p1q
1 , . . . , cp1qs q, . . . , pc

prq
1 , . . . , cprqs q in N whose images generate the kernel of the map Ask ÝÑ

Mk as an Ak-module. From here one may follow the argument in the proof of [37, Cor.
3.1] word for word. �

Remark. These results have obvious analogues when the character θ0 is involved.

5.2. G0-equivariance and the functor L ocG0.

5.2.1. Group actions on blow-ups. We recall that it is our convention that the group
scheme G0 acts on the right on X0 “ B0zG0, cf. 3.1.2. This yields a right action of the
group G0 on X0, and we denote the automorphism of X0 given by g P G0 by ρg, i.e.,
ρg : X0 Ñ X0. As the action of G0 on X0 is on the right, we have ρg ˝ ρh “ ρhg for all
g, h P G0. We also denote by ρ7g : OX0 Ñ pρgq˚OX0 the comorphism of ρg. We then have

(5.2.2) pρgq˚pρ
7

hq ˝ ρ
7
g “ ρ7hg .

Now let H Ă G0 be an open subgroup. We say that an open ideal sheaf I Ă OX0 is
H-stable if for all g P H the comorphism ρ7g maps I Ă OX0 into pρgq˚I Ă pρgq˚OX0 . In

that case ρ7g induces a morphism of sheaves of graded rings

à

dě0

Id ÝÑ pρgq˚

´

à

dě0

Id
¯

on X0. This morphisms of sheaves in turn induces an automorphism of the blow-up

X “ Proj
´

À

dě0 Id
¯

, and the action of H on X0 lifts thus to an action of H on X,

which we again denote by ρ for ease of notation.

The same considerations apply when we pass to the formal completion X0 of X0, in which
case we denote the morphism X0 Ñ X0 induced by ρg also by ρg, for ease of notation. If
now I is an open ideal sheaf on X0 which is H-stable, and if X is the formal blow-up of
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I, we also say that X is H-equivariant. There is at most one way to lift the action of H
on X0 (resp. X0) to X (resp. X), because the blow-up morphism induces an isomorphism

between the generic fibers Xη
»
ÝÑ X0,η (resp. rigid spaces Xrig »

ÝÑ Xrig
0 ), and the group

action on the generic fiber (resp. associated rigid space), is thus pre-determined, and in
turn determines the action on X (resp. X) uniquely.

Lemma 5.2.3. Let pr : X Ñ X0 be an admissible blow-up, and assume k ě kX. Then X
is Gk “ Gpkqpoq-equivariant and the induced action of every g P Gk`1 on the special fiber
of X is the identity. Therefore, Gk`1 acts trivially on the topological space underlying X.

Proof. Consider the action µ : X0ˆSpecpoqG0 Ñ X0 of G0 on X0. If g : Specpoq Ñ G0 is in
G1, then the induced map on the mod-$-fibers gs : SpecpFqq Ñ G0ˆSpecpoqSpecpFqq is the
identity element in G0pFqq. Because ρg is defined in terms of µ, and since µ is compatible
with base change SpecpFqq Ñ Specpoq, it follows that all elements g P G1 act trivially on
the special fiber of X0. In particular, the morphism ρg : X0 Ñ X0 is the identity map on
the topological space underlying X0 if g P G1. This takes care of the case when k “ 0
(hence kX “ 0, and thus X “ X0). We therefore assume in the following k ě 1.

For the purpose of this proof we let G be the completion of G0 along its special fiber
(this formal group scheme is denoted by Gp0q in 4.2.1). The quotient morphism σ : G0 Ñ

X0 induces a quotient morphism σ^ : G Ñ X0 of the corresponding formal schemes.
Moreover, the right multiplication of g P G0 on G0 induces a right multiplication rρg :
GÑ G, such that the following diagram is commutative

(5.2.4) G
rρg //

σ^

��

G

σ^

��
X0

ρg // X0

If g P G1, then, as we remarked above, the map underlying the morphism ρg is the identity
map on X0, and, for the same reason, the map underlying the morphism rρg is the identity
map on G. It follows from the very definition of Gk that for g P Gk, for all open subsets
U Ă G, and for all f P OGpUq one has prρgq

7

Upfq ” f mod p$kq. If now V Ă X0 is an open
subset and U :“ pσ^q´1pV q, then 5.2.4 gives rise to a commutative diagram

OGpUq OGpUq
prρgq

7

U

oo

OX0pV q

pσ^q7V

OO

OX0pV q
pρgq

7

V

oo

pσ^q7V

OO

As U Ñ V is a locally trivial fiber bundle, the ring homomorphism pσ^q7V is injective
[23, I.5.7 (1)] and identifies OX0pV q with the subring of B-invariants of OGpUq where B
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denotes the completion of B0 along its special fiber [23, I.5.8 (2)]. In the following we

will therefore suppress the notation pσ^q7V and view this homomorphism as an inclusion.
By the above discussion, we then have for all f P OX0pV q that

pρgq
7

V pfq ´ f “ $kf̃

with some f̃ P OGpUq. Now f̃ is B-invariant: indeed, $kf̃ is B-invariant, and so we have

∆p$kf̃q ´$kf̃ b 1 “ 0

in OGpUqboOBpBq where ∆ denotes the comodule map of the B-module OGpUq [23, I.2.10

(2)]. Since ∆ is o-linear and OGpUqboOBpBq is o-torsionfree, this implies ∆pf̃q´f̃b1 “ 0,

as claimed. Since f̃ is B-invariant, we may conclude that pρgq
7

V pfq ” f mod p$kq for
all f P OX0pV q. Now suppose I Ă OX0 is an open ideal sheaf, and assume $k P I
and g P Gk Ă G1. Then, for any open subset V Ă X0, and any f P IpV q we have

pρgq
7

V pfq “ f `$kf̃ for some f̃ P OX0pV q. Since $kf̃ P IpV q, we find that pρgq
7

V maps I
into itself, and the blow-up X of I is Gk-equivariant.

If now g is in Gk`1 we even have pρgq
7

V pfq “ f `$k`1f̃ for some f̃ P OX0pV q. And since

$k P I we conclude that pρgq
7

V pfq ” f mod $I. This implies that the morphism induced

by pρgq
7 on the sheaf

´

À

dě0 I
d
¯

bo o{p$q, which is a sheaf on the special fiber of X0, is

the identity. And Proj
´´

À

dě0 I
d
¯

bo o{p$q
¯

is the special fiber of the formal blow-up

X of I. �

5.2.5. For the rest of this section we let H Ă G0 be an open subgroup. If XÑ X0 is an
H-equivariant admissible blow-up with lifted action ρ, then there is an induced action of
H on the sheaf D:

X,k

(5.2.6) Adpgq : D:

X,k
»
ÝÑ pρgq˚D

:

X,k , P ÞÑ ρ7gP pρ
7
gq
´1 ,

for all k ě kX. This is an action on the left in the sense that

pρgq˚pAdphqq ˝ Adpgq “ Adphgq ,

as follows from 5.2.2. Furthermore, the group Gk`1 is contained in DanpGpkq˝q as a set

of delta distributions, and for g P Gk`1 we also write δg for its image in H0pX,D:

X,kq “

DanpGpkq˝qθ0 , cf. 3.3.15.

Definition 5.2.7. Let X be an H-equivariant admissible blow-up of X0. A strongly
H-equivariant D:

X,k-module is a D:

X,k-module M together with a family pφgqgPH of isomor-
phisms
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φg : M ÝÑ pρgq˚M

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h P H we have pρgq˚pφhq ˝ φg “ φhg.

(ii) For all open subsets U Ă X, all P P D:

X,kpUq, and all m P M pUq one has
φgpP.mq “ AdpgqpP q.φgpmq.

(iii) 6 For all g P H X Gk`1 the map φg : M Ñ pρgq˚M “ M is equal to the

multiplication by δg P H
0pX,D:

X,kq.

A morphism between two strongly H-equivariant D:

X,k-modules pM , pφM
g qgPHq and

pN , pφN
g qgPHq is a D:

X,k-linear morphism ψ : M Ñ N such that

φN
g ˝ ψ “ pρgq˚pψq ˝ φ

M
g

for all g P H. We denote the category of strongly H-equivariant D:

X,k-modules which are,

moreover, coherent as D:

X,k-modules by CohpD:

X,k, Hq.

Remarks. ’Strongly equivariant’ refers to the additional condition that the action coin-
cides with multiplication by δg if g P H X Gk`1. This is the analogue of [40, Prop. 2.6]

in our situation. We also note that any D:

X,k-module is strongly Gk`1-equivariant for the
natural Gk`1-action, cf. 5.2.3. The following result could be stated in greater generality
for H-equivariant blow-ups X Ñ X0 if we had introduced the ring DpGpkq˝, Hq also for
open subgroups H Ă G0 (containing Gk`1) instead of just G0.

Theorem 5.2.8. Let X Ñ X0 be a G0-equivariant admissible blow-up, and let k ě kX.
The functors L oc:X,k and H0 induce quasi-inverse equivalences between the category of

finitely presented DpGpkq˝, G0qθ0-modules and CohpD:

X,k, G0q.

Proof. This follows from 4.3.3, 3.3.15, the definition of CohpD:

X,k, G0q, and the description
of DpGpkq˝, G0q in 5.1.4. �

5.2.9. Suppose now that π : X1 Ñ X is a G0-equivariant morphism over X0 between
admissible formal G0-equivariant blow-ups of X0 (whose lifted actions we denote by ρX

1

and ρX respectively), and that k ě kX and k1 ě maxtkX1 , ku. According to 2.2.12 there is
then a morphism of sheaves of rings

(5.2.10) Ψ : π˚D
:

X1,k1 “ D:

X,k1 ãÑ D:

X,k

6To make sense of this condition, we use that elements g P Gk`1 act trivially on the topological space
underlying X, cf. 5.2.3.
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which is G0-equivariant, i.e. satisfying

Adpgq ˝Ψ “ pρXg q˚pΨq ˝ π˚pAdpgqq

for all g P G0. Suppose we are given two modules MX1 P CohpD:

X1,k1 , G0q and MX P

CohpD:

X,k, G0q together with a morphism

ψ : π˚MX1 ÝÑ MX

linear relative to (5.2.10) and which is G0-equivariant, i.e. satisfying

φMX
g ˝ ψ “ pρXg q˚pψq ˝ π˚pφ

MX1
g q

for all g P G0. We obtain thus a morphism

D:

X,k bπ˚D:
X1,k1

π˚MX1 ÝÑ MX

of D:

X,k-modules. Denote, by K the submodule of D:

X,k bπ˚D:
X1,k1

π˚MX1 locally generated

by all elements of the form Pδh bm´ P b ph.mq, where h P Gk`1, m is a local section of

π˚MX1 , and P is a local section of D:

X,k. For convenience we will abbreviate the quotient

pD:

X,k bπ˚D:
X1,k1

π˚MX1q{K by

D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚MX1 .

Now since the target of the preceding morphism is strongly equivariant, the morphism
will factor through this quotient and we thus obtain a morphism of D:

X,k-modules

(5.2.11) ψ : D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚MX1 ÝÑ MX .

The domain of this morphism lies in CohpD:

X,k, G0q when we equip it with the action
defined on simple tensors by

g.pP bmq “ AdpgqpP q b pg.mq ,

for g P G0, where P and m are local sections of D:

X,k and π˚MX1 , respectively. Since
(5.2.10) is G0-equivariant, the map (5.2.11) is then seen to be in fact a morphism in

CohpD:

X,k, G0q. The question, in which situations this morphism will actually be an iso-
morphism will be crucial in the definition of a coadmissible G0-equivariant arithmetic
D-module, cf. 5.2.19 below.
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We finish this paragraph by an auxiliary result which will be used in the proof of thm.
5.2.23.

Lemma 5.2.12. Let X1,X P FX0 be G0-equivariant. Suppose pX1, k1q ľ pX, kq with canon-
ical morphism π : X1 Ñ X over X0 and let M be a coherent DpGpk1q˝, G0qθ0-module with

localization M “ L oc:X1,k1pMq P CohpD:

X1,k1 , G0q. Then there is a canonical isomorphism

in CohpD:

X,k, G0q given by

D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚M

»
ÝÑ L oc:X,kpDpGpkq˝, G0q bDpGpk1q˝,G0qMq.

Proof. We denote a system of representatives in Gk`1 for the cosets in Gk`1{Gk1`1 by R.
For simplicity, we abbreviate

Dpkq :“ Dan
pGpkq˝qθ0 and Dpk,G0q :“ DpGpkq˝, G0qθ0

and similarly for k1. We have the natural inclusion Dpkq ãÑ Dpk,G0q from 5.1.4 which
is compatible with variation in k. Now suppose M is a Dpk1, G0q-module. We then have
the free Dpkq-module Dpkq‘MˆR on a basis em,h indexed by the elements pm,hq of the
set M ˆ R. Its formation is functorial in M : if M 1 is another module and f : M Ñ M 1

a linear map, then em,h Ñ efpmq,h induces a linear map between the corresponding free
modules. The free module comes with a linear map

fM : Dpkq‘MˆR Ñ Dpkq bDpk1qM

given by

‘pm,hqλm,hem,h ÞÑ pλm,hδhq bm´ λm,h b pδh ¨mq

for λm,h P Dpkq where we consider M a Dpk1q-module via the inclusion Dpk1q ãÑ Dpk1, G0q.
Note that, since M is a Dpk1, G0q-module, and because G0 is contained in Dpk1, G0q, the
expression δh ¨m is defined for any particular h P Gk`1. The linear map is visibly functorial
in M and gives rise to the sequence of linear maps

Dpkq‘MˆR
fM
ÝÑ Dpkq bDpk1qM

canM
ÝÑ Dpk,G0q bDpk1,G0qM ÝÑ 0

where the second map is induced from the inclusion Dpk1q ãÑ Dpk1, G0q. The sequence is
functorial in M , since so are both occuring maps.

Claim 1: If M is a finitely presented Dpk1, G0q-module, then the above sequence is exact.

Proof. This can be proved as in the proof of [32, Prop. 5.3.5]. �

Claim 2: Suppose M is a finitely presented Dpk1q-module and let M :“ L oc:X1,k1pMq. The
natural morphism
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L oc:X,kpDpkq bDpk1qMq
»
ÝÑ D:

X,k bπ˚D:
X1,k1

π˚M

is bijective.

Proof. The functor π˚ is exact on coherent D:

X1,k1-modules according to 2.2.12. Choosing
a finite presentation of M reduces to the case M “ Dpk1q which is obvious. �

Now let M be a finitely presented Dpk1, G0q-module. Let m1, . . . ,mr be generators for M
as a Dpk1q-module. We have a sequence of Dpkq-modules

à

i,h

Dpkqemi,h
f 1M
ÝÑ Dpkq bDpk1qM

canM
ÝÑ Dpk,G0q bDpk1,G0qM ÝÑ 0

where f 1M denotes the restriction of the map fM to the free submodule of Dpkq‘MˆR

generated by the finitely many vectors emi,h, i “ 1, . . . , r, h P R. Since impf 1Mq “ impfMq
the sequence is exact by the first claim. Since it consists of finitely presented Dpkq-

modules, we may apply the exact functor L oc:X,k to it. By the second claim, we get an
exact sequence

pD:

X,kq
‘r|R|

Ñ D:

X,k bπ˚D:
X1,k1

π˚M Ñ L oc:X,kpDpk,G0q bDpk1,G0qMq Ñ 0

where M “ L oc:X1,k1pMq. The cokernel of the first map in this sequence equals by
definition

D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚M ,

whence an isomorphism

D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚M

»
ÝÑ L oc:X,kpDpk,G0q bDpk1,G0qMq.

This proves the lemma. �

5.2.13. The purpose of the rest of this section is to first explain how to form G0-
equivariant compatible systems of coherent D:

X,k-modules when the formal models X and
the congruence levels k vary in a suitable family. Here we will only be considering formal
models of the rigid-analytic flag variety which are admissible formal blow-ups of X0. In
a second step, we will relate such G0-equivariant systems to coadmissible DpG0, Lqθ0-
modules thus establishing a version of the classical localization theorem for equivariant
algebraic D-modules [5] in our setting. In sec. 5.3 these constructions will be generalized
to the setting of G-equivariant compatible systems.

We recall that we denote by X “ BzG the flag variety of G, and by Xrig the rigid-analytic
space associated by the GAGA functor to X, cf. 3.1. Furthermore, we denote by X8 the
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projective limit of all formal models of Xrig (in the sense of 3.1). This space is known to
be homeomorphic to the adic space corresponding to Xrig, cf. [41, Thm. 4 in sec. 2, Thm.
4 in sec. 3] where this space is denoted by ValpXrigq.

Consider the set FX0 of admissible formal blow-ups X Ñ X0. This set is ordered by
X1 ľ X if the blow-up morphism π : X1 Ñ X0 factors as the composition of a morphism
X1 Ñ X and the blow-up morphism X Ñ X0. In fact, the morphism X1 Ñ X is then
necessarily unique [19, II, 7.14], and is itself a blow-up morphism [25, ch. 8, 1.24]. By [7,
Remark 10 in sec. 8.2] the set FX0 is directed in the sense that any two elements have
a common upper bound, and it is cofinal in the set of all formal models. In particular,
X8 “ lim

ÐÝFX0

X.

Proposition 5.2.14. Any formal model X of Xrig is dominated by one which is a G0-
equivariant admissible blow-up of X0.

Proof. By [7, Remark 10 in sec. 8.2] we may assume that X is already an admissible
blow-up of X0. Let I be the ideal which is blown up to obtain X. If $k P I for some
k ě 1, then Gk acts trivially on the topological space underlying X0 and stabilizes I in
the sense that ρ7g : OX0 Ñ OX0 maps I into I for all g P Gk. Let 1 “ g1, . . . , gN be a
system of representatives for G0{Gk and let J be the product of the finitely many ideals
ρ7gipIq. Then J is G0-stable and contains I. Blowing up J on X0 yields a G0-stable

formal scheme X1, and X1 is also the admissible formal blow-up of the sheaf pr´1J ¨ OX

on X, and the blow-up morphism X1 Ñ X0 factors as the composition of the blow-up
morphisms X1 Ñ XÑ X0. �

Definition 5.2.15. We denote the set of pairs pX, kq, where X P FX0 and k P N satisfies
k ě kX, by FX0

. This set is ordered by pX1, k1q ľ pX, kq if and only if X1 ľ X and k1 ě k.

Since FX0 is directed, the set FX0
is directed, too.

Lemma 5.2.16. Let I be an open ideal sheaf on X0, and let g P G0. Then K “

pρ7gq
´1ppρgq˚pIqq is again an open ideal sheaf on X0. Let X be the blow-up of I, and

let X.g be the blow-up of K. Then there is a morphism ρg : X Ñ X.g such that the
following diagram is commutative (where the vertical maps are the blow-up morphisms):

X
ρg //

��

X.g

��
X0

ρg // X0

We have kX.g “ kX. Moreover, for any two elements g, h P G0 we have a canonical

isomorphism pX.gq.h » X.pghq, and the morphism X
ρg
ÝÑ X.g

ρh
ÝÑ pX.gq.h » X.pghq is

equal to ρgh. This gives a right action of the group G0 on the family FX0.
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Proof. It is easy to check that K is indeed an open ideal sheaf. Moreover, the comorphism
ρ7g : OX0 Ñ pρgq˚OX0 induces a morphism

(5.2.17)
à

dě0

Kd ÝÑ pρgq˚

˜

à

dě0

Id

¸

of sheaves of graded rings which is linear with respect to ρ7g and which coincides with ρ7g in
degree zero. The morphism of sheaves 5.2.17 induces the morphism between the blow-ups
X and X.g. That 5.2.17 is linear with respect to ρ7g implies the existence of the commu-
tative diagram. The assertion about the congruence levels follows straightforwardly from
the definition 2.2.10. The remaining assertions follow directly from the construction. �

Corollary 5.2.18. Assume that pX1, k1q ľ pX, kq for X,X1 P FX0 and let π : X1 Ñ X be
the unique morphism over X0. Let g P G0. Then pX1.g, k1q ľ pX.g, kq and if we denote
the unique morphism X1.g Ñ X.g over X0 by π.g, then the diagram

X1
ρg //

π

��

X1.g

π.g

��
X

ρg // X.g

is commutative.

Proof. Follows easily from the preceding lemma. �

Definition 5.2.19. A coadmissible G0-equivariant arithmetic D-module on FX0 consists

of a family M :“ pMX,kq of coherent D:

X,k-modules MX,k, for all pX, kq P FX0
, with the

following properties:

(a) For any g P G0 with morphism ρg : XÑ X.g (cf. 5.2.16), there exists an isomorphism

φg : MX.g,k ÝÑ pρgq˚MX,k

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h P G0 we have pρgq˚pφhq ˝ φg “ φhg.

(ii) For all open subsets U Ă X.g, all P P D:

X.g,kpUq, and all m P MX.g,kpUq one has
φgpP.mq “ AdpgqpP q.φgpmq.

(iii) 7 For all g P Gk`1 the map φg : MX,k Ñ pρgq˚MX,k “ MX,k is equal to the

multiplication by δg P H
0pX,D:

X,kq.

7To make sense of this condition, we use that for k ě kX the action of Gk`1 on X0 lifts to X, cf. 5.2.3.
In this case X.g “ X, and elements g P Gk`1 act trivially on the topological space underlying X.
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(b) Suppose X1,X P FX0 are both G0-equivariant, and assume further that pX1, k1q ľ

pX, kq, and that π : X1 Ñ X is the unique morphism over X0. In this situation we require
the existence of a transition morphism ψX1,X : π˚MX1,k1 Ñ MX,k, linear relative to the

canonical morphism Ψ : π˚D
:

X1,k1 Ñ D:

X,k (5.2.10) and satisfying

(5.2.20) φMX,k
g ˝ ψX1,X “ pρ

X
g q˚pψX1,Xq ˝ π˚pφ

MX1,k1

g q

for any g P G0 (note that π˚ ˝ pρ
X1

g q˚ “ pρXg q˚ ˝ π˚ according to cor. 5.2.18 and so the
composition of maps on the right-hand side makes sense). The morphism induced by
ψX1,X, cf 5.2.11,

(5.2.21) ψX1,X : D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚MX1

»
ÝÑ MX

is required to be an isomorphism of D:

X,k-modules. Additionally, the morphisms ψX1,X :
π˚MX1,k1 Ñ MX,k are required to satisfy the transitivity condition ψX1,X ˝ π˚pψX2,X1q “

ψX2,X, whenever pX2, k2q ľ pX1, k1q ľ pX, kq in FX0
. Moreover, ψX,X “ idMX,k

.

A morphism M Ñ N between two such modules consists of morphisms MX,k Ñ NX,k of

D:

X,k-modules compatible with the extra structures. We denote the resulting category by

C G0
X0

.

5.2.22. We now build the bridge to the category of coadmissible DpG0, Lqθ0-modules,
cf. 5.1.1. Given such a module M we have its associated admissible locally analytic G0-
representation V “M 1

b together with its subspace of Gpkq˝-analytic vectors VGpkq˝´an Ă V .
The latter is stable under the G0-action and its dual Mk :“ pVGpkq˝´anq

1 is a finitely
presented DpGpkq˝, G0qθ0-module, cf. 5.1.7. In this situation thm. 4.3.3 produces a

coherent D:

X,k-module

L oc:X,kpMkq “ D:

X,k bDanpGpkq˝qθ0 Mk

for any element pX, kq in FX0
. On the other hand, let M be an arbitrary coadmissible G0-

equivariant arithmetic D-module on FX0 . The transition morphisms ψX1,X : π˚MX1,k1 Ñ

MX,k induce maps H0pX1,MX1,k1q Ñ H0pX,MX,kq on global sections. We let

ΓpM q :“ lim
ÐÝ

pX,kqPFX0

H0
pX,MX,kq

where the projective limit is taken in the sense of abelian groups and over the cofinal
subfamily, cf. prop 5.2.14, consisting of those pX, kq with G0-equivariant X. This limit
naturally carries the structure of a coadmissible DpG0, Lqθ0-module, as will follow from
part (ii) of the next theorem.
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Theorem 5.2.23. (i) The family

L ocG0pMq :“ pL oc:X,kpMkqqpX,kqPFX0

forms a coadmissible G0-equivariant arithmetic D-module on FX0, i.e., gives an object of
C G0
X0

. The formation of L ocG0pMq is functorial in M .

(ii) The functors L ocG0 and Γp¨q induce quasi-inverse equivalences between the category
of coadmissible DpG0, Lqθ0-modules and C G0

X0
.

Proof. Let M be a coadmissible DpG0, Lqθ0-module and let M P C G0
X0

. Both parts of the
theorem follow from the four following assertions.

Assertion 1: One has L ocG0pMq P C G0
X0

and L ocG0pMq is functorial in M .

Proof. We start by verifying condition paq for L ocG0pMq and define the morphisms, for
g P G0,

φg : L ocG0pMqX.g,k ÝÑ pρgq˚L ocG0pMqX,k

satisfying the requirements piq, piiq and piiiq in definition 5.2.19. So consider

L ocG0pMqX.g,k “ L oc:X.g,kpMkq “ D:

X.g,k bDanpGpkq˝qθ0 Mk .

Let φ̃g : Mk Ñ Mk denote the map dual to the map VGpkq˝´an Ñ VGpkq˝´an given by

w ÞÑ g´1w. Let U Ă X.g be an open subset and P P D:

X.g,kpUq, m PMk. We define

φgpP bmq :“ AdpgqpP q b φ̃gpmq .

One has an isomorphism

pρgq˚

´

L oc:X1,k1pMk1q

¯

»
ÝÑ

´

pρgq˚D
:

X1,k1

¯

bDanpGpk1q˝qθ0 Mk1 .

Indeed, pρgq˚ is exact and so choosing a finite presentation of Mk1 as DanpGpk1q˝qθ0-module
reduces to the case of Mk1 “ DanpGpk1q˝qθ0 which is trivially true. This means that the
above definition extends to a map

φg : D:

X.g,k bDanpGpkq˝qθ0 Mk ÝÑ pρgq˚

´

D:

X,k bDanpGpkq˝qθ0 Mk

¯

.

By construction, it satisfies the requirements piq, piiq and piiiq. We next verify condition
pbq. So suppose that X1,X are G0-equivariant and we have pX1, k1q ľ pX, kq with canonical
morphism π : X1 Ñ X over X0. One then has an isomorphism
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π˚

´

L oc:X1,k1pMk1q

¯

»
ÝÑ

´

π˚D
:

X1,k1

¯

bDanpGpk1q˝qθ0 Mk1 .

Indeed, π˚ is exact by 2.2.12 and we may argue as for pρgq˚. Furthermore, Gpk1q˝ Ď Gpkq˝
and we denote by ψ̃X1,X : Mk1 Ñ Mk the map dual to the natural inclusion VGpkq˝´an Ď

VGpk1q˝´an. Let U Ă X be an open subset and P P π˚D
:

X1,k1pUq, m PMk1 . We then define

ψX1,XpP bmq :“ ΨX1,XpP q b ψ̃X1,Xpmq

where ΨX1,X denotes the canonical morphism π˚D
:

X1,k1 Ñ D:

X,k. This definition extends to
a map

ψX1,X : π˚

´

L oc:X1,k1pMk1q

¯

Ñ L oc:X,kpMkq

according to our above description of π˚

´

L oc:X1,k1pMk1q

¯

. The map ψX1,X satisfies condi-

tion 5.2.20 and the required transitivity properties. It remains to see that the correspond-
ing map ψX1,X is an isomorphism, as required in 5.2.21. But ψX1,X corresponds under the
isomorphism of lem. 5.2.12 to the linear extension

DpGpkq˝, G0q bDpGpk1q,G0qMk1 ÑMk

of ψ̃X1,X via functoriality of L oc:X,k. But the linear extension of ψ̃X1,X is an isomorphism

by part (i) of lem. 5.1.7 and hence, so is ψX1,X. This shows L ocG0pMq P C G0
X0

. Given a
morphism M Ñ N of coadmissible DpG0, Lqθ0-modules, one obtains maps Mk Ñ Nk for

any k which are compatible with the maps φ̃g and ψ̃X1,X. By functoriality of L oc:X,k, they
give rise to linear morphisms

L oc:X,kpMkq ÝÑ L oc:X,kpNkq

which are compatible with the maps φg and ψX1,X. In other words, L ocG0pMq is functorial
in M . �

Assertion 2: ΓpM q is a coadmissible DpG0, Lqθ0-module.

Proof. For given k we choose a pX, kq P FX0 and let Nk :“ H0pX,MX,kq. By 5.2.21
together with lem. 5.2.12, we then have linear isomorphisms

DpGpkq˝, G0q bDpGpk1q,G0q Nk1 » Nk

whenever k1 ě k. Thus, the modules Nk form a pDpGpkq˝, G0qqkPN-sequence, in the sense
of [15, 1.2.8] and their projective limit is therefore a coadmissible module. �
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Assertion 3: Γ ˝L ocG0pMq »M .

Proof. Let V “M 1
b. We have compatible isomorphismsH0pX,L ocG0pMqX,kq » pVGpkq˝´anq

1

for all pX, kq by 4.3.3 and the coadmissible modules Γ ˝L ocG0pMq and M have therefore
isomorphic pDpGpkq˝, G0qqkPN-sequences. �

Assertion 4: L ocG ˝ ΓpM q » M .

Proof. Let N :“ ΓpM q and V “ N 1
b the corresponding admissible representation. Let

N “ L ocG0pNq. According to part (ii) in lem. 5.1.7 setting Nk “ DpGpkq˝, G0qbDpG0,Lq

N produces a pDpGpkq˝, G0qqkPN-sequence for the coadmissible module N which is iso-
morphic to its constituting sequence H0pX,MX,kq from Assertion 2. Now let pX, kq P FX0 .
By what we just said we have linear isomorphisms

NX,k “ L oc:X,kpNkq » L oc:X,kpH
0
pX,MX,kqq » MX,k ,

where the final isomorphism comes from 4.3.3. Via this isomorphism, the action map

φ
NX,k
g , constructed for N “ L ocG0pNq along the lines of Assertion 1, corresponds

to φ
MX,k
g , as follows directly from the Adpgq-linearity of these two maps. Similarly, if

pX1, k1q ľ pX, kq for G0-equivariant X1,X, then the transition map ψN
X1,X, constructed for

N “ L ocG0pNq along the lines of Assertion 1, corresponds to ψM
X1,X, as follows directly

from the ΨX1,X-linearity of these two maps. Hence, N » M in C G0
X0

. �

This finishes the proof of the theorem. �

5.2.24. We indicate how coadmissible G0-equivariant D-modules can be ’realized’ as
honest (equivariant) sheaves on the topological space X8 “ lim

ÐÝFX0

X, cf. 5.2.13. The

induced G0-action on X8 is denoted by ρg : X8 Ñ X8 for g P G0. We denote the
canonical projection map X8 Ñ X by spX for each X and define the following sheaf of
rings on X8. Assume V Ă X8 is an open subset of the form sp´1

X pUq with an open subset
U Ă X for a model X P FX0 . We have that

spX1pV q “ π´1
pUq

for any morphism π : X1 Ñ X over X0 and so, in particular, spX1pV q Ă X1 is an open
subset for such X1. Moreover,

π´1
pspX1pV qq “ spX2pV q

whenever π : X2 Ñ X1 is a morphism over X. In this situation, the morphism (5.2.10)
induces the ring homomorphism
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(5.2.25) D:

X2,k2pspX2pV qq “ π˚D
:

X2,k2ppspX1pV qq Ñ D:

X1,k1pspX1pV qq

and we form the projective limit

D8pV q :“ lim
ÐÝ
X1ÑX

D:

X1,k1pspX1pV qq

over all these maps. The open subsets of the form V form a basis for the topology on X8
and D8 is a presheaf on this basis. We denote the associated sheaf on X8 by the symbol
D8 as well. It is a G0-equivariant sheaf of rings on X8 in the usual sense: given g P G0,
the actions Adpgq on each individual sheaf D:

X,k, cf. (5.2.6), assemble to a left action

(5.2.26) Adpgq : D8
»
ÝÑ pρgq˚D8

on D8.

5.2.27. Suppose M :“ pMX,kq is an object of C G0
X0

. We have the transition maps ψX1,X :
π˚MX1,k1 Ñ MX,k which are linear relative to the morphism (5.2.10). In a completely
analogous manner as above, we obtain a sheaf M8 on X8 together with a family pφgqgPG0

of isomorphisms

(5.2.28) φg : M8 ÝÑ pρgq˚M8

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h P G0 we have pρgq˚pφhq ˝ φg “ φhg.

(ii) For all open subsets U Ă X8, all P P D8pUq, and all m P M8pUq one has
φgpP.mq “ AdpgqpP q.φgpmq.

In particular, M8 is an equivariant D8-module on the topological G0-space X8 in the
usual sense. The formation of M8 is functorial in M P C G0

X0
.

Proposition 5.2.29. The functor M ù M8 from the category C G0
X0

to G0-equivariant
D8-modules is a faithful functor.

Proof. We have spXpX8q “ X for all X. The global sections of M8 are therefore equal to

H0
pX8,M8q “ lim

ÐÝ
pX,kqPFX0

H0
pX,MX,kq “ ΓpM q
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where we have used prop. 5.2.14. Now let f, h be two morphisms M Ñ N in C G0
X0

such
that f8 “ h8. By the equivalence of categories in 5.2.23, it suffices to verify Γpfq “ Γphq
(as maps between sets, say). But this is clear since H0pX8, f8q “ H0pX8, h8q. �

We denote by L ocG0
8 the composite of the functor L ocG0 with p¨q8, i.e.

t coadmissible DpG0, Lqθ0 ´modules u
L oc

G0
8

ÝÝÝÝÑ t G0 ´ equivariant D8 ´modules u .

Since L ocG0 is an equivalence, the preceding proposition implies that L ocG0
8 is a faithful

functor.

5.2.30. In this section we explain how the functor M ù M8 on the category C G0
X0

becomes fully faithful if we change the target category by requiring that objects (resp.
morphisms) carry the structure of locally convex topological D8-modules (resp. are con-
tinuous). We start by explaining how D8 can be considered as a sheaf of locally convex
topological algebras.8

Let X P FX0 be an admissible blow-up of X0. If U Ă X is an open affine subset, then

the ring D:

X,kpUq is naturally a locally convex L-algebra of compact type, cf. [22, proof of

3.1.3]. If U 1 Ă X is an arbitrary open subset, we equip D:

X,kpU
1q with the initial topology,

with respect to all restriction maps D:

X,kpU
1q

res
ÝÑ D:

X,kpUq, where U Ă U 1 runs through an
open affine covering of U 1. It is a locally convex topology, cf. [35, ch. 1, §5], independent
of the covering.

If V Ă X8 is of the form sp´1
X pUq, with an open subset U Ă X for a model X P FX0 , then

we give D8pV q the initial topology with respect to all maps D8pV q Ñ D:

X1,k1pspX1pV qq,
cf. the definition of D8pV q after 5.2.25. Finally, for an arbitrary open subset V 1 Ă X8
we give D8pV

1q the initial topology with respect to all maps D8pV
1q

res
ÝÑ D8pV q, where

V Ă V 1 runs through the open subsets of V 1 of the form considered before. This gives
D8 the structure of a sheaf of locally convex L-algebras.

We now consider the category of G0-equivariant locally convex D8-modules. The ob-
jects are sheaves M of locally convex L-vector spaces, endowed with the structure of a
topological D8-module9, and which are G0-equivariant: there is a family pφgqgPG0 of iso-
morphisms φg : M ÝÑ pρgq˚M of sheaves of L-vector spaces, satisfying conditions (i) and
(ii) as above (see 5.2.28). Morphisms are D8-linear maps which are continuous for the
locally convex topologies and which are compatible with the group action.

8In fact, one can show that D8 is a sheaf of Fréchet algebras, but since we do not need this here, we
work in the larger category of locally convex vector spaces.

9I.e., the multiplication maps D8pV qˆMpV q ÑMpV q, for open subsets V Ă X8, are supposed to be
continuous.
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Let M “ pMX,kq be an object of C G0
X0

. Each sheaf MX,k is a coherent D:

X,k-module. Hence
for every point x P X there is an open affine neighborhood U Ă X such that MX,k|U is

a finitely presented D:

X,k|U -module. It then follows from [22, 2.2.13] that MX,kpUq is a

finitely presented D:

X,kpUq-module, and thus is canonically a topological D:

X,kpUq-module,
cf. [32, Prop. 5.1.1]. For an open subset V Ă X8 we define on M8pV q a topology in the
same way as above for D8pV q. In this way M8 becomes an object of the category of G0-
equivariant locally convex D8-modules. With these preliminaries we have the following
result.

Proposition 5.2.31. The functor M ù M8 is a fully faithful functor from C G0
X0

to the
category of G0-equivariant locally convex D8-modules.

Proof. It remains to see the fullness. We begin by reminding the reader that any G0-
equivariant continuous L-linear map f : M Ñ N between two coadmissible DpG0, Lq-
modules M,N is in fact DpG0, Lq-linear [36, Lemma 3.1]. After this generality, let

F : M8 Ñ N8

be a morphism. Consider the coadmissible DpG0, Lqθ0-module M :“ ΓpM q and let
V :“ M 1 be the corresponding admissibible locally analytic G0-representation. The
subspace VGpkq˝´an Ă V is naturally a nuclear locally convex space and we let Mk :“
pVGpkq˝´anq

1
b be its strong dual. Now, on the one hand, the strong topology on Mk co-

incides with the canonical topology as finitely generated module over the compact type
algebra DanpGpkq˝qθ0 , cf. [32, Prop. 5.1.1]. On the other hand, the canonical topology
on the coadmissible DpG0, Lq-module M “ lim

ÐÝk
Mk equals the projective limit topol-

ogy, cf. 5.1.5. This means, that the locally convex topology on the space of global
sections M8pX8q “ ΓpM8q “ M of the locally convex D8-module M8 coincides with
the canonical topology of the coadmissible DpG0, Lqθ0-module M (and similarly for N8).
Hence the morphism F : M8 Ñ N8 induces a G0-equivariant continuous L-linear map
ΓpM q Ñ ΓpN q. By our initial reminder, this map is then necessarily DpG0, Lqθ0-linear
and we may apply the functor L ocG0 to it. This results in a morphism M Ñ N which
is a preimage of F . �

Of course, the composite functor L ocG0
8 “ p.q8 ˝L ocG0 then also becomes a fully faithful

functor into the category of G0-equivariant locally convex D8-modules.

5.3. G-equivariance and the functor L ocG. Let G :“ GpLq. Denote by B the (semi-
simple) Bruhat-Tits building of the p-adic group G together with its natural G-action. In
accordance with our convention that the group G acts on the right on the flag variety, we
also consider B with a right action: B ˆGÑ B, px, gq ÞÑ xg. We reserve the letter v for
special vertices of B.

The purpose of this subsection is to extend the above results from G0-equivariant objects
to objects equivariant for the full group G.
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5.3.1. To each special vertex v P B Bruhat-Tits theory associates a connected reductive
group scheme Gv over o. The generic fiber of Gv is canonically isomorphic to G. We
denote by Xv,0 the flag scheme of Gv. Is is a smooth scheme over o whose generic fiber is
canonically isomorphic to the flag variety X of G. All constructions in sections 3 and 4
are associated with the group scheme G0 with vertex v0, say, but can be done canonically
for any other of the reductive group schemes Gv. We distinguish the various constructions
from each other by adding the corresponding vertex v to them, i.e., we write Xv for an
admissible blow-up of the smooth model Xv,0, Gv,0 for the group of points Gvpoq, and
Gv,k for the group of points Gvpkqpoq. The same conventions apply when we work with
the formal completions, i.e., Xv,0 is the formal completion of Xv,0, and Xv always denotes
an admissible formal blow-up of Xv,0. We make the general convention that the blow-up
morphism Xv Ñ Xv,0 is part of the datum of Xv. That is to say, even if a blow-up Xv

of Xv,0 also allows for a blow-up morphism to another smooth formal model Xv1,0, with
v1 ‰ v, we only consider it a blow-up of Xv,0. We denote by Fv :“ FXv,0 the set of all
admissible formal blow-ups Xv Ñ Xv,0 of Xv,0 and by Fv :“ FXv,0 the set of pairs defined
analogously to 5.2.15. By the convention we just introduced, the sets Fv and Fv1 are
disjoint if v and v1 are two distinct vertices. Let

F :“
ž

v

Fv ,

where v runs over all special vertices of B, be the disjoint union of all these models. We
recall that X8 equals the projective limit of all formal models of Xrig, cf. 5.2.13. The
set F is partially ordered via Xv1 ľ Xv if the projection prXv : X8 Ñ Xv factors through
the projection prXv1 : X8 Ñ Xv1 . In this case, the resulting morphism Xv1 Ñ Xv is an

admissible formal blow-up of Xv [25, Thm. 8.1.24]. Finally, by the property recalled at
the end of 3.1.1, the ordered set pF ,ľq is directed in the sense that any two elements
have a common upper bound.

Definition 5.3.2. We denote by F “
š

v Fv the disjoint union of all Fv, where v
runs through all special vertices of B. We define an ordering on this set by declaring
pXv1 , k

1q ľ pXv, kq if and only if Xv1 ľ Xv and $k1LiepGv1q Ď $kLiepGvq as lattices in
LiepGq.

5.3.3. For any special vertex v P B, any element g P G induces a isomorphism ρvg :
Xv,0 Ñ Xvg,0. The morphism induced by ρvg on the generic fibers Xv,0 ˆ SpecpLq » X »
Xvg,0 ˆ SpecpLq coincides with the right translation by g on X. Moreover, ρvg induces a
morphism Xv,0 ÝÑ Xvg,0,which we again denote by ρvg or ρg, and which coincides with
the right translation action on Xv,0 for g P Gv,0 (note that vg “ v in this case). Let
ρ7g : OXvg,0 Ñ pρgq˚OXv,0 be the comorphism of ρg. If π : Xv Ñ Xv,0 is an admissible

blow-up of an ideal I Ă OXv,0 , then blowing-up pρ7gq
´1ppρgq˚Iq produces a formal scheme

Xvg (which, for g P Gv,0, we denoted by Xv.g in 5.2.16), together with an isomorphism
ρg “ ρvg : Xv Ñ Xvg. We have again kXv “ kXvg in this situation. For any g, h P G and any
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admisible formal blow-up Xv of Xv,0 we have ρvgh ˝ρ
v
g “ ρvgh : Xv Ñ Xvgh. This gives a right

G-action on the family F and on the projective limit space X8.10 Finally, if Xv1 ľ Xv

with morphism π : Xv1 Ñ Xv and g P G, then Xv1g ľ Xvg with a resulting morphism
Xv1g Ñ Xvg which we denote by π.g, as in cor. 5.2.18.

On the level of differential operators, we have the following two key properties as before,
cf. paragraph 5.2.5. Let g P G. The isomorphism ρg : Xv ÝÑ Xvg induces an adjoint
action

(5.3.4) Adpgq : D:

Xvg,k

»
ÝÑ pρgq˚D

:

Xv ,k
, D ÞÑ ρ7gDpρ

7
gq
´1 ,

for k ě kXv “ kXvg . Secondly, we identify the global sections ΓpXv,D
:

Xv ,k
q with DanpGvpkq

˝qθ0
and obtain the group homomorphism

(5.3.5) Gv,k`1 ÝÑ ΓpXv,D
:

Xv ,k
q
ˆ , g ÞÑ δg ,

where Gv,k`1 “ Gvpkq
˝pLq denotes the group of L-rational points.

Proposition 5.3.6. Suppose pXv1 , k
1q ľ pXv, kq for two pairs pXv1 , k

1q, pXv, kq P F with
morphism π : Xv1 Ñ Xv. There exists a canonical morphism of sheaves of rings11

Ψ : π˚D
:

Xv1 ,k
1 Ñ D:

Xv ,k

which is G-equivariant in the sense that for every g P G the following diagram is commu-
tative:

pπ.gq˚D
:

Xv1 .g,k
1

Ψ //

pπ.gq˚pAdpgqq

��

D:

Xv .g,k

Adpgq

��

pπ.gq˚pρ
v1

g q˚D
:

Xv1 ,k
“ pρvgq˚π˚D

:

Xv1 ,k

pρvgq˚pΨq // pρvgq˚D
:

Xv ,k

Proof. Let pr : Xv Ñ Xv,0 and pr1 : Xv1 Ñ Xv1,0 be the blow-up morphisms, and put
rpr “ pr ˝ π. The following diagram displays these morphisms:

10The existence of the G-action on X8 can also be deduced from the fact that X8 is canonically and
functorially associated to Xrig whose G-action is induced by the G-action on X.

11In order to alleviate notation we do not indicate that these maps depend on pXv1 , k1q and pXv, kq.
The source and target of these maps should be clear from the context.
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Xv1

pr1

��

π //

Ăpr

''

Xv

pr

��
Xv1,0 Xv,0

Fix m P N. We show first the existence of a canonical morphism of sheaves of o-algebras

(5.3.7) D pk1,mq
Xv1

ÝÑ rpr˚D pk,mq
Xv,0

.

Here Xv1 , Xv1,0, Xv, and Xv,0 are the schemes of finite type over o whose completions are
Xv1 , Xv1,0, Xv, and Xv,0, respectively, cf. 2.2.9. The morphisms between these schemes of
finite type over o will be denoted by the same letters, e.g., pr : Xv Ñ Xv,0. We recall that
there this a canonical surjective morphism

ξ
pk1,mq
Xv1

: Apk
1,mq

Xv1
“ OXv1

bo D
pmq
pGv1pk

1
qq� D pk1,mq

Xv1
,

cf. 3.3.11 of sheaves on Xv1 . On the other hand we apply rpr˚ to the surjection

ξ
pk,mq
Xv,0

: Apk,mqXv,0
“ OXv,0 bo D

pmq
pGvpkqq� D pk,mq

Xv,0
,

and obtain a surjection OXv1
bo D

pmqpGvpkqq � rpr˚D pk,mq
Xv,0

. Recall that pXv1 , k
1q ľ

pXv, kq implies that $k1LiepGv1q is contained in $kLiepGvq. The description of the ring
DpmqpGvpkqq in 3.3.2 shows that the inclusion $k1LiepGv1q Ă $kLiepGvq gives rise to an
injective ring homomorphism DpmqpGv1pk

1qq ãÑ DpmqpGvpkqq. We now claim that the
composition

OXv1
bo D

pmq
pGv1pk

1
qq ãÑ OXv1

bo D
pmq
pGvpkqq� rpr˚D pk,mq

Xv,0

factors through D pk1,mq
Xv1

. As all those sheaves are $-torsion free, this can be checked

after tensoring with L in which case we use that D pk1,mq
Xv1

bo L » rpr˚D pk,mq
Xv,0

bo L is the

(push-forward of the) sheaf of (algebraic) differential operators on the generic fiber of
Xv1 . We thus get a canonical morphism of sheaves 5.3.7. Passing to completions induces

a canonical morphism pD pk1,mq
Xv1

Ñ rpr˚ pD pk,mq
Xv,0

. Taking the inductive limit over all m and

inverting $ gives a canonical morphism D:

Xv1 ,k
1 Ñ rpr˚D:

Xv,0,k
. Now we consider the formal

scheme Xv1 as a blow-up of Xv,0 via rpr. Then π becomes a morphism of formal schemes

over Xv,0, and we can consider rpr˚D:

Xv,0,k
as the sheaf of arithmetic differential operators

with congruence level k defined on Xv1 via rpr, as introduced in 2.2.8. Using 2.2.12 in

this setting shows then that π˚

´

rpr˚D:

Xv,0,k

¯

“ D:

Xv ,k
. Then, applying π˚ to the morphism
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D:

Xv1 ,k
1 Ñ rpr˚D:

Xv,0,k
gives the morphism Ψ : π˚D

:

Xv1 ,k
1 Ñ D:

Xv ,k
of the statement. Making

use of the maps ξ
pk,mq
X , as above, the assertion regarding G-equivariance can similarly be

reduced to some obvious functorial properties of the rings DpmqpGvpkqq. �

Definition 5.3.8. A coadmissible G-equivariant arithmetic D-module on F consists of a
family M :“ pMX,kqpX,kqPF of coherent D:

X,k-modules MX,k with the following properties:12

(a) For any v and g P G with isomorphism ρvg : Xv ÝÑ Xvg, there exists a isomorphism

φvg : MXvg ,k ÝÑ pρvgq˚MXv ,k

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h P G we have pρvgq˚pφ
v
hq ˝ φ

v
g “ φvhg.

(ii) For all open subsets U Ă Xvg, all P P D:

Xvg ,k
pUq, and all m P MXvg ,kpUq one has

φvgpP.mq “ AdpgqpP q.φvgpmq.

(iii) 13 For all g P Gk`1,v the map φvg : MXv ,k Ñ pρvgq˚MXv ,k “ MXv ,k is equal to the

multiplication by δg P H
0pXv,D

:

Xv ,k
q.

(b) For any two pairs pXv1 , k
1q ľ pXv, kq in F with morphism π : Xv1 Ñ Xv there is a

transition morphism ψXv1 ,Xv
: π˚MXv1

Ñ MXv , linear relative to the canonical morphism

Ψ : π˚D
:

Xv1 ,k
1 Ñ D:

Xv ,k
(5.3.6) and satisfying

(5.3.9) φvg ˝ ψXv1g ,Xvg
“ pρvgq˚pψXv1 ,Xv

q ˝ pπ.gq˚pφ
v1

g q

for any g P G. If v1 “ v, and pX1, k1q ľ pX, kq in Fv, and if X,X1 are Gv,0-equivariant,
then we require additionally that the morphism induced by ψX1,X, cf 5.2.11,

(5.3.10) ψX1,X : D:

X,k bπ˚D:
X1,k1

,Gk`1
π˚MX1,k1

»
ÝÑ MX,k

is an isomorphism of D:

X,k-modules. In general, the morphisms ψXv1 ,Xv
: π˚MXv1 ,k

1 Ñ MXv ,k

are required to satisfy the transitivity condition ψXv1 ,Xv
˝ π˚pψXv2 ,Xv1

q “ ψXv2 ,Xv
, whenever

pXv2 , k
2q ľ pXv1 , k

1q ľ pXv, kq in F . Moreover, ψXv ,Xv :“ idMXv,k
.

A morphism M Ñ N between two coadmissible G-equivariant arithmetic D-modules
consists of morphisms MX,k Ñ NX,k of D:

X,k-modules which are compatible with the extra

structure. We denote the resulting category by C G
F .

12From now on we use the notation Xv instead of X to indicate that the model is an admissible formal
blow-up of Xv,0.

13To make sense of this condition, we use that elements g P Gk`1,v act trivially on the topological
space underlying Xv, cf. 5.2.3.
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5.3.11. We now make the link to the category of coadmissible DpG,Lqθ0-modules, cf.
5.1.1. Let M be such a module and let V :“ M 1

b. Fix a special vertex v. Let VGvpkq˝´an

be the subspace of Gvpkq
˝-analytic vectors and let Mv,k be its continuous dual. For any

pXv, kq P F we have the coherent D:

Xv ,k
-module

L oc:Xv ,kpMv,kq “ D:

Xv ,k
bDanpGvpkq˝qθ0 Mv,k ,

according to thm. 4.3.3. On the other hand, given an object M P C G
F , we may consider

the projective limit

ΓpM q :“ lim
ÐÝ

pX,kqPF
H0
pX,MX,kq

with respect to the transition maps ψX1,X. Here, the projective limit is taken in sense of
abelian groups and over the cofinal family of pairs pXv, kq P F with Gv,0-equivariant Xv.

Theorem 5.3.12. (i) The family

L ocGpMq :“ pL oc:Xv ,kpMv,kqqpXv ,kqPF

forms a coadmissible G-equivariant arithmetic D-module on F , i.e., gives an object of
C G
F . The formation of L ocGpMq is functorial in M .

(ii) The functors L ocG and Γp¨q induce quasi-inverse equivalences between the category
of coadmissible DpG,Lqθ0-modules and C G

F .

Proof. The proof is an extension, taking into account the additional G-action, of the proof
for the compact subgroup G0 treated in the preceding subsection, cf.5.2.23. Let M be
a coadmissible DpG,Lqθ0-module and let M P C G

F . The theorem follows from the four
following assertions.

Assertion 1: One has L ocGpMq P C G
F and L ocGpMq is functorial in M .

Proof. For condition paq for L ocGpMq we need the maps

φvg : L ocGpMqXvg ,k ÝÑ pρvgq˚L ocGpMqXv ,k

satisfying the requirements piq, piiq and piiiq. Let φ̃vg : Mvg,k ÑMv,k denote the map dual to

the map VGvpkq˝´an ÝÑ VGvgpkq˝´an given by w ÞÑ g´1w (note that Gvgpkq
˝ “ g´1Gvpkq

˝g

in Grig). Let U Ă Xvg be an open subset and P P D:

Xvg ,k
pUq, m PMvg,k. We define

(5.3.13) φvgpP bmq :“ AdpgqpP q b φ̃vgpmq .

This definition extends to a map
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φvg : D:

Xvg ,k
bDanpGvgpkq˝qθ0 Mvg,k ÝÑ pρvgq˚pD

:

Xv ,k
bDanpGvpkq˝qθ0 Mv,kq

which satisfies the requirements piq, piiq and piiiq. We next verify condition pbq. Given

pXv1 , k
1q ľ pXv, kq in F , we have Gv1pk

1q˝ Ď Gvpkq
˝ in Grig and we denote by ψ̃Xv1 ,Xv

:
Mv1,k1 ÑMv,k the map dual to the natural inclusion VGvpkq˝´an Ď VGv1 pk1q˝´an. Let U Ă Xv

be an open subset and P P π˚D
:

Xv1 ,k
1pUq, m PMv1,k1 . We then define

(5.3.14) ψXv1 ,Xv
pP bmq :“ ΨXv1 ,Xv

pP q b ψ̃Xv1 ,Xv
pmq

where ΨXv1 ,Xv
denotes the canonical morphism π˚D

:

Xv1 ,k
1 Ñ D:

Xv ,k
from prop. 5.3.6. This

definition extends to a map

ψXv1 ,Xv
: π˚L ocGpMqXv1 ,k1 Ñ L ocGpMqXv ,k

which satisfies all required conditions. The functoriality of L ocG is verified entirely similar
to the case of L ocG0 . �

Assertion 2: ΓpM q is a coadmissible DpG,Lqθ0-module.

Proof. We already know that ΓpM q is a coadmissible DpGv,0, Lqθ0-module for any v, cf.
thm. 5.2.23. So it suffices to exhibit a compatible G-action on ΓpM q. Let g P G. The
isomorphism

φvg : MXvg ,k ÝÑ pρvgq˚MXv ,k

is compatible with transition maps according to 5.3.9. We therefore obtain an isomorphism

ΓpM q “ lim
ÐÝ
Fvg

ΓpXvg,MXvg ,kq
g
ÝÑ lim

ÐÝ
Fv

ΓpXv,MXv ,kq “ ΓpM q .

According to (i), (ii) and (iii) in 5.3.8, this gives indeed a G-action on ΓpM q which is
compatible with its various DpGv,0, Lq-module structures. �

Assertion 3: Γ ˝L ocGpMq »M .

Proof. We already know that this hold as coadmissible DpG0, Lqθ0-modules, cf. thm.
5.2.23, so it suffices to identify the G-action on both sides. Let v be a special vertex.
According to 5.3.13, the action

Γ ˝L ocGpMq » lim
ÐÝ
k

Mvg,k Ñ lim
ÐÝ
k

Mv,k » Γ ˝L ocGpMq
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of an element g P G on Γ ˝L ocGpMq is induced by φ̃vg : Mvg,k ÑMv,k. The identification
M » lim

ÐÝk
Mvg,k » lim

ÐÝk
Mv,k (coming from dualizing V “ YkVGvgpkq˝´an “ YkVGvpkq˝´an)

therefore gives back the original action of g on M . �

Assertion 4: L ocG ˝ ΓpM q » M .

Proof. We know that L ocGpΓpM qqXv ,k » MXv ,k as D:

Xv ,k
-modules for any pXv, kq P F , cf.

4.3.3. It now remains to check that these isomorphisms are compatible with the maps φvg
and ψXv1 ,Xv

on both sides. This works as in the G0-case, but let us spell out the argument
for the maps φvg in detail. The maps φvg on the left-hand side are induced by the maps on
the right-hand side as follows. Given

φvg : MXvg ,k ÝÑ pρvgq˚MXv ,k ,

the corresponding map

φvg : L ocGpΓpM qqXvg ,k ÝÑ pρvgq˚pL ocGpΓpM qqXv ,kq

equals the map

D:

Xvg ,k
bDanpGvgpkq˝qθ0 H

0
pXvg,MXvg ,kq ÝÑ pρvgq˚pD

:

Xv ,k
bDanpGvpkq˝qθ0 H

0
pXv,MXv ,kqq

given locally by Adpgqp¨q b H0pXvg, φ
v
gq, cf. 5.3.13. Let U Ă Xv be an open subset and

P P D:

Xv ,k
pUq, m PMv,k “ H0pXvg,MXv ,kq. The isomorphisms L ocGpΓpM qqXv ,k » MXv ,k

are induced (locally) by P bm ÞÑ P.pm|Uq. Using condition piiq in 5.3.8, one then sees
that these isomorphisms interchange the maps φvg, as desired. The compatibility with
transition maps ψXv1 ,Xv

for two models pXv1 , k
1q ľ pXv, kq in F is deduced in an entirely

similar manner from 5.3.14 and the fact that ψXv1 ,Xv
is linear relative to the canonical

morphism Ψ : π˚D
:

Xv1 ,k
1 Ñ D:

Xv ,k
. �

This finishes the proof of the theorem. �

As in the case of the group G0, we now indicate how objects from C G
F can be ’realized’ as

honest G-equivariant sheaves on the G-space X8. Recall that we have the G0-equivariant
sheaf D8 on X8, cf. 5.2.24.

Proposition 5.3.15. The G0-equivariant structure on the sheaf D8 extends to a G-
equivariant structure.

Proof. This can be shown very similar to [32, Proof of Prop. 5.4.5]. �

Recall the faithful functor M ù M8 from coadmissible G0-equivariant arithmetic D-
modules on FX0 to G0-equivariant D8-modules on X8, cf. 5.2.29. If M comes from a
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coadmissible G-equivariant D-module on F , then M8 is in fact G-equivariant. This gives
the

Proposition 5.3.16. The functor M ù M8 induces a faithful functor from C G
F to

G-equivariant D8-modules on X8.

Remark 5.3.17. As explained in 5.2.30, the functor M ù M8 can be made fully
faithful by equipping objects in the target category with the structures of locally convex
vector spaces and by requiring morphisms to be continuous.

Remark 5.3.18. We explain briefly how our equivariant constructions on the flag vari-
ety relate to the (nonequivariant) theory of uD-modules on smooth rigid-analytic spaces

developed by Ardakov-Wadsley [3]. First of all, there is a nonequivariant version C G“t1u
F

of the category C G
F which can be construced by ignoring the G-action in the definition of

C G
F . That is to say, by deleting the condition paq and by replacing 5.3.10 of pbq by

ψX1,X : D:

X,k bπ˚D:
X1,k1

π˚MX1
»
ÝÑ MX

in 5.3.8. We then have a functor M ù M8 from C G“t1u
F to D8-modules as in prop.

5.3.16. Now by the equivalence of categories between abelian sheaves on Xrig and on X8
[7, Prop. 9.3.4] we may consider our sheaf of infinite order differential operators D8 to be
a sheaf on Xrig. One can show that this sheaf coincides with the sheaf uDXrig introduced
by Ardakov-Wadsley. Given this identification, the functor M ù M8 induces then

an equivalence between C G“t1u
F and Ardakov-Wadsley’s category of coadmissible uDXrig-

modules.

Remark 5.3.19. Let L Ă K be a complete and discretely valued extension field such that
the topology of K induces the topology on L. If we consider the K-algebras DpG0, LqpbLK

and DpG,LqpbLK as well as the sheaf of K-algebras D:

X,k
pbLK, then one may establish

versions ’over K’ of the preceding theorems in a straightforward manner. Here, we use
the completed topological tensor products for the projective tensor product topology on
the ordinary tensor product of two locally convex L-vector spaces [35, ch. IV].

6. Examples of localizations

In this section we compute the G-equivariant arithmetic D-modules corresponding to
certain classes of admissible locally analytic G-representations. The discussion is a gen-
eralization of the GLp2q-case treated in [32]. We keep the notation developed in the
previous section. For the rest of this section we fix an element pX, kq P FX0

such that X
is G0-equivariant.

Let g denote the Lie algebra of G and let L Ă K be a complete and discretely valued
extension field. To simplify notation, we make the convention that, when dealing with
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universal enveloping algebras, distribution algebras, differential operators etc. we write
Upgq, DpG0q, D:

X,k etc. to denote the corresponding objects after base change to K, i.e.,

what is precisely UpgKq, DpG0qb̂LK, D:

X,kb̂LK and so on (compare also final remark in
the preceding section).

6.1. Smooth representations. If V is a smooth G-representation (i.e. the stabilizer of
each vector v P V is an open subgroup of G), then VGpkq˝´an equals the space of fixed
vectors V Gk`1 in V under the action of the compact subgroup Gk`1. If V is admissible,
then this vector space has finite dimension. In this case one finds, since gV “ 0, that

(6.1.1) L oc:X,kppV
Gk`1q

1
q “ OX,Q bK pV

Gk`1q
1 ,

where G0 acts diagonally and D:

X,k acts through its natural action on OX,Q.

6.2. Representations attached to certain Upgq-modules. In this section, we will
compute the arithmetic D-modules for a class of coadmissible DpGq-modules M related to
the pair pg, Bq where B “ BpLq. This includes the case of principal series representations
which will be discussed separately in the next section. Let b be the Lie algebra of B. Let
T Ă B be a maximal split torus, put T :“ TpLq and let t be the Lie algebra of T .

The group G and its subgroup B act via the adjoint representation on Upgq and we denote
by

(6.2.1) Dpg, Bq :“ DpBq bUpbq Upgq

the corresponding skew-product ring. The skew-multiplication here is induced by

pδb1 b x
1
q ¨ pδb b xq “ δb1b b δb´1px1qx

for b, b1 P B and x, x1 P Upgq. A module over Dpg, Bq is the same as a module over g
together with a compatible locally analytic B-action [31]. Replacing B by B0 “ B XG0,
we obtain a skew-product ring Dpg, B0q with similar properties. Given a Dpg, Bq-module
M one has

(6.2.2) DpGq bDpg,BqM “ DpG0q bDpg,B0qM

as DpG0q-modules [34, 4.2]. We consider the functor

(6.2.3) M ù M :“ DpGq bDpg,BqM
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from Dpg, Bq-modules to DpGq-modules [31]. If M is finitely generated as Upgq-module,
then M is coadmissible by [34, 4.3]. From now on we assume that M is a finitely generated
Upgq-module. We let V :“ M1

b be the locally analytic G-representation corresponding to
M and denote by

(6.2.4) Mk :“ pVGpkq˝´anq
1

the dual of the subspace of its Gpkq˝-analytic vectors. According to [32, 5.2.4] the
DpGpkq˝, G0q-module Mk is finitely presented and has its canonical topology.

Lemma 6.2.5. The canonical map

DpGpkq˝, G0q bDpG0q M
»
ÝÑ Mk

induced by dualising the inclusion VGpkq˝´an Ă V is an isomorphism.

Proof. This can be proved as in [32, 6.2.4]. �

Recall the congruence subgroup Gk`1 “ Gpkq˝pLq of G0. Put Bk`1 :“ Gk`1 X B0.
The corresponding skew-product ring Dpg, Bk`1q is contained in DanpGpkq˝q according to
5.1.4. Let Cpkq be a (finite) system of representatives in G0 containing 1 for the residue
classes in G0{Gk`1 modulo the subgroup B0{Bk`1. Note that for an element g P G0

and a DanpGpkq˝q-submodule N of DpG0q, the abelian group δgN is again a DanpGpkq˝q-
submodule because of the formula xδg “ δgAdpg´1qpxq for any x P DanpGpkq˝q.

Lemma 6.2.6. The natural map of pDanpGpkq˝q, Dpg, B0qq-bimodules

ÿ

:
à

gPCpkq

δg

´

Dan
pGpkq˝q bDpg,Bk`1q Dpg, B0q

¯

»
ÝÑ DpGpkq˝, G0q

is an isomorphism.

Proof. This can be proved as in [32, 6.2.5]. �

The two lemmas allow us to write

Mk “ ‘gPCpkqδg

´

Dan
pGpkq˝q bDpg,Bk`1qM

¯

“ ‘gPCpkqδgM
an
k

as modules over DanpGpkq˝q. Here

Man
k :“ Dan

pGpkq˝q bDpg,Bk`1qM ,
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a finitely presented DanpGpkq˝q-module. If M has character θ0, so has Man
k . As explained

above, the ’twisted’ module δgM
an
k can and will be viewed as having the same underlying

group asMan
k but with an action of DanpGpkq˝q pulled-back by the automorphism Adpg´1q.

Since G is connected, the adjoint action of G fixes the center in Upgq and so the character
of the module δgM

an
k (if existing) does not depend on g.

If M has character θ0, then the D:

X,k-module L oc:X,kpδgM
an
k q on X can be described as

follows. For any g P G0 let, as before, pρgq˚ denote the direct image functor coming from

the automorphism ρg of X. If N denotes a (coherent) D:

X,k-module, then pρgq˚N is a

(coherent) D:

X,k-module via the isomorphism Adpgq : D:

X,k
»
ÝÑ pρgq˚D

:

X,k, cf. 5.2.6.

Lemma 6.2.7. One has

L oc:X,kpδgM
an
k q “ pρgq˚L oc:X,kpM

an
k q “ pρgq˚

´

D:

X,k bDpg,Bk`1qM
¯

.

Proof. This can be proved as in [32, 6.2.6]. �

Since L oc:X,k commutes with direct sums, we may summarize the whole discussion in the
general identity

(6.2.8) L oc:X,kpMkq “ ‘gPCpkq pρgq˚

´

D:

X,k bDpg,Bk`1qM
¯

of D:

X,k-modules, valid for an arbitrary Dpg, Bq-module M (finitely generated over Upgq)
and its coadmissible module M.

6.3. Principal series representations. We first note the general observation which
follows directly from the definition of the algebra Dpg, ¨q, cf. subsection 6.2. If B1 Ă B
is an open subgroup and if λ denotes a locally analytic character of B1, then we have a
canonical algebra isomorphism

(6.3.1) Dpg, B1q{Dpg, B1qIpλq » Upgq{UpgqIpdλq

where Ipλq and Ipdλq denote the ideals equal to the kernel of DpB1q
λ
ÝÑ K and b

dλ
ÝÑ K

respectively.

Now let λ be a locally analytic character of T viewed as a character of B. We then have
the locally analytic principal series representation

V :“ IndGBpλ
´1
q “ tf P C la

pG,Kq : fpgbq “ λpbqfpgq for all g P G, b P Bu

with G acting by left translations. Here, C lap¨, Kq denotes K-valued locally analytic

functions. We wish to compute the localization L oc:X,k of the dual of its subspace of
Gpkq˝-analytic vectors VGpkq˝´an for any sufficienly large k. We therefore assume in the



58 CHRISTINE HUYGHE, DEEPAM PATEL, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

following that k is large enough such that the restriction of λ to TXGk`1 is Tpkq˝-analytic.
Let dλ : tÑ K be the induced character of t viewed as a character of b and let

Mpλq :“ Upgq bUpbq Kdλ

be the induced module. Then Mpλq is naturally a Dpg, Bq-module and the DpGq-module
Mpλq associated with Mpλq by the functor 6.2.3 equals the coadmissible module of the
representation V [31]. In particular, Mpλqk “ pVGpkq˝´anq

1 in our notation 6.2.4 and
therefore

L oc:X,kpMpλqkq “ ‘gPCpkq pρgq˚

´

D:

X,k bDpg,Bk`1qMpλq
¯

by the general formula 6.2.8. We wish to reinterpret this formula in terms of the classical
Beilinson-Bernstein localization of the Upgq-module Mpλq [5].

First of all,

Mpλq “ Dpg, Bk`1q{Dpg, Bk`1qIk`1pλq

as a Dpg, Bk`1q-module where Ik`1pλq denotes the kernel of DpBk`1q
λ
ÝÑ K, cf. 6.3.1.

By the choice of k the character dλ extends to a character of DanpBpkq˝q whose kernel is
generated by Ipdλq Ă Upbq. It follows

(6.3.2) Mpλqan
k “ Dan

pGpkq˝q{Dan
pGpkq˝qIk`1pλq “ Dan

pGpkq˝q bUpgqMpλq.

Now the Beilinson-Bernstein localization [5] of a finitely generated Upgq-module M with
character θ0 is a coherent DX-module LocpMq over the sheaf DX of usual algebraic dif-
ferential operators on the algebraic flag variety X “ BzG. Let Xrig be the associated
rigid-analytic space with its canonical morphism ι : Xrig Ñ X of locally ringed spaces.
Let spX : Xrig Ñ X denote the specialization morphism. Then pspXq˚ι

˚LocpMq is an
OX,Q-module with an action of the sheaf pspXq˚ι

˚DX. We denote its base change along
the natural morphism

pspXq˚ι
˚DX ÝÑ D:

X,k

by

LocpMq:X,k :“ D:

X,k b pspXq˚ι
˚LocpMq ,

a coherent D:

X,k-module. Suppose now that λ is associated by the Harish-Chandra iso-
morphism to the central character θ0 and consider M :“Mpλq. We then have



D:-AFFINITY OF FORMAL MODELS OF FLAG VARIETIES 59

LocpMpλqq:X,k “ D:

X,k bUpgqMpλq “ L oc:X,kpMpλq
an
k q

according to 6.3.2. We may thus state

L oc:X,kppVGpkq˝´anq
1
q “ ‘gPCpkq pρgq˚LocpMpλqq:X,k .

Let for example λ “ ´2ρ where ρ denotes half the sum over the positive roots (relative
to B) of G. The sheaf LocpMp´2ρqq is known to be a skyscraper sheaf with support in
the origin B P X [12, 5.1.1]. The fibre ι´1pBq is a single point in Xrig and o :“ spXpι

´1pBqq
is a closed point in X. It follows that LocpMp´2ρqq:X,k is a skyscraper sheaf supported

at the point o. Hence if V :“ IndGBp2ρq (an irreducible representation by [31]), then the

localization L oc:X,kppVGpkq˝´anq
1q is a sum of copies of this skyscraper sheaf placed at the

finitely many points go P X for g P Cpkq.
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[31] S. Orlik and M. Strauch. On Jordan-Hölder series of some locally analytic representations. Journal
of the AMS, 28(1):99–157, 2015.

[32] D. Patel, T. Schmidt, and M. Strauch. Locally analytic representations of GLp2, Lq via semistable
models of P1. Journal of the Institute of Mathematics of Jussieu, appeared online in January 2017.

[33] Fabienne Prosmans and Jean-Pierre Schneiders. A topological reconstruction theorem for D8-
modules. Duke Math. J., 102(1):39–86, 2000.

[34] T. Schmidt and M. Strauch. Dimensions of certain locally analytic representations. Representation
Theory, 20:14–38, 2016.

[35] P. Schneider. Nonarchimedean functional analysis. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 2002.

[36] P. Schneider and J. Teitelbaum. Locally analytic distributions and p-adic representation theory, with
applications to GL2. J. Amer. Math. Soc., 15(2):443–468 (electronic), 2002.



D:-AFFINITY OF FORMAL MODELS OF FLAG VARIETIES 61

[37] P. Schneider and J. Teitelbaum. Algebras of p-adic distributions and admissible representations.
Invent. Math., 153(1):145–196, 2003.

[38] Jean-Pierre Schneiders. A coherence criterion for Fréchet modules. Astérisque, (224):99–113, 1994.
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