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1. INTRODUCTION

The purpose of this paper is to begin the study of connections between arithmetic dif-
ferential operators on semistable integral and formal models of flag varieties on the one
hand and locally analytic distribution algebras of p-adic reductive groups on the other
hand. Here we only consider the case of the group GL; over Z, and the corresponding
flag variety is the projective line P} .

M. S. would like to acknowledge the support of the National Science Foundation (award DMS-1202303).
1
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These investigations are motivated by the wish to study locally analytic representations
of p-adic groups geometrically. In [1] K. Ardakov and S. Wadsley work with ’crystalline’
differential operators (of level zero) on the smooth model of the flag variety of a split
reductive group. This is close in spirit to the classical localization theory of Beilinson-
Bernstein [2] and Brylinski-Kashiwara [5]. In the paper [18] we have made a first step in
merging the localization theory of Schneider-Stuhler for smooth representations [20] with
that of [2]. A key ingredient is the embedding, first discovered by V. Berkovich, cf. [3],
of the building in the non-archimedean analytic space X®" attached to the flag variety X
(see also [19]). The connection between the building and X" can also be seen in terms
of formal models for the rigid analytic space X*&. Especially transparent is that relation
for formal models of P!, cf. [12]. To better understand the significance of these models
for representation theory, and its relation to distribution algebras, is the starting point
for our work presented here.

Regarding distribution algebras, it turns out that the analytic distribution algebras as
considered by M. Emerton in [8], are well suited to be compared to arithmetic differen-
tial operators. Not surprisingly, Emerton has introduced and studied these rings having
Berthelot’s theory of arithmetic differential operators in mind, cf. [8, sec. 5.2]. Arithmetic
differential operators on integral smooth models and their completions have been studied
by C. Noot-Huyghe in [10], [17], [11]. In particular, she proves that these smooth formal
models are Z'-affine. Here we take up her work in [10], in the special (and easy) case
of P! and show that the ring of global sections of the arithmetic differential operators
is isomorphic to the analytic distribution algebra D**(G(0)°) of the 'wide open’ rigid-
analytic group G(0)° whose C,-valued points are G(0)°(C,) = 14 Mz(mg,). Let X be the
completion of ]P’%p along its special fiber. Our first result is

Theorem 1. (Thm. 3.2.2) There is a canonical isomorphism of (topological) Q,-algebras
D*(G(0)°)g, ~ H'(X, Tk ) - 0

Here, the subscript 6y indicates a central reduction. The proof of this theorem con-
sists of two parts. Firstly, we identify the analytic distribution algebra D**(G(0)°) with
the inductive limit (over m) of completed 'restricted divided power enveloping algebras’
U (gzp)((@m) (of level m) of gz, = gla2(Z,). Secondly, we relate the algebras U (gzp)g@) to the
global sections H O(P%p, D) of the sheaf of integral differential operators D™ of level
m. Much of what we do in this part of the proof (sec. 3) is already contained in [10]. We
have chosen to redo most of the arguments here, in an entirely explicit manner, because
the arguments and techniques will be used later in sections 4 and 5.

After having obtained theorem 1 we have been informed by C. Noot-Huyghe that she has
proved the general case of this theorem, for an arbitrary split reductive group and the
corresponding smooth formal model of the flag variety, in an unpublished manuscript.
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Furthermore, we give a description of the analytic distribution algebras D*(G(n)°) of
rigid-analytic wide open congruence subgroups G(n)°. Their C,-valued points are given
by G(n)°(C,) = 1 + p"Ma(mc,). The description of the distribution algebras is close to
that in [8, sec. 5.2], but more suited to the material treated in the second part of this
paper, i.e., sections 4 and 5.

In these sections we consider certain semistable integral models X, of P%p, and we study
the sheaves Dg:) of logarithmic differential operators of level m on these schemes. De-
note by H°(X,, Dg:))A the p-adic completion of H°(X,, Dg:)), and put H°(X,, ng))@ =
H(X,, Dg:))A ®z Q. Then we show

Theorem 2. (Thm. 5.2.1) Given n = 0 let n’ = [n%] be the greatest integer less or
p—1

equal to no- Then we have natural inclusions

D™(G(n) g, = L HO(X,, DEY)G > D™(G())ay .
Let X,, be the formal completion of X,, along its special fiber. Then there is a canonical
injection lim H O(Xn,Dg:))@ — HY(X,, @;m(@). We do not treat here the question
whether this inclusion is in fact an isomorphism. This problem is related to the question
whether the schemes X, (resp. formal schemes X,,) are D-affine, a topic we plan to discuss
in a future paper.

Acknowledgements. The reader will have no difficulty in recognising the influence of Peter
Schneider’s work on the ideas contained in this paper. Over the many years we have spent
together in Miinster, we have greatly benefited from Peter’s generosity in sharing his ideas
with us and guiding us into many different mathematical worlds. We are grateful for this.
It is a pleasure to dedicate this paper to him on the occasion of his sixtieth birthday.

Notation. If L is a field equipped with a non-archimedean absolute value we let oy be
its valuation ring and m,, < o, the maximal ideal of its valuation ring. We let N = Z,
be the set of non-negative integers. If v = (v4,...,14) is a tuple of integers, then we put
|V| =vi+...+14.

2. DISTRIBUTION ALGEBRAS OF WIDE OPEN CONGRUENCE SUBGROUPS

2.1. The group schemes G(n). Let n = 0 always denote a non-negative integer. Put

1
G(0) = G = GLyz, = Spec (Zp [a, b,c,d, Z]) ,
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where A = ad — be, and the co-multiplication is the one given by the usual formulas. For
n = 1let ay, by, ¢,, and d, denote indeterminates. Define an affine group scheme G(n)
over Z, by setting

1

O(G(n)) = Zp lana bmcnadm A_n

] , where A, = (1+p"a,)(1 + p"d,) — p*"bucn ,
and let the co-multiplication

1 1
O(G(n)) - O(G(n)) ®Zp O(G(n)) = Zp [ana bn, Cns s a;w b;n C;u ;17 A_7 E

be given by the formulas

a, ~— a, + a, + praya, + p'b,c,,
b, — b, + b0, + plab, + pb,d,,
Chn — Cy + d, + plcpal, + ptd,c,,
d, — d, + d, + p'd,d, + p'c.b .

These group schemes are connected by homomorphisms G(n) — G(n — 1) given on the
level of algebras as follows:

Up—1 > Py 5 bpy = pby , Coy = pey , dny — pdy
if n > 1. For n = 1 we put
a—>1+pay, b—pby, c—>pc;, d—1+pd; .

For a flat Z,-algebra R the homomorphism G(n) — G(0) = G induces an isomorphism of
G(n)(R) with a subgroup of G(R), namely

G(n)(R) = {( °“ ! ) e G(R)

a—l,b,c,d—lep”R} :

Of course, the preceding formulas defining the group schemes are derived formally from
this description by setting a = 1 + p"a,, b = p"b,, ¢ = p"c,, and d = 1 + p"d,,.

2.2. The rigid-analytic groups G(n)" and G(n)°. Let G(n) be the completion of G(n)
along its special fiber G(n)r,. This is a formal group scheme over Spf(Z,). Its generic fiber
in the sense of rigid geometry is an affinoid rigid-analytic group over QQ, which we denote
by G(n)"e. We have for any completely valued field L/Q, (whose valuation extends the
p-adic valuation)
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G ={( & ) Gl

a—l,b,c,d—lep”oL} )

Furthermore, we let G(n)° be the completion of G(n) in the closed point corresponding
to the unit element in G(n)r,. This is a formal group scheme over Spf(Z,) (not of
topologically finite type). Its generic fiber in the sense of Berthelot, cf. [6, sec. 7.1], is a
so-called 'wide open’ rigid-analytic group over Q, which we denote by G(n)°. We have
for any completely valued field L/Q, (whose valuation extends the p-adic valuation)

e ={( 4 ) ectn

a—l,b,c,d—lep”m%} .

The remainder of this section is inspired by M. Emerton’s paper [8], especially sec. 5.

2.3. The analytic distribution algebra of G(0)°. Our goal in this subsection is to
give a description of

D™(G(0)°) = O(G(0))y
in terms of 'divided power enveloping algebras’ which is analogous to [8, 5.2.6]. However,

the discussion in [8, sec. 5.2] does not apply here because the exponential function for
the group GL2(Q,) does not map a lattice in

§ — Lie(GLa(Q,))

bijectively onto GL3(Z,). Nevertheless, it is possible to also treat G(0)° by making use of
the "Kostant Z-form’ of the enveloping algebra U(g), cf. [15]. Set

01 10 00 0 0
e:<0 0>’h1:<0 0)’h2:<0 1)’f:<1 0)’

9z, = Ms(Zy) = Zpe ® Zyhy @ Zpho @ Zy f

and put

For integers m,n € N define

m) _ |
n df {pm| ’

that is, the greatest integer less or equal to -7 For fixed m we then denote by U (gz,)™
the Z,-submodule of U(g) generated by the elements
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n( ™ iy m)|f4
. Vs %/3 ‘ 1/3 CIV4 I/‘ :

Lemma 2.3.2. U(gz,)™ is a Z,-subalgebra of U(g).

Proof. This is contained in [16, Prop. 2.3.1] and the remark before [16, Lemme 2.3.3],

namely that D( )
description of 8<E> given in part (c) of that lemma. O

vy
(2.3.1) g glm
v 1/1! v2

has a basis given by the operators 0--, |k| < n. Note also the

We now let U (gzp)(m) be the p-adic completion of U (gzp)(m). Explicitly, its elements can

be written as
m my [ ha —
Z v, - q( )| q( )|( ) qys ( ) q£4)! '
Jens V9 V3 Uy

v=(v1,v2,V3,/4

where v, € Z, and |v,| — 0 as |v| — co. Furthermore, we put
U (m) U (m)
(92,)g" (92,)"™ @2 Q.

We consider the unique Q,-algebra homomorphism U(g) — D*(G(0)°) which sends X € g
to the linear form

< ey

f'_)dt t=0

Here we follow the same convention as in [8, sec. 5] in that we consider the right regular
action of a group on its ring of functions.

Proposition 2.3.3. The map U(g) — D*(G(0)°) just defined extends continuously to

ﬁ(gzp)(m). The family of these maps, for various m, induces a canonical isomorphism of
topological Q,-algebras

ling U (g2, )" —> D™(G(0)°) -

m

Proof. The affine algebra of the formal group scheme ( )¢ is the completion of the ring
Zy|a,b,c,d, x| with respect to the ideal I = (p,a—1,b,c,d—1). (We write here a instead
of ag, b instead of by, etc.) Hence

O (@(0)0) —2Z,[[a—1,b,c,d —1]] .

For the ring of global functions of G(0)° we then have, algebraically and topologically,



INTEGRAL MODELS OF P! AND ANALYTIC DISTRIBUTION ALGEBRAS FOR GL, 7

O(G0)) = Im O (€(0),)
where

O (G(0),) = {Z Eu(a — 1)Mpr2cis(d — 1)H

drt =0 as ] = 20}

It is easily checked that

LR\ (R , v =
[i—l! <y2) <u3) ‘i—4|] Nla = 1)Mbr2ets (d — 1)) = { (1) : - Z

We thus find that D**(G(0)°) consists of sums
€V1 hl h2 fV4
Z 71/_' —‘ ,
v=(v1,v2,v3,v4)EN4 vi-\V2/ \V3/ Vi

which have the property that there is R > 1 for which |,|R"l — 0 as || — o0. The rest
of the proof is as in [8, 5.2.6]. Because

vy (a5l gl gl

is asymptotic to

Vi + Vs + V3 + 1y
(p—1)pm

as |v| —> o0,

it follows that U (gzp)((@m) embeds into D**(G(0)°). Furthermore, the inductive limit of the

I (m)

spaces O(G(0),)y, for r T 1, is equal to the the inductive limit of the rings U(gz, )y, as
m — 0. 0

Remark 2.3.4. The Kostant Z-form of U(g) is nothing else than the distribution algebra
Dist(GLy,z,) of the group scheme GLy 7, as defined in [13, L.7], cf. [13, IL.1.12] for the
explicit relation between the Kostant Z-form and the distribution algebra. One can then
use the very definition of the distribution algebra in [13, 1.7] to give an intrinsic proof of
2.3.3 which should generalize to any split reductive group scheme over 7Z,. 0

2.4. The analytic distribution algebra of G(n)° for n > 1. In this subsection we
derive a description of D*(G(n)°) = O(G(n)°);, for n = 1, from the decription in 2.3.3.

The open embedding of rigid spaces G(n)° < G(0)° induces a restriction map on spaces
of functions O(G(0)°) — O(G(n)°) which has dense image. Taking the continuous dual
spaces gives hence an injection
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D™(G(n)") — D*™(G(0)°) -

We will describe the left hand side as a subalgebra of the right hand side. To this end,
let U(p"gz,)™ be the Z,-submodule of U(g) generated by the elements

(2.4.1) q<m>!w.q(m>;pnw f) e (2 q<m>!( p"f)"
Vi V' 1] 1/2 V3 U

1- 3 Vy!

As before, we find that U(p"gz,)™ is a Z,-subalgebra of U(g), and we let U (p"gz,)™
denote its p-adic completion.

Remark 2.4.2. We caution the reader that U(p"gz,)™ and ﬁ(p”gzp)(m) are merely
notations. That is, these rings are not what one would get by formally replacing (the
basis of) gz, by (the basis of) p"gz, in the definition of U(gz,)™. The reason is that,

obviously,
"hi h;
() = ()
v v

if v > 1. It is the term on right which one has to work with here, not the term on the
left. O

The algebra homomorphism U(g) — D**(G(0)°) defined right before 2.3.3 obviously fac-
tors as U(g) — D*(G(n)°) — D*(G(0)°).

Proposition 2.4.3. The map U(g) — D**(G(n)°) extends continuously to ﬁ(p"gzp)(m)
and there is a canonical isomorphism of topological Q,-algebras

th(p gz,)5" > D™ (G(n)°) .

Proof. We proceed here as in the proof of 2.3.3. The affine algebra of the formal group
scheme G(n)° is Zy[[an, bn, ¢n, dy]] and the coordinates ay, by, ¢, d,, on G(n)° are related
to the coordinates a,b, ¢, d on G(0)° by

1 1 1

. From the proof of 2.3.3 we get

(pme)’1  nuy (h nvs (h2\ (" f)"4 a1 XU o N2 N a1\ o 1 , V=L
e e G () () ) (5 =10 0 V2

And the remainder of the proof is along the same lines as in 2.3.3. 0J
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Remark 2.4.4. Forn > 1 (n > 2if p = 2) the group G(n)(Z,) = 1+p"Ms(Z,) is uniform
pro-p and its integral Lie algebra in the sense of [7, sec. 9] is p"gz, when considered as a
Z,-submodule of g. We can thus apply [8, sec. 5.2] to get a description of D**(G(n)°) in
terms of divided power enveloping algebras. The relation between the two descriptions is
as follows.

In [8], G(n)° is identified with the rigid-analytic four-dimensional wide open polydisc
(B°)* via the 'coordinates of the second kind’
(t1,t2,t3,ts) = exp(tip”e) exp(tap™hi) exp(tsp”he) exp(tap” f) -

Functions O(G(n)°) are then considered as functions on (B°)* via pull-back. Using this
identification, we consider elements in U(g) as differential operators on O ((B°)?). 8,
5.2.6] then tells us that D*(G(n)°) is the inductive limit of rings

D (G (n)")"

Ql(’Tln)!Ql(’rzn)!Ql(’;n)!qu)! n  \V1 (7 v (1 v3 (,n £\
= > Ve AT (p"e)” (p™h )2 (p"ho) " (" F)" | || — O as [v] — 0} .

The relation of these rings to the rings U (p”gzp)((@”;) follows immediately from the elemen-

tary

Proposition 2.4.5. Supposen >1 (n =2 if p=2), and let T be an indeterminate. For
all v = 0, if one writes the polynomial p™ (Z) as

v nT j
e,
j=1

7!

the coefficients ¢, j are in Z,.
Proof. Let z be another indeterminate and consider the formal power series
T
Z pnu< >ZV
v=0 v

This is equal to (1 + p"z)" = exp(T'log(1 + p"z)). Under the assumption n =1 (n = 2 if
p = 2), one can write log(1 + p"z) = p"zf(z) with a power series f(z) € Z,|[[z]]. Hence
n 1 pnT I
exp(Tlog(1 +72)) = Y () L0

I
>0 J:

Now compare the coefficients of z¥ on both sides. O
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3. ARITHMETIC DIFFERENTIAL OPERATORS ON THE SMOOTH FORMAL MODEL

3.1. Differential operators with divided powers. We consider X = P%p as being

glued together from the affine lines

U. = Spec(Zy|x]) and U, = Spec(Z,|y])

along the open subsets Spec(Z,|x, 1]) and Spec(Z,|y, i]) according to the relation zy = 1.

The formulas
L (@ b\ b+dx a b\ ay+c
Ned) axa Y\ed) wrd

describe a right action of G = GLyz, = Spec (Zp [a, b, c,d, %]) on X. Put 0, = % and
Oy = d%. These differential operators satisfy the relations

Op = —yzﬁy , X0y = —YOy , 220, = —0y .

Denote by Tx the tangent sheaf of X (over Z,). The action above gives rise to a homo-
morphism of Lie algebras

(3.1.1) gz, - H'(X, Ix) ,

which is explicitly given by

e — 0
hl = —mﬁx
hg —> a:&x
[ o= ay

(m

On X we consider the sheaf of differential operators Dy ) as defined in [4], [10]. Sections
are locally given as finite sums

(m)
Sotie o Yatre

V.

with v, € Z,|z] and v, € Z,|y], respectively. The sheaf Dégm) is filtered by subsheaves
Dgf) of differential operators of degree < d. Furthermore, for the symmetric algebra
Sym(Tx) = @20 T2* there exists a divided power version
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Sym(f&)(m) _ @(&w)(m) ’

d=0

cf. [10]. The sheaf (Z24)(™ in degree d is, as Ox-module, locally generated by

(m)) (m))

%, " i 4, " i,
where 7; + ... + 14, = d and sq,...,s, are local sections of 7x. There is an obvious
monomorphism of sheaves
(3.1.3) Sym(Z)™ — Sym(T)g) = Sym(Tx)” @2 Q -

Lemma 3.1.4. The image of the subsheaf

(2™ < Sym(Tx)™
under the map 3.1.3 is equal to

(m))
q :
M-I Sym(Te)g)

Therefore,

Proof. Because T.2? is locally free of rank one, we can write the local sections s; in 3.1.2
as s; = f;-s with a local generator s of 7% and local sections f; of Ox. Hence we assume

s; =sfori=1,...,r. Moreover, for any ¢, 7 = 0 one has that
G+ (_am )
(3.1.5) A -t €Ly,
7! ngm)!q(m)!

cf. [10, sec. 1]. Applying this fact repeatedly shows that

q;, ! ] ' q;, ! c qc(z )!Z
! ) a -t
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and this proves the assertion of the lemma. O
Lemma 3.1.6. Fix d 1 The map sendmg i
generator of D;E&) . . ('];g®d)(m)7
induces a canonical exact sequence of sheaves

(m) (m) ®d (m)
(3.1.7) 0—-Dx4q1—Dxq = (Ix)™ —0.

Proof. Thisis [10, 1.3.7.3]. In the case considered here, it is also an immediate consequence
of 3.1.4. O

Proposition 3.1.8. (a) For all d = 0 one has Hl(X,DgZ)) =0.
(b) For all d =1 the sequence

(3.1.9) 0— H° (x, pgggfl) SO (X,pgg) L HO (X, (T ™) S 0

induced by 3.1.7 is exact.
(c) The canonical map

gr (H(x,08)) =@ w° (x,017)) [H° (X, D)) — HO(X Sym(T)™)

d=0

18 an isomorphism.

Proof. (a) The proof proceeds by induction on d. We have Dg%) = (%, and the assertion

is true for d = 0. Moreover, T.X? ~ Ox(2d) and therefore H'(X,72%) = 0. Using 3.1.4,
we find that H'(X, (T2 ™) = 0 for all d,m > 0. Now suppose d > 1. By 3.1.7 we get
an exact sequence

' (X.D5) — i (X.007) — 1 (1 (7).

and our induction hypothesis implies H* (X, Dégg) = 0.

(b) This assertion follows from (a) and the long exact cohomology sequence attached to
3.1.7.

(c) This follows immediately from (b). O
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Remark 3.1.10. Assertion (c) of the previous proposition is as in [10, 2.3.6 (ii)], at least
for large d. Though Noot-Huyghe’s result would be good enough for our purposes, we
have preferred to give a self-contained proof here. The proof given here proceeds along
the same lines as the proof in [10]. O

In the following we consider the filtration of U(gz,)™ whose submodule of elements of
degree < d is generated as a Z,-module by terms of the form 2.3.1 with v +vy+13+1v4 < d.

Proposition 3.1.11. (a) For all v = 0 one has the following identity of differential
: 0y v oy
operators in Dx ®z Q: ( ) Zz

=¥z,
v v

(b) The canonical map U(gz,) — H°(X, Dg)) induced by 3.1.1 extends to a homomorphism
(3.1.12) €+ Ulgz, )™ — HO(X, DY)

of Zy-algebras which is compatible with the filtrations on both sides.

(c) €™ maps the center Z(gz,) of Ulgz,) < Ulgz, )™ to Z,. Let 6y = f(m)|z(gzp) be the
restriction of €™ to Z(ggz,). Then ker(§™) is the (two-sided) ideal generated by ker(6p).

Proof. (a) Is easily proved by induction.

(b) Using (a) we see that (}fj), 1 = 1,2, is mapped to ix”i—%. The assertion now follows
directly from the definition of U(gz, )™.

(c) Tensor with @ and use the statement in characteristic zero, cf. [2]. O

Using the notations introduced in 3.1.11 we define

Ulez,)y” = Ulez,)™ @z(as, )00 Lo -

Therefore, €™ induces an injective homomorphism of Z,-algebras

(3.1.13) &  Ulgz,)y” — H(X, DY) .

Proposition 3.1.14. (a) Via the homomorphism
g€+ gr(U(ge,) ™) — HO (X, Sym(To)™) = gr (°(x, D))

induced by €™, the ring HO(X, Sym(’]gg)(m)) 1s a finitely generated module over
gr(U (gz,,)(m)) :
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(b) Via 5(()7”) the ring HO(X,D%”)) is a finitely generated U(gz, )( -module. Moreover,
there is N(m) € N such that the coker(ﬁém)) is annihilated by pN(™.

Proof. (a) By 3.1.4 we have

HO (X, Sym(T) ™) = @ L H (X, T

d=0

as submodules of H° (X, Sym(’]gg)((@m)) = H° (X, Sym(7x)™) ®z Q. Furthermore,

2d
H® (X, T2 = P Zpx" % .
k=0
Our goal is to show that H° (X, Sym(’&)(m)) is generated as a module over gr (U (gzp)(m>)
by the elements

(m))

qil' 0% with 0<d<2p™, 0<k<2d.

To this end, consider an element % = xk6®d with k£ < 2d. Write d = p™q + s. We are
going to use the elementary fact

g\ _u
d! sl(pm)e’

with a p-adic unit u, cf. [8, 5.2.2].

Case k < d. Writing k = p™¢’ + r, we have ¢’ < q. If r < 2s then consider the equation®

g ol — (20:)"" ql, x" " lxras
d! pm! p! s!

Now suppose r > 2s. Because k = p™q¢' +r < d = p"q+ s we must have ¢’ < ¢ and hence
g—¢ —1>=0. Then we can write

qgl ) kad (xaﬂf)pm ! . 6£m o _1_ 1 xrapers
d! pm! pm! slipmhy™ =~

Case d < k (< 2d). Write k = p™¢ + r, and suppose ¢ = 2¢" is even. Because
g =p"q¢" + 5 < p"q+ s we must have ¢" < ¢. If r < 2s then consider the equation

IThis equation and the following formulas are to be considered in the commutative ring
HO (X, Sym(’&)(m)). To simplify notation we have dropped the superscript "®”.
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(m)| 26 pm q// apm q—q /l 1
kaag =u M Y C—a"0f
d! p™! p™! s!

Now suppose r > 2s. Then we must have ¢” < ¢, hence ¢ — ¢” — 1 > 0 and we can write

m ” - "1
qc(l i ghod = —(xzﬁz)p ' N v L 2T oPT s
d! pm! p! slipmhy™ =7

Assume now that ¢ = 2¢” + 1 is odd. Because

o+ 1 T k
pmqll+p :pm(qll+_ 5

5 <d=p"q+s,

we must have ¢” < ¢. If p™ + r < 2s we consider

(m) m ' mN q—q’
(Y (LY L,
d! pm! pm! s! v

Finally, if p™ 4+ r > 2s we must have ¢” < ¢. In this case we consider

m " . "1
qc(l "™l k@d = u (anx)p ! . ai o . 1 Ipm—i-rapm—i-s ]
d! pm! pm! sl(p™) v

(b) For 0 < d < 2p™ and 0 < k < 2d let eqy, be a representative in H° (X, Dg:i)) of the

o
element %4— xké’@d in H° (X (T®d)(m)). By part (a), H° (X, Sym(’&)(m)) is generated
over gr(U(gZP)(m)) by the elements q‘i, xk(9®d for 0 < d < 2p™ and 0 < k < 2d, it

follows that H°(X,D{™) is generated over U (9z,)'™ by the elements eq;. And then,
(m)

obviously, H°(X, D(m)) is actually a finitely generated U(gyz,), -module. Moreover, we

see that the generators

(m)y
qiz' 20 with 0<d<2p™, 0<k<2d,

of H° (X, Sym(&)(m)) over gr (U(gzp)(m)) have the property that

(m))

(3.1.15) (™ —=1D!-(p™)!- qdd! 2%0%4 € im (gr (U(gzp)(m)> — H° (X, Sym(’&)“’”)) :
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Because the generators eq, are in degrees < 2p™, repeating 3.1.15 finitely often shows
that there is N(m) such that p¥(™e,, is in the image of U(gZp)g:) for 0 < d < 2p™,
0 < k < 2d. Now assertion (b) follows. O

3.2. 2" and the distribution algebra D*'(G(0)°). Denote by X the completion of X

along its special fiber Xp, . Let _@;m) be the p-adic completion of the sheaf Dggm), which
we consider as a sheaf on X.

Lemma 3.2.1. The canonical map
HO (%, D¢") — H° (%, 7¢7)
extends to an isomorphism
O (x,00")" — 1O (2, 907)

where the left hand side is the p-adic completion of H° (X, Dégm))

Proof. This is contained in [10, Prop. 3.2]. The key ingredient used in [10, Prop. 3.2] is
that H! of the sheaf in question (here Dégm)) is annihilated by a finite power of p. Here we

have seen H'(X, Dégm)) =0, cf. 3.1.8. Thus it would be possible to give a self-contained
proof following the arguments given in the proof of [10, Prop. 3.2]. O

Put

7% = lig 77",

m

and
P} o = lim 27
x,Q = Ul Ty ®z Q.
Theorem 3.2.2. (a) The homomorphism
0 () e (£0)
cf. 3.1.13, induces a homomorphism
&m0 (gz,)5" — 1 (x,287)

which is injective and whose cokernel is annihilated by pN™ where N(m) is as in 3.1.14.
Therefore, é\ém) mduces an isomorphism
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0 (g2,) 5 = H° (2, 23)

(b) The isomorphisms in (a) give rise to a canonical isomorphism
D (G(0))a, > lim U (g2, )y, — HO(X. 7).

Proof. (a) We consider the exact sequence induced by fém)
U (g2,)\™ ~ptHO (X,D8)) /U (g2,) 0"
0— (gZP)GO ap X P (gzp)Ho

— U (g2,)" [0 (a2, ) — 1O (%, D7) /ptme (x,047)

Because the projective limit functor is left-exact, and as H° (X, Dégm)) is separated for
the p-adic topology, we deduce that the homomorphism é})’”) between the completions is
injective as well. The assertion about the cokernel is an immediate consequence of 3.1.14.
Hence the isomorphism after extending scalars to Q.

(b) This assertion follows from (a) and the fact that cohomology commutes with direct
limits. O

As already indicated in the introduction, after having obtained this result we have been
informed by C. Noot-Huyghe that she has proved the general case of this theorem, for
an arbitrary split reductive group and the corresponding flag variety, in an unpublished
manuscript.

The isomorphism in (a) for an arbitrary split semisimple group and the corresponding flag
variety has appeared, in the case m = 0 and with some restrictions on the prime number

p, in [1].

4. THE SEMISTABLE MODELS X,, AND THEIR COMPLETIONS X,

4.1. The construction via blowing-up.

4.1.1. In the following, all closed subsets of a scheme are considered as closed subschemes
with their reduced induced subscheme structure. Put Xo = X = ]P)%p. Blowing up X; in
the IF,-rational points of its special fiber X, r, produces a scheme X;. The irreducible
components of the special fiber of X, are all projective lines over F,, and there are p + 2
of them: on the one hand we have the strict transform of Xy ,, which we can and will
identify with Xor,, and then there is for any F,-rational point P of Xy the corresponding
component Fp =~ ]P’%Fp of the exceptional divisor. No two components Ep intersect each
other, but any one of these intersects Xop, in a unique point which corresponds to the
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point P that has been blown up. We call the components Ep the ’end components’ or
‘ends’ of the special fiber of Xj.

Then blow up Xj in the smooth [F,-rational points of its special fiber. There are p such
points on each component Ep. Call the resulting scheme X,. The special fiber of X,
consists of the strict transform of the special fiber of X;, which we identify with X, ,
and, for each of the components Ep of X; g, there are p irreducible components Ep pr of
the exceptional divisor, and Ep p intersects Ep in the point P’ that has been blown up.
Again, we call the irreducible components Epp the 'end components’ or ’ends’ of the
special fiber of Xj.

Inductively one defines X,, by blowing up X,,_; in the smooth F,-rational points of the
special fiber of X,,_;. The irreducible components of the exceptional divisor are called the
‘’end components’ or ’ends’ of the special fiber of X,,. It is easy to see that the intersection
graph of the special fiber of X, is a tree. There are p + 1 edges meeting at every vertex,
except for the vertices which correspond to the end components: these are only connected
to the rest of the tree by a single edge.

Remark 4.1.2.? Because the group G(Z,) = GLy(Z,) acts on X; and preserves the closed
subscheme X, (F,), the group G(Z,) acts also on Xj. It is easy to see that G(Z,) preserves
the subscheme of X; which gives rise to X,. Inductively we find that G(Z,) acts on X,
for all n. Furthermore, one can show that the group scheme G(n) acts on the scheme X,,.

4.2. An open affine covering of X,,. Here we describe an open affine covering of the
scheme X,, and a coherent system of local coordinates®. This will be used later in sec.

5.1.

4.2.1. Outline. We will first describe the general shape of this covering and the procedure
by which it is obtained. Let R < Z, be any system of representatives for Z,/pZ, and put
Ro =R u{w}. Let n = 1. Inductively we will define an open subset X | < X,,_; and
open affine 'residual disc schemes’ Dgl_l) for any tuple @ = (ag, ay,...,an_1) € R xR L,
Each scheme Dgﬁl) has a unique [F,-rational point and X, is obtained from X, _; by
blowing up all these points. The open subset X? _; < X, ; is not affine (except if n—1 = 0)
but it is equipped with an open affine covering. Moreover, the special fiber of X7 ; does
not contain any smooth [F,-rational point of the special fiber of X,,_;. The blow-up
morphism pr, ,—1 : X,, — X,,_; is thus an isomorphism over X7 ,, and the preimage
pron_1(X2_1) < X, is then equipped with the open affine covering of X?_,. In the
following we identify pr; ) _, (X7 _;) with X?_,.

2The content of this remark will not be used later on.

3By this we mean a set of local coordinates together with transition formulas for the local coordinates
on ’'neighboring’ open affine subsets. The meaining of 'neighboring’ in our context will become clear in
the sequel.
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Next we define for any such a open affine subschemes x{ and, for all a,, € R, 'residual

disc schemes’ ]D)gfgn of X,,. These open affine subschemes, together with the open affine
covering of X° | constitute then the open affine covering of X,,. The open subset X° is

defined as

o _ Yo (n)
X; =X v J  xi.

a€ER xRN—1

4.2.2. When n = 0. We start with the affine covering Xy = U, u U, of X, cf. 3, where
U, = Spec(Zy|z]) and U, = Spec(Z,|y]) and these open subschemes are glued together
according to the relation xy = 1. For a € R put 20 = — a, and consider this as a local

coordinate at x = a, and set x&? =y = % For a € R, put

1
RY = Z,[z{] O]
xr

‘ beR,b;«éa] ,
b

and view this as a subring of the rational function field Q,(z). It is immediate that for
all a € Ry the ring

RO = RO

1

as a subring of Q,(), is independent of a. Set X§ = Spec(R(®). The special fiber of X§
is P \P'(F,). Furthermore, for a € R, put

DO — Spec(RV) .

The special fiber of DY is X s, Y {a}, where @ is the 'mod-p reduction of a’. This is the

unique Fj-rational point which corresponds to the ideal (p, xé‘”). We call D a 'residual
disc scheme’. For later use we fix the coordinate function 2 on D). For any two distinct
a,a’ € Ry we have DY A ]DS,)) = X§. Then we consider the covering of X, by the open
subschemes ]D)EP), a € Ry, together with X§.

4.2.3. When n = 1. Xy is obtained by blowing up Xj in the points corresponding to the

ideals (p, :cg%)) c Rg%), ag € Re. In order to describe X, we introduce new indeterminates

zc%) and :cg)) satisfying

x((l%)zé? =p and zg)x&) =1.

Set also xg?,al = x%) — a; for a; € R. Then define
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wer| -,

(1)

ap,a1

1 0 1
RY = RO[V] [

and put X = Spec(R((l0 ). For a; € R set

1
Rao ail = R(O [ ao al] [W b € R\{al}] Y

ag,b

and define

DY = Spec (R(1 )

ao,a1 ap,al

The special fiber of each ]D((lt),a1 is isomorphic to an affine line over F, all of whose [F)-

rational points have been removed, except one. Again, in order to obtain a coherent

system of coordinates, we fix the coordinate function x(%)’al on D%),al. For any a; € R one

has
1
33210),111 7

and this ring is thus independent of a;. For any two distinct a1, a} € R one has

0l

and the special fiber of this scheme is isomorphic (via the coordinate :pg]), say) to IP’]le\}P’l (Fp).

Furthermore, for any two distinct ag, af, € R one has

= RW

ap,al

RO [L

@ (1)
Zao

ao,a1 ag,a ag,a1

D), ADL, =D, AXY = Spec <R<1>

XW AXE = X5

Let X7 be the union of the schemes Xg?, ap € Ry, and X§.

4.2.4. From n — 1 to n. Firstly, we use the preimages of the affine covering of X®_,
under the blow-up map X,, — X,,_;. Then we consider a 'residue disc scheme’

]D)(" D= = Spec (R(” 1))

of X,,_1, where a = (ag,a1,...,a,1). It is equipped with a coordinate function :cé"il)

and has a unique F,-rational pomt which corresponds to the ideal (p,xq (n— 1)) c R(n_l)
X, is obtained from Xn 1 by blowing up these F,-rational points, for all a € R x R™ 1.
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To describe the blow-up process, we introduce indeterminates zé") and xé") satisfying

xg‘_l)zé”) =p and Zé”)xé") =1.
For a, € R set 2, = 2 — q,, and define

7y

1
(125) R = By L) [ o R] e -5,

and put
X&”) = Spec (Ré")) .

For a,, € R define

1
RY) = RO | [m e R\{an}] ,
xXr

ab

and put

D™ = Spec (Rgﬁn) )

a,an

Again, in order to obtain a coherent system of coordinates, we fix the coordinate function

2 on DY) . For any a, € R one has

L O L
2 “ g,

and this ring is thus independent of a,. For any two distinct a,, a), € R one has

1
2"
(n)

and the special fiber of this scheme is isomorphic to (via the coordinate zg’, say) to
Py \P'(F,). Let X} be the union of the schemes X, a4 € R x R™L, and X°_,. One

n—1-
obtains an open affine cover for X7 from the union of the open affine cover from X7, and

R

]D)é”gn M Dgg, = Dgﬁn N Xg”) = Spec (Rg”)

the collection of all Xé"). Finally X, is then covered by X° and the open affine subschemes
]D)gfgn, (a,a,) = (ag,---,an_1,a,) € Ro x R™. Writing out the open affine covering of X¢
explicitly gives:
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(4.2.6) X, =X; v Uy x o {J pv.

I<vsn geRoxRV—1 bER o xR™
4.2.7. Going through the successive definitions of the local coordinates mg%), xfj},m, e xé"),
a = (agp,...,a,), one finds the relations, for ag # oo,
— n—1 n n,,.(1n)
r = aqytap+...+ ap_1p +a,p” +pTe
(4.2.8) = aytapt...F a1 p" Tt + p”xgz()wh_van_l)

(n—1)
(a0,a1,..s0n—1) ?

= ap+ap+...Fa, ptt+pilz
(n—1) (n)

where we have used Tag.anrman1) Aaparran_) = P- Similarly we have for
a=(w,ay,...,a,_1,a,) and y the relations

y o= apt...+ "+ ap” + pral?
(4.2.9) = wp+...+ap_1p"t+ p”xgzgy%_“an_l)

(n—1)
(a0,a1,-,an—1) °

= ap+...+a, 1 p~t+pilx
4.3. The formal schemes X,,.

4.3.1. We denote by X,, the completion of X, along its special fiber. One can also obtain
X, directly from X by the same procedure as in 4.1. Assuming we have constructed X,, 1,
we define X,, by blowing up (in the sense of formal geometry) the smooth F,-rational
points of the special fiber of X,,_;.

Furthermore, the open affine covering described in 4.2 gives rise upon completion to a
covering of X,, by open affine subschemes. The explicit description of the formal comple-
tion XU of X{., a € Rop x R™!is in fact simpler than the corresponding description for

X™ . One can show

~ 1 1
R0 = ot (Zp@a“x ) [ = ] g0 - p>) .

(a1t -1 (et 1

See [21]* and [12, 1.3] for details. Similarly, the formal completion @;"Qn of ]D)gfgn, an, €R,
can be described by

4The relevant material is in the section ”The formal scheme €, — the naive construction”.
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~ 1
D™ = Spf | Z,(a™ S| —— | ] .
a,an < p< a, n> (xg;lgn)p—l _ 1

Remark 4.3.2. Denote by X; the completion of X° along its special fiber. The open
embedding X° ;| < X° induces an open embedding X? ; — X°. (X2 can also defined
intrinsically, and more straightforwardly, without the use of X°.) The inductive limit
lim X7 is then a formal model of the p-adic upper half plane, cf. [12, 1.3]. This links the
objects studied here with the Bruhat-Tits building and the Berkovich embedding of the
Bruhat-Tits building into the analytification of the flag variety. The present paper was
motivated by this connection and the study done in [18].

5. LOGARITHMIC DIFFERENTIAL OPERATORS ON X,

We refer to [16] for a systematic discussion of sheaves of logarithmic differential operators.
For n = 1 we equip X,, with the log structure defined by its normal crossings divisor
{p = 0}. However, here we will not use the theory as developed in [16], but rather work
with a more elementary approach.

5.1. The logarithmic tangent sheaf on X,,.

5.1.1. For the purposes of this paper we consider the sheaf Dx, 1o, of logarithmic dif-
ferential operators on X,, as being generated as a subsheaf of Endy, (Ox,,Ox,) by the
logarithmic tangent sheaf 7x, 1o5. (This is as in [14, 1.3].) The restriction of 7Tx,, 1oz to an
open affine subset Xg'), a € Re x RV7L cf. 4.2.6, is generated by a differential operator
D (over Z,) with the properties

D(y V)=l D) = -2,

cf. 4.2.5. D has the property that

D(zr= )y = xg’_l)D(za”)) + 29D =0,

and hence D(mg_l)zg’) —p) = 0, so that D preserves the ideal generated by xg_l)zéy)

a —p.
Intuitively we may write

D = l’gil)ﬁmgq) = —Zg/)azg,) .

To put it another way, we may say that 7x, 1, is locally on an open subscheme Xg)
generated by

:cé”’l)amgq) and zg’)@g) , with the relation a:g”l)ﬁxgq) = —zg’)ﬁzg) )
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Denote by

prp, X, — Xp =X

the canonical projection. Write, as in sec. 3, Xo = X = U, u Uy, where U, = Spec(Z,|z]),
U, = Spec(Z,|y]), with = and y satisfying the relation zy = 1. Let Z,, 4 < Ox be the ideal
sheaf which is on U, associated to the ideal

(| @—ap) cLle] = Ox(Us)

a€Zyp/(p")

and on U, associated to the ideal

N w—ap)! < z,ly] = 0x(U,) .

a€Zp/(p")
Obviously, Zy 4 = Ox for all d. In the following proposition, if n = 0, we put Tx, 10s = Zx.
Proposition 5.1.2. (a) Tx, 1o, is a subsheaf of the invertible sheaf pr}:(7x).

(b) (an)*(Oxn) = Ox.

(¢) For alln,d = 0 one has (pry)(TE"

d
n,log) = In»d,Z;;{@ :

Proof. (a) In order to see this we express the coordinate x by the local coordinates
mg_l) introduced in sec. 4.2, and deduce a corresponding relation for ¢, and 61‘1(11/—1). (By
symmetry it suffices to consider x.) To be precise, fix 1 < v < n, a = (ao, - o a, 1) €
R x R¥~1, and consider the open subset Xg) c X, cf. 4.2.4. Without loss of generality

1 (1 _
we may assume ag # 0. Then we have 7 —a = p* 22" where a = ag + ... + ay_1p""},

cf. 4.2.8. Hence
(5.1.3) 0 -1 = p’ 10, , and thus xé”’l)&x(Wl) = p”’lx;”’l)&ﬁ =(x—a)d, .

This proves the assertion.

(b) The morphism pr, : X,, — Xq is a birational projective morphism of noetherian
integral schemes, and X, is normal. The assertion then follows exactly as in the proof of
Zariski’s Main Theorem as given in [9, ch. III, Cor. 11.4].

(c) 1. The inclusion (prn)*(’];gfllog) c L, 2% Put X!, = X,, — pri;}(X(F,)). This scheme
is smooth over Z,. The restriction of pr, induces an isomorphism

X, = X' =X -X(F,),
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and the restriction of 7x, 1, to X/ is the relative tangent sheaf of X! over Z, whose
direct image under pr,, is the relative tangent sheaf of X' over Z,. Therefore, in order to
understand (pry,) (T®dlog) we need to investigate the stalks of this sheaf at the points in

X(F,). We consider the point P in U, = Spec(Z,[z]) < X corresponding to the ideal

(x — ag,p). Our aim is to understand the stalk of (pr,). (T®dlog) at By.

By (a) we can consider the stalk of (pry ). (T

log) at I as a Ox p-submodule of the stalk

of ’&@d at Py. We consider thus an element

(5.1.4) D = f(z)0%" e (T2

Py’

f(x) € Oxp, = Zp|x — aol(z—aop), and want to find necessary and sufficient conditions

for this element to be in the stalk of (pry ). (T2

log) at Fy. To this end, consider an open
subset of X,, of the form

XG UXEo v oXE VDG,
for a sequence a = (ay,...,a,) € R™". Consider the local coordinate x%?,..,an,l,an on

JD)EZ(?% which we denote henceforth by 2. Put a = ag + a1p + ... + ap_1p™ ' + anp™

The equation 4.2.8 shows that

1
(5.15) 2™ = —(z—a) , hence &, = p"0, , and thus 2,y = (z — a) Fps -
pn

If D is in the stalk of (pr,) (T4

log) at Py then D extends to the stalk of T®dlog at the

point P, € DEJJ)% corresponding to the ideal (™, p). Therefore, D can be written as

(5.1.6) g(z(™)o%d

z(n)

with a function g(z™) € Ox, p, = Zp[2™] ,m ). Completing this latter ring with respect
to its maximal ideal gives Zp[[x(")]], and so we can consider g(z™) = Y, cp(z(™)k
an element in Z,[[z(™]]. Now we write 5.1.6 as

g (é(w - a)) priaed

p

Using the power series expansion for g(m(”)) gives
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g (%(m - a)) P = ap ™ (x —a)t

k=0

For k < d we have p*) (z—a)* € (x—a,p™)?. And for k > d we must have c,p "+ € Z,
and so ¢p "**"(z —a)* is in (z —a, p")? too. The function f(x) in 5.1.4 is then contained
in the ideal (z — a,p™)? for all @ = ag + ... + a, 1p" 1. Hence we see that the stalk of
(prn)*(’];g:llog) at Py is contained in the stalk of Z, ;7% at Py. This is then true for all
[F,-rational points of X. For the point at infinity one uses the equation 4.2.9.

2. The inclusion (pry)«(Zs ®d10g) > T, 4E% As above, we consider the point Py corre-

sponding to the ideal (z —ag, p) < Z,[x] = Ox(U,). For 1 < v < n consider an open affine
subset Xg) of X,,, as introduced in 4.2.4 (cf. also 4.2.6), Where a = (ag,ay,...,a, 1) €

R x R¥1. On X{”) we have the coordinate function 23", cf. 4.2.5, which is related to
x by

T=ay+ ... +a,p”t+p VY e, z—a=p 2l

cf. 4.2.8, where a = ag + ... + a,_1p*~L. Suppose 0 < k < d and consider the differential
operator

D =p" (@~ a)' " € (¢ — a,p")(TF)p,

We have ¢, = [%ax('/_l) and thus
D = pn(dfk)pk(z/fl) d(v— 1)( ) (a (1, 1))

— p(n v+1)(d— k)( ) (a (V 1))

(5.1.7)
(zg/))(n_y-fl)(d—k)(xg/*l))(n—l/-i-l)(d—k)( v 1)) (8 - 1))

_ (Zg’))(nfwrl)(dfk)( (v— 1))(n v)(d— k)( v— 1)) (6 ¢- 1))

Because of the term (x4 (=) ) (9, (,,71))®d on the last line of 5.1.7, this shows that D extends

to Xé). Here we have used the equation z( V) (” - = p, cf. 4.2.5. To see that D also

extends to ]D)é ), where here b = (ag, a, . .. ,an), we use the coordinate xé”) on Dém. The
equations 5.1.5 give then

D= pn(d k)pkn dn( ) (6 (n)) _ (xén))k(ﬁxgn))(@d )
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and this shows that D extends to ]Dén). If, more generally, we consider an element of the
form f(x)D, where f(x) € Zp[x]y—aep) and D is as before, then this will extend to a

neighborhood of the special fiber of X&) and ]D)é”), respectively. O
Corollary 5.1.8. For all n,d,m = 0 one has

(m))
m m q °
() ((T4,)™) = LT = Y07, T2t

Proof. The sheaf ’];?d is a line bundle and the same reasoning as in the proof of 3.1.4

n,log
(
applies, i.e., (’];g‘flog)(m) = qdd! 7;§®nl,ilog‘ This equality is to be understood as in 3.1.4. The

statement then follows from 5.1.2. O

Consider Z,, 4(T:2%)™ as a subsheaf of (Z24)(™. The global sections of the former are
thus contained in the global sections of the latter.

Proposition 5.1.9. For all n,d,m = 0 one has the following inclusions
(5.1.10)  p™H" (X, (T2)"™) < H°(X,Z,a(TP)"™) < p"H° (X, (T2)™) ,

as submodules of H (X, (T2%)™), where ¢ = [dﬁ] is the smallest integer greater or

equal to d;ﬁ. In particular, for d =1 and any n,m = 0 we have

(5.1.11) HO° (XaIn,d(&de)(m)) — p"HO (X, (&®d)(m)) ‘

Proof. Because of 3.1.4 it suffices to treat the case m = 0. By the very definition of Z,, 4
one has p"“Ox < I, 4 and thus p"*T®* < 7, ;2. The inclusion on the left follows from
this. Furthermore, the statement is trivial for n = 0 or d = 0 (when ¢ = 0), and so we
may assume that n and d are both positive.

To show the inclusion on the right we write global sections of 7% in the form f(z)0%¢
with a polynomial f(z) € Z,[z] of degree < 2d. Suppose n > 1 and f(2)0%? is a
global section of Zn,d’&(@d. Note that the reduction modulo p of Z,, 4 is an ideal sheaf
on ]P)Jle of degree —(p + 1)d, which we denote by I, 4%,. Now, if f is not divisible by p,
then (f mod p)d®¢ would be a non-zero section of In,d,]}?p%?d and this sheaf has degree

—(p+1)d+2d = (1 —p)d <0 (because d > 0), hence a contradiction. Fix a € Z, and
write
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(5.1.12) Zgz Mo —a) e (z—a,p")!

with polynomials g;(z) € Z,[x]. We have seen that f is divisible by p, hence g is divisible
by p. Consider ; f(z) = QOT@(x —a) + X% g;(x)p"" " (z — a)*" and apply the previous
reasoning. Doing this repeatedly shows that go(x) is in fact divisible by p™, and we find

g9o(z) d : n(i—1) (d—1)—(i—1)

h(e) 5 52 f(e) = 2@ - a) # DV —a) ,

and this polynomial is in (z — a,p™)4"1. This shows that f;(x)d? is a global section of

In,d,l’&@d. If f1 is not divisible by p, then the same reasoning as above shows that (f;

mod p)d? gives rise to a non-zero global section of Imd_upp’]ﬁd and this sheaf has degree
Fp

—(p+1)(d—1)+2d = (1 —p)d+p+ 1. If this number is negative we arrive at a
contradiction. Suppose this number is non-negative. Arguing as above shows then that
f1 must be divisible by p", and hence f is divisible by p?". Running the same arguments
repeatedly proves that if (1—p)d+j(p+1) < 0 we must have that f is divisible by p"U+1.
Now the assertion follows because ¢ — 1 is the largest possible value for j. ([l

Remark 5.1.13. The exponent nc of p on the right side of 5.1.10 is likely not the largest
possible exponent for all n and d. While it is interesting to find the largest possible
exponent of p for the inclusion on the right side of 5.1.10, the most optimistic guess that
it be nd is in general false. Consider for instance the case when n = 1 and d = p. Then
pPH(xP — x)0%P is a global section of ZLP’&@” as can be checked easily. We thus see that

the optimal exponent would be at least p — 1 and this is indeed equal to | gﬁ] for all
p. Moreover, p"®?=1 (27 — 2)k0®*7 is a global section of Ty x, T for all k and p, and we

thus see that the exponent is at most k( —-1) = kpp;l As a consequence, we see that
the ratio W is bounded by 2= L for n = 1. Similar examples probably exist for

arbitrary n.

5.2. Differential operators on X,, and distribution algebras. Let Dég":) = Dg:’)log be

the sheaf of logarithmic differential operators on X,, of level m. As an Ox,-module it is
on an open affine subset Xg)

operators

c X, cf. 4.2.6, locally generated by logarithmic differential

(D
q )!(d>

where
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D= Ig_l)ﬁw(uq) = —Zgj)ﬁz(u) .

is a local section of the logarithmic tangent sheaf 7x, 1o, cf. 5.1. On the open subscheme
(n)

]D)én) with coordinate function ;" it is generated by

45"

od
dl -z

Denote by H°(X,, Dg:)) * the p-adic completion of H°(X,,, D§§Z>) and put H°(X,, Dg:))@ =
H(X,,, Dy)" @2 Q.

Theorem 5.2.1. Given n let n' = |n2=
Then we have natural inclusions

J be the greatest integer less or equal to nE=—

p+1 p+1°

D™ (G(n)*)g, — lim HO(X,, DY™)g — D™ (G(n')%)g

m

o

Proof. 1. The inclusion on the left side. The inclusion G(n)° < G(0)° induces an
embedding

D™(G(n)")g, — D™(G(0) s,

and the right hand side is canonically isomorphic to

limy H°(X, DY)

m

by 3.2.1 and 3.2.2. On the other hand, arguing as in the proof of 5.1.2, part (a), one sees
that D( ™ is naturally a subsheaf of pr* (D(m)), and so H O(XH,D%:)) — H(X, D{™).

The inclusion in question is thus understood to be an inclusion inside lim ~H O(X, Dggm))@.

Now use 2.4.3 and the explicit form of the generators of U (p"gzp)(m) in 2.4.1. Consider
such an element

Q£1)!V—1!'Q£2)!p ? ” ql(/3)‘p ? ” ( )' 4

Its image under the canonical map

£ U(gy,)™ — HO(X, DY)

cf. 3.1.12, is
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(m)) (m)) (m), (m),

ql/l . q’/2 ' v Vo AV q”3 . V3 U3 AV qV4 ' 2 1%
naxl nvy( 20v2 . s 3 ovs 20 T n 6:84
o (p"0) P (—x)"0; P o (—p"z°0,)

The first and last term are of the form

(m))
ql;/! - (p" (global section of Tx))”

Because H°(X,, Tx, 10s) = p"H(X,Tx), cf. 5.1.11, we see that these terms are in
H O(Xn,Dg:)). For the second and third term we consider an open affine subset X%

Let z(#~1) = xé“_l) be the coordinate on Xé“) asin 4.2.5. Use 5.1.3, i.e., O (-1 = p* 10,
and write

(m) (m)

T’pm’ voy = q“y—!!p"”(x —a+a)’d
(5.2.2)

(m)' n v— )y q£ n
= Zk 0((m),) (m).)p Foavh qkk (m_a)ka]; — ]I:)l( P0.)" "

(m

By what we have observed before we find that the term ( ( "0, )" " is a global section
of Dgf). The relation p# 'Y = 2 — a together with 5.1.3 gives

(m)

0 k Ak q/rgm)' (u—1)\k Ak
Lo _ D e
Lk (ZE CL) az - Lk (l‘ ) 6;1:(“*1) )

)

and so extends to a section of Dgg:) over Xg“ . It is a straightforward exercise to see that

(m) (m) m
W{ém)') is always an integer, and q”—,!p””w”a” therefore extends to a section of Dgn)
over X( ) Finally, we consider the subscheme ]D( ", Let 2™ = a:g") be the coordinate on

]Dé ), as in 4.2.4, where b = (aq, ...,a,). Put b =ag+... +a,p". Writing z = (z —b) + b,
we can perform exactly the same calculation 5.2.2 as above, using 5.1.5, and find that
e m n

w w1y v oY extends to a section of Dégn) over ]Dg ). So we can conclude that the terms
(m m N
q”y, p™ ¥ 3% are in HO(X,L,D%”)).

The image of £€(™) thus lies in H°(X,,, Dgg:)). Passing to the completions and the direct
limit over m we find that £ induces a map

D™ (G(n)*) — lim H*(X,,, D{™)5 |

m

which makes the diagram
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D™ (G(n)°) — lim  H'(X,,,Dy")3

|

D™ (G(0)°)a, — limy H(X, D)3
commute. The lower horizontal arrow is an isomorphism and the right vertical arrow is

injective. The assertion now follows.

2. The inclusion on the right side. For this inclusion consider the diagram

limy, HO(X,, DY) == = D" (G (1))

|

limy HO(X, D§V)g —— D (G(0)°)s,

where the vertical arrows are injective and we have to show the existence of the dashed
arrow. Let N(m) be such that the cokernel of the canonical map

Ulgz,)™ — HO(X, DY)

is annihilated by pN(™ cf. 3.1.14 (b). Furthermore, consider the subsheaf Dg:’)d of

logarithmic differential operators of level m and degree < d. Similarly, let U (p”'gzp)gm)

be the submodule of elements of degree < d as defined right before 3.1.11. Then, in order
to prove the existence of the dashed arrow in the diagram above, it suffices to prove the
existence of a map

PV HO(X,,, DY) -5 U(p™ az,)™

M

which makes the corresponding diagram

PNHO (%, D) = - U g, )

| |

pNem HO(X, DY) Ulgz,)™

commute. We do this by induction over d. This is obvious for d = 0. For the induction
step we can pass to the corresponding graded object in degree d and thus consider
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PN HOX,, (T4, ™) = = = U™ az,) 0" /U (0™ az,) ")

| |

PN HO (X, (TE)™) Ulgz,)i" /U (97,)i"

Note that

U(pn,gZp)((im)/U(pn,gZp)((inj)l = pdnl (U(gZP)Elm)/U(gZp)gj)l) ’
By 5.1.2 and 5.1.9 we have an inclusion

HO (X, (T29,)™) < p O HOX, (T2 ™) |

where ¢(d) = [di—;ﬂ. The assertion now follows from the following inequalities:

1 1 1
ne(d) =n [dp—w > ndp— >d {np—J =dn’ .
p+1

0

Remark 5.2.3. We recall that X,, denotes the completion of X,, along its special fiber,
and we let .@3(67:) = Dggf) be the p-adic completion of the sheaf Dg:). Consider these as

sheaves on X,,. Put .@g:’)@ = 93(;?) ®z Q and
i 1 (m)
‘@%n,ﬁ@ = lim ‘@%n,Q .

Then, as is not difficult to see, there is a canonical injective ring homomorphism

(5.2.4) lim H(X,,, DY) > H(X0, 2%, ) -

The same reasoning as in [10, Prop. 3.2] shows that this map is an isomorphism, if
! (XngZ)) is annihilated by some fixed power of p. This question in turn is closely

connected to the question whether X,, is Q;ny(@—afﬁne, a problem we plan to discuss in a
future paper.
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