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1. Introduction

The purpose of this paper is to begin the study of connections between arithmetic dif-
ferential operators on semistable integral and formal models of flag varieties on the one
hand and locally analytic distribution algebras of p-adic reductive groups on the other
hand. Here we only consider the case of the group GL2 over Zp and the corresponding
flag variety is the projective line P1

Zp .

M. S. would like to acknowledge the support of the National Science Foundation (award DMS-1202303).
1
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These investigations are motivated by the wish to study locally analytic representations
of p-adic groups geometrically. In [1] K. Ardakov and S. Wadsley work with ’crystalline’
differential operators (of level zero) on the smooth model of the flag variety of a split
reductive group. This is close in spirit to the classical localization theory of Beilinson-
Bernstein [2] and Brylinski-Kashiwara [5]. In the paper [18] we have made a first step in
merging the localization theory of Schneider-Stuhler for smooth representations [20] with
that of [2]. A key ingredient is the embedding, first discovered by V. Berkovich, cf. [3],
of the building in the non-archimedean analytic space Xan attached to the flag variety X
(see also [19]). The connection between the building and Xan can also be seen in terms
of formal models for the rigid analytic space Xrig. Especially transparent is that relation
for formal models of P1, cf. [12]. To better understand the significance of these models
for representation theory, and its relation to distribution algebras, is the starting point
for our work presented here.

Regarding distribution algebras, it turns out that the analytic distribution algebras as
considered by M. Emerton in [8], are well suited to be compared to arithmetic differen-
tial operators. Not surprisingly, Emerton has introduced and studied these rings having
Berthelot’s theory of arithmetic differential operators in mind, cf. [8, sec. 5.2]. Arithmetic
differential operators on integral smooth models and their completions have been studied
by C. Noot-Huyghe in [10], [17], [11]. In particular, she proves that these smooth formal
models are D:-affine. Here we take up her work in [10], in the special (and easy) case
of P1 and show that the ring of global sections of the arithmetic differential operators
is isomorphic to the analytic distribution algebra DanpGp0q�q of the ’wide open’ rigid-
analytic group Gp0q� whose Cp-valued points are Gp0q�pCpq � 1�M2pmCpq. Let X be the
completion of P1

Zp along its special fiber. Our first result is

Theorem 1. (Thm. 3.2.2) There is a canonical isomorphism of (topological) Qp-algebras

DanpGp0q�qθ0 � H0pX,D:
X,Qq . �

Here, the subscript θ0 indicates a central reduction. The proof of this theorem con-
sists of two parts. Firstly, we identify the analytic distribution algebra DanpGp0q�q with
the inductive limit (over m) of completed ’restricted divided power enveloping algebras’pUpgZpq

pmq
Q (of level m) of gZp � gl2pZpq. Secondly, we relate the algebras UpgZpq

pmq
Q to the

global sections H0pP1
Zp ,D

pmqq of the sheaf of integral differential operators Dpmq of level

m. Much of what we do in this part of the proof (sec. 3) is already contained in [10]. We
have chosen to redo most of the arguments here, in an entirely explicit manner, because
the arguments and techniques will be used later in sections 4 and 5.

After having obtained theorem 1 we have been informed by C. Noot-Huyghe that she has
proved the general case of this theorem, for an arbitrary split reductive group and the
corresponding smooth formal model of the flag variety, in an unpublished manuscript.
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Furthermore, we give a description of the analytic distribution algebras DanpGpnq�q of
rigid-analytic wide open congruence subgroups Gpnq�. Their Cp-valued points are given
by Gpnq�pCpq � 1 � pnM2pmCpq. The description of the distribution algebras is close to
that in [8, sec. 5.2], but more suited to the material treated in the second part of this
paper, i.e., sections 4 and 5.

In these sections we consider certain semistable integral models Xn of P1
Zp , and we study

the sheaves Dpmq
Xn of logarithmic differential operators of level m on these schemes. De-

note by H0pXn,Dpmq
Xn q

^ the p-adic completion of H0pXn,Dpmq
Xn q, and put H0pXn,Dpmq

Xn q
^
Q �

H0pXn,Dpmq
Xn q

^ bZ Q. Then we show

Theorem 2. (Thm. 5.2.1) Given n ¥ 0 let n1 � tnp�1
p�1

u be the greatest integer less or

equal to np�1
p�1

. Then we have natural inclusions

DanpGpnq�qθ0 ãÑ limÝÑ
m

H0pXn,Dpmq
Xn q

^
Q ãÑ DanpGpn1q�qθ0 . �

Let Xn be the formal completion of Xn along its special fiber. Then there is a canonical

injection limÝÑm
H0pXn,Dpmq

Xn q
^
Q ãÑ H0pXn,D

:
Xn,Qq. We do not treat here the question

whether this inclusion is in fact an isomorphism. This problem is related to the question
whether the schemes Xn (resp. formal schemes Xn) are D-affine, a topic we plan to discuss
in a future paper.

Acknowledgements. The reader will have no difficulty in recognising the influence of Peter
Schneider’s work on the ideas contained in this paper. Over the many years we have spent
together in Münster, we have greatly benefited from Peter’s generosity in sharing his ideas
with us and guiding us into many different mathematical worlds. We are grateful for this.
It is a pleasure to dedicate this paper to him on the occasion of his sixtieth birthday.

Notation. If L is a field equipped with a non-archimedean absolute value we let oL be
its valuation ring and moL � oL the maximal ideal of its valuation ring. We let N � Z¥0

be the set of non-negative integers. If ν � pν1, . . . , νdq is a tuple of integers, then we put
|ν| � ν1 � . . .� νd.

2. Distribution algebras of wide open congruence subgroups

2.1. The group schemes Gpnq. Let n ¥ 0 always denote a non-negative integer. Put

Gp0q � G � GL2,Zp � Spec

�
Zp

�
a, b, c, d,

1

∆

�

,
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where ∆ � ad� bc, and the co-multiplication is the one given by the usual formulas. For
n ¥ 1 let an, bn, cn, and dn denote indeterminates. Define an affine group scheme Gpnq
over Zp by setting

OpGpnqq � Zp

�
an, bn, cn, dn,

1

∆n

�
, where ∆n � p1� pnanqp1� pndnq � p2nbncn ,

and let the co-multiplication

OpGpnqq ÝÑ OpGpnqq bZp OpGpnqq � Zp

�
an, bn, cn, dn, a

1
n, b

1
n, c

1
n, d

1
n,

1

∆n

,
1

∆1
n

�
be given by the formulas

an ÞÑ an � a1n � pnana
1
n � pnbnc

1
n ,

bn ÞÑ bn � b1n � pnanb
1
n � pnbnd

1
n ,

cn ÞÑ cn � c1n � pncna
1
n � pndnc

1
n ,

dn ÞÑ dn � d1n � pndnd
1
n � pncnb

1
n .

These group schemes are connected by homomorphisms Gpnq Ñ Gpn � 1q given on the
level of algebras as follows:

an�1 ÞÑ pan , bn�1 ÞÑ pbn , cn�1 ÞÑ pcn , dn�1 ÞÑ pdn ,

if n ¡ 1. For n � 1 we put

a ÞÑ 1� pa1 , b ÞÑ pb1 , c ÞÑ pc1 , d ÞÑ 1� pd1 .

For a flat Zp-algebra R the homomorphism Gpnq Ñ Gp0q � G induces an isomorphism of
GpnqpRq with a subgroup of GpRq, namely

GpnqpRq �
"�

a b
c d



P GpRq

���� a� 1, b, c, d� 1 P pnR

*
.

Of course, the preceding formulas defining the group schemes are derived formally from
this description by setting a � 1� pnan, b � pnbn, c � pncn, and d � 1� pndn.

2.2. The rigid-analytic groups Gpnqrig and Gpnq�. Let pGpnq be the completion of Gpnq
along its special fiber GpnqFp . This is a formal group scheme over SpfpZpq. Its generic fiber
in the sense of rigid geometry is an affinoid rigid-analytic group over Qp which we denote
by Gpnqrig. We have for any completely valued field L{Qp (whose valuation extends the
p-adic valuation)
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GpnqrigpLq �
"�

a b
c d



P GpoLq

���� a� 1, b, c, d� 1 P pnoL

*
.

Furthermore, we let pGpnq� be the completion of Gpnq in the closed point corresponding
to the unit element in GpnqFp . This is a formal group scheme over SpfpZpq (not of
topologically finite type). Its generic fiber in the sense of Berthelot, cf. [6, sec. 7.1], is a
so-called ’wide open’ rigid-analytic group over Qp which we denote by Gpnq�. We have
for any completely valued field L{Qp (whose valuation extends the p-adic valuation)

Gpnq�pLq �
"�

a b
c d



P GpoLq

���� a� 1, b, c, d� 1 P pnmoL

*
.

The remainder of this section is inspired by M. Emerton’s paper [8], especially sec. 5.

2.3. The analytic distribution algebra of Gp0q�. Our goal in this subsection is to
give a description of

DanpGp0q�q �
df
OpGp0q�q1b

in terms of ’divided power enveloping algebras’ which is analogous to [8, 5.2.6]. However,
the discussion in [8, sec. 5.2] does not apply here because the exponential function for
the group GL2pQpq does not map a lattice in

g �
df

LiepGL2pQpqq

bijectively onto GL2pZpq. Nevertheless, it is possible to also treat Gp0q� by making use of
the ’Kostant Z-form’ of the enveloping algebra Upgq, cf. [15]. Set

e �

�
0 1
0 0



, h1 �

�
1 0
0 0



, h2 �

�
0 0
0 1



, f �

�
0 0
1 0



,

and put

gZp �
df

M2pZpq � Zpe` Zph1 ` Zph2 ` Zpf .

For integers m,n P N define

qpmqn �
df

Z
n

pm

^
,

that is, the greatest integer less or equal to n
pm

. For fixed m we then denote by UpgZpq
pmq

the Zp-submodule of Upgq generated by the elements
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(2.3.1) qpmqν1
!
eν1

ν1!
� qpmqν2

!

�
h1

ν2



� qpmqν3

!

�
h2

ν3



� qpmqν4

!
f ν4

ν4!
.

Lemma 2.3.2. UpgZpq
pmq is a Zp-subalgebra of Upgq.

Proof. This is contained in [16, Prop. 2.3.1] and the remark before [16, Lemme 2.3.3],

namely that Dpmq
X,n has a basis given by the operators B k¡, |k| ¤ n. Note also the

description of B k¡ given in part (c) of that lemma. �

We now let pUpgZpq
pmq be the p-adic completion of UpgZpq

pmq. Explicitly, its elements can
be written as ¸

ν�pν1,ν2,ν3,ν4qPN4

γν � q
pmq
ν1

!
eν1

ν1!
� qpmqν2

!

�
h1

ν2



� qpmqν3

!

�
h2

ν3



� qpmqν4

!
f ν4

ν4!
,

where γν P Zp and |γν | Ñ 0 as |ν| Ñ 8. Furthermore, we put

pUpgZpq
pmq
Q �

df

pUpgZpq
pmq bZ Q .

We consider the unique Qp-algebra homomorphism Upgq Ñ DanpGp0q�q which sends X P g
to the linear form

f ÞÑ
d

dt
fpetXq

���
t�0

.

Here we follow the same convention as in [8, sec. 5] in that we consider the right regular
action of a group on its ring of functions.

Proposition 2.3.3. The map Upgq Ñ DanpGp0q�q just defined extends continuously topUpgZpq
pmq. The family of these maps, for various m, induces a canonical isomorphism of

topological Qp-algebras

limÝÑ
m

pUpgZpq
pmq
Q

�
ÝÑ DanpGp0q�q .

Proof. The affine algebra of the formal group scheme pGp0q� is the completion of the ring
Zp

�
a, b, c, d, 1

∆

�
with respect to the ideal I � pp, a�1, b, c, d�1q. (We write here a instead

of a0, b instead of b0, etc.) Hence

O
�pGp0q�	 � Zprra� 1, b, c, d� 1ss .

For the ring of global functions of Gp0q� we then have, algebraically and topologically,
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O pGp0q�q � limÐÝ
r 1

O pGp0qrq ,

where

O pGp0qrq �
"¸

ξµpa� 1qµ1bµ2cµ3pd� 1qµ4

���� |ξµ|r|µ| Ñ 0 as |µ| Ñ 8

*
.

It is easily checked that�
eν1

ν1!

�
h1

ν2


�
h2

ν3



f ν4

ν4!

�
. rpa� 1qµ1bµ2cµ3pd� 1qµ4s �

"
1 , ν � µ
0 , ν � µ

.

We thus find that DanpGp0q�q consists of sums¸
ν�pν1,ν2,ν3,ν4qPN4

γν
eν1

ν1!

�
h1

ν2


�
h2

ν3



f ν4

ν4!
,

which have the property that there is R ¡ 1 for which |γν |R
|ν| Ñ 0 as |ν| Ñ 8. The rest

of the proof is as in [8, 5.2.6]. Because

vp
�
qpmqν1

!qpmqν2
!qpmqν3

!qpmqν4
!
�

is asymptotic to

ν1 � ν2 � ν3 � ν4

pp� 1qpm
as |ν| Ñ 8 ,

it follows that pUpgZpq
pmq
Q embeds into DanpGp0q�q. Furthermore, the inductive limit of the

spaces OpGp0qrq1b, for r Ò 1, is equal to the the inductive limit of the rings pUpgZpq
pmq
Q , as

mÑ 8. �

Remark 2.3.4. The Kostant Z-form of Upgq is nothing else than the distribution algebra
DistpGL2,Zpq of the group scheme GL2,Zp as defined in [13, I.7], cf. [13, II.1.12] for the
explicit relation between the Kostant Z-form and the distribution algebra. One can then
use the very definition of the distribution algebra in [13, I.7] to give an intrinsic proof of
2.3.3 which should generalize to any split reductive group scheme over Zp. �

2.4. The analytic distribution algebra of Gpnq� for n ¥ 1. In this subsection we
derive a description of DanpGpnq�q �

df
OpGpnq�q1b, for n ¥ 1, from the decription in 2.3.3.

The open embedding of rigid spaces Gpnq� ãÑ Gp0q� induces a restriction map on spaces
of functions OpGp0q�q Ñ OpGpnq�q which has dense image. Taking the continuous dual
spaces gives hence an injection
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DanpGpnq�q ãÑ DanpGp0q�q .

We will describe the left hand side as a subalgebra of the right hand side. To this end,
let UppngZpq

pmq be the Zp-submodule of Upgq generated by the elements

(2.4.1) qpmqν1
!
ppneqν1

ν1!
� qpmqν2

!pnν2
�
h1

ν2



� qpmqν3

!pnν3
�
h2

ν3



� qpmqν4

!
ppnfqν4

ν4!
.

As before, we find that UppngZpq
pmq is a Zp-subalgebra of Upgq, and we let pUppngZpq

pmq

denote its p-adic completion.

Remark 2.4.2. We caution the reader that UppngZpq
pmq and pUppngZpq

pmq are merely
notations. That is, these rings are not what one would get by formally replacing (the
basis of) gZp by (the basis of) pngZp in the definition of UpgZpq

pmq. The reason is that,
obviously, �

pnhi
ν



� pnν

�
hi
ν



,

if ν ¡ 1. It is the term on right which one has to work with here, not the term on the
left. �

The algebra homomorphism Upgq Ñ DanpGp0q�q defined right before 2.3.3 obviously fac-
tors as Upgq Ñ DanpGpnq�q Ñ DanpGp0q�q.

Proposition 2.4.3. The map Upgq Ñ DanpGpnq�q extends continuously to pUppngZpq
pmq

and there is a canonical isomorphism of topological Qp-algebras

limÝÑ
m

pUppngZpq
pmq
Q

�
ÝÑ DanpGpnq�q .

Proof. We proceed here as in the proof of 2.3.3. The affine algebra of the formal group

scheme pGpnq� is Zprran, bn, cn, dnss and the coordinates an, bn, cn, dn on Gpnq� are related
to the coordinates a, b, c, d on Gp0q� by

an �
1

pn
pa� 1q , bn �

1

pn
b , cn �

1

pn
c , dn �

1

pn
pd� 1q .

¿From the proof of 2.3.3 we get�
ppneqν1

ν1!
pnν2

�
h1

ν2

�
pnν3

�
h2

ν3

�
ppnfqν4

ν4!

�
.
��

a�1
pn

	µ1
�

b
pn

	µ2
�

c
pn

	µ3
�
d�1
pn

	µ4
�
�

"
1 , ν � µ
0 , ν � µ

.

And the remainder of the proof is along the same lines as in 2.3.3. �
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Remark 2.4.4. For n ¥ 1 (n ¥ 2 if p � 2) the group GpnqpZpq � 1�pnM2pZpq is uniform
pro-p and its integral Lie algebra in the sense of [7, sec. 9] is pngZp when considered as a
Zp-submodule of g. We can thus apply [8, sec. 5.2] to get a description of DanpGpnq�q in
terms of divided power enveloping algebras. The relation between the two descriptions is
as follows.

In [8], Gpnq� is identified with the rigid-analytic four-dimensional wide open polydisc
pB�q4 via the ’coordinates of the second kind’

pt1, t2, t3, t4q ÞÑ exppt1p
neq exppt2p

nh1q exppt3p
nh2q exppt4p

nfq .

Functions OpGpnq�q are then considered as functions on pB�q4 via pull-back. Using this
identification, we consider elements in Upgq as differential operators on O ppB�q4q. [8,
5.2.6] then tells us that DanpGpnq�q is the inductive limit of rings

DanpGpnq�qpmq

�
df

"°
ν γν

q
pmq
ν1

!q
pmq
ν2

!q
pmq
ν3

!q
pmq
ν4

!

ν1!ν2!ν3!ν4!
ppneqν1ppnh1q

ν2ppnh2q
ν3ppnfqν4

���� |γν | Ñ 0 as |ν| Ñ 0

*
.

The relation of these rings to the rings pUppngZpq
pmq
Qp follows immediately from the elemen-

tary

Proposition 2.4.5. Suppose n ¥ 1 (n ¥ 2 if p � 2), and let T be an indeterminate. For
all ν ¥ 0, if one writes the polynomial pnν

�
T
ν

�
as

ν̧

j�1

cν,j
ppnT qj

j!
,

the coefficients cν,j are in Zp.

Proof. Let z be another indeterminate and consider the formal power series¸
ν¥0

pnν
�
T

ν



zν .

This is equal to p1� pnzqT � exppT logp1� pnzqq. Under the assumption n ¥ 1 (n ¥ 2 if
p � 2), one can write logp1� pnzq � pnzfpzq with a power series fpzq P Zprrzss. Hence

exppT logp1� pnzqq �
¸
j¥0

pzfpzqqj
ppnT qj

j!
.

Now compare the coefficients of zν on both sides. �
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3. Arithmetic differential operators on the smooth formal model

3.1. Differential operators with divided powers. We consider X �
df

P1
Zp as being

glued together from the affine lines

Ux � SpecpZprxsq and Uy � SpecpZprysq

along the open subsets SpecpZprx,
1
x
sq and SpecpZpry,

1
y
sq according to the relation xy � 1.

The formulas

x.

�
a b
c d



�
b� dx

a� cx
, y.

�
a b
c d



�
ay � c

by � d
,

describe a right action of G � GL2,Zp � Spec
�
Zp

�
a, b, c, d, 1

∆

��
on X. Put Bx �

d
dx

and

By �
d
dy

. These differential operators satisfy the relations

Bx � �y2By , xBx � �yBy , x2Bx � �By .

Denote by TX the tangent sheaf of X (over Zp). The action above gives rise to a homo-
morphism of Lie algebras

(3.1.1) gZp Ñ H0pX, TXq ,

which is explicitly given by

e ÞÑ Bx
h1 ÞÑ �xBx
h2 ÞÑ xBx
f ÞÑ By

On X we consider the sheaf of differential operators Dpmq
X as defined in [4], [10]. Sections

are locally given as finite sums

¸
ν

γν
q
pmq
ν !

ν!
Bνx or

¸
ν

γ1ν
q
pmq
ν !

ν!
Bνy

with γν P Zprxs and γ1ν P Zprys, respectively. The sheaf Dpmq
X is filtered by subsheaves

Dpmq
X,d of differential operators of degree ¤ d. Furthermore, for the symmetric algebra

SympTXq �
À

d¥0 T
bd

X there exists a divided power version
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SympTXq
pmq �

à
d¥0

pT bd
X qpmq ,

cf. [10]. The sheaf pT bd
X qpmq in degree d is, as OX-module, locally generated by

(3.1.2)
q
pmq
i1

!

i1!
sbi11 � . . . �

q
pmq
ir

!

ir!
sbirr ,

where i1 � . . . � ir � d and s1, . . . , sr are local sections of TX. There is an obvious
monomorphism of sheaves

(3.1.3) SympTXq
pmq ãÑ SympTXq

p0q
Q � SympTXq

p0q bZ Q .

Lemma 3.1.4. The image of the subsheaf

pT bd
X qpmq � SympTXq

pmq

under the map 3.1.3 is equal to

q
pmq
d !

d!
T bd

X � SympTXq
p0q
Q .

Therefore,

SympTXq
pmq �

à
d¥0

q
pmq
d !

d!
T bd

X .

Proof. Because T bd
X is locally free of rank one, we can write the local sections si in 3.1.2

as si � fi � s with a local generator s of T bd and local sections fi of OX. Hence we assume
si � s for i � 1, . . . , r. Moreover, for any i, j ¥ 0 one has that

(3.1.5)
pi� jq!

i!j!

�
q
pmq
i�j !

q
pmq
i !q

pmq
j !

��1

P Zp ,

cf. [10, sec. 1]. Applying this fact repeatedly shows that

q
pmq
i1

!

i1!
� . . . �

q
pmq
ir

!

ir!
P
q
pmq
d !

d!
Zp ,
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and this proves the assertion of the lemma. �

Lemma 3.1.6. Fix d ¥ 1. The map sending
q
pmq
d !

d!
Bdx (resp.

q
pmq
d !

d!
Bdy), considered as a local

generator of Dpmq
X,d to

q
pmq
d !

d!
Bbdx (resp.

q
pmq
d !

d!
Bbdy ), considered as a local generator of pT bd

X qpmq,
induces a canonical exact sequence of sheaves

(3.1.7) 0 Ñ Dpmq
X,d�1 Ñ Dpmq

X,d Ñ pT bd
X qpmq Ñ 0 .

Proof. This is [10, 1.3.7.3]. In the case considered here, it is also an immediate consequence
of 3.1.4. �

Proposition 3.1.8. (a) For all d ¥ 0 one has H1pX,Dpmq
X,d q � 0.

(b) For all d ¥ 1 the sequence

(3.1.9) 0 Ñ H0
�
X,Dpmq

X,d�1

	
Ñ H0

�
X,Dpmq

X,d

	
Ñ H0

�
X, pT bd

X qpmq
�
Ñ 0

induced by 3.1.7 is exact.

(c) The canonical map

gr
�
H0
�
X,Dpmq

X

		
�
à
d¥0

H0
�
X,Dpmq

X,d

	M
H0

�
X,Dpmq

X,d�1

	
ÝÑ H0

�
X, SympTXq

pmq
	

is an isomorphism.

Proof. (a) The proof proceeds by induction on d. We have Dpmq
X,0 � OX, and the assertion

is true for d � 0. Moreover, T bd
X � OXp2dq and therefore H1pX, T bd

X q � 0. Using 3.1.4,
we find that H1pX, pT bd

X qpmqq � 0 for all d,m ¥ 0. Now suppose d ¥ 1. By 3.1.7 we get
an exact sequence

H1
�
X,Dpmq

X,d�1

	
Ñ H1

�
X,Dpmq

X,d

	
Ñ H1

�
X, pT bd

X qpmq
�
,

and our induction hypothesis implies H1
�
X,Dpmq

X,d

	
� 0.

(b) This assertion follows from (a) and the long exact cohomology sequence attached to
3.1.7.

(c) This follows immediately from (b). �
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Remark 3.1.10. Assertion (c) of the previous proposition is as in [10, 2.3.6 (ii)], at least
for large d. Though Noot-Huyghe’s result would be good enough for our purposes, we
have preferred to give a self-contained proof here. The proof given here proceeds along
the same lines as the proof in [10]. �

In the following we consider the filtration of UpgZpq
pmq whose submodule of elements of

degree ¤ d is generated as a Zp-module by terms of the form 2.3.1 with ν1�ν2�ν3�ν4 ¤ d.

Proposition 3.1.11. (a) For all ν ¥ 0 one has the following identity of differential

operators in DX bZ Q:
�
xBx
ν

�
� xν B

ν
x

ν!
.

(b) The canonical map UpgZpq Ñ H0pX,Dp0q
X q induced by 3.1.1 extends to a homomorphism

(3.1.12) ξpmq : UpgZpq
pmq ÝÑ H0pX,Dpmq

X q ,

of Zp-algebras which is compatible with the filtrations on both sides.

(c) ξpmq maps the center ZpgZpq of UpgZpq � UpgZpq
pmq to Zp. Let θ0 � ξpmq|ZpgZp q

be the

restriction of ξpmq to ZpgZpq. Then kerpξpmqq is the (two-sided) ideal generated by kerpθ0q.

Proof. (a) Is easily proved by induction.

(b) Using (a) we see that
�
hi
ν

�
, i � 1, 2, is mapped to �xν B

ν
x

ν!
. The assertion now follows

directly from the definition of UpgZpq
pmq.

(c) Tensor with Q and use the statement in characteristic zero, cf. [2]. �

Using the notations introduced in 3.1.11 we define

UpgZpq
pmq
θ0

�
df
UpgZpq

pmq bZpgZp q,θ0
Zp .

Therefore, ξpmq induces an injective homomorphism of Zp-algebras

(3.1.13) ξ
pmq
0 : UpgZpq

pmq
θ0

ãÑ H0pX,Dpmq
X q .

Proposition 3.1.14. (a) Via the homomorphism

gr ξpmq : gr
�
UpgZpq

pmq
	
ÝÑ H0

�
X, SympTXq

pmq
	
� gr

�
H0
�
X,Dpmq

X

		
induced by ξpmq, the ring H0

�
X, SympTXq

pmq
	

is a finitely generated module over

gr
�
UpgZpq

pmq
	

.
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(b) Via ξ
pmq
0 the ring H0pX,Dpmq

X q is a finitely generated UpgZpq
pmq
θ0

-module. Moreover,

there is Npmq P N such that the cokerpξ
pmq
0 q is annihilated by pNpmq.

Proof. (a) By 3.1.4 we have

H0
�
X, SympTXq

pmq
�
�
à
d¥0

q
pmq
d !

d!
H0

�
X, T bd

X
�
,

as submodules of H0
�
X, SympTXq

pmq
Q

	
� H0

�
X, SympTXq

pmq
�
bZ Q. Furthermore,

H0
�
X, T bd

X
�
�

2dà
k�0

Zpx
kBbdx .

Our goal is to show that H0
�
X, SympTXq

pmq
�

is generated as a module over gr
�
UpgZpq

pmq
	

by the elements

q
pmq
d !

d!
xkBbdx with 0 ¤ d   2pm , 0 ¤ k ¤ 2d .

To this end, consider an element
q
pmq
d !

d!
xkBbdx with k ¤ 2d. Write d � pmq � s. We are

going to use the elementary fact

q
pmq
d !

d!
�

u

s!ppm!qq
,

with a p-adic unit u, cf. [8, 5.2.2].

Case k ¤ d. Writing k � pmq1 � r, we have q1 ¤ q. If r ¤ 2s then consider the equation1

q
pmq
d !

d!
xkBdx � u

�
pxBxq

pm

pm!


q1
�

�
Bp

m

x

pm!


q�q1
�

1

s!
xrBsx .

Now suppose r ¡ 2s. Because k � pmq1� r ¤ d � pmq� s we must have q1   q and hence
q � q1 � 1 ¥ 0. Then we can write

q
pmq
d !

d!
xkBdx � u

�
pxBxq

pm

pm!


q1
�

�
Bp

m

x

pm!


q�q1�1

�
1

s!ppm!q
xrBp

m�s
x .

Case d   k (¤ 2d). Write k � pmq1 � r, and suppose q1 � 2q2 is even. Because
k
2
� pmq2 � r

2
¤ pmq � s we must have q2 ¤ q. If r ¤ 2s then consider the equation

1This equation and the following formulas are to be considered in the commutative ring
H0

�
X, SympTXq

pmq
�
. To simplify notation we have dropped the superscript ”b”.
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q
pmq
d !

d!
xkBdx � u

�
px2Bxq

pm

pm!


q2
�

�
Bp

m

x

pm!


q�q2
�

1

s!
xrBsx .

Now suppose r ¡ 2s. Then we must have q2   q, hence q � q2 � 1 ¥ 0 and we can write

q
pmq
d !

d!
xkBdx � u

�
px2Bxq

pm

pm!


q2
�

�
Bp

m

x

pm!


q�q2�1

�
1

s!ppm!q
xrBp

m�s
x .

Assume now that q1 � 2q2 � 1 is odd. Because

pmq2 �
pm � r

2
� pmpq2 �

1

2
q �

r

2
�
k

2
¤ d � pmq � s ,

we must have q2 ¤ q. If pm � r ¤ 2s we consider

q
pmq
d !

d!
xkBdx � u

�
px2Bxq

pm

pm!


q2
�

�
Bp

m

x

pm!


q�q2
�

1

s!
xp

m�rBsx .

Finally, if pm � r ¡ 2s we must have q2   q. In this case we consider

q
pmq
d !

d!
xkBdx � u

�
px2Bxq

pm

pm!


q2
�

�
Bp

m

x

pm!


q�q2�1

�
1

s!ppm!q
xp

m�rBp
m�s
x .

(b) For 0 ¤ d   2pm and 0 ¤ k ¤ 2d let ed,k be a representative in H0
�
X,Dpmq

X,d

	
of the

element
q
pmq
d !

d!
xkBbdx in H0

�
X, pT bd

X qpmq
�
. By part (a), H0

�
X, SympTXq

pmq
	

is generated

over gr
�
UpgZpq

pmq
	

by the elements
q
pmq
d !

d!
xkBbdx , for 0 ¤ d   2pm and 0 ¤ k ¤ 2d, it

follows that H0pX,Dpmq
X q is generated over UpgZpq

pmq by the elements ed,k. And then,

obviously, H0pX,Dpmq
X q is actually a finitely generated UpgZpq

pmq
θ0

-module. Moreover, we
see that the generators

q
pmq
d !

d!
xkBbdx with 0 ¤ d   2pm , 0 ¤ k ¤ 2d ,

of H0
�
X, SympTXq

pmq
	

over gr
�
UpgZpq

pmq
	

have the property that

(3.1.15) ppm � 1q! � ppmq! �
q
pmq
d !

d!
xkBbdx P im

�
gr
�
UpgZpq

pmq
	
Ñ H0

�
X, SympTXq

pmq
		

.
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Because the generators ed,k are in degrees   2pm, repeating 3.1.15 finitely often shows

that there is Npmq such that pNpmqed,k is in the image of UpgZpq
pmq
θ0

for 0 ¤ d   2pm,
0 ¤ k ¤ 2d. Now assertion (b) follows. �

3.2. D: and the distribution algebra DanpGp0q�q. Denote by X the completion of X
along its special fiber XFp . Let D pmq

X be the p-adic completion of the sheaf Dpmq
X , which

we consider as a sheaf on X.

Lemma 3.2.1. The canonical map

H0
�
X,Dpmq

X

	
ÝÑ H0

�
X,D pmq

X

	
extends to an isomorphism

H0
�
X,Dpmq

X

	^
ÝÑ H0

�
X,D pmq

X

	
,

where the left hand side is the p-adic completion of H0
�
X,Dpmq

X

	
.

Proof. This is contained in [10, Prop. 3.2]. The key ingredient used in [10, Prop. 3.2] is

that H1 of the sheaf in question (here Dpmq
X ) is annihilated by a finite power of p. Here we

have seen H1pX,Dpmq
X q � 0, cf. 3.1.8. Thus it would be possible to give a self-contained

proof following the arguments given in the proof of [10, Prop. 3.2]. �

Put

D:
X � limÝÑ

m

D pmq
X ,

and

D:
X,Q � limÝÑ

m

D pmq
X bZ Q .

Theorem 3.2.2. (a) The homomorphism

ξ
pmq
0 : U

�
gZp
�pmq
θ0

Ñ H0
�
X,Dpmq

X

	
,

cf. 3.1.13, induces a homomorphism

pξpmq0 : pU �gZp
�pmq
θ0

Ñ H0
�
X,D pmq

X

	
,

which is injective and whose cokernel is annihilated by pNpmq where Npmq is as in 3.1.14.

Therefore, pξpmq0 induces an isomorphism
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pU �gZp
�pmq
θ0,Q

�
ÝÑ H0

�
X,D pmq

X,Q

	
.

(b) The isomorphisms in (a) give rise to a canonical isomorphism

DanpGp0q�qθ0 � limÝÑ
m

pU �gZp
�pmq
θ0,Q

�
ÝÑ H0pX,D:

X,Qq .

Proof. (a) We consider the exact sequence induced by ξ
pmq
0

0 ÝÑ
�
U
�
gZp
�pmq
θ0

X pkH0
�
X,Dpmq

X

		M
pkU

�
gZp
�pmq
θ0

ÝÑ U
�
gZp
�pmq
θ0

M
pkU

�
gZp
�pmq
θ0

ÝÑ H0
�
X,Dpmq

X

	M
pkH0

�
X,Dpmq

X

	
.

Because the projective limit functor is left-exact, and as H0
�
X,Dpmq

X

	
is separated for

the p-adic topology, we deduce that the homomorphism pξpmq0 between the completions is
injective as well. The assertion about the cokernel is an immediate consequence of 3.1.14.
Hence the isomorphism after extending scalars to Q.

(b) This assertion follows from (a) and the fact that cohomology commutes with direct
limits. �

As already indicated in the introduction, after having obtained this result we have been
informed by C. Noot-Huyghe that she has proved the general case of this theorem, for
an arbitrary split reductive group and the corresponding flag variety, in an unpublished
manuscript.
The isomorphism in (a) for an arbitrary split semisimple group and the corresponding flag
variety has appeared, in the case m � 0 and with some restrictions on the prime number
p, in [1].

4. The semistable models Xn and their completions Xn

4.1. The construction via blowing-up.

4.1.1. In the following, all closed subsets of a scheme are considered as closed subschemes
with their reduced induced subscheme structure. Put X0 � X � P1

Zp . Blowing up X0 in
the Fp-rational points of its special fiber X0,Fp produces a scheme X1. The irreducible
components of the special fiber of X1 are all projective lines over Fp, and there are p� 2
of them: on the one hand we have the strict transform of X0,Fp , which we can and will
identify with X0,Fp , and then there is for any Fp-rational point P of X0 the corresponding
component EP � P1

Fp of the exceptional divisor. No two components EP intersect each
other, but any one of these intersects X0,Fp in a unique point which corresponds to the
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point P that has been blown up. We call the components EP the ’end components’ or
’ends’ of the special fiber of X1.

Then blow up X1 in the smooth Fp-rational points of its special fiber. There are p such
points on each component EP . Call the resulting scheme X2. The special fiber of X2

consists of the strict transform of the special fiber of X1, which we identify with X1,Fp ,
and, for each of the components EP of X1,Fp there are p irreducible components EP,P 1 of
the exceptional divisor, and EP.P 1 intersects EP in the point P 1 that has been blown up.
Again, we call the irreducible components EP,P 1 the ’end components’ or ’ends’ of the
special fiber of X2.

Inductively one defines Xn by blowing up Xn�1 in the smooth Fp-rational points of the
special fiber of Xn�1. The irreducible components of the exceptional divisor are called the
’end components’ or ’ends’ of the special fiber of Xn. It is easy to see that the intersection
graph of the special fiber of Xn is a tree. There are p� 1 edges meeting at every vertex,
except for the vertices which correspond to the end components: these are only connected
to the rest of the tree by a single edge.

Remark 4.1.2.2 Because the group GpZpq � GL2pZpq acts on X0 and preserves the closed
subscheme X0pFpq, the group GpZpq acts also on X1. It is easy to see that GpZpq preserves
the subscheme of X1 which gives rise to X2. Inductively we find that GpZpq acts on Xn

for all n. Furthermore, one can show that the group scheme Gpnq acts on the scheme Xn.

4.2. An open affine covering of Xn. Here we describe an open affine covering of the
scheme Xn, and a coherent system of local coordinates3. This will be used later in sec.
5.1.

4.2.1. Outline. We will first describe the general shape of this covering and the procedure
by which it is obtained. Let R � Zp be any system of representatives for Zp{pZp and put
R8 � R Y t8u. Let n ¥ 1. Inductively we will define an open subset X�

n�1 � Xn�1 and

open affine ’residual disc schemes’ Dpn�1q
a for any tuple a � pa0, a1, . . . , an�1q P R8�Rn�1.

Each scheme Dpn�1q
a has a unique Fp-rational point and Xn is obtained from Xn�1 by

blowing up all these points. The open subset X�
n�1 � Xn�1 is not affine (except if n�1 � 0)

but it is equipped with an open affine covering. Moreover, the special fiber of X�
n�1 does

not contain any smooth Fp-rational point of the special fiber of Xn�1. The blow-up
morphism prn,n�1 : Xn Ñ Xn�1 is thus an isomorphism over X�

n�1, and the preimage
pr�1

n,n�1pX�
n�1q � Xn is then equipped with the open affine covering of X�

n�1. In the

following we identify pr�1
n,n�1pX�

n�1q with X�
n�1.

2The content of this remark will not be used later on.
3By this we mean a set of local coordinates together with transition formulas for the local coordinates

on ’neighboring’ open affine subsets. The meaining of ’neighboring’ in our context will become clear in
the sequel.
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Next we define for any such a open affine subschemes Xpnq
a and, for all an P R, ’residual

disc schemes’ Dpnq
a,an of Xn. These open affine subschemes, together with the open affine

covering of X�
n�1 constitute then the open affine covering of Xn. The open subset X�

n is
defined as

X�
n �

df
X�
n�1 Y

¤
aPR8�Rn�1

Xpnq
a .

4.2.2. When n � 0. We start with the affine covering X0 � Ux Y Uy of X0, cf. 3, where
Ux � SpecpZprxsq and Uy � SpecpZprysq and these open subschemes are glued together

according to the relation xy � 1. For a P R put x
p0q
a � x� a, and consider this as a local

coordinate at x � a, and set x
p0q
8 � y � 1

x
. For a P R8 put

Rp0q
a � Zprx

p0q
a s

�
1

x
p0q
b

���� b P R, b � a

�
,

and view this as a subring of the rational function field Qppxq. It is immediate that for
all a P R8 the ring

Rp0q �
df
Rp0q
a

�
1

x
p0q
a

�
,

as a subring of Qppxq, is independent of a. Set X�
0 � SpecpRp0qq. The special fiber of X�

0

is P1
FpzP

1pFpq. Furthermore, for a P R8 put

Dp0q
a � SpecpRp0q

a q .

The special fiber of Dp0q
a is X�

0,Fp Y tau, where a is the ’mod-p reduction of a’. This is the

unique Fp-rational point which corresponds to the ideal pp, x
p0q
a q. We call Dp0q

a a ’residual

disc scheme’. For later use we fix the coordinate function x
p0q
a on Dp0q

a . For any two distinct

a, a1 P R8 we have Dp0q
a X Dp0q

a1 � X�
0. Then we consider the covering of X0 by the open

subschemes Dp0q
a , a P R8, together with X�

0.

4.2.3. When n � 1. X1 is obtained by blowing up X0 in the points corresponding to the

ideals pp, x
p0q
a0 q � R

p0q
a0 , a0 P R8. In order to describe X1, we introduce new indeterminates

z
p1q
a0 and x

p1q
a0 satisfying

xp0qa0
zp1qa0

� p and zp1qa0
xp1qa0

� 1 .

Set also x
p1q
a0,a1 � x

p1q
a0 � a1 for a1 P R. Then define
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Rp1q
a0
� Rp0q

a0
rzp1qa0

s

�
1

x
p1q
a0,a1

���� a1 P R

�N
pxp0qa0

zp1qa0
� pq ,

and put Xp1q
a0 � SpecpR

p1q
a0 q. For a1 P R set

Rp1q
a0,a1

� Rp0q
a0
rxp1qa0,a1

s

�
1

x
p1q
a0,b

���� b P Rzta1u

�
,

and define

Dp1q
a0,a1

� Spec
�
Rp1q
a0,a1

�
.

The special fiber of each Dp1q
a0,a1 is isomorphic to an affine line over Fp all of whose Fp-

rational points have been removed, except one. Again, in order to obtain a coherent

system of coordinates, we fix the coordinate function x
p1q
a0,a1 on Dp1q

a0,a1 . For any a1 P R one
has

Rp1q
a0

�
1

z
p1q
a0

�
� Rp1q

a0,a1

�
1

x
p1q
a0,a1

�
,

and this ring is thus independent of a1. For any two distinct a1, a
1
1 P R one has

Dp1q
a0,a1

X Dp1q
a0,a11

� Dp1q
a0,a1

X Xp1q
a0
� Spec

�
Rp1q
a0

�
1

z
p1q
a0

��
,

and the special fiber of this scheme is isomorphic (via the coordinate x
p1q
a0 , say) to P1

FpzP
1pFpq.

Furthermore, for any two distinct a0, a
1
0 P R8 one has

Xp1q
a0
X Xp1q

a10
� X�

0 .

Let X�
1 be the union of the schemes Xp1q

a0 , a0 P R8, and X�
0.

4.2.4. From n � 1 to n. Firstly, we use the preimages of the affine covering of X�
n�1

under the blow-up map Xn Ñ Xn�1. Then we consider a ’residue disc scheme’

Dpn�1q
a � Spec

�
Rpn�1q
a

�
of Xn�1, where a � pa0, a1, . . . , an�1q. It is equipped with a coordinate function x

pn�1q
a

and has a unique Fp-rational point which corresponds to the ideal pp, x
pn�1q
a q � R

pn�1q
a .

Xn is obtained from Xn�1 by blowing up these Fp-rational points, for all a P R8 �Rn�1.
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To describe the blow-up process, we introduce indeterminates z
pnq
a and x

pnq
a satisfying

xpn�1q
a zpnqa � p and zpnqa xpnqa � 1 .

For an P R set x
pnq
a,an � x

pnq
a � an and define

(4.2.5) Rpnq
a � Rpn�1q

a rzpnqa s

�
1

x
pnq
a,b

���� b P R
�N

pxpn�1q
a zpnqa � pq ,

and put

Xpnq
a � Spec

�
Rpnq
a

�
.

For an P R define

Rpnq
a,an � Rpn�1q

a rxpnqa,ans

�
1

x
pnq
a,b

���� b P Rztanu
�
,

and put

Dpnq
a,an � Spec

�
Rpnq
a,an

�
.

Again, in order to obtain a coherent system of coordinates, we fix the coordinate function

x
pnq
a,an on Dpnq

a,an . For any an P R one has

Rpnq
a

�
1

z
pnq
a

�
� Rpnq

a,an

�
1

x
pnq
a,an

�
,

and this ring is thus independent of an. For any two distinct an, a
1
n P R one has

Dpnq
a,an X Dpnq

a,a1n
� Dpnq

a,an X Xpnq
a � Spec

�
Rpnq
a

�
1

z
pnq
a

��
,

and the special fiber of this scheme is isomorphic to (via the coordinate x
pnq
a , say) to

P1
FpzP

1pFpq. Let X�
n be the union of the schemes Xpnq

a , a P R8 � Rn�1, and X�
n�1. One

obtains an open affine cover for X�
n from the union of the open affine cover from X�

n�1 and

the collection of all Xpnq
a . Finally Xn is then covered by X�

n and the open affine subschemes

Dpnq
a,an , pa, anq � pa0, . . . , an�1, anq P R8 �Rn. Writing out the open affine covering of X�

n

explicitly gives:
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(4.2.6) Xn � X�
0 Y

¤
1¤ν¤n

¤
aPR8�Rν�1

Xpνq
a Y

¤
bPR8�Rn

Dpnq
b .

4.2.7. Going through the successive definitions of the local coordinates x
p0q
a0 , x

p1q
a0,a1 , . . . , x

pnq
a ,

a � pa0, . . . , anq, one finds the relations, for a0 � 8,

(4.2.8)

x � a0 � a1p� . . .� an�1p
n�1 � anp

n � pnx
pnq
a

� a0 � a1p� . . .� an�1p
n�1 � pnx

pnq
pa0,a1,...,an�1q

� a0 � a1p� . . .� an�1p
n�1 � pn�1x

pn�1q
pa0,a1,...,an�1q

,

where we have used x
pn�1q
pa0,a1,...,an�1q

z
pnq
pa0,a1,...,an�1q

� p. Similarly we have for

a � p8, a1, . . . , an�1, anq and y the relations

(4.2.9)

y � a1p� . . .� an�1p
n�1 � anp

n � pnx
pnq
a

� a1p� . . .� an�1p
n�1 � pnx

pnq
pa0,a1,...,an�1q

� a1p� . . .� an�1p
n�1 � pn�1x

pn�1q
pa0,a1,...,an�1q

.

4.3. The formal schemes Xn.

4.3.1. We denote by Xn the completion of Xn along its special fiber. One can also obtain
Xn directly from X by the same procedure as in 4.1. Assuming we have constructed Xn�1,
we define Xn by blowing up (in the sense of formal geometry) the smooth Fp-rational
points of the special fiber of Xn�1.

Furthermore, the open affine covering described in 4.2 gives rise upon completion to a
covering of Xn by open affine subschemes. The explicit description of the formal comple-

tion pXpnq
a of Xpnq

a , a P R8�Rn�1 is in fact simpler than the corresponding description for

Xpnq
a . One can show

pXpnq
a � Spf

�
Zpxx

pn�1q
a , zpnqa y

�
1

px
pn�1q
a qp�1 � 1

,
1

pz
pnq
a qp�1 � 1

�M
pxpn�1q

a zpnqa � pq

�
.

See [21]4 and [12, I.3] for details. Similarly, the formal completion pDpnq
a,an of Dpnq

a,an , an P R,
can be described by

4The relevant material is in the section ”The formal scheme xHp – the naive construction”.
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pDpnq
a,an � Spf

�
Zpxx

pnq
a,any

�
1

px
pnq
a,anqp�1 � 1

��
.

Remark 4.3.2. Denote by X�
n the completion of X�

n along its special fiber. The open
embedding X�

n�1 ãÑ X�
n induces an open embedding X�

n�1 ãÑ X�
n. (X�

n can also defined
intrinsically, and more straightforwardly, without the use of X�

n.) The inductive limit
limÝÑn

X�
n is then a formal model of the p-adic upper half plane, cf. [12, I.3]. This links the

objects studied here with the Bruhat-Tits building and the Berkovich embedding of the
Bruhat-Tits building into the analytification of the flag variety. The present paper was
motivated by this connection and the study done in [18].

5. Logarithmic differential operators on Xn

We refer to [16] for a systematic discussion of sheaves of logarithmic differential operators.
For n ¥ 1 we equip Xn with the log structure defined by its normal crossings divisor
tp � 0u. However, here we will not use the theory as developed in [16], but rather work
with a more elementary approach.

5.1. The logarithmic tangent sheaf on Xn.

5.1.1. For the purposes of this paper we consider the sheaf DXn,log of logarithmic dif-
ferential operators on Xn as being generated as a subsheaf of EndZppOXn ,OXnq by the
logarithmic tangent sheaf TXn,log. (This is as in [14, 1.3].) The restriction of TXn,log to an

open affine subset Xpνq
a , a P R8 �Rν�1, cf. 4.2.6, is generated by a differential operator

D (over Zp) with the properties

Dpxpν�1q
a q � xpν�1q

a , Dpzpνqa q � �zpνqa ,

cf. 4.2.5. D has the property that

Dpxpν�1q
a zpνqa q � xpν�1q

a Dpzpνqa q � zpνqa Dpxpν�1q
a q � 0 ,

and hence Dpx
pν�1q
a z

pνq
a �pq � 0, so that D preserves the ideal generated by x

pν�1q
a z

pνq
a �p.

Intuitively we may write

D � xpν�1q
a B

x
pν�1q
a

� �zpνqa B
z
pνq
a
.

To put it another way, we may say that TXn,log is locally on an open subscheme Xpνq
a

generated by

xpν�1q
a B

x
pν�1q
a

and zpνqa B
z
pνq
a

, with the relation xpν�1q
a B

x
pν�1q
a

� �zpνqa B
z
pνq
a
.
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Denote by

prn : Xn ÝÑ X0 � X

the canonical projection. Write, as in sec. 3, X0 � X � UxYUy, where Ux � SpecpZprxsq,
Uy � SpecpZprysq, with x and y satisfying the relation xy � 1. Let In,d � OX be the ideal
sheaf which is on Ux associated to the ideal£

aPZp{ppnq

px� a, pnqd � Zprxs � OXpUxq ,

and on Uy associated to the ideal£
aPZp{ppnq

py � a, pnqd � Zprys � OXpUyq .

Obviously, I0,d � OX for all d. In the following proposition, if n � 0, we put TX0,log � TX.

Proposition 5.1.2. (a) TXn,log is a subsheaf of the invertible sheaf pr�npTXq.

(b) pprnq�pOXnq � OX.

(c) For all n, d ¥ 0 one has pprnq�pT bd
Xn,logq � In,dT

bd
X .

Proof. (a) In order to see this we express the coordinate x by the local coordinates

x
pν�1q
a introduced in sec. 4.2, and deduce a corresponding relation for Bx and B

x
pν�1q
a

. (By

symmetry it suffices to consider x.) To be precise, fix 1 ¤ ν ¤ n, a � pa0, . . . , aν�1q P

R8�Rν�1, and consider the open subset Xpνq
a � Xn, cf. 4.2.4. Without loss of generality

we may assume a0 � 8. Then we have x� a � pν�1x
pν�1q
a where a � a0 � . . .� aν�1p

ν�1,
cf. 4.2.8. Hence

(5.1.3) B
x
pν�1q
a

� pν�1Bx , and thus xpν�1q
a B

x
pν�1q
a

� pν�1xpν�1q
a Bx � px� aqBx .

This proves the assertion.

(b) The morphism prn : Xn Ñ X0 is a birational projective morphism of noetherian
integral schemes, and X0 is normal. The assertion then follows exactly as in the proof of
Zariski’s Main Theorem as given in [9, ch. III, Cor. 11.4].

(c) 1. The inclusion pprnq�pT bd
Xn,logq � In,dT

bd
X . Put X1

n � Xn� pr
�1
n pXpFpqq. This scheme

is smooth over Zp. The restriction of prn induces an isomorphism

X1
n

�
ÝÑ X1 � X� XpFpq ,
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and the restriction of TXn,log to X1
n is the relative tangent sheaf of X1

n over Zp whose
direct image under prn is the relative tangent sheaf of X1 over Zp. Therefore, in order to
understand pprnq�pT bd

Xn,logq we need to investigate the stalks of this sheaf at the points in
XpFpq. We consider the point P0 in Ux � SpecpZprxsq � X corresponding to the ideal
px� a0, pq. Our aim is to understand the stalk of pprnq�pT bd

Xn,logq at P0.

By (a) we can consider the stalk of pprnq�pT bd
Xn,logq at P0 as a OX,P0-submodule of the stalk

of T bd
X at P0. We consider thus an element

(5.1.4) D � fpxqBbdx P
�
T bd

X
�
P0

,

fpxq P OX,P0 � Zprx � a0spx�a0,pq, and want to find necessary and sufficient conditions

for this element to be in the stalk of pprnq�pT bd
Xn,logq at P0. To this end, consider an open

subset of Xn of the form

Xp1q
a0
Y Xp2q

a0,a1
Y . . .Y Xpnq

a0,...,an�1
Y Dpnq

a0,...,an
,

for a sequence a � pa0, . . . , anq P Rn�1. Consider the local coordinate x
pnq
a0,...,an�1,an on

Dpnq
a0,...,an which we denote henceforth by xpnq. Put a � a0 � a1p � . . . � an�1p

n�1 � anp
n.

The equation 4.2.8 shows that

(5.1.5) xpnq �
1

pn
px� aq , hence Bxpnq � pnBx , and thus xpnqBxpnq � px� aq Bx�a .

If D is in the stalk of pprnq�pT bd
Xn,logq at P0 then D extends to the stalk of T bd

Xn,log at the

point Pn P Dpnq
a0,...,an corresponding to the ideal pxpnq, pq. Therefore, D can be written as

(5.1.6) gpxpnqqBbd
xpnq

,

with a function gpxpnqq P OXn,Pn � Zprx
pnqspxpnq,pq. Completing this latter ring with respect

to its maximal ideal gives Zprrx
pnqss, and so we can consider gpxpnqq �

°
k¥0 ckpx

pnqqk as

an element in Zprrx
pnqss. Now we write 5.1.6 as

g

�
1

pn
px� aq



pndBbdx .

Using the power series expansion for gpxpnqq gives
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g

�
1

pn
px� aq



pnd �

¸
k¥0

ckp
�nk�ndpx� aqk .

For k ¤ d we have pnpd�kqpx�aqk P px�a, pnqd. And for k ¡ d we must have ckp
�nk�nd P Zp

and so ckp
�nk�ndpx�aqk is in px�a, pnqd too. The function fpxq in 5.1.4 is then contained

in the ideal px � a, pnqd for all a � a0 � . . . � an�1p
n�1. Hence we see that the stalk of

pprnq�pT bd
Xn,logq at P0 is contained in the stalk of In,dT bd

X at P0. This is then true for all
Fp-rational points of X. For the point at infinity one uses the equation 4.2.9.

2. The inclusion pprnq�pT bd
Xn,logq � In,dT bd

X . As above, we consider the point P0 corre-
sponding to the ideal px�a0, pq � Zprxs � OXpUxq. For 1 ¤ ν ¤ n consider an open affine

subset Xpνq
a of Xn, as introduced in 4.2.4 (cf. also 4.2.6), where a � pa0, a1, . . . , aν�1q P

R8�Rν�1. On Xpνq
a we have the coordinate function x

pν�1q
a , cf. 4.2.5, which is related to

x by

x � a0 � . . .� aν�1p
ν�1 � pν�1xpν�1q

a , i.e. , x� a � pν�1xpν�1q
a ,

cf. 4.2.8, where a � a0 � . . .� aν�1p
ν�1. Suppose 0 ¤ k ¤ d and consider the differential

operator

D � pnpd�kqpx� aqkBbdx P px� a, pnqdpT bd
X qP0 .

We have Bx �
1

pν�1Bxpν�1q
a

and thus

(5.1.7)

D � pnpd�kqpkpν�1q�dpν�1qpx
pν�1q
a qkpB

x
pν�1q
a

qbd

� ppn�ν�1qpd�kqpx
pν�1q
a qkpB

x
pν�1q
a

qbd

� pz
pνq
a qpn�ν�1qpd�kqpx

pν�1q
a qpn�ν�1qpd�kqpx

pν�1q
a qkpB

x
pν�1q
a

qbd

� pz
pνq
a qpn�ν�1qpd�kqpx

pν�1q
a qpn�νqpd�kqpx

pν�1q
a qdpB

x
pν�1q
a

qbd .

Because of the term px
pν�1q
a qdpB

x
pν�1q
a

qbd on the last line of 5.1.7, this shows that D extends

to Xpνq
a . Here we have used the equation z

pνq
a x

pν�1q
a � p, cf. 4.2.5. To see that D also

extends to Dpnq
b , where here b � pa0, a1, . . . , anq, we use the coordinate x

pnq
b on Dpnq

b . The
equations 5.1.5 give then

D � pnpd�kqpkn�dnpx
pnq
b qkpB

x
pnq
b
qbd � px

pnq
b qkpB

x
pnq
b
qbd ,
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and this shows that D extends to Dpnq
b . If, more generally, we consider an element of the

form fpxqD, where fpxq P Zprxspx�a0,pq and D is as before, then this will extend to a

neighborhood of the special fiber of Xpνq
a and Dpnq

b , respectively. �

Corollary 5.1.8. For all n, d,m ¥ 0 one has

pprnq�
�
pT bd

Xn,logq
pmq
�
� In,dpT bd

X qpmq �
q
pmq
d !

d!
In,dT bd

X .

Proof. The sheaf T bd
Xn,log is a line bundle and the same reasoning as in the proof of 3.1.4

applies, i.e., pT bd
Xn,logq

pmq �
q
pmq
d !

d!
T bd

Xn,log. This equality is to be understood as in 3.1.4. The
statement then follows from 5.1.2. �

Consider In,dpT bd
X qpmq as a subsheaf of pT bd

X qpmq. The global sections of the former are
thus contained in the global sections of the latter.

Proposition 5.1.9. For all n, d,m ¥ 0 one has the following inclusions

(5.1.10) pndH0
�
X, pT bd

X qpmq
�

� H0
�
X, In,dpT bd

X qpmq
�

� pncH0
�
X, pT bd

X qpmq
�
,

as submodules of H0
�
X, pT bd

X qpmq
�
, where c � rdp�1

p�1
s is the smallest integer greater or

equal to dp�1
p�1

. In particular, for d � 1 and any n,m ¥ 0 we have

(5.1.11) H0
�
X, In,dpT bd

X qpmq
�

� pnH0
�
X, pT bd

X qpmq
�
.

Proof. Because of 3.1.4 it suffices to treat the case m � 0. By the very definition of In,d
one has pndOX � In,d and thus pndT bd

X � In,dT bd
X . The inclusion on the left follows from

this. Furthermore, the statement is trivial for n � 0 or d � 0 (when c � 0), and so we
may assume that n and d are both positive.

To show the inclusion on the right we write global sections of T bd
X in the form fpxqBbdx

with a polynomial fpxq P Zprxs of degree ¤ 2d. Suppose n ¥ 1 and fpxqBbdx is a
global section of In,dT bd

X . Note that the reduction modulo p of In,d is an ideal sheaf
on P1

Fp of degree �pp � 1qd, which we denote by In,d,Fp . Now, if f is not divisible by p,

then pf mod pqBbdx would be a non-zero section of In,d,FpT bd
P1

Fp
and this sheaf has degree

�pp � 1qd � 2d � p1 � pqd   0 (because d ¡ 0), hence a contradiction. Fix a P Zp and
write
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(5.1.12) fpxq �
ḑ

i�0

gipxqp
nipx� aqd�i P px� a, pnqd ,

with polynomials gipxq P Zprxs. We have seen that f is divisible by p, hence g0 is divisible

by p. Consider 1
p
fpxq � g0pxq

p
px � aqd �

°d
i�1 gipxqp

ni�1px � aqd�i and apply the previous

reasoning. Doing this repeatedly shows that g0pxq is in fact divisible by pn, and we find

f1pxq �
df

1

pn
fpxq �

g0pxq

pn
px� aqd �

ḑ

i�1

gipxqp
npi�1qpx� aqpd�1q�pi�1q ,

and this polynomial is in px � a, pnqd�1. This shows that f1pxqB
d
x is a global section of

In,d�1T bd
X . If f1 is not divisible by p, then the same reasoning as above shows that pf1

mod pqBdx gives rise to a non-zero global section of In,d�1,FpT bd
P1

Fp
and this sheaf has degree

�pp � 1qpd � 1q � 2d � p1 � pqd � p � 1. If this number is negative we arrive at a
contradiction. Suppose this number is non-negative. Arguing as above shows then that
f1 must be divisible by pn, and hence f is divisible by p2n. Running the same arguments
repeatedly proves that if p1�pqd�jpp�1q   0 we must have that f is divisible by pnpj�1q.
Now the assertion follows because c� 1 is the largest possible value for j. �

Remark 5.1.13. The exponent nc of p on the right side of 5.1.10 is likely not the largest
possible exponent for all n and d. While it is interesting to find the largest possible
exponent of p for the inclusion on the right side of 5.1.10, the most optimistic guess that
it be nd is in general false. Consider for instance the case when n � 1 and d � p. Then
pp�1pxp � xqBbpx is a global section of I1,pT bp

X as can be checked easily. We thus see that
the optimal exponent would be at least p � 1 and this is indeed equal to rpp�1

p�1
s for all

p. Moreover, pkpp�1qpxp � xqkBbkpx is a global section of I1,kpT bkp
X for all k and p, and we

thus see that the exponent is at most kpp � 1q � kpp�1
p

. As a consequence, we see that

the ratio optimal exponent
nd

is bounded by p�1
p

for n � 1. Similar examples probably exist for

arbitrary n.

5.2. Differential operators on Xn and distribution algebras. Let Dpmq
Xn � Dpmq

Xn,log be
the sheaf of logarithmic differential operators on Xn of level m. As an OXn-module it is

on an open affine subset Xpνq
a � Xn, cf. 4.2.6, locally generated by logarithmic differential

operators

q
pmq
d !

�
D

d



where
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D � xpν�1q
a B

x
pν�1q
a

� �zpνqa B
z
pνq
a
.

is a local section of the logarithmic tangent sheaf TXn,log, cf. 5.1. On the open subscheme

Dpnq
b with coordinate function x

pnq
b it is generated by

q
pmq
d !

d!
Bd
x
pnq
b

.

Denote byH0pXn,Dpmq
Xn q

^ the p-adic completion ofH0pXn,Dpmq
Xn q and putH0pXn,Dpmq

Xn q
^
Q �

H0pXn,Dpmq
Xn q

^ bZ Q.

Theorem 5.2.1. Given n let n1 � tnp�1
p�1

u be the greatest integer less or equal to np�1
p�1

.

Then we have natural inclusions

DanpGpnq�qθ0 ãÑ limÝÑ
m

H0pXn,Dpmq
Xn q

^
Q ãÑ DanpGpn1q�qθ0 .

Proof. 1. The inclusion on the left side. The inclusion Gpnq� � Gp0q� induces an
embedding

DanpGpnq�qθ0 ãÑ DanpGp0q�qθ0 ,

and the right hand side is canonically isomorphic to

limÝÑ
m

H0pX,Dpmq
X q^Q ,

by 3.2.1 and 3.2.2. On the other hand, arguing as in the proof of 5.1.2, part (a), one sees

that Dpmq
Xn is naturally a subsheaf of pr�

�
Dpmq

X

	
, and so H0pXn,Dpmq

Xn q ãÑ H0pX,Dpmq
X q.

The inclusion in question is thus understood to be an inclusion inside limÝÑm
H0pX,Dpmq

X q^Q.

Now use 2.4.3 and the explicit form of the generators of UppngZpq
pmq in 2.4.1. Consider

such an element

qpmqν1
!
ppneqν1

ν1!
� qpmqν2

!pnν2
�
h1

ν2



� qpmqν3

!pnν3
�
h2

ν3



� qpmqν4

!
ppnfqν4

ν4!
.

Its image under the canonical map

ξpmq : UpgZpq
pmq ÝÑ H0pX,Dpmq

X q

cf. 3.1.12, is
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q
pmq
ν1 !

ν1!
ppnBxq

ν1 �
q
pmq
ν2 !

ν2!
pnν2p�xqν2Bν2x �

q
pmq
ν3 !

ν3!
pnν3xν3Bν3x �

q
pmq
ν4 !

ν4!
p�pnx2Bxq

ν4 .

The first and last term are of the form

q
pmq
ν !

ν!
ppnpglobal section of TXqq

ν .

Because H0pXn, TXn,logq � pnH0pX, TXq, cf. 5.1.11, we see that these terms are in

H0pXn,Dpmq
Xn q. For the second and third term we consider an open affine subset Xpµq

a .

Let xpµ�1q � x
pµ�1q
a be the coordinate on Xpµq

a as in 4.2.5. Use 5.1.3, i.e., Bxpµ�1q � pµ�1Bx,
and write

(5.2.2)

q
pmq
ν !
ν!
pnνxνBνx � q

pmq
ν !
ν!
pnνpx� a� aqνBνx

�
°ν
k�0

q
pmq
ν !

pq
pmq
k !qpq

pmq
ν�k!q

pnk � aν�k �
q
pmq
k !

k!
px� aqkBkx �

q
pmq
ν�k!

pν�kq!
ppnBxq

ν�k

By what we have observed before we find that the term
q
pmq
ν�k!

pν�kq!
ppnBxq

ν�k is a global section

of Dpmq
Xn . The relation pµ�1xpµ�1q � x� a together with 5.1.3 gives

q
pmq
k !

k!
px� aqkBkx �

q
pmq
k !

k!
pxpµ�1qqkBkxpµ�1q ,

and so extends to a section of Dpmq
Xn over Xpµq

a . It is a straightforward exercise to see that
q
pmq
ν !

pq
pmq
k !qpq

pmq
ν�k!q

is always an integer, and q
pmq
ν !
ν!
pnνxνBνx therefore extends to a section of Dpmq

Xn

over Xpµq
a . Finally, we consider the subscheme Dpnq

b . Let xpnq � x
pnq
b be the coordinate on

Dpnq
b , as in 4.2.4, where b � pa0, . . . , anq. Put b � a0 � . . .� anp

n. Writing x � px� bq � b,
we can perform exactly the same calculation 5.2.2 as above, using 5.1.5, and find that
q
pmq
ν !
ν!
pnνxνBνx extends to a section of Dpmq

Xn over Dpnq
b . So we can conclude that the terms

q
pmq
ν !
ν!
pnνxνBνx are in H0pXn,Dpmq

Xn q.

The image of ξpmq thus lies in H0pXn,Dpmq
Xn q. Passing to the completions and the direct

limit over m we find that ξpmq induces a map

DanpGpnq�q ÝÑ limÝÑ
m

H0pXn,Dpmq
Xn q

^
Q ,

which makes the diagram
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DanpGpnq�q //

��

limÝÑm
H0pXn,Dpmq

Xn q
^
Q

��

DanpGp0q�qθ0 // limÝÑm
H0pX,Dpmq

X q^Q

commute. The lower horizontal arrow is an isomorphism and the right vertical arrow is
injective. The assertion now follows.

2. The inclusion on the right side. For this inclusion consider the diagram

limÝÑm
H0pXn,Dpmq

Xn q
^
Q

//___

��

DanpGpn1q�qθ0

��
limÝÑm

H0pX,Dpmq
X q^Q

// DanpGp0q�qθ0

where the vertical arrows are injective and we have to show the existence of the dashed
arrow. Let Npmq be such that the cokernel of the canonical map

UpgZpq
pmq Ñ H0pX,Dpmq

X q

is annihilated by pNpmq, cf. 3.1.14 (b). Furthermore, consider the subsheaf Dpmq
Xn,d of

logarithmic differential operators of level m and degree ¤ d. Similarly, let Uppn
1
gZpq

pmq
d

be the submodule of elements of degree ¤ d as defined right before 3.1.11. Then, in order
to prove the existence of the dashed arrow in the diagram above, it suffices to prove the
existence of a map

pNpmqH0pXn,Dpmq
Xn,dq 99K Upp

n1gZpq
pmq
d ,

which makes the corresponding diagram

pNpmqH0pXn,Dpmq
Xn,dq

//___

��

Uppn
1
gZpq

pmq
d

��

pNpmqH0pX,Dpmq
X q // UpgZpq

pmq
d

commute. We do this by induction over d. This is obvious for d � 0. For the induction
step we can pass to the corresponding graded object in degree d and thus consider
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pNpmqH0pXn, pT bd
Xn,logq

pmqq //___

��

Uppn
1
gZpq

pmq
d {Uppn

1
gZpq

pmq
d�1

��

pNpmqH0pX, pT bd
X qpmqq // UpgZpq

pmq
d {UpgZpq

pmq
d�1

Note that

Uppn
1

gZpq
pmq
d {Uppn

1

gZpq
pmq
d�1 � pdn

1
�
UpgZpq

pmq
d {UpgZpq

pmq
d�1

	
.

By 5.1.2 and 5.1.9 we have an inclusion

H0pXn, pT bd
Xn,logq

pmqq � pncpdqH0pX, pT bd
X qpmqq ,

where cpdq �
Q
dp�1
p�1

U
. The assertion now follows from the following inequalities:

ncpdq � n

R
d
p� 1

p� 1

V
¥ nd

p� 1

p� 1
¥ d

Z
n
p� 1

p� 1

^
� dn1 .

�

Remark 5.2.3. We recall that Xn denotes the completion of Xn along its special fiber,

and we let D pmq
Xn

� pDpmq
Xn be the p-adic completion of the sheaf Dpmq

Xn . Consider these as

sheaves on Xn. Put D pmq
Xn,Q � D pmq

Xn
bZ Q and

D:
Xn,Q �

df
limÝÑ
m

D pmq
Xn,Q .

Then, as is not difficult to see, there is a canonical injective ring homomorphism

(5.2.4) limÝÑ
m

H0pXn,Dpmq
Xn q

^
Q ãÑ H0pXn,D

:
Xn,Qq .

The same reasoning as in [10, Prop. 3.2] shows that this map is an isomorphism, if

H1pXn,Dpmq
Xn q is annihilated by some fixed power of p. This question in turn is closely

connected to the question whether Xn is D:
Xn,Q-affine, a problem we plan to discuss in a

future paper.
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