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Abstract. We study deformations of smooth mod p representations (and
their duals) of a p-adic reductive group G. Under some mild genericity condi-
tion, we prove that parabolic induction with respect to a parabolic subgroup
P = LN defines an isomorphism between the universal deformation rings of
a supersingular representation σ̄ of L and of its parabolic induction π̄. As a
consequence, we show that every Banach lift of π̄ is induced from a unique
Banach lift of σ̄.
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1. Introduction

Let F/Qp be a finite extension, and letG denote the F -points of a fixed connected
reductive group defined over F . In a recent paper ([AHHV17]) Abe, Henniart,
Herzig and Vignéras give a complete classification of the irreducible admissible Fp-
representations π̄ of G in terms of the supersingular representations, which remain
mysterious for groups other than GL2(Qp) (and scattered rank one examples).
As a byproduct of the classification, supersingular is the same as supercuspidal
(meaning it is not a subquotient of a representation induced from a proper parabolic
subgroup). Thus it forms the philosophical counterpart of Bernstein-Zelevinsky
theory for GLn in the complex case ([BZ77]). This finishes a long project initiated
by Barthel and Livné in [BL94], who looked at GL2, and continued by Herzig (the
case of GLn) and Abe (the split case) in [Her11] and [Abe13] respectively.

One feature of the emerging p-adic Langlands program ([Bre10]) is a certain
compatibility with the deformation theories on both sides (see [Col10, Kis10, Pas13]
for the established case G = GL2(Qp)). In this paper we study deformations
of representations π̄ = IndGP− σ̄ which are smoothly induced from an admissible
representation σ̄ of a Levi subgroup L. Here P = L n N is a parabolic subgroup
with opposite P−, and all these representations have coefficients in some fixed finite
extension k/Fp, which we take to be the residue field k = O/($) of some fixed finite
extension E/Qp. Our hope is that our results will play a role in future developments
of the p-adic Langlands program beyond the GL2(Qp)-case.

The first part of our paper deals with deformations over Artinian rings, and
forms the core of our argument. Letting Art(O) denote the category of local
Artinian O-algebras with residue field k, we consider the deformation functor
Def π̄ : Art(O) → Set which takes A ∈ Art(O) to the set of equivalence classes
of lifts π of π̄ over A. Thus π is a smooth A[G]-module, free over A, endowed
with an isomorphism π ⊗A k

∼−→ π̄. Assuming Endk[G](π̄) = k, the functor Def π̄
is known to be pro-representable, as recently shown by one of us ([Sch13]). To
allow more flexibility one actually deforms the Pontrjagin dual π̄∨ := Homk(π̄, k)
which lives in a category of profinite augmented representations. Let Rπ̄∨ be the
universal deformation ring of π̄∨ and Mπ̄∨ be the universal deformation of π̄∨. The
duality transforms the parabolic induction functor into a functor IGP− which yields
a homomorphism Rπ̄∨→Rσ̄∨ of local profinite O-algebras. The following is our
main result. Recall that a Banach lift of π̄ is a unitary continuous E-Banach space
representation of G with a mod $ reduction isomorphic to π̄.

Theorem 1.1. Let σ̄ be an admissible smooth k[L]-module with Endk[L](σ̄) = k and
π̄ := IndGP− σ̄. If F = Qp, then assume that σ̄ is supersingular and σ̄α⊗(ε̄−1◦α) 6' σ̄
for all α ∈ ∆⊥,1L . Then the following hold.

(1) IndGP− : Def σ̄ → Def π̄ is an isomorphism of functors Art(O)→ Set.
(2) Every Banach lift of π̄ is induced from a unique Banach lift of σ̄.
(3) There is an isomorphism Rπ̄∨

∼−→ Rσ̄∨ through which Mπ̄∨ = IGP−(Mσ̄∨).
(4) If dimk Ext1

L(σ̄, σ̄) < ∞, then Rπ̄ ' Rσ̄ is Noetherian and there is an
Rπ̄[G]-linear isomorphism Mπ̄ ' IndGP−Mσ̄.

For the unexplained notation, let B ⊂ G be a minimal parabolic subgroup
contained in P and let S ⊂ B be a maximal split torus contained in L. We denote
by ∆ the simple roots of the triple (G,B, S) and by ∆1 the subset consisting of roots
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whose corresponding root space is one-dimensional. If ∆L ⊂ ∆ denotes the set of
simple roots of the triple (L,B ∩L, S), its orthogonal complement ∆⊥L is the set of
roots α ∈ ∆ for which 〈α, β∨〉 = 0 for all β ∈ ∆L. Then ∆⊥,1L := ∆⊥L ∩∆1. Given
α ∈ ∆⊥,1L , we can therefore consider the smooth L-representation σ̄α ⊗ (ε̄−1 ◦ α)
over k where σ̄α is the sα-conjugate of σ̄ and ε̄ : F× → k× is the reduction mod p
of the p-adic cyclotomic character (see Subsection 1.1.2 for more details).

Implicit in (3) and (4) is the fact that the functor Def π̄ is also pro-representable
byRπ̄ = Rπ̄∨ , and when the latter is Noetherian there exists a universal deformation
Mπ̄ = M∨π̄∨ which is a continuous representation of G over Rπ̄. In this context,
IndGP− refers to the continuous parabolic induction functor.

We refer to Theorem 2.16 and Corollaries 3.17, 4.14, 4.15 in the main text for
more precise statements. In particular, the assumption that σ̄ is supersingular
(imposed when F = Qp) can be weakened, cf. Hypothesis 2.7 (and the pertaining
remark) which only requires that OrdQ σ̄ = 0 for certain proper parabolic subgroups
Q ⊂ L. Here OrdQ denotes Emerton’s ordinary parts functor ([Eme10a]), which is
the right adjoint of IndLQ− . Moreover, (1) and (2) hold true without the assumption
Endk[L](σ̄) = k, e.g. in the following cases:

• F 6= Qp and σ̄ is any admissible smooth k[L]-module,
• F = Qp and σ̄ ' σ̄1⊕· · ·⊕ σ̄r where the direct summands are supersingular
and satisfy σ̄i 6' σ̄αj ⊗ (ε̄−1 ◦ α) for any 1 ≤ i, j ≤ r and any α ∈ ∆⊥,1L .

The genericity condition in Theorem 1.1 is rather mild (see Example 1.2 below),
and it is sharp: for G = GL2(Qp) the so-called “atomes automorphes” of length 2
([Col10]) provide counter-examples of π̄ = IndGB− χ̄1ε̄

−1 ⊗ χ̄2 ⊕ IndGB− χ̄2ε̄
−1 ⊗ χ̄1

(where χ̄1, χ̄2 : Q×p → k× are smooth characters) admitting topologically irreducible
Banach lifts π (thus not a direct sum of two unitary continuous principal series).
Example 1.2. If G = GLn(Qp) and L is a block-diagonal subgroup, then ∆1 = ∆
and the roots in ∆⊥L correspond to pairs of consecutive Q×p -factors of L. Thus for
each α ∈ ∆⊥L , one has a factorization as a direct product L ' L′ ×Q×p ×Q×p × L′′,
and if correspondingly σ̄ decomposes as a tensor product σ̄ ' σ̄′ ⊗ χ̄1 ⊗ χ̄2 ⊗ σ̄′′,
then σ̄α⊗(ε̄−1◦α) ' σ̄′⊗χ̄2ε̄

−1⊗χ̄1ε̄⊗ σ̄′′ so that the genericity condition becomes
χ̄1χ̄

−1
2 6= ε̄−1.
In the principal series case, the result takes a more concrete form. So assume G

is quasi-split and specialize to the case where P = B is a Borel subgroup. Then
the Levi factor L = T is a p-adic torus. Let T (p) := lim←−j T/T

pj denote the p-adic
completion of T and denote by Λ := O[[T (p)]] its completed group algebra.

Corollary 1.3. Let χ̄ : T → k× be a smooth character and π̄ := IndGB− χ̄. If
F = Qp, then assume that sα(χ̄) · (ε̄−1 ◦ α) 6= χ̄ for all α ∈ ∆1. Then Rπ̄ ' Λ is
Noetherian and Mπ̄ ' IndGB− χuniv.

Here, χuniv : T → Λ× denotes the universal deformation of χ̄.
Let us briefly sketch the further content of this paper. In the second part, we

study the deformation theory of parabolic induction over complete local Noetherian
rings by passing the Artinian theory, so to speak, to the limit. On the way, we
establish several properties of the continuous parabolic induction functor. The
dimension of the tangent space Ext1

L(σ̄, σ̄) of a deformation ring of type Rσ̄∨ is not
easily accessible. For example it is not known whether it is finite-dimensional for a
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supersingular representation σ̄, except when L is a torus or L = GL2(Qp) ([Pas10]).
This forces us to go one step further and work over quite arbitrary profinite rings.
This forms the topic of the third part which contains the main result and its proof.

The origin of this article is a paper of one of us ([Sor15]) which dealt with
the case of principal series using the calculations of [Hau16a]. Meanwhile, these
calculations were generalized in [Hau16b] and the three authors decided to extend
the results of the original paper in order to treat the general case. Since the first
version of this article, some calculations have been carried over a base field of
characteristic p ([Hau17]) allowing our main result to be generalized verbatim to
any non-archimedean local field F of residue characteristic p. Finally, we point
out a sequel to this article ([HSS17]) in which we compute the deformations of
generalized Steinberg representations.

1.1. Notation and conventions.

1.1.1. Coefficient algebras. Throughout the paper we fix a finite extension E/Qp
which will serve as our coefficient field. We denote its integer ring by O and we fix
a uniformizer $ ∈ O. The residue field k = O/$O is a finite field of cardinality q.
The normalized absolute value on E is denoted by | · |; thus |$| = q−1. We write
ε̄ : Q×p → F×p ⊂ k for the reduction mod p of the p-adic cyclotomic character.

We write Art(O) for the category whose objects are local Artinian O-algebras
A (with the discrete topology) for which the structure map O → A is local and
induces an isomorphism k

∼−→ A/mA. The morphisms A → A′ are the (local)
O-algebra homomorphisms. Note that k is a terminal object of Art(O).

Remark 1.4. Note that any A ∈ Art(O) has finite O-length. In fact the O-length
`O(A) equals the A-length `A(A): any simple A-module is isomorphic to A/mA ' k
and, hence, is a simple O-module. So a composition series for A as an A-module is
a composition for A as an O-module. We will drop subscripts and just write `(A).

We write Noe(O) for the category whose objects are Noetherian complete local
O-algebras A for which the structural morphism O → A is local and induces an
isomorphism k

∼−→ A/mA. The morphisms A → A′ are the local O-algebra ho-
momorphisms. Note that Art(O) is the full subcategory of Noe(O) consisting of
Artinian rings, and that A/mnA ∈ Art(O) for all n ≥ 1 when A ∈ Noe(O).

We write Pro(O) for the category whose objects are local profinite O-algebras
A for which the structure map O → A is local and induces an isomorphism
k
∼−→ A/mA. The morphisms A → A′ are the continuous local O-algebra ho-

momorphisms. Note that Art(O) is the full subcategory of Pro(O) consisting of
Artinian rings, and that A/a ∈ Art(O) when A ∈ Pro(O) and a ⊂ A is an open
ideal. Furthermore, Pro(O) is equivalent to the category of pro-objects of Art(O)
(cf. [Sch13, Lem. 3.3]). If A ∈ Pro(O) is Noetherian, then the profinite topology is
the mA-adic topology ([Sch11, Prop. 22.5]). Moreover, a morphism A→ A′ between
Noetherian rings in Pro(O) is continuous if and only if it is local. Thus Noe(O) is
the full subcategory of Pro(O) consisting of Noetherian rings.1

1To give a simple example, the ring of dual numbers k[{εi}i∈N] in an infinite number of
parameters εi, where εiεj = 0 for all i, j, equals the inverse limit over the finite rings k[ε1, ..., εn],
i.e. lies in Pro(O), but it is not Noetherian. Another example is the ring of formal power series
over O in countably infinitely many indeterminates X1, X2, X3 . . . .
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1.1.2. Reductive p-adic groups. We fix a finite extension F/Qp which will serve
as our base field. We let G be a connected reductive group over F . By abuse of
notation, instead of G(F ) we simply write G. The same convention applies to other
linear algebraic F -groups.

We choose a minimal parabolic subgroup B ⊂ G and a maximal split torus
S ⊂ B. We let Z be the centralizer of S in G, N be its normalizer, and W = Z/N
be the Weyl group of (G,S). We let ∆ denote the set of simple roots of the triple
(G,B, S). For α ∈ ∆ we denote by g(α) := gα ⊕ g2α the corresponding subspace in
the Lie algebra of G (with the convention that g2α = 0 if 2α is not a root). We put

∆1 :=
{
α ∈ ∆

∣∣ dimF g(α) = 1
}
.

We have ∆1 = ∆ if G is split, but not in general (even if the root system of (G,S)
is reduced, e.g. ∆1 = ∅ if G = ResF ′/F G′ with F ′/F strict).

We fix a standard parabolic subgroup P ⊃ B and let L ⊃ S be the standard Levi
factor. We denote by P− the opposite parabolic with respect to L, i.e. the unique
parabolic subgroup such that P ∩ P− = L, and we write ZL for the center of L.
Similarly we let ∆L ⊂ ∆ denote the set of simple roots of the triple (L,B ∩ L, S)
and its orthogonal complement ∆⊥L is the set of roots α ∈ ∆ for which 〈α, β∨〉 = 0
for all β ∈ ∆L. For example ∆⊥G = ∅ and at the other extreme ∆⊥Z = ∆.

Finally, we put ∆⊥,1L := ∆⊥L ∩∆1. For α ∈ ∆⊥,1L , conjugation by a representative
nα ∈ N of the corresponding simple reflection sα ∈ W stabilizes L, and α extends
(uniquely) to an algebraic character of L (cf. the proof of [Hau16b, Lem. 5.1.4]).
Therefore if σ̄ is a smooth k[L]-module and F = Qp, we can consider the smooth
k[L]-module σ̄α⊗ (ε̄−1 ◦α) where σ̄α is the sα-conjugate of σ̄ (i.e. σ̄α has the same
underlying k-vector space as σ̄, but l ∈ L acts on σ̄α as nαln−1

α acts on σ̄), which
does not depend on the choice of nα in nαZ up to isomorphism (since Z ⊂ L).

Example 1.5. We find it instructive to unravel the notation in the case of G =
GLn(Qp), where we take B to be the upper-triangular matrices and S to be the
diagonal matrices. In this case ∆ = {ei − ei+1 : 1 ≤ i < n} where ei : S → Q×p is
the algebraic character defined by t = diag(t1, . . . , tn) 7→ ti.

Then L ' GLn1(Qp)× · · · ×GLnr (Qp) is a block-diagonal subgroup, and ∆L =
{ei − ei+1 : n1 + · · · + nj + 1 ≤ i < n1 + · · · + nj+1 for some 0 ≤ j < r}. Loosely
speaking the roots in ∆\∆L give the consecutive ratios where the blocks of L meet.

The roots in ∆⊥L correspond to pairs of consecutive Q×p -factors of L: α ∈ ∆⊥L if
and only if α = ei − ei+1 with 0 ≤ i < n such that ni = ni+1 = 1. In this case,
conjugation by sα permutes the corresponding two copies of Q×p and α extends to
an algebraic character L→ Q×p giving the ratio between them.

Therefore if σ̄ is a smooth k[L]-module such that σ̄ ' σ̄1 ⊗ · · · ⊗ σ̄r where each
σ̄j is a smooth k[GLnj (Qp)]-module, and α = ei−ei+1 ∈ ∆⊥L , then σ̄α⊗ (ε̄−1 ◦α) '
σ̄1 ⊗ · · · ⊗ σ̄i+1ε̄

−1 ⊗ σ̄iε̄⊗ · · · ⊗ σ̄r.

2. Parabolic induction and deformations over Artinian rings

2.1. Smooth parabolic induction. Let A ∈ Art(O). We consider the category
of all A[G]-modules ModG(A), and its full abelian subcategory of smooth represen-
tations Mod∞G (A). Recall that π is smooth if π =

⋃
K π

K where K ⊂ G ranges
over compact open subgroups. We say that π is admissible if each πK is a finitely
generated A-module. The admissible representations form a Serre subcategory
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Modadm
G (A) (cf. [Eme10a, Prop. 2.2.13]). Finally we let Mod∞G (A)fl be the full

subcategory of Mod∞G (A) consisting of objects free over A.
The parabolic induction of a smooth A[L]-module σ is defined as follows. First

inflate σ via the projection P− � L and let

IndGP− σ :=
{
smooth f : G→ σ

∣∣ f(pg) = pf(g) for all p ∈ P− and g ∈ G
}
.

Smoothness of f means continuous relative to the discrete topology on σ (i.e. locally
constant). Thus IndGP− σ becomes a smooth A[G]-module via right translations, and
this defines an A-linear functor

IndGP− : Mod∞L (A) −→ Mod∞G (A)

which is exact, commutes with small direct sums and preserves admissibility (cf.
Lem. 4.1.4 and Prop. 4.1.5 in [Eme10a]).

Lemma 2.1. Let σ be a smooth A[L]-module.
(1) IndGP− σ is free over A if and only if σ is free over A.
(2) For any morphism A → A′ in Art(O), there is a natural A′[G]-linear iso-

morphism (
IndGP− σ

)
⊗A A′

∼−→ IndGP− (σ ⊗A A′) .

Proof. There are natural A-linear isomorphisms (cf. [Vig16, (6)])

(2.2) IndGP− σ ' C∞
(
P−\G, σ

)
' C∞

(
P−\G,A

)
⊗A σ

(the first one is induced by composition with a continuous section of the projection
G � P−\G, and the second one follows from the fact that a smooth function
f : P−\G → σ takes only finitely many values). Furthermore, C∞(P−\G,A) is a
direct limit of finite-free A-modules

C∞
(
P−\G,A

)
' lim−→

K

C∞
(
P−\G/K,A

)
whereK ⊂ G runs through the compact open subgroups, thus it is flat and therefore
free. In conjunction with (2.2), this immediately shows that IndGP− σ is free over A
if σ is. For the converse note that σ is a direct summand of IndGP− σ. If the latter
is free σ is projective, which is the same as free over local rings (by Kaplansky’s
theorem). This shows (1). For the proof of (2), note that the natural map defined
by f ⊗ a′ 7→ (g 7→ f(g) ⊗ a′) is A[G]-linear and using (2.2) twice (with σ and
σ ⊗A A′), we see that it is bijective (both sides being naturally isomorphic to
C∞(P−\G,A)⊗A (σ ⊗A A′)). �

2.2. Ordinary parts. For convenience we briefly recall the basic properties of
Emerton’s functor of ordinary part OrdP , which is somewhat analogous to (but
better behaved than) the locally analytic Jacquet functor JP . Let A ∈ Art(O).
We let Mod∞,ZL−l.fin

L (A) be the full subcategory of locally ZL-finite2 smooth A[L]-
modules. Then the functor of ordinary part is an A-linear functor

OrdP : Mod∞G (A)→ Mod∞,ZL−l.fin
L (A)

2I.e. the A[ZL]-submodule generated by any element is of finite type over A (cf. [Eme10a,
Def. 3.2.1 (3)]).
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which is left-exact, commutes with small inductive limits and preserves admissibility
(cf. Prop. 3.2.4 and Thm. 3.3.3 in [Eme10a]). Furthermore, it is related to the
smooth parabolic induction functor by the following result.

Theorem 2.3 (Emerton). Let σ be a locally ZL-finite smooth A[L]-module.
(1) There is a natural A[L]-linear isomorphism

σ
∼−→ OrdP

(
IndGP− σ

)
.

(2) For any smooth A[G]-module π, OrdP induces an A-linear isomorphism

HomA[G]

(
IndGP− σ, π

)
∼−→ HomA[L] (σ,OrdP π) .

Proof. This is Prop. 4.3.4 and essentially Thm. 4.4.6 in [Eme10a] respectively, ex-
cept that in op. cit. the latter is only formulated for an admissible representation σ.
However, the proof only uses the admissibility hypothesis when invoking [Eme10a,
Lem. 4.4.3] in order to prove that (4.4.7) of op. cit. is surjective. But this fact is
proved by Vignéras for a merely locally ZL-finite representation σ (cf. the proof of
[Vig16, Thm. 6.1]). �

In other words, OrdP is a left quasi-inverse and the right adjoint of IndGP− .
Since both functors respect admissibility, their restrictions to the corresponding full
subcategories of admissible representations (note that an admissible representation
of L is locally ZL-finite by [Eme10a, Lem. 2.3.4]) are still adjoint to each other.

Remark 2.4. Vignéras ([Vig16]) proved that the functor IndGP− between the cat-
egories of smooth representations also admits a right adjoint RG

P− . When re-
stricted to the categories of admissible representations, RG

P− is isomorphic to OrdP
([AHV17, Cor. 4.13]).

We rephrase the adjunction relation between IndGP− and OrdP in a more formal
but equivalent way (cf. [KS06, Prop. 1.5.4]), which will be convenient for the proofs
of the results in Section 2.5. We use the isomorphisms in Theorem 2.3: For any
object σ of Modadm

L (A) and π := IndGP− σ, the natural A[L]-linear isomorphism in
(1) is the image εσ of idπ under the isomorphism in (2). Likewise for any object π
of Modadm

G (A) and σ := OrdP π, the preimage ηπ of idσ under the isomorphism in
(2) is a natural A[G]-linear morphism IndGP− OrdP π → π. Hence, there are natural
transformations (called the unit and counit respectively)

ε : idModadm
L (A)

∼−→ OrdP IndGP−
η : IndGP− OrdP −→ idModadm

G (A)

which satisfy the following equalities (cf. (1.5.8) and (1.5.9) in [KS06])(
η IndGP−

)(
IndGP− ε

)
= idIndG

P−
(2.5)

(OrdP η) (εOrdP ) = idOrdP

(the compositions inside the parentheses are compositions of natural transforma-
tions with functors, whereas the compositions outside the parentheses are “vertical
compositions” of natural transformations, so that they yield composites of natural
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transformations
IndGP−

∼−→ IndGP− OrdP IndGP− −→ IndGP−
OrdP

∼−→ OrdP IndGP− OrdP −→ OrdP
respectively).

2.3. Higher ordinary parts. Let A ∈ Art(O). In [Eme10b], Emerton constructed
a cohomological δ-functor

H•OrdP : Modadm
G (A)→ Modadm

L (A)
which coincides with OrdP in degree 0. This means that a short exact sequence
(2.6) 0→ π′ → π → π′′ → 0
in Modadm

G (A) gives rise to a long exact sequence
· · · → HnOrdP π′ → HnOrdP π → HnOrdP π′′ → Hn+1OrdP π′ → · · ·

with degree-increasing connecting homomorphisms functorial in (2.6).
We review a recent result of one of us (J.H.) which gives a complete description of

H1OrdP (IndGP− σ̄) for any admissible smooth k[L]-module σ̄ (satisfying a technical
assumption when F = Qp). This will play a key role in Section 2.5 in the proof of
Theorem 2.16.

Let σ be an admissible smooth k[L]-module. We consider the following hypoth-
esis, which will be needed when F = Qp. Note that for all α ∈ ∆\∆L, L ∩ sαPsα
is the standard parabolic subgroup of L corresponding to ∆L ∩ sα(∆L) and it is
proper if and only if α 6∈ ∆⊥L .

Hypothesis 2.7. OrdL∩sαPsα σ = 0 for all α ∈ ∆1\(∆1
L ∪∆⊥,1L ).

Remark 2.8. In the terminology of [AHV17], σ is said right cuspidal if OrdQ σ = 0
for any proper parabolic subgroup Q ⊂ L. Thus Hypothesis 2.7 is satisfied by any
right cuspidal representation σ. In particular, it is satisfied by any supersingular
representation σ.

We now state the key calculation.

Theorem 2.9 (J.H.). Let σ̄ be an admissible smooth k[L]-module.
(1) If F = Qp and σ̄ satisfies Hypothesis 2.7, then there is a natural k[L]-linear

isomorphism

H1OrdP
(

IndGP− σ̄
)
'

⊕
α∈∆⊥,1L

σ̄α ⊗
(
ε̄−1 ◦ α

)
.

(2) If F 6= Qp, then H1OrdP (IndGP− σ̄) = 0.

Proof. This is [Hau16b, Cor. 3.3.9] with A = k and n = 1. �

2.4. Deformation functors. We let π̄ be a smooth k[G]-module. We will study
the various lifts of π̄ to smooth representations π of G over A ∈ Art(O). In what
follows Cat denotes the category of essentially small3 categories and i : Cat→ Set
denotes the functor taking an essentially small category C to the set of isomorphism
classes Ob(C)/ '.

3A category C is essentially small if it is equivalent to a small category (cf. [KS06, Def. 1.3.16]),
i.e. if the isomorphism classes Ob(C)/ ' form a set.
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Definition 2.10. We define several categories and functors.
(1) A lift of π̄ over A ∈ Art(O) is a pair (π, φ) where

• π is an object of Mod∞G (A)fl,
• φ : π � π̄ is an A[G]-linear surjection with kernel mAπ, i.e. which

induces an A[G]-linear isomorphism π ⊗A k
∼−→ π̄.

A morphism ι : (π, φ) → (π′, φ′) of lifts of π̄ over A is an A[G]-linear
morphism ι : π → π′ such that φ = φ′ ◦ ι.

(2) We define a covariant functor D̃ef π̄ : Art(O) → Cat by letting D̃ef π̄(A)
be the essentially small category of lifts of π̄ over A for any A ∈ Art(O),
and D̃ef π̄(ϕ) : D̃ef π̄(A) → D̃ef π̄(A′) be the base change functor for any
morphism ϕ : A→ A′ in Art(O).

(3) We define the deformation functor Def π̄ : Art(O) → Set as the composite
i ◦ D̃ef π̄.

Remark 2.11. D̃ef π̄(k) is a groupoid, and Def π̄(k) is a singleton.

We review some properties of lifts of π̄.

Lemma 2.12. Let π be a smooth A-representation of G and π̄ := π/mAπ.
(1) π is locally Z-finite if and only if π̄ is locally Z-finite.
(2) π is admissible if and only if π̄ is admissible.

Proof. We proceed by induction on the length of A. The base case A = k is trivial.
Assume A 6= k and that we know the results for rings of smaller length. Pick a ∈ A
non-zero such that amA = 0 and set A′ := A/aA, so that `(A′) = `(A)− 1. We set
π′ := π/aπ. The surjection π � π′ induces an isomorphism π̄

∼−→ π′/mA′π
′. The

multiplication by a induces an isomorphism π̄
∼−→ aπ, hence a short exact sequence

of smooth A-representations of G

0→ π̄ → π → π′ → 0.

If π is locally Z-finite, then π̄ is also locally ZM -finite since it is a quotient of
π. Conversely, assume that π̄ is locally Z-finite and let v ∈ π. Since π is smooth,
there exists an open subgroup Z0 ⊆ Z fixing v. Since Z/Z0 is finitely generated
as a monoid (see e.g. the proof of [Eme10a, Lem. 3.2.1]), there exist r ∈ N and
z1, . . . , zr ∈ Z such that A[Z] · v = A[z1, . . . , zr] · v. Let v′ be the image of v in π′.
By the induction hypothesis, π′ is locally Z-finite. Thus for each 1 ≤ i ≤ r, there
exists f ′i ∈ A[X] such that f ′i(zi)·v′ = 0, i.e. f ′i(zi)·v ∈ π̄. Since π̄ is locally Z-finite,
there exists f̄i ∈ A[X] such that f̄i(zi) · (f ′i(zi) · v) = 0. We set fi := f̄if

′
i ∈ A[X]

so that fi(zi) · v = 0. Therefore A[Z] · v = A[z1, . . . , zr]/(f1(z1), . . . , fr(zr)) · v is a
finitely generated A-module. This proves (i).

If π is admissible, then π̄ is also admissible since it is isomorphic to a subrep-
resentation of π and A is noetherian. Conversely if π̄ is admissible, then π′ is
admissible by the induction hypothesis, so that π is also admissible since it is an
extension of π′ by π̄. This proves (ii). �

2.5. Induced deformations. We let σ̄ be a smooth k[L]-module and we set π̄ :=
IndGP− σ̄. By functoriality and using part (1) of Lemma 2.1, we see that

• if (σ, φ) is a lift of σ̄ over A ∈ Art(O), then (IndGP− σ, IndGP− φ) is a lift of π̄
over A,
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• and if ι : (σ, φ)→ (σ′, φ′) is a morphism of lifts of σ̄ over A ∈ Art(O), then
IndGP− ι : (IndGP− σ, IndGP− φ) → (IndGP− σ′, IndGP− φ′) is a morphism of lifts
of π̄ over A.

Thus for any A ∈ Art(O), we obtain a functor

IndGP− : D̃ef σ̄(A)→ D̃ef π̄(A)
which is functorial in A by part (2) of Lemma 2.1, i.e. it is induced by a morphism
IndGP− : D̃ef σ̄ → D̃ef π̄ between functors Art(O)→ Cat. Thus composing the latter
with i : Cat→ Set yields a morphism

IndGP− : Def σ̄ → Def π̄
between functors Art(O)→ Set.

Lemma 2.13. Let σ̄ be a locally ZL-finite smooth k[L]-module and π̄ := IndGP− σ̄.
Then

(1) IndGP− : D̃ef σ̄(A)→ D̃ef π̄(A) is fully faithful for any A ∈ Art(O),
(2) IndGP− : Def σ̄(A)→ Def π̄(A) is injective for any A ∈ Art(O).

Proof. Since a fully faithful functor induces an injection between isomorphism
classes of objects, (2) is a consequence of (1) which we now prove.

Let A ∈ Art(O). Let (σ, φ) and (σ′, φ′) be two lifts of σ̄ over A. Note that σ and
σ′ are objects of Mod∞,ZL−l.fin

L (A) by part (1) of Lemma 2.12 and recall the unit ε
of the adjunction between IndGP− and OrdP . We consider the A-linear morphism

(2.14) HomD̃efσ̄(A) ((σ, φ) , (σ′, φ′))→ HomD̃efπ̄(A)

(
IndGP− (σ, φ) , IndGP− (σ′, φ′)

)
defined by ı 7→ IndGP− ı. We claim that the map  7→ ε−1

σ′ ◦(OrdP )◦εσ is an inverse.
• By naturality of ε, it is well defined and ε−1

σ′ ◦ (OrdP (IndGP− ı)) ◦ εσ = ı for
any morphism ı : (σ, φ)→ (σ′, φ′) in D̃ef σ̄(A).

• By (2.5) we also have IndGP−(ε−1
σ′ ◦ (OrdP ) ◦ εσ) =  for any morphism

 : (IndGP− σ, IndGP− φ)→ (IndGP− σ′, IndGP− φ′) in D̃ef π̄(A).
Thus (2.14) is bijective. �

Remark 2.15. Using Vignéras’ functor RG
P− (cf. Remark 2.4) instead of OrdP , one

can prove Lemma 2.13 for any smooth k[L]-module σ̄.

The following is our main result in the Artinian case. Our proof is an extension
(and to some extent a correction4) of the proof of [Eme10b, Prop. 4.2.14] (see also
the pertaining Remark 4.2.17 in op. cit.)

Theorem 2.16. Let σ̄ be an admissible smooth k[L]-module and π̄ := IndGP− σ̄. If
F = Qp, then assume that
(a) Hypothesis 2.7 is satisfied,
(b) HomL(σ̄, σ̄α ⊗ (ε̄−1 ◦ α)) = 0 for all α ∈ ∆⊥,1L .
Then

(1) IndGP− : D̃ef σ̄(A) → D̃ef π̄(A) is an equivalence for any A ∈ Art(O) with
quasi-inverse induced by OrdP ,

(2) IndGP− : Def σ̄ → Def π̄ is an isomorphism.
4The inductive step fails if his V is just faithful, not faithfully flat, and ε̄ there should be ε̄−1.
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Proof. Since an equivalence of categories induces a bijection between isomorphism
classes of objects, (2) is a consequence of (1) which we now prove. Given lemma 2.13
(see also Remark 2.15), we only have to prove that IndGP− : D̃ef σ̄(A)→ D̃ef π̄(A) is
essentially surjective for all A ∈ Art(O).

We proceed by induction on the length of A ∈ Art(O) (cf. Remark 1.4). The
base case A = k is trivial. Assume mA 6= 0 and that we know surjectivity for rings
of smaller length. Let (π, φ) be a lift of π̄ over A. Note that π is an object of
Modadm

G (A) by part (2) of Lemma 2.12 and recall the unit ε and the counit η of the
adjunction between IndGP− and OrdP . We will prove that (OrdP π, ε−1

σ̄ ◦ (OrdP φ))
is a lift of σ̄ over A, and that the natural morphism of lifts of π̄ over A

ηπ :
(

IndGP− (OrdP π) , IndGP−
(
ε−1
σ̄ ◦ (OrdP φ)

))
→ (π, φ) ,

where we used the equality IndGP−(ε−1
σ̄ ◦ (OrdP φ)) = φ ◦ ηπ which follows from

equality (2.5), is an isomorphism.
Pick a ∈ A non-zero such that amA = 0, and let I = (a) be the proper ideal

generated by a. We have a short exact sequence of admissible smooth A[G]-modules
(2.17) 0→ aπ → π → π/aπ → 0.
Note that aπ is a non-zero vector space over k and π/aπ is a free A/I-module.
Since aπ ⊂ mAπ, φ factors through an A[G]-linear surjection φ̄ : π/aπ � π̄ whose
kernel is mA(π/aπ), so that (π/aπ, φ̄) is a deformation of π̄ over A/I which has
length `(A)− 1. By our induction hypothesis, there exists a deformation (σ′, φ′) of
σ̄ over A/I and an isomorphism of deformations of π̄ over A/I

ι′ :
(

IndGP− σ′, IndGP− φ′
)
∼−→
(
π/aπ, φ̄

)
.

On the other hand, multiplication by a induces an A[G]-linear isomorphism

ι : π̄ ' π/mAπ
∼−→ aπ.

Applying the δ-functor H•OrdP to the exact sequence (2.17) and using the A[L]-
linear isomorphisms (OrdP ι) ◦ εσ̄ and (OrdP ι′) ◦ εσ′ yields an exact sequence of
admissible smooth A[L]-modules

(2.18) 0→ σ̄ → OrdP π → σ′ → H1OrdP
(

IndGP− σ̄
)
.

Any A[L]-linear morphism σ′ → H1OrdP (IndGP− σ̄) must factor through φ′. Thus
by Theorem 2.9 and condition (b), we deduce that the last arrow of the exact
sequence (2.18) is zero, so that we can treat the rightmost term as being zero.

Now applying the exact functor IndGP− gives (using again equality (2.5)) a com-
mutative diagram of admissible smooth A[G]-modules

0 IndGP− σ̄ IndGP− (OrdP π) IndGP− σ′ 0

0 aπ π π/aπ 0
ι

∼

ηπ ι′

∼

from which we deduce that ηπ is also an A[G]-linear isomorphism by the five
lemma. Moreover, we deduce that the image of IndGP− σ̄ in IndGP− (OrdP π) is
a(IndGP− (OrdP π)), thus the image of the first non-trivial arrow of the exact se-
quence (2.18) is a(OrdP π).
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From the A-linear isomorphism ηπ and the freeness of the A-module π, we deduce
that OrdP π is a free A-module using the “only if” part of part (1) of Lemma 2.1.
Furthermore, we have a commutative diagram of admissible smooth A[L]-modules

OrdP π OrdP (π/aπ) OrdP
(

IndGP− σ′
)

σ′

OrdP π̄ OrdP π̄ OrdP π̄ σ̄

OrdP φ OrdP φ̄

∼
OrdP ι′−1

OrdP (IndG
P− φ

′)

ε−1
σ′

∼

φ′

ε−1
σ̄

∼

where the composite of the upper horizontal arrows is the next to last arrow of the
exact sequence (2.18), which is surjective with kernel a(OrdP π). Since a(OrdP π) ⊂
mA(OrdP π) and φ′ is surjective with kernel mAσ′, we deduce that ε−1

σ̄ ◦ (OrdP φ)
is surjective with kernel mA(OrdP π). �

3. Parabolic induction and deformations over Noetherian rings

3.1. Orthonormalizable modules. Let A ∈ Noe(O). An A-module U is called
mA-adically complete and separated if U ∼−→ lim←−n U/m

n
AU . If in addition each

quotient U/mnAU is free over A/mnA, we say that U is orthonormalizable (cf. [Eme11,
Def. B.1]).

Lemma 3.1. The following conditions are equivalent for an A-module U :
(1) U is orthonormalizable;
(2) U is mA-adically complete, separated, and flat;
(3) There is a set I such that U is isomorphic to the module of decaying func-

tions in AI . (A function I → A is called decaying if its reduction modulo
mnA has finite support for all n, cf. [Yek11, Def. 2.1].)

(4) U ' lim←−n Un where {Un}n is an inverse system of A-modules with the
following properties:
(i) mnAUn = 0, and Un is free as a module over A/mnA;
(ii) Un+1 ⊗A/mn+1

A
A/mnA

∼−→ Un.

Proof. The equivalence of the last three criteria is [Yek11, Cor. 4.5]. That (1)
implies (2) is part of [Eme11, Lem. B.6]. The converse is clear: U/mnAU is flat over
A/mnA precisely when it is free. �

If U is an mA-adically complete and separated A-module and A → A′ is a
morphism in Noe(O), we define the corresponding base change as the completed
tensor product

(3.2) U ⊗̂A A′ := lim←−
n

U ⊗A A′/mnA′ .

It ismA′ -adically complete and separated (cf. [Yek11, Cor. 3.5]). Orthonormalizable
modules behave well with respect to base change:

Lemma 3.3. Let U be an orthonormalizable A-module and A→ A′ be a morphism
in Noe(O). Then U ⊗̂A A′ is an orthonormalizable A′-module.
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Proof. For any n ≥ 1,
(U ⊗̂A A′)⊗A′ A′/mnA′ ' (U ⊗A A′)⊗A′ A′/mnA′

' U ⊗A A′/mnA′
' U ⊗A A/mnA ⊗A/mnA A

′/mnA′

' U/mnAU ⊗A/mnA A
′/mnA′ .

Since U/mnAU is free over A/mnA this verifies that (U ⊗̂AA′)⊗A′ A′/mnA′ is free over
A′/mnA′ , and hence U ⊗̂A A′ is orthonormalizable. �

Remark 3.4. When A′ is finite over A, the tensor product U ⊗A A′ is already
mA′ -adically complete; in this case the above lemma is [Eme11, Lem. B.6 (4)].
Lemma 3.5. For any mA-adically complete and separated A-modules U,U ′, there
is a natural A-linear isomorphism

HomA (U ′, U) ' lim←−
n

HomA/mnA
(U ′/mnAU ′, U/mnAU) .

Proof. The A-linear maps given by f 7→ (f mod mnA)n and (fn) 7→ lim←−n fn are
inverses of each other. �

3.2. Continuous parabolic induction. Let A ∈ Noe(O). We define several
categories of representations of G over A.

An mA-adically continuous A[G]-module is an mA-adically complete and sepa-
rated A-module π endowed with an A-linear G-action such that the map G×π → π
is continuous when π is given its mA-adic topology (equivalently, the induced ac-
tion of G on π/mnAπ is smooth for all n ≥ 1). We let ModmA−cont

G (A) be the
full subcategory of ModG(A) consisting of mA-adically continuous A[G]-modules.
We let ModmA−cont

G (A)fl be the full subcategory of ModmA−cont
G (A) consisting of

orthonormalizable A[G]-modules.
Remark 3.6. (1) If A is Artinian, then

ModmA−cont
G (A) = Mod∞G (A) and ModmA−cont

G (A)fl = Mod∞G (A)fl.

(2) Emerton defined an mA-adically admissible A[G]-module to be an mA-
adically continuous A[G]-module π such that π/mAπ is admissible as a
smooth k[G]-module (cf. [Eme11, Def. 3.1.13]). If A is Artinian, then one
recovers the usual definition of admissible smooth A[G]-module.

Definition 3.7. For any mA-adically continuous A[L]-module σ, we define an A-
module

IndGP− σ :=
{
continuous f : G→ σ

∣∣ f(pg) = pf(g) for all p ∈ P− and g ∈ G
}

on which we let G act by right translation.
Remark 3.8. If A is Artinian, then one recovers the smooth parabolic induction.
Proposition 3.9. Let σ be an mA-adically continuous A[L]-module.

(1) IndGP− σ is an mA-adically continuous A[G]-module, and it is orthonormal-
izable if and only if σ is orthonormalizable.

(2) For any morphism A → A′ in Noe(O), there is a natural A[G]-linear iso-
morphism (

IndGP− σ
)
⊗̂A A′

∼−→ IndGP−
(
σ ⊗̂A A′

)
.
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Proof. Let U be the A-module underlying the representation σ. By assumption U
is mA-adically complete and separated, that is U = lim←−n U/m

n
AU . Once and for all

we choose a continuous section of the projection G � P−\G =: X as in the proof
of Lemma 2.1. This allows us to identify IndGP− σ with C(X,U) as an A-module.
We prove the Lemma in a series of steps below.

Step 1. C(X,A)⊗A A/I
∼−→ C(X,A/I) for any ideal I ⊂ A.

This is done by induction on the minimal number of generators of I, say nI . The
base case where I = aA is principal amounts to the exactness of the two sequences
(a) 0 −→ C(X,A[a]) −→ C(X,A) a−→ C(X, aA) −→ 0,
(b) 0 −→ C(X, aA) −→ C(X,A) −→ C(X,A/aA) −→ 0.
The surjectivity in (a) follows from the existence of a continuous cross-section of the
multiplication by a map A� aA. Indeed it induces a homeomorphism A/A[a] ∼−→
aA (since A is compact) and the projection A � A/A[a] admits a continuous
section since A is profinite and A[a] is a closed subgroup (cf. [Sha72, Ch. I, § 1,
Thm. 3]). For the same reason A � A/aA admits a continuous section, observing
that aA ⊂ A is closed, which shows the surjectivity in (b).

Now suppose nI > 1 and we know the result for ideals with fewer generators.
Once and for all we choose generators for I, say I = (a1, . . . , an) where n = nI is
minimal. Consider the quotient ring B = A/anA and the ideal J = I/anA. Note
that J ⊂ B is generated by the cosets of a1, . . . , an−1, so by induction we have an
isomorphism

C(X,B)⊗B B/J
∼−→ C(X,B/J).

Now A/I ' B/J so certainly any h ∈ C(X,A/I) can be lifted to C(X,B), and in
turn to C(X,A) by the base case (or just sequence (b) with a = an), which shows
that the map in Step 1 is onto. We now argue that it is also injective. Suppose
f ∈ C(X,A) takes values in I ⊂ A. Consider the reduction f̄ ∈ C(X,B), which then
takes values in J ⊂ B. By induction f̄ =

∑N
i=1 c̄iγi with ci ∈ I and γi ∈ C(X,B).

Again by (b) we can choose lifts, that is write γi = f̄i where fi ∈ C(X,A). Now
the difference f −

∑N
i=1 cifi lies in C(X,A) and reduces to 0 modulo anA. That

is, it takes values in anA and is therefore of the form anf
′ for some f ′ ∈ C(X,A)

by sequence (a) above. Altogether this shows that f = anf
′ +

∑N
i=1 cifi visibly

belongs to IC(X,A) as desired.

Step 2. We have an isomorphism C(X,A) ⊗̂A U
∼−→ C(X,U).

The completed tensor product is defined as in (3.2). For any n ≥ 1,

C(X,A)⊗A U/mnAU ' C(X,A)⊗A A/mnA ⊗A/mnA U/m
n
AU

' C(X,A/mnA)⊗A/mnA U/m
n
AU

' C∞(X,A/mnA)⊗A/mnA U/m
n
AU

' C∞(X,U/mnAU)
' C(X,U/mnAU).

(In the second isomorphism we used Step 1; in the fourth we used (2.2).) Taking
the limit over n yields the isomorphism.

Step 3. We have an isomorphism C(X,U)/mnAC(X,U) ∼−→ C(X,U/mnAU).
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For this step let M := C(X,A)⊗A U , and let M̂ be its mA-adic completion. By
Step 2 (and its proof) we know that

• M ⊗A A/mnA ' C(X,U/mnAU),
• M̂ ⊗A A/mnA ' C(X,U)/mnAC(X,U).

It remains to observe that, since A is Noetherian, the mA-adic completion of any A-
module is mA-adically complete. For finitely generated modules this is a standard
application of the Artin-Rees lemma. For infinitely generated modules such as our
M it is more subtle; it is the content of [Yek11, Cor. 3.5] (a result which Yekutieli
attributes to Matlis, cf. Remark 3.7 in op. cit.). We conclude that

M̂ ⊗A A/mnA
∼−→M ⊗A A/mnA

(cf. [Yek11, Thm. 1.5]) as desired.

Step 4. Proof of part (1) of the Proposition.

We first observe that at least C(X,U) is mA-adically complete and separated:

C(X,U) ' lim←−
n

C(X,U/mnAU) ' lim←−
n

C(X,U)/mnAC(X,U)

by Step 3. Furthermore

C(X,U)/mnAC(X,U) ' C(X,U/mnAU) = C∞(X,U/mnAU),

so that C(X,U)/mnAC(X,U) is free if and only if U/mnAU is free (using part (1) of
Lemma 2.1), hence part (1) of the Proposition.

Step 5. Proof of part (2) of the Proposition.

For any morphism A→ A′ in Noe(O) we are to show that

C(X,U) ⊗̂A A′
∼−→ C(X,U ⊗̂A A′).

By the same type of arguments as in Step 2 we find that for any n ≥ 1,

C(X,U)⊗A A′/mnA′ ' C(X,U)⊗A A/mnA ⊗A/mnA A
′/mnA′

' C(X,U/mnAU)⊗A/mnA A
′/mnA′

' C∞(X,U/mnAU)⊗A/mnA A
′/mnA′

' C∞(X,U/mnAU ⊗A/mnA A
′/mnA′)

' C(X, (U ⊗A A′)⊗A′ A′/mnA′).

(In the second isomorphism we used Step 3; in the fourth we used part (2) of Lemma
2.1.) Taking the limit over n gives the result, which finishes the proof. �

Remark 3.10. Part (2) with A� A/mnA yields a natural (A/mnA)[G]-linear isomor-
phism (

IndGP− σ
)
/mnA

(
IndGP− σ

)
∼−→ IndGP− (σ/mnAσ) .

(This is precisely the content of Step 4 in the proof.) This generalizes [Eme10a,
Lem. 4.1.3] which treats the case A = O where the argument simplifies significantly
since mA = ($).

Corollary 3.11. Parabolic induction σ 7→ IndGP− σ gives rise to fully faithful func-
tors ModmA−cont

L (A)→ ModmA−cont
G (A) and ModmA−cont

L (A)fl → ModmA−cont
G (A)fl.
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Proof. Given any mA-adically continuous A[L]-modules σ and σ′, we have A-linear
isomorphisms

HomA[G]

(
IndGP− σ, IndGP− σ′

)
∼= lim←−

n

HomA[G]

(
IndGP− (σ/mAσ) , IndGP− (σ′/mAσ′)

)
∼= lim←−

n

HomA[L] (σ/mAσ, σ′/mAσ′)

∼= HomA[L] (σ, σ′) ,
cf. Lemma 3.5 (together with Remark 3.10) for the first and third ones, and [Vig16,
Thm. 5.3] for the second one. �

Remark 3.12. We also deduce from Remark 3.10 with n = 1 that parabolic induc-
tion respects admissibility (cf. part (2) of Remark 3.6).
3.3. Deformation functors extended. We let π̄ be a smooth k[G]-module. We
extend Definition 2.10 to A ∈ Noe(O).
Definition 3.13. We define several categories and functors.

(1) A lift of π̄ over A ∈ Noe(O) is a pair (π, φ) where
• π is an object of ModmA−cont

G (A)fl,
• φ : π � π̄ is an A[G]-linear surjection with kernel mAπ, i.e. which
induces an A[G]-linear isomorphism π ⊗A k

∼−→ π̄.
A morphism ι : (π, φ) → (π′, φ′) of lifts of π̄ over A is an A[G]-linear
morphism ι : π → π′ such that φ = φ′ ◦ ι.

(2) We define a covariant functor D̃ef π̄ : Noe(O) → Cat by letting D̃ef π̄(A)
be the essentially small category of lifts of π̄ over A for any A ∈ Noe(O),
and D̃ef π̄(ϕ) : D̃ef π̄(A) → D̃ef π̄(A′) be the base change functor for any
morphism ϕ : A→ A′ in Noe(O).

(3) We define the deformation functor Def π̄ : Noe(O) → Set as the composite
i ◦ D̃ef π̄.

3.4. Induced deformations extended. We let σ̄ be a smooth k[L]-module and
we set π̄ := IndGP− σ̄. By functoriality and using part (1) of Proposition 3.9, we see
that

• if (σ, φ) is a lift of σ̄ over A ∈ Noe(O), then (IndGP− σ, IndGP− φ) is a lift of
π̄ over A,

• and if ι : (σ, φ)→ (σ′, φ′) is a morphism of lifts of σ̄ over A ∈ Noe(O), then
IndGP− ι : (IndGP− σ, IndGP− φ) → (IndGP− σ′, IndGP− φ′) is a morphism of lifts
of π̄ over A.

Thus for any A ∈ Noe(O), we obtain a functor

IndGP− : D̃ef σ̄(A)→ D̃ef π̄(A)
which is functorial in A by part (2) of Proposition 3.9, i.e. it is induced by a
morphism IndGP− : D̃ef σ̄ → D̃ef π̄ between functors Noe(O)→ Cat. Thus composing
the latter with i : Cat→ Set yields a morphism

IndGP− : Def σ̄ → Def π̄
between functors Noe(O)→ Set.

Lemma 3.14. Let σ̄ be a locally ZL-finite smooth k[L]-module and π̄ := IndGP− σ̄.
Then IndGP− : Def σ̄(A)→ Def π̄(A) is injective for any A ∈ Noe(O).
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Proof. Let A ∈ Noe(O). Let (σ, φ) and (σ′, φ′) be two lifts of σ̄ over A. We denote
by (π, ψ) and (π′, ψ′) the corresponding induced lifts of π̄ over A. Assume that
there is an isomorphism  : (π, ψ) ∼−→ (π′, ψ′) in D̃ef π̄(A). Then for all n ≥ 1, there
is an induced isomorphism n : (π/mnAπ, ψn) ∼−→ (π′/mnAπ′, ψ′n) in D̃ef π̄(A/mnA)
where ψn : π/mnAπ � π̄, ψ′n : π′/mnAπ′ � π̄ are induced by ψ,ψ′ respectively, thus
n = IndGP− ın for a unique isomorphism ın : (σ/mnAσ, φn) ∼−→ (σ′/mnAσ′, φ′n) in
D̃ef σ̄(A/mnA) by part (1) of Lemma 2.13 where φn : σ/mnAσ � σ̄, φ′n : σ′/mnAσ′ � σ̄
are induced by φ, φ′ respectively. Taking the projective limit over n ≥ 1 yields an
isomorphism ı : (σ, φ) ∼−→ (σ′, φ′) in D̃ef σ̄(A) such that  = IndGP− ı. �

Theorem 3.15. Let σ̄ be an admissible smooth k[L]-module and π̄ := IndGP− σ̄. If
F = Qp, then assume that
(a) Hypothesis 2.7 is satisfied,
(b) HomL(σ̄, σ̄α ⊗ (ε̄−1 ◦ α)) = 0 for all α ∈ ∆⊥,1L .
Then IndGP− : Def σ̄ → Def π̄ is an isomorphism.

Proof. Given Lemma 3.14, we only have to prove surjectivity. Let A ∈ Noe(O).
Let (π, ψ) be a lift of π̄ over A. For all n ≥ 1, (π/mnAπ, ψn) where ψn : π/mnAπ � π̄

is induced by ψ is an object of D̃ef π̄(A/mnAA), thus by part (1) of Theorem 2.16
there exists a lift (σn, φn) of σ̄ over A/mnA and an A[G]-linear isomorphism ιn :
π/mnAπ

∼−→ IndGP− σn such that ψn = IndGP− φn ◦ ιn. In particular, we get an A[G]-
linear surjection %n : IndGP− σn+1 � IndGP− σn with kernel mnA(IndGP− σn+1) and
such that IndGP− φn+1 = (IndGP− φn) ◦ %n. Using OrdP , we see that %n = IndGP− ρn
where ρn : σn+1 � σn is an A[L]-linear surjection with kernel mnAσn+1 and such
that φn+1 = φn ◦ρn. Taking projective limit over n ≥ 1 yields a lift (σ, φ) of σ̄ over
A and an A[G]-linear isomorphism ι : π ∼−→ IndGP− σ such that ψ = IndGP− φ ◦ ι.
Note that the limit σ = lim←−n σn is orthonormalizable by part (4) of Lemma 3.1. �

3.5. Application to Banach lifts. We let BanG(E) denote the category of E-
Banach representations of G (with continuous E[G]-linear morphisms). Thus its
objects are Banach spaces V over E endowed with a jointly continuous E-linear
action G × V → V . We say that V is unitary if its topology can be defined by
a G-invariant norm; we write BanG(E)unit for the full subcategory consisting of
unitary representations.

Following [Sch13, § 6.1] we denote by BanG(E)≤1 the category whose objects
are E-Banach representations (V, ‖ · ‖) of G for which ‖V ‖ ⊂ |E| and ‖gv‖ = ‖v‖
for all g ∈ G and v ∈ V ; the morphisms are the E[G]-linear norm-decreasing maps.
Passing to the isogeny category gives an equivalence (cf. [Sch13, Lem. 6.1] and the
pertaining remark) (

BanG(E)≤1
)
Q

∼−→ BanG(E)unit.

Let (V, ‖ · ‖) be an object of BanG(E)≤1. We use the previous definitions for
A = O with $ instead of mO in the notation. Note that a $-adically complete and
separated O-module is orthonormalizable if and only if it is $-torsion-free. The
unit ball V ◦ := {v ∈ V : ‖v‖ ≤ 1} is an object of Mod$−cont

G (O)fl. The functor
V 7→ V ◦ yields an equivalence of categories

(3.16) BanG(E)≤1 ∼−→ Mod$–cont
G (O)fl
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(a quasi-inverse is given by V ◦ 7→ V := V ◦[1/p] = E ⊗O V ◦ where V is equipped
with the gauge norm ‖v‖V ◦ := q− ordV ◦ (v) where ordV ◦(v) is the largest integer
n for which v ∈ $nV ◦). Finally, the reduction mod $ is an object of Mod∞G (k)
denoted

V̄ := V ◦/$V ◦.

Turning the table, given an object π̄ of Mod∞G (k), we consider all the E-Banach
representations V of G for which V̄ ' π̄; the Banach lifts of π̄. Using (3.16), we
see that Banach lifts are the same as lifts over O.

For any E-Banach representation V of L, we define an E-Banach representation
by letting G act by right translation on the E-Banach space

IndGP− V :=
{
continuous f : G→ V

∣∣ f(pg) = pf(g) for all p ∈ P− and g ∈ G
}
.

If ‖ · ‖ is an L-invariant norm with unit ball V ◦, then the gauge norm associated
to IndGP− V ◦ ⊂ IndGP− V is G-invariant. Thus, we obtain a functor

IndGP− : BanL(E)≤1 → BanG(E)≤1.

which corresponds to the continuous parabolic induction functor over O under the
equivalences (3.16) for G and L.

We conclude that Theorem 3.15 with A = O can be reformulated as follow.

Corollary 3.17. With notation and assumptions as in Theorem 3.15 above, every
Banach lift of π̄ is induced from a unique Banach lift of σ̄ (up to isomorphism).

4. Parabolic induction and deformations over profinite rings

4.1. Augmented representations. Let A ∈ Pro(O). We generalize the defini-
tions of [Eme10a, § 2.1] (which only considers Noetherian A). Our definitions co-
incide with those of [Sch13] (in terms of pseudocompact objects) since the residue
field k is finite.

A profinite (linear-topological) A-module M is a profinite A-module such that
there exists a fundamental system of open neighborhoods of 0 consisting of A-
submodules.

For example, the topological direct product AI is profinite for any set I (a
fundamental system is aI

′ × AI\I
′ for all finite subsets I ′ ⊂ I and open ideals

a ⊂ A). We say M is topologically free if there is an isomorphism M ' AI

of topological A-modules for some set I. The subset of M corresponding to the
standard vectors in AI is then called a pseudobasis.

IfM is a profinite A-module and A→ A′ is a morphism in Pro(O), we define the
corresponding base change, a profinite A′-module, as the completed tensor product
(4.1) M ⊗̂A A′ := lim←−

M ′,a′
M/M ′ ⊗A A′/a′

where M ′ ⊂ M run over the open A-submodules and a′ ⊂ A′ runs over the open
ideals. For any set I, one has AI ⊗̂AA′ = lim←−a,I′,a′

(A/a)I′ ⊗AA′/a′ = (A′)I , hence
base change preserves topologically free modules.

For a compact open subgroup K ⊂ G, we let A[[K]] be the completed group
algebra with coefficients in A ∈ Pro(O). That is,

A[[K]] = lim←−
K′

A[K/K ′]
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where K ′ ⊂ K runs over the open normal subgroups. It is a profinite ring and the
actual group algebra A[K] sits as a dense subring in A[[K]].

Definition 4.2. A profinite augmented representation of G over A is a profinite A-
moduleM with an A-linear G-action such that for some (equivalently any) compact
open subgroup K ⊂ G, the induced K-action extends to a map A[[K]]×M → M
which is continuous.

The morphisms between two profinite augmentedG-representations are theA[G]-
linear continuous maps (such a map is automatically A[[K]]-linear for any com-
pact open subgroup K ⊂ G). This defines a category Modpro aug

G (A). We let
Modpro aug

G (A)fl be the full subcategory of objects topologically free over A. Given a
morphism A→ A′ in Pro(O), we have A′[[K]] = A[[K]]⊗̂AA′ and soM 7→M ⊗̂AA′
induces a functor Modpro aug

G (A)fl → Modpro aug
G (A′)fl.

As a preliminary observation we note that the continuity of A[[K]] ×M → M
implies an a priori stronger statement (since A and M are profinite):

Lemma 4.3. Any profinite augmented representation M admits a fundamental
system of open neighborhoods of 0 consisting of A[[K]]-submodules.

Proof. Let M ′ ⊂ M be an arbitrary open A-submodule (thus M/M ′ is finite).
Suppose we can find a compact open subgroup K ′ ⊂ K such that k′M ′ = M ′ for
all k′ ∈ K ′. Then

M̃ :=
⋂
k∈K

kM ′ =
⋂

k∈K/K′

⋂
k′∈K′

kk′M ′ =
⋂

k∈K/K′
kM ′

is a finite intersection, hence open, and M̃ ⊂M ′ is clearly an A[[K]]-submodule of
M . It remains to show the existence of such a K ′. By continuity of K ×M → M
at the point (e, 0) we can at least find a K ′′ ≤ K (compact open) and M ′′ ⊂ M ′

(open A-submodule) such that K ′′ ×M ′′ →M ′. Now M ′/M ′′ is finite, say

M ′ =
⋃
m∈R

(m+M ′′), |R| <∞.

By continuity of K×M →M at the point (e,m) we find a compact open Km ≤ K ′′
such that Km × {m} → m + M ′′. In particular Kmm ⊂ M ′. We may then take
K ′ :=

⋂
m∈RKm which is compact and open since R is finite. �

Remark 4.4. The preceding observation extends in fact to arbitrary profinite rings
[Wil98, Prop. 7.2.1]. We found it useful to recall the details in our situation.

4.2. Duality over Noetherian rings. We fix A ∈ Noe(O). We discuss the fol-
lowing duality between the categories ModmA−cont

G (A)fl and Modpro aug
G (A)fl:

π 7→ π∨ := HomA (π,A) with the topology of pointwise convergence,
M 7→M∨ := Homcont

A (M,A) with the mA-adic topology.

Lemma 4.5. Taking A-linear duals defines an anti-equivalence of categories

(−)∨ : ModmA−cont
G (A)fl ∼−→ Modpro aug

G (A)fl

compatible with base change.
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Proof. We remove the admissibility assumption from the arguments in the proof
of [Eme11, Prop. 3.1.12]. Let K ⊂ G be a fixed compact open subgroup. To
simplify the notation, we let An := A/mnAA for all n ≥ 1. According to [Eme11,
Prop. B.11] the functors in question induce an anti-equivalence between the category
of orthonormalizable A-modules and the category of topologically free profinite A-
modules and there is an isomorphism

(4.6) HomA(π,A)/mnA HomA(π,A) ∼−→ HomAn(π/mnAπ,An)

for each n ≥ 1. Suppose π is equipped with an A-linear G-action and fix n. The
induced action on π/mnAπ is smooth if and only if the contragredient G-action on
HomA(π,A) makes

(π/mnAπ)∨ = HomAn(π/mnAπ,An)
a profinite augmented G-representation over An. Indeed, suppose the action on
π/mnAπ is smooth so that π/mnAπ = ∪K′⊂K(π/mnAπ)K′ where K ′ ⊂ K runs over
the open normal subgroups. Then one obtains a structure of topological An[[K]] =
lim←−K′ An[K/K ′]-module on

lim←−
K′

HomAn((π/mnAπ)K
′
, An) = (π/mnAπ)∨.

Conversely, suppose the induced K-action on N := (π/mnAπ)∨ extends to a topo-
logical An[[K]]-module structure and let f ∈ Homcont

An (N,An) = π/mnAπ. Since N
is compact and An discrete the image of f is finite and hence ker(f) ⊂ N is open.
By Lemma 4.3 there is an open An-submodule N0 ⊂ ker(f) which is K-stable
and hence the K-action factors into a continuous action N/N0 ×K → N/N0. In
particular, for any n ∈ N we find an open normal subgroup Kn ⊂ K such that
nh − n ∈ N0 for all h ∈ Kn. The open normal subgroup K ′ ⊂ K given as the
intersection over the finitely many Kn with n ∈ N/N0 satisfies nh− n ∈ N0 for all
n ∈ N,h ∈ K ′. It follows

f(nh) = f(nh− n) + f(n) = f(n)

so that f is fixed by K ′.
Next we claim that the contragredient G-action on HomA(π,A) makes (π/mnAπ)∨

a profinite augmented G-representation over An for all n if and only if HomA(π,A)
is a profinite augmented G-representation over A. Indeed, suppose the former
holds. The source of the isomorphism (4.6) has its quotient topology, which is
profinite since mnA HomA(π,A) is closed (if the ideal mnA is generated by x1, ..., xk,
the continuous map HomA(π,A)⊕k → HomA(π,A), (fj) 7→

∑
xjfj has image

mnA HomA(π,A)). Since the map (4.6) is a continuous bijection, it is a topological
isomorphism. So the contragredient action makes HomA(π,A)/mnA HomA(π,A) a
topological An[[K]]-module. Lemma 3.5 in connection with (4.6) shows that the
natural map

HomA(π,A) ∼−→ lim←−
n

HomA(π,A)/mnA HomA(π,A)

is a continuous bijection between profinite modules and therefore a topological
isomorphism. Now by assumption the right hand side is a topological A[[K]]-module
(being an inverse limit of such) and this shows that HomA(π,A) is indeed a profinite
augmented G-representation over A. The converse is clear. It follows from this
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discussion that π lies in ModmA−cont
G (A)fl if and only if π∨ lies in Modpro aug

G (A)fl,
as claimed. Finally, given a morphism A→ A′ in Noe(O) we have

HomA(π,A)⊗A A′/mnA′ ' (HomA(π,A)/mnA HomA(π,A))⊗An A′/mnA′
' HomAn(π/mnAπ,An)⊗An A′/mnA′
' HomA′/mn

A′
(π/mnAπ ⊗An A′/mnA′ , A′/mnA′)

' HomA′/mn
A′

(π ⊗A A′/mnA′ , A′/mnA′).

where the second equality follows from (4.6) and the third equality holds since the
An-module π/mnAπ is free. Passing to the projective limit and using Lemma 3.5
yields HomA(π,A) ⊗̂A A′ = HomA′(π ⊗̂A A′, A′) as profinite A′-modules. �

Remark 4.7. (1) If A is Artinian, then Lemma 4.5 yields an anti-equivalence
of categories

(−)∨ : Mod∞G (A)fl ∼−→ Modpro aug
G (A)fl.

If furthermore A = O/$nO for some n ≥ 1, then one recovers Pontrjagin
duality (recall that O/$nO is Gorenstein and hence isomorphic to the
injective envelope of the O/$nO-module k).

(2) If A = O, then one recovers (a G-equivariant version of) Schikhof duality
(−)∨ : Mod$−cont

G (O)fl ∼−→ Modpro aug
G (O)fl

(cf. [Sch95]).
(3) By [Eme11, Prop. 3.1.12], π is admissible (cf. part 2 of Remark 3.6) if

and only if π∨ is finitely generated over A[[K]] for some (equivalently any)
compact open subgroup K ⊂ G.

We now make explicit parabolic induction through this duality. We letK ⊂ G be
a compact open subgroup such that G = P−K. For example K could be a special
subgroup as in [Tit79, § 3.3]. Observe that P− � L is an open mapping so P−∩K
projects onto a compact open subgroup KL ⊂ L. In particular A[[P− ∩K]] acts on
any profinite augmented representationM of L over A via A[[KL]]. In this situation,
the same definition (4.1) produces a topological A[[K]]-module A[[K]]⊗̂A[[P−∩K]]M .

Proposition 4.8. Let σ be an object of ModmA−cont
L (A)fl. There is a natural

isomorphism of topological A[[K]]-modules

A[[K]] ⊗̂A[[P−∩K]] σ
∨ ∼−→

(
IndGP− σ

)∨
.

Moreover, the G-action on the dense A-submodule
A[K]⊗A[P−∩K] σ

∨ ' A[G]⊗A[P−] σ
∨

coincides with the natural G-action on the right-hand side.

Proof. As explained in the proof of Lemma 2.1 the projection pr : G � P−\G
admits a continuous section s : P−\G ↪→ G. We may and will assume that its
image Ω := s(P−\G) lies in K (as a compact subset). Thus multiplication defines
homeomorphisms P− × Ω ∼−→ G and (P− ∩K)× Ω ∼−→ K. For technical reasons
which will become clear below, we compose the multiplication homeomorphism
(P− ∩K)× Ω ∼−→ K with inversion on P− ∩K and work with that.

We now prove the proposition in several steps.
Step 1. C(K,A) ' C((P− ∩K)× Ω, A) ' C(P− ∩K,A) ⊗̂A C(Ω, A).
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The first isomorphism is clear. By Step 2 in the proof of Proposition 3.9 any of
the occuring spaces of continuous functions is mA-adically complete and separated.
Hence it suffices to prove the second isomorphism modulo mnA. By the same lemma
we are then reduced to show

C∞((P− ∩K)× Ω, A/mnA) ' C∞(P− ∩K,A/mnA)⊗A/mnA C
∞(Ω, A/mnA)

for each n. However, this is clear since Ω is a compact p-adic manifold (and hence
strictly paracompact, i.e. any open covering admits a disjoint refinement).
Step 2. For a profinite group H, A[[H]] ' C(H,A)∨ as topological A[[H]]-modules.

If H ′ ⊂ H is an open normal subgroup, the A/mnA-module (A/mnA)[H/H ′] is
free. It follows that

A[[H]] = lim←−
n,H′

(A/mnA)[H/H ′] = lim←−
n

(A/mnA)[[H]].

On the other hand,
(A/mnA)[[H]] ' C∞(H,A/mnA)∨ = C(H,A/mnA)∨

(cf. the argument in [Sch11, §. 21]) and
C(H,A/mnA)∨ = HomA/mnA

(C(H,A)/mnAC(H,A), A/mnA)
according to Step 2 in the proof of Proposition 3.9. Passing to the projective limit
and using Lemma 3.5 completes Step 2.
Step 3. (C(P− ∩K,A) ⊗̂A C(Ω, A))∨ ' C(P− ∩K,A)∨ ⊗̂A C(Ω, A)∨.

We let An := A/mnA and P−K := P− ∩ K. Since C(P−K , A)/mnAC(P
−
K , A) and

C(Ω, A)/mnAC(Ω, A) are free An-modules, the An-module

HomAn(C(P−K , A)/mnAC(P−K , A)⊗An C(Ω, A)/mnAC(Ω, A), An)
is canonically isomorphic to

HomAn(C(P−K , A)/mnAC(P−K , A), An)⊗An HomAn(C(Ω, A)/mnAC(Ω, A), An).
In turn, the latter is isomorphic to

C(P−K , A)∨/mnAC(P−K , A)∨ ⊗An C(Ω, A)∨/mnAC(Ω, A)∨

according to (4.6). Passing to the projective limit using Lemma 3.5 yields the claim.
Step 4. A[[K]] ' A[[P− ∩K]] ⊗̂A C(Ω, A)∨ as topological A[[P− ∩K]]-modules.

This follows from Step 1, Step 2 and Step 3.
Step 5. A[[K]] ⊗̂A[[P−∩K]] σ

∨ ' C(Ω, σ)∨ as topological A-modules.
By associativity of the completed tensor product we have as topological A-

modules
A[[K]] ⊗̂A[[P−∩K]] σ

∨ ' (C(Ω, A)∨ ⊗̂A A[[P− ∩K]]) ⊗̂A[[P−∩K]] σ
∨

' C(Ω, A)∨ ⊗̂A σ∨

' (C(Ω, A) ⊗̂A σ)∨

' C(Ω, σ)∨.
Here, the third equality follows as in Step 3 and the last equality uses Step 2 in the
proof of Proposition 3.9.
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The isomorphism takes µ⊗λ to the A-linear form ξ 7→ 〈µ, ξλ〉 on C(Ω, σ), where
ξλ is the continuous function on K defined as follows:

ξλ(k) =
(

(prP−∩K(k)−1λ) ◦ ξ
)

(prΩ(k)).

(note the inverse here which comes from our normalization stated before Step 1).

Step 6. IndGP− σ
∼−→ C(Ω, σ), f 7→ f |Ω as A-modules.

The restriction map is injective since G = P−Ω. Given a function fΩ ∈ C(Ω, σ)
we let f(p, x) := pfΩ(x) for p ∈ P−, x ∈ Ω (this is well-defined since G ' P− ×Ω).
Since the orbit map p 7→ F (p) := pfΩ(.) lies in

C(P−, C(Ω, σ)) ' C(P− ∩K,A) ⊗̂A C(Ω, A)

the function f is continuous by Step 1 and hence a preimage of fΩ.

Step 7. Proof of the lemma.

For a function f on G let f ′(g) := f(g−1). Consider the continuous A-linear map
j defined by the commutative diagram

A[[K]]⊗A[[P−∩K]] σ
∨ (IndGP− σ)∨

A[[K]] ⊗̂A[[P−∩K]] σ
∨ C(Ω, σ)∨

ι

j

∼

∼

where ι denotes the canonical (continuous) map into the completion and the iso-
morphisms as topological A-modules come from Step 5 and 6. Our definition of ξλ
implies that j sends µ⊗ λ to the linear form f 7→ 〈µ, λ ◦ (f ′|K)〉 and so is A[[K]]-
linear. Hence j extends to an isomorphism of topological A[[K]]-modules between
A[[K]] ⊗̂A[[P−∩K]] σ

∨ and (IndGP− σ)∨. The final assertion concerning the G-action
follows from the definitions. �

4.3. Deformation functors revisited. We let N be a profinite augmented rep-
resentation of G over k. We will study the various lifts of N to profinite augmented
representations M of G over A ∈ Pro(O). In comparison with in section 3.3, we
allow non-Noetherian coefficients here. Recall the functor i : Cat→ Set defined by
C 7→ Ob(C)/ '.

Definition 4.9. We define several categories and functors.
(1) A lift of N over A ∈ Pro(O) is a pair (M,φ) where

• M is an object of Modpro aug
G (A)fl,

• φ : M � N is an A[G]-linear surjection with kernel mAM , i.e. which
induces an A[G]-linear isomorphism M ⊗̂A k

∼−→ N .
A morphism ι : (M,φ) → (M ′, φ′) of lifts of N over A is an A[G]-linear
morphism ι : M →M ′ such that φ = φ′ ◦ ι.

(2) We define a covariant functor D̃efN : Pro(O) → Cat by letting D̃efN (A)
be the essentially small category of lifts of N over A for any A ∈ Pro(O),
and D̃efN (ϕ) : D̃efN (A) → D̃efN (A′) be the base change functor for any
morphism ϕ : A→ A′ in Pro(O).

(3) We define the deformation functor DefN : Pro(O)→ Set as the composite
i ◦ D̃efN .
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The following is one of the main results from [Sch13].

Theorem 4.10 (T.S.). Suppose Endcont
k[G](N) = k. Then:

(1) DefN is representable: There exists a universal deformation ring RN ∈
Pro(O) along with bijections DefN (A) ∼−→ HomPro(O)(RN , A) functorial in
A ∈ Pro(O).

(2) tN := DefN (k[ε]) ∼−→ Ext1
Modpro aug

G (k)(N,N), where k[ε] = k[x]/(x2).
(3) RN is Noetherian if and only if dN := dim(tN ) < ∞, in which case RN is

a quotient of the formal power series ring O[[x1, . . . , xdN ]].

Proof. This summarizes Proposition 3.7, Theorem 3.8, and Corollary 3.9 from
[Sch13]. �

This gives a universal deformation (MN , φN ) in D̃efN (RN ) by choosing a repre-
sentive for the identity map in DefN (RN ) ' HomPro(O)(RN , RN ). Any deformation
(M,φ) over A arises then from a unique morphism RN → A in Pro(O) via base
change.

Our next result reconciles Definitions 3.13 and 4.9 over Noetherian rings.

Lemma 4.11. Let π̄ be a smooth k[G]-module with dual π̄∨ = Homk(π̄, k). Then
(1) (−)∨ : D̃ef π̄(A)→ D̃ef π̄∨(A) is an anti-equivalence for any A ∈ Noe(O),
(2) (−)∨ : Def π̄(A)→ Def π̄∨(A) is a bijection for any A ∈ Noe(O).

Proof. Let us first make the duality functor in (1) a bit more precise. An object
(π, φ) of D̃ef π̄(A) is sent to an object (M,ψ) of D̃ef π̄∨(A) by taking M := π∨ =
HomA(π,A) and ψ : HomA(π,A) → Homk(π̄, k) to be the reduction mod mA.
Clearly ψ is a continuous A[G]-linear morphism which factors through

ψ : M ⊗̂A k = M/mAM −→ π̄∨.

To see this is an isomorphism it suffices to check that a pseudobasis is sent to a
pseudobasis: Suppose (ei)i∈I is a basis for π (over A). The dual (e∨i )i∈I is then a
pseudobasis for M = π∨, and a fortiori (e∨i ⊗ 1)i∈I is a pseudobasis for M ⊗̂A k.
On the other hand (φ(ei ⊗ 1))i∈I is a basis for π̄. It remains to verify that

ψ(e∨i ⊗ 1) = φ(ei ⊗ 1)∨

which follows straight from the definition of ψ. We conclude that (M,ψ) is indeed
an object of D̃ef π̄∨(A). Morphisms are dualized: If ι : π → π′ is compatible with
(φ, φ′) then ι∨ : π′∨ → π∨ is compatible with (ψ′, ψ). The same construction
works in the opposite direction, and this sets up an anti-equivalence by Lemma
4.5, which is furthermore compatible with base change. Thus taking isomorphism
classes yields (2). �

4.4. Induced deformations revisited. We let σ̄ be a smooth k[L]-module with
Endk[L](σ̄) = k and π̄ := IndGP− σ̄ (note that Endk[G](π̄) = k by Theorem 2.3).
By part (1) of Theorem 4.10, both deformation functors Def σ̄∨ and Def π̄∨ are
representable. In particular, they are continuous in the sense that they commute
with limits. Since Pro(O) is equivalent to the category of pro-objects of Art(O),
we deduce from Lemmas 2.13 and 4.11 an injective morphism

IGP− : Def σ̄∨ ↪→ Def π̄∨
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between functors Pro(O)→ Set. More precisely for any A ∈ Pro(O) which we write
A = lim←−a

A/a where a ⊂ A runs through the open ideals, IGP− is the composite

Def σ̄∨(A) ∼−→ lim←−
a

Def σ̄∨(A/a)

∼−→ lim←−
a

Def σ̄(A/a)

↪→ lim←−
a

Def π̄(A/a)(4.12)

∼−→ lim←−
a

Def π̄∨(A/a)

∼−→ Def π̄∨(A)
where the second and the fourth isomorphisms are given by part (2) of Lemma 4.11
and the injection is given by part (2) of Lemma 2.13.

The following is our main result.

Theorem 4.13. Let σ̄ be an admissible smooth k[L]-module with Endk[L](σ̄) = k

and π̄ := IndGP− σ̄. If F = Qp, then assume that
(a) Hypothesis 2.7 is satisfied,
(b) HomL(σ̄, σ̄α ⊗ (ε̄−1 ◦ α)) = 0 for all α ∈ ∆⊥,1L .
Then IGP− : Def σ̄∨ → Def π̄∨ is an isomorphism.

Proof. This follows from part (2) of Theorem 2.16, which shows that (4.12) is
onto. �

Using the representability of the deformation functors, we reformulate Theorem
4.13 in terms of universal deformation rings and universal deformations.

Corollary 4.14. With notation and assumptions as in Theorem 4.13 above, there
is an isomorphism Rπ̄∨

∼−→ Rσ̄∨ in Pro(O) through which Mπ̄∨ = IGP−Mσ̄∨ .

Finally, under a finiteness assumption, we can express the universal deformation
as the dual of a continuous parabolic induction.

Corollary 4.15. With notation and assumptions as in Theorem 4.13 above, if
furthermore dimk Ext1

L(σ̄, σ̄) <∞, then Rπ̄∨ ' Rσ̄∨ is Noetherian and there is an
Rπ̄∨ [G]-linear isomorphism M∨π̄∨ ' IndGP−M∨σ̄∨ .

Proof. This follows from parts (2) and (3) of Theorem 4.10, together with Propo-
sition 4.8. �

4.5. The case of principal series. In this section we fix a p-adic torus T (the
F -points of an algebraic torus T defined over F ) and consider lifts of a given smooth
character χ̄ : T → k× over A ∈ Pro(O). That is, continuous characters χ : T →
A× whose reduction mod 1 + mA equals χ̄. They comprise a set Def χ̄(A) and
the resulting functor Def χ̄ : Pro(O) → Set is representable. We give a precise
description of the universal deformation. This is standard but we find it instructive
to include the details for completeness.

Let T (p) := lim←−j T/T
pj denote the p-adic completion of T ; a pro-p group. Each

T p
j is an open subgroup, but they may not form a fundamental system of neigh-

borhoods: If T = F× the intersection ∩∞j=1T
pj = µ′p∞(F ) consists of the prime-to-p
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roots of unity in F . The natural projection map T → T (p) has dense image and is
denoted t 7→ t(p).

The Iwasawa algebra Λ := O[[T (p)]] = lim←−j O[T/T pj ] is a complete local (since
T (p) is pro-p, cf. [Sch11, § 19.7]) Noetherian O-algebra with residue field k. Its
maximal ideal mΛ is the kernel of the reduced augmentation map Λ→ O → k. The
natural map T → T (p) → Λ× is denoted by a bracket t 7→ [t]; it takes values in
1 + mΛ and is therefore continuous (as T pj is then mapped into 1 + mj+1

Λ ).
Example 4.16. If T ' (F×)n is a split torus Λ can be made quite explicit. As is
well-known, by Lie theory O×F ' µ∞(F )× Z[F :Qp]

p . Therefore
Λ ' O[µp∞(F )n][[X1, . . . , Xd]]

where d = ([F : Qp] + 1)n. Note that µp∞(F ) is trivial if ζp /∈ F . For example if
F/Qp is unramified (p odd); or just having ramification index e < p− 1.

The universal deformation of χ̄ is given as follows.
Proposition 4.17. Define a character χuniv : T → Λ× by the formula χuniv(t) :=
ˆ̄χ(t)[t] where the hat denotes the Teichmüller lift k× ↪→ O×. Then there are bijec-
tions

Def χ̄(A) ∼−→ HomPro(O)(Λ, A),
functorial in A ∈ Pro(O); the inverse takes ψ : Λ→ A to χ = ψ ◦ χuniv.
Proof. Clearly χuniv is continuous (since t 7→ [t] is) and it is a lift of χ̄ since
χuniv(t) ≡ ˆ̄χ(t) (mod 1 +mΛ). The function ψ 7→ ψ ◦χuniv is clearly injective since
the ψ’s are continuous and O[T ] → Λ has dense image. Now let χ : T → A× be
an arbitrary lift of χ̄ and consider δ : T → A× defined by δ(t) := χ(t) ˆ̄χ(t)−1 which
obviously takes values in 1 +mA (since χ and ˆ̄χ are both lifts of χ̄). Thus δ(T pj ) ⊂
1 + mj+1

A . In particular, if A is Artinian (say mi+1
A = 0) then δ factors through

T/T p
i which results in a map Λ → O[T/T pi ] → A with the required property. In

general write A = lim←−a
A/a and look at the Artinian lifts χa : T → (A/a)× obtained

from χ. By what we have just observed χa = ψa ◦ χuniv for a unique morphism
ψa : Λ → A/a in Pro(O). The uniqueness guarantees they are compatible as a
varies, and their limit ψ = lim←−a

ψa is the desired morphism Λ→ A. �

Note that a continuous character χ : T → A× is the same as an augmented
T -representation on the A-module M = A. Indeed, if K ⊂ T is a compact open
subgroup, a continuous character K → A× extends uniquely to a continuous ho-
momorphism A[[K]] → A (cf. [Sch11, § 19.3]). Therefore, if we take N = χ̄−1 in
Definition 4.9, the functor DefN there coincides with our Def χ̄ above, and in the
notation of Theorem 4.10 we have Rχ̄ ' Λ.

Moreover, by [Hau16a, Prop. 5.1.4], when T ' (F×)n the tangent space of Rχ̄
has dimension

dχ̄ = dimk Ext1
T (χ̄, χ̄) =

{
([F : Qp] + 1)n if ζp /∈ F
([F : Qp] + 2)n if ζp ∈ F

which is perfectly coherent with the number of variables in (4.16), cf. part (3) of
Theorem 4.10.

Now assume G is quasi-split and specialize to the case where P = B is a Borel
subgroup. Then the Levi factor L = T is a p-adic torus.
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Corollary 4.18. Let χ̄ : T → k× be a smooth character and π̄ := IndGB− χ̄. If
F = Qp, then assume that sα(χ̄) · (ε̄−1 ◦ α) 6= χ̄ for all α ∈ ∆1. Then Rπ̄∨ ' Λ is
Noetherian and M∨π̄∨ ' IndGB− χuniv.

Proof. This follows immediately from Corollary 4.15 applied to σ̄ = χ̄. Condition
(a) in Theorem 4.13 is vacuous, and condition (b) is our assumption. By Proposition
4.17 we know that Rχ̄∨ ' Λ and Mχ̄∨ is the lift (χuniv)∨ which shows the corollary.

�
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