Mod p Hecke algebras and dual equivariant cohomology

TOBIAS SCHMIDT (joint work with Cédric Pépin)

Let F/\mathbb{Q}_p be a finite extension field with residue field \mathbb{F}_q and let $G=\mathrm{GL}_n(F)$. Let $I\subset G$ be the standard Iwahori subgroup of G. The classical Deligne-Langlands conjecture for Hecke modules, proved in the middle of the 1980's by Kazhdan-Lusztig [10], is an incarnation of the (tame) local Langlands correspondance for G. It predicts a parametrization of the simple modules of the complex Iwahori-Hecke algebra $\mathcal{H}_{\mathbb{C}}=\mathbb{C}[I\setminus G/I]$ in terms of certain pairs $(s,t)\in \widehat{\mathbf{G}}^2$ where $sts^{-1}=t^q$. Here, $\widehat{\mathbf{G}}=\mathrm{GL}_n(\mathbb{C})$ is the complex Langlands dual group of G. Let $\widehat{\mathcal{B}}$ be the complex flag variety of $\widehat{\mathbf{G}}$ together with its $\widehat{\mathbf{G}}$ -action given by translations. One of the steps in the proof of the conjecture is the construction of a suitable $\mathcal{H}_{\mathbb{C}}$ -action on the equivariant K-theory $K^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}})_{\mathbb{C}}$ [11]. It identifies the action of the center $Z(\mathcal{H}_{\mathbb{C}})$ with the scalar multiplication by $K^{\widehat{\mathbf{G}}}(\mathrm{pt})_{\mathbb{C}}=R(\widehat{\mathbf{G}})_{\mathbb{C}}$ where $R(\widehat{\mathbf{G}})$ denotes the representation ring of the algebraic group $\widehat{\mathbf{G}}$.

The idea of studying various cohomology theories of the flag variety by means of Hecke operators (nowadays called Demazure operators) goes back to earlier work of Demazure [3, 4]. Of course, much of all this extends to reductive groups more general than GL_n .

In this extended abstract we report on the very first steps towards a mod p version of Kazhdan-Lusztig theory which has the aim to understand better the geometry of the modular Hecke algebras which appear in the mod p local Langlands program. We change slightly notation and let from now on $\widehat{\mathbf{G}} = \mathrm{GL}_n(\overline{\mathbb{F}}_p)$ be the mod p Langlands dual group of G and let $\widehat{\mathcal{B}}$ be its flag variety. Let $\mathcal{H}^{(1)}$ be the pro-p Iwahori-Hecke algebra of G, with coefficients in $\overline{\mathbb{F}}_p$ [15]. The center of $\mathcal{H}^{(1)}$ contains a subring $Z^{\circ}(\mathcal{H}^{(1)})$ which is isomorphic to the monoid algebra $\overline{\mathbb{F}}_p[\Lambda^+]$ of the dominant cocharacters Λ^+ of G [12]. In turn, the classical Steinberg isomorphism identifies the monoid algebra $\overline{\mathbb{F}}_p[\Lambda^+]$ with $R(\widehat{\mathbf{G}})_{\overline{\mathbb{F}}_p}$. An element $s \in \widehat{\mathbf{G}}$ is called supersingular, if the associated character $Z^{\circ}(\mathcal{H}^{(1)}) \to \overline{\mathbb{F}}_p$ is supersingular, i.e. sends the noninvertible fundamental dominant cocharacters to zero. An irreducible $\mathcal{H}^{(1)}$ -module is called supersingular, if $Z^{\circ}(\mathcal{H}^{(1)})$ acts via a supersingular character and this notion generalizes to finite length modules [16]. The interest in this notion comes from the mod p Langlands correspondence:

Theorem (Breuil, Colmez, Grosse-Klönne, Vignéras [1, 2, 7, 8, 14]). There is an exact and fully faithful functor from the category of supersingular $\mathcal{H}^{(1)}$ -modules to the category of $\operatorname{Gal}(\bar{F}/F)$ -representations over $\bar{\mathbb{F}}_p$.

Let $\mathbb{T} = T(\mathbb{F}_q)$ be the finite diagonal torus of G and let \mathbb{T}^{\vee} be its set of characters. Let $W_0 \subset W_{\mathrm{aff}} \subset W$ be the finite, affine and Iwahori Weyl group of G respectively. The algebra $\mathcal{H}^{(1)}$ decomposes into finitely many components

$$\mathcal{H}^{(1)} = \prod_{\gamma \in \mathbb{T}^{\vee}/W_0} \mathcal{H}^{\gamma}$$

and, consequently, so does the category of $\mathcal{H}^{(1)}$ -modules. If $|\gamma| = 1$ or $|\gamma| = W_0$, the γ -component is called of Iwahori type or regular respectively. The structure of a general γ -component is a 'mixture' between these two extreme cases.

Let γ be an Iwahori component. Then

$$\mathcal{H}^{\gamma} \simeq \mathcal{H} := \bar{\mathbb{F}}_p[I \setminus G/I]$$

is isomorphic to the Iwahori-Hecke algebra over $\bar{\mathbb{F}}_p$ (which itself is the component associated to the orbit of the trivial character of \mathbb{T}). Fix a set S_0 of simple reflections and a set $S_{\text{aff}} = S_0 \cup \{s_0\}$ of simple affine reflections for W_0 and W_{aff} respectively. The quadratic relations in \mathcal{H} are given by $T_s^2 = -T_s$ for $s \in S_{\text{aff}}$.

Theorem 1. There exists a unique algebra homomorphism

$$\mathscr{A}: \mathcal{H} \longrightarrow \operatorname{End}_{R(\widehat{\mathbf{G}})_{\bar{\mathbb{F}}_p}}(K^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}})_{\bar{\mathbb{F}}_p})$$

such that

- (Demazure operator)
- $\bullet \ \mathscr{A}(T_s) = -D_s \quad \forall s \in S_0$ $\bullet \ \mathscr{A}|_{Z(\mathcal{H})} : Z(\mathcal{H}) \xrightarrow{\sim} R(\widehat{\mathbf{G}})_{\overline{\mathbb{F}}_p}$ (Ollivier-Steinberg isomorphism).

Remark: Note that $K^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}}) = \mathbb{Z}[\Lambda]$ and $K^{\widehat{\mathbf{G}}}(\mathrm{pt}) = \mathbb{Z}[\Lambda]^{W_0}$ as abstract rings. In this setting the Demazure operator is given by

$$D_s(a) = \frac{a - s(a)}{1 - e^{\alpha^{\vee}}}$$

for all $a \in \mathbb{Z}[\Lambda]$ where $s = s_{\alpha}$ with associated simple root α [4].

Given $s \in \widehat{\mathbf{G}}$ we let $\mathcal{H}_s = \mathcal{H} \otimes_{Z(\mathcal{H}),s} \bar{\mathbb{F}}_p$. If s is semisimple, then, by localisation [13], $K^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}})_{\overline{\mathbb{F}}_p} \otimes_{R(\widehat{\mathbf{G}})_{\overline{\mathbb{F}}_p}, s} \overline{\mathbb{F}}_p = K(\widehat{\mathcal{B}}^s)_{\overline{\mathbb{F}}_p}$ where $\widehat{\mathcal{B}}^s \subset \widehat{\mathcal{B}}$ denotes the s-fixed points. Then \mathcal{H}_s acts on $K(\widehat{\mathcal{B}}^s)_{\overline{\mathbb{F}}_p}$. The $\overline{\mathbb{F}}_p$ -dimension of $K(\widehat{\mathcal{B}}^s)_{\overline{\mathbb{F}}_p}$ is at most $|\widehat{\mathcal{B}}^s| = |W_0|$.

Theorem 2. Let $n \leq 3$. Fix a semisimple element $s \in \mathbf{G}$ which is supersingular. All n-dimensional simple supersingular \mathcal{H}_s -modules appear as subquotients of $K(\mathcal{B}^s)_{\bar{\mathbb{F}}_n}$ with multiplicity one.

Let now γ be a regular orbit. Then

$$\mathcal{H}^{\gamma} \simeq \bar{\mathbb{F}}_p^{|\gamma|} \otimes_{\bar{\mathbb{F}}_p}' \mathcal{H}^{\mathrm{nil}}$$

is a certain smash product between the direct product ring $\bar{\mathbb{F}}_p^{|\gamma|}$ and Kostant-Kumar's Nil Hecke ring \mathcal{H}^{nil} with coefficients in $\bar{\mathbb{F}}_p$ [9]. The quadratic relations in \mathcal{H}^{nil} are given by $T_s^2 = 0$ for $s \in S_{\text{aff}}$. Moreover, $Z^{\circ}(\mathcal{H}^{\gamma}) := Z^{\circ}(\mathcal{H}^{(1)}) \cap \mathcal{H}^{\gamma}$ is a proper subring of $Z(\mathcal{H}^{\gamma})$.

We let $\widehat{\mathcal{B}}^{\gamma}$ be the disjoint union of $|\gamma|$ copies of $\widehat{\mathcal{B}}$ and consider its equivariant intersection theory $CH^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}}^{\gamma})$ [5, 6]. It is a module over $S(\widehat{\mathbf{G}}) = CH^{\widehat{\mathbf{G}}}(\mathrm{pt})$ together with an action perm : $W \to W_0 \curvearrowright \widehat{\mathcal{B}}^{\gamma}$ which permutes the factors. Note that

$$CH^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}}) = \operatorname{Sym}(\Lambda)$$
 and $CH^{\widehat{\mathbf{G}}}(\operatorname{pt}) = \operatorname{Sym}(\Lambda)^{W_0}$

as abstract rings and the Demazure operator is given as

$$D_s(a) = \frac{a - s(a)}{\alpha^{\vee}}$$

for all $a \in \operatorname{Sym}(\Lambda)$ where $s = s_{\alpha}$ [3]. On these objects, we finally invert the invariant $\chi_n = \eta_1 \cdots \eta_n$ where the $\eta_i(x) = \operatorname{diag}(1, ..., 1, x, 1, ..., 1)$ (x in position i) are the standard basis elements for Λ .

Theorem 3. There exists a unique algebra homomorphism

$$\mathscr{A}^{\gamma}: \mathcal{H}^{\gamma} \longrightarrow \operatorname{End}_{S(\widehat{\mathbf{G}})[\chi_{n}^{-1}]_{\overline{\mathbb{F}}_{p}}}(CH^{\widehat{\mathbf{G}}}(\widehat{\mathcal{B}}^{\gamma})[\chi_{n}^{-1}]_{\overline{\mathbb{F}}_{p}})$$

such that

- $\mathscr{A}^{\gamma}|_{\mathcal{H}^{\mathrm{nil}}}(T_s) = -D_s \circ \mathrm{perm}(s) \quad \forall s \in S_0$
- $\mathscr{A}^{\gamma}|_{Z^{\circ}(\mathcal{H}^{\gamma})}: Z^{\circ}(\mathcal{H}^{\gamma}) \hookrightarrow S(\widehat{\mathbf{G}})[\chi_{n}^{-1}]_{\mathbb{F}_{p}}.$

Theorem 4. Let $n \leq 3$. Fix a semisimple element $s \in \widehat{\mathbf{G}}$ which is supersingular. All n-dimensional simple supersingular \mathcal{H}_s^{γ} -modules appear as subquotients of $CH(\widehat{\mathcal{B}}^{\gamma,s})[\chi_n^{-1}]_{\overline{\mathbb{F}}_p}$ with multiplicity one.

We believe that these theorems can be generalized to any n and to all γ -components of the pro-p Hecke algebra $\mathcal{H}^{(1)}$. Let $\varphi, v \in \operatorname{Gal}(\bar{F}/F)$ be a Frobenius lift and a monodromy generator respectively. Any tame n-dimensional $\operatorname{Gal}(\bar{F}/F)$ -representation over $\bar{\mathbb{F}}_p$ leads to a couple $(s = \rho(\varphi), t = \rho(v)) \in \hat{\mathbf{G}}^2$ with $sts^{-1} = t^q$. A natural question is then the following: Can one parametrize the supersingular $\mathcal{H}_s^{(1)}$ -modules appearing in the cohomology of $\hat{\mathcal{B}}^s$ via the parameter t? This is work in progress.

References

- [1] C. Breuil, Sur quelques représentations modulaires et p-adiques de $\mathrm{GL}_2(\mathbf{Q}_p)$. I, Compositio Math. 138 (2003), 165-188.
- [2] P. Colmez, Représentations de $GL_2(\mathbf{Q}_p)$ et (ϕ, Γ) -modules, Astérisque **330** (2010), 281–509.
- [3] M. Demazure, Invariants symtriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (19973), 287–301.
- [4] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 4 Vol. 7 No.1 (1974), 53–88.
- [5] D. Edidin and W. Graham, Equivariant Intersection Theory, Invent. Math. 131 (1996), 595-634
- [6] D. Edidin and W. Graham, Localization in equivariant intersection theory and the Bott residue formula, American J. Math. 120(3) (1998), 619–636.
- [7] E. Grosse-Klönne, From pro-p-Iwahori-Hecke modules to (φ, Γ) -modules, I, Duke Math. Journal **165**(8) (2016), 1529-1595.

- [8] E. Grosse-Klönne, Supersingular Hecke modules as Galois representations, Preprint (2018) arXiv:1803.02616.
- [9] B. Kostant and S. Kumar, The Nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Advances. Math. 62(3) (1986), 187–237.
- [10] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153–215.
- [11] G. Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), 337-342.
- [12] R. Ollivier, Compatibility between Satake and Bernstein isomorphisms in characteristic p, Algebra and Number Theory 8(5) (2014), 1071-1111.
- [13] R.W. Thomason, Une formule de Lefschetz en K-théorie équivariante algébrique Duke Math. J. **68**(3) (1992), 447-462.
- [14] M.-F. Vignéras, Representations modulo p of the p-adic group GL(2, F), Compositio Math. **140** (2004), 333–358.
- [15] M.-F. Vignéras, Pro-p-Iwahori Hecke ring and supersingular $\overline{\mathbb{F}}_p$ -representations, Math. Ann. **331** (2005), 523–556 + Erratum.
- [16] M.-F. Vignéras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group III, J. Inst. Math. Jussieu 16(3) (2017), 571–608.