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Abstract

Let p be an odd prime. Let F' be a non-archimedean local field of residue characteristic p,
and let F, be its residue field. Let Hé‘? be the pro-p-Iwahori-Hecke algebra of the p-adic group
GL2(F) with coefficients in Fg, and let Z(H](qu)) be its center. We define a scheme X (q)r,
whose geometric points parametrize the semisimple two-dimensional Galois representations of
Gal(F/F) over F,. Then we construct a morphism from Spec Z(H[&)) to X(q)r, generalizing
the morphism appearing in [PS2] for F' = Q,. In the case F//Q,, we show that the induced
map from Hecke modules to Galois representations, when restricted to supersingular modules,
coincides with Grosse-Klénne’s bijection [GKIS8]. For this, we determine the Lubin-Tate (¢, I')-
modules associated to absolutely irreducible Galois representations.
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Let p be an odd prime and F' a non-archimedean complete local field with ring of integers op and
residue field IF, of characteristic p. Let F' be an algebraic closure of F' and denote by I, its residue

field. Let Gal(F/F) be the absolute Galois group of F. Let H[(Ft) be the pro-p Iwahori-Hecke



algebra of the p-adic group GLa(F') with coefficients in F,, and let Z(’H]g-lq)) be its center. When
F =Q,, we constructed in [PS2] a morphism

Z : Spec Z('Hﬁ)) — X

to the moduli scheme X of semisimple two-dimensional mod p representations of Gal(@p /Qp) in-
troduced by Emerton-Gee in [Em19], with the following property: the push-forward along £ of the

extended mod p spherical module ./\/l%) realizes the semisimple mod p Langlands correspondence
for GL2(Q),) defined by Breuil [Bell].

In the present work, we construct a Lubin-Tate version of the morphism .# for the local field
F, with the property that it induces the correspondence defined by Grosse-Klénne when F/Q),, cf.
[GK1§].

We start by defining a certain two-dimensional F,,-scheme X (¢) depending only on the param-
eter ¢q. Its connected components are families of chains of projective lines, parametrized by the
multiplicative group G, and X (g) coincides with X above when ¢ = p. Our first main result (Thm.
is that the geometric points of X (¢) parametrize the isomorphism classes of semisimple two-
dimensional mod p representations of Gal(F/F) over F,. Writing ¢ = p/, the parametrization
depends on the Lubin-Tate fundamental character wy : Gal(F/F) — F associated with a choice
of uniformizer 7 € op.

To go further, we will denote by GLo the Langlands dual group of GLo over the coefficient
field IF, and by W its Weyl group. Recall the extended Vinberg toric variety VY 5 Al associated

T
with the diagonal torus T C GLy and its special fibre at 0 € A!

%1()) = ’i‘(]Fq) x SingDiagy, o XGyy,.

The geometry of the center Z (’H]&)) is best understood in terms of the mod p pro-p Iwahori-Satake
isomorphism [PS|, Thm.B]

YF(QU : Spec Z(’HE)) —= S(q).

Here, the Satake scheme S(q) := V%lg) /W is the quotient of V%l())modulo its natural W-action. We
show that there is a completely natural quotient morphism of Fq—schemes

L:S(q) — X(g)r

q

to the base change X (q)r, of X(¢) (Thm. . Its construction is elementary algebraic geometry
and does not make use of the Galois parametrization of X(g). For example, on generic (regular)
connected components of S(g), the morphism L is just the toric construction of the projective line
(times G,,). In a second step, we precompose the morphism L with the isomorphism YF(ql) to
obtain a morphism

& : Spec Z(’H]&)) — X(q)r, -

It gives back the morphism .Z appearing in [PS2] when F = Q,. In general, the morphism ¥
satisfies several compatibilities, e.g. with regard to twist by characters or Serre weights, which we
discuss in sections 8 and 9.

Next, recall the extended mod p spherical module M%l) from [PS| 7.4.1]. It is a distinguished

H%l)—action on the maximal commutative subring A]%l) of 7-[%1) and a mod p analogue (plus extension
q q q

to the pro-p Iwahori level) of the classical spherical module appearing in complex Kazhdan-Lusztig
theory [KL87, 3.9]. The quasi-coherent module (associated to) M%l) over SpecZ ("H%)), when

specialized at the closed points of Spec Z ('H%l)), can be used to obtain a parametrization of all
q



irreducible ’H%l)—modules [PS| 7.4.9/7.4.15]. Combined with the morphism £, we get a correspon-

q
dence parametrized by closed points

z € Max Z(”H%l))

(ME )= P2 (=)

between the ’H%)—modules (M%l))z and the semisimple Galois representations pg () : Gal(F/F) —
GLy(F,). When F/Q,, we show that the singular locus of this correspondence is 1-1 between

supersingular irreducible H%l)—modules and irreducible Galois representations; more precisely, we
q
show that it agrees with the bijection established by Grosse-Klonne [GKI18] in the case of GLy(F)

(Thm. B.9).

The construction in [GK18|] goes through mod p Lubin-Tate (p,I")-modules and their relation
[KR09, [Sch17] to mod p representations of Gal(F/F). So for our comparison with [GK18], it is
necessary to classify the Lubin-Tate (¢, I')-modules corresponding to the absolutely irreducible
mod p representations of Gal(F/F). In the cyclotomic case F' = Q,, this is a result of Berger
[BelO]. We adapt Berger’s proof to the Lubin-Tate setting. As in his case, there is no point in
restricting to two-dimensional modules and we obtain our classification in any dimension (Thm.
10.7)).

We recall some background on Lubin-Tate (p,I')-modules in an appendix.

Notation: We keep the notation from the introduction. Let p > 2 be an odd prime. F' denotes
a non-archimedean complete local field with ring of integers op and residue field of characteristic p
and cardinal ¢ = p/. We fix an algebraic closure F'/F, denote by Fq /Fq its residue field extension,
and by Fgn C Fq the unique subextension of cardinality ¢", for each n > 1.

For n > 1, we will denote by GL,, the reductive group scheme of invertible n x n-matrices over
F', and use the same notation for its canonical model over or and its special fiber over F,. We will
denote by GLy, the Langlands dual group of GL,, over the coefficient field F,, and use the same
notation for its base change to ﬁq.

All Galois representations are supposed to be continuous.

The second author thanks Laurent Berger for answering some questions on (g, I')-modules.

2 Some reminders on mod p Galois representations

We recall some facts and fix some notation on mod p Galois representations.

2.1. Let m € op be a uniformizer. For any integer n > 1, let 7,y € F be an element such that

77;{}_1 = —m. We then have Serre’s fundamental character of level n f

wny : Gal(F/F,) — Fy.

given by g — 9mng) pign—1(F) followed by reduction mod =, cf. [Se72]. One has

Tn f
g™ -1
w5 = wrlgaF/F)-
Let I(F/F) C Gal(F/F) be the inertia subgroup and let I(F/F)! be its tame quotient. Choose
an element ¢ € Gal(F/F) lifting the Frobenius z ~— x7 on Gal(F,/F,). Since wy : I(F/F) — F*
is surjective [Se72, Prop. 2], we may and will assume wy(¢) = 1. Note that the restriction

way : I(F/F) — F,

of the character wy s to I(F/F) is canonical, since we defined F, as the residue field of F' and F.
as its unique subfield of cardinality ¢".



2.2. We normalize local class field theory F* — Gal(F/F)®® by sending 7 to the geometric
Frobenius ¢~!. In this way, we identify the smooth qu -valued characters of Gal(F/F) and of
F*. This restricts to a bijection between smooth characters of the inertia subgroup I(F/F) and

of Fy. For example, the fundamental character wy : F'* — qu is the extension of the inclusion
w:Fy < qu to F'* satisfying wy(m) = 1.

2.3. Let FF C F,, C F be the unique unramified extension of degree n over F'. A smooth character
X : Gal(F/F,) — qu is regular if its Gal(F,/F)- conjugates x, x?, o x?" " are all distinct. The
irreducible smooth F,-representations of Gal(F/F) of dimension n are given by the representations
. 1Gal(F/F)
mdc;al(f/Fn)( )

1

smoothly induced from the regular F,-characters y of Gal(F/F,). The conjugates x, x%, ..., x?
of x induce isomorphic representations and there are no other isomorphisms between the represen-
tations [V94] 1.14], [V04] 5.1].

n—1
2.4. A character wﬁf for 1 < h < ¢™ — 2 is regular if and only if its conjugates wﬁf,wff}, s Wi h

are all distinct. Equivalently, if and only if h is g-primitive, that is, there is no d < n such that h
Gal(F/F)

. . n __ d _ . .
is a multiple of (¢™ — 1)/(¢* — 1). The representation deal(?/Fn)

(w;‘f) is then defined over Fyn.

It has a basis {vo,...,un_1} of eigenvectors for the characters wa,wZ}}, ...,wf;}_lh of Gal(F/F,)
such that ¢(v;) = v;—1 and ¢(vg) = v,—1. In particular, its determinant coincides with wj} on the
subgroup Gal(F/F,) and takes ¢ to (—1)"1.

2.5. For A € Ej, let p or unr(\) be the unramified character of Gal(F/F) sending ¢! to \. Fix
§ with 6" = (—1)"~1. The representation

. . Gal(F/F
ind(w)) = (indg @7 (Why)) © ps

is then uniquely determined by the two conditions

: h h : h h h "th
detind(wyy) =wy and ind(wps)l;F/p) =wny Swp; & Bwl, "

2.6. Let F, C k C F, be an intermediate extension of F,. Every absolutely irreducible smooth
k-representation of Gal(F/F) of dimension n is isomorphic to ind(w}i;) ® py for a g-primitive

1<h<q"—2and ascalar \ € E]X such that A" € k* and one has
ind(wﬁf) ® py = ind(wzf) ® py

if and only if Gal(Fn/F).wa = Gal(Fn/F).wzf and A" = A",

"1

Since w,’ ' = wy, every irreducible representation of Gal(F/F) of dimension n is therefore

isomorphic to ind(wﬁf)@)w;,u,\ for a g-primitive 1 < h < q;__ll —1, ascalar A € F;, and 0 < s < g—2.

2.7. Let n = 2. Since q:__ll — 1= ¢ and ind(wyy) ~ ind(wgf), every irreducible representation of

Gal(F/F) of dimension 2 is isomorphic to ind(wgf) ®@wipy for a g-primitive 1 <h < g—1, a scalar
)\EF: and 0 < s<q—2.

3 The g-parametrization of two-dimensional inertial types

A tame (two-dimensional) mod p inertial type is (the isomorphism class of) a continuous homo-
morphism

: I(F/F)" - GL2(F,),
which extends to a representation of Gal(F/F). A tame mod p inertial type is semi-simple as a
representation of I(F/F)!, so we can write 7 = x1 @ 2. In the terminology of [H09, sec.11], 7 is
of miveau 1 if ™' =1 for i = 1,2 and of niveau 2 otherwise.



3.1 The basic even case

We will give a parametrization of the tame mod p inertial types with determinant wy.

3.1.1. For r € {0,2,...,q —5,q — 3}, set s(r) := —5 € {0,—1,..., —q;25, —‘1;—3}. Then consider
the table with two columns:
(0,0) | (¢—3,1)
(2,-1) | (¢—5,2)
() | (a=3-rslr) br )
(q_57_%) | (2a q%l)
(Q*B,*%) | (07%)

3.1.2. To each pair (r,s(r)), we attach the type of niveau 1 with determinant wy

Wwittoo s(r) Wi 0 s(r)+r+1
Tz:( 0 1)®“’f ~\ T 1) B :

According to the above table, this gives qg—l types of niveau 1.
To each pair (r, s(r)), we may also attach a type of niveau 2 with determinant wy, namely

r+1 q—r
w2f 0 s(r) Woy 0 s(r—2)+r—1
T = r ® w ~ _r X w .
( 0 wiyt ) f 0wl f
According to the above table, this gives %1 +1= %1 types of niveau 2. As in the case of F' = Q,

[PS2], 3.3], one shows that all types with determinant wy are obtained in this way.

3.2 The basic odd case
We will give a parametrization of the tame mod p inertial types with determinant 1.

3.2.1. Forr e {—1,1,...,q—4,q—2}, set s(r) := —T;r—l e {0,-1,..., —%, —%}. Then consider
the table with two columns:

(1_, 1 | g—4,1

(ns(r) | (@-3—rs@)+r+1)
(q—4,-53) | (1,552
(¢-2,-51) | (-1, 55,

3.2.2. To each pair (r, s(r)), we attach the type of niveau 1 with determinant 1
r+1 q—2—r
- w 0 stry [ w 0 s(r)+r+1
T.-( JE) 1>®wf _< f() 1>®wf .

According to the above table, this gives % types of niveau 1.

To each pair (r, s(r)), we may also attach a type of niveau 2 with determinant 1, namely
r+1 q—r
[ w 0 sty [ war 0 s(r—2)4r—1
T .= ( O wg;r-}-l) ) (9 (Uf ~ 0 wg;q_r) X wf .

According to the above table, this gives %1 types of niveau 2. As in the case of F' = Q, [PS2]
3.3], one shows that all types with determinant 1 are obtained in this way.



3.3 The general case

3.3.1. Let
NqZ:{O,L"',q_Q} and Dq;:l—l—Nq:{L...,q—l}.

It splits into
N, = E, H O,
where
Ey:={2m}, o resp.  Og={2m+1}, _, o

2

is the subset of even resp. odd numbers, which both have cardinality (¢ — 1)/2. For each n € N,
let d, :=1+4+n € D,.

3.3.2. Lemma. Let n € N,. The number of tame types of niveau 1 with determinant w}l” 18
R
L ifn e O,

In particular, the total number of tame types of niveau 1 is qu_q

Proof. The first part follows from the niveau 1 part of the basic even case (if n even) or basic odd
case (if n odd) by twisting with powers of wy. The second part follows from this, since

q—1 q+1_q—1(q—1 q+1):q2—q

E (@) =

3.3.3. Lemma. Let n € N,. The number of tame types of niveau 2 with determinant w‘;" s

%1 ifn € Ey
L ifn e O,

&S}

In particular, the total number of tame types of niveau 2 is ‘fz;q.
Proof. The first part follows from the niveau 2 part of the basic even case (if n even) or basic odd
case (if n odd) by twisting with powers of w;. The second part follows from this, since

q—l(q+1 q—l):(f—q

2 2 2 2

q+1 q—1
E,|— + |0 =
1,15+ 1041%5

4 The ¢-scheme of semisimple Galois representations

The following is inspired by the work of Emerton-Gee in the case F' = Q,, [Em19].

4.1. The projective line. Let
P! := Proj(F,[z,y])

be the projective line over F,. It is the gluing of the two affine lines
A}, := Spec(Fp[z]) C P' D A, := Spec(F,[y])

along the open Spec(F,[z*1]) = Spec(F,[yT]). The closed complement of Al is the point at infinity
00 :=[1:0] € Ay(F,) and the closed complement of A} is the origin 0:= [0 :1] € A}(F,):

P' = A, U{oc} = {0} UA].

There is a natural G,,-action on P by "scaling”, given by (a, z) := az for a € G,,, and z € Al.
The space of orbits P!/G,, has three elements, the two closed orbits {0,000} and the open orbit
P\ {0,00}. The action depends on the choice of the affine coordinate x, but P*/G,,, does not.



4.2. The chains of P'’s. Let | € N>;. For each i € {0,...,1 — 1}, set C; := Proj(F,[z;, y:]), a
copy of the projective line. Then let

cy=colla]] - []c-—-=]Tc-

be the disjoint union of these { copies of P!. Finally let

c() ::COoncl OOU0~-~OOU0 Cl—2ooUO Ci—1

be the Fp-scheme obtained by identifying the point at infinity of C; with the origin of C;y; for all ¢
from 0 to I — 2, a chain of length [ of copies of the projective line. In particular, it is a curve over
F,, with [ irreducible components and [ — 1 singularities which are ordinary simple nodes, and the
canonical morphism

C(l) — C(l)
is its normalization.

4.3. The even and the odd g-chains. We call

q—1
(i =
(=)
the even q-chain. There is a natural G,,-action on C(q;Ql) induced by the scaling action on each
component C; and we denote by C(45%)/G,, = U,_, s Ci/G,, its space of G,,-orbits.
We call
at1

6(2

)

the odd q-chain. There is a natural G,,-action on each ”interior” component C; for 0 < i < 1.
On the smooth part of the two ”exterior” components AL C Cy and A}J C Cgq-1, we pretend’| to
2

have a "modified action” via the parametrization G,, — A', ¢+ t +¢~1. In other words, we define
the space Cy/G,, to consist of two elements, the point co and its open complement. Similarly,
we define the space C a1 /G, to consist of two elements, the origin 0 and its open complement.

Finally, we let C(Z)/G,, = Uio,... 5t Ci/Gm.
4.4. Connected components. For each n € N, and d,, = 1+ n € D, we define the F,-scheme

(G xG, ifneE,
Xd"(q)'_{C( Y x Gy, ifn €0,

We define an action of the torus T := G,, X G,, on Xa, (q) as follows. Firstly, it acts on the factor
C (ﬂ;) by the first projection T — G, followed by the G,,-action described above. Secondly, it

acts on the factor G,, by the product T = Gm % G — Gy, followed by the Gy,-action on itself
by multiplication. We let X4 (q)/T denote the set of T-orbits.

—+o

2

4.4.1. Definition. We define the g-scheme of semisimple two-dimensional mod p Galois repre-
sentations to be the scheme over I,

X(g) == [ Xa.(0)-

neN,

The T-action on each connected component Xa, (q) induces a T-action on X(q). We let X(q)/’f‘
denote the set of T-orbits on X(q).

The terminology for X (g) will become clear in the next subsection.

1Let Gy, act on itself by multiplication. There is no G.,-action on Al making the map t — t 4+t~ equivariant.



Remark. The action of T on X(q) extends to an action of G (Fy) x T as follows. Fix once
and for all a generator ¢ of F;; then the action of the element (" € G, (F,) is given by the family
of isomorphisms

Vme Nq, Id: de (q) = de1+2'n,(q)

(here we take the representative of m + 2n modulo (¢ — 1) in N,).

In particular, restricting the T-action along the diagonal embedding G,, — G,, x G,, = ’T,
we get an action of G, (F,) x G,,, on X(q); we will refer to the latter G,,(F,) x G,,-action as the
twisting action on X(q).

4.4.2. Let D(q) be the finite constant Fy-scheme such that D(q)(F,) = D,. The scheme X(q) is
canonically fibered over D(q):

d(q) : X(q) — D(q) with d(¢)""(d,) = X, (q) for all d,, € D,.
It also admits a canonical projection pry to G,,, whence a canonical morphism
d(q) X pry : X(q) — D(q) x Gy,
From now on, we drop the (¢) from the notation, so we write X instead of X (¢) and so on.

4.5. The ¢-Galois parametrization. Recall that we have fixed an arithmetic Frobenius ¢ €
Gal(F/F). In the preceding subsection we have defined a certain Fj-scheme X. The aim of the
present subsection is to establish the following theorem.

4.5.1. Theorem. There is a canonical (up to a sign) bijection
Ly : X(Fy) = {semisimple p : Gal(F/F) — GL2(Fy)}/ ~ .
More precisely, for each n € N, and z2 € G,,(F,), there is a canonical (up to a sign) bijection:
Lonlpry =z ¢ Xd,|pry=2s (Fq) = {semisimple p : Gal(F/F) — GL2(F,) | det(p) = o.)jf” unr(zg) }/ ~ .

The proof proceeds along the lines of the case F' = Q, [EmI9], cf. also [PS2], by assigning
to the geometric standard coordinates (z,y), z2 on each Jirreducible component P! x G,, of X an
isomorphism class of semisimple representations p : Gal(F/F) — GLa(F,).

4.5.2. The basic even case. Let us consider the case where
n=0€Fk, ile. d,=1€D,;, and 2z =1¢€G,,.

Then
Xdolpr2:1 =Co ooUO Cy ooUO"‘ooU() qu;5 OOUO CqT—s X {1}

Fori € {0,1,..., q;zs’ "%3}, set r := 2i. Then r € {0,2,...,¢—5,q— 3}, and we rewrite the above
chain as

Xd0|pr2:1 :CO ooUO CQOOUO"'OOUO qusooUOqug X {1}

Next, for 7 € {0,2,...,q —5,q — 3}, set s(r) :== =5 € {0,—1,..., —"2;57 —%}. Then reconsider
the table from [B.1k

0,0 | (¢ 3.1)
2,-1) | (4 5.2)
(rns(r) | (@-3—rs(r)+r+1)

(¢-5-52) | (2,552

(¢-3.-%2) | (0, %54



It gives a rule to attach an isomorphism class of representations p to a point of [z : 1] =[1: y] €
P\ {0,00} = C"\ {0,00}: one takes

. unr(a:)w;"'1 0 s(r) unr(y)w;{_Q_r 0 s(r)+r+1
p= ( 0 unr(z 1) Dwp = 0 unr(y ') B .

Moreover, one takes
pi= ind(wg}H) ® w;(r)

at the origin 0, and

pi= ind(wg;27r) ® w;(r)+7'+1 o~ ind(w;j{g) ® w;(r+2)

at the point co. We have thus a well-defined map
L0l pry=1 * Xdo|pr,=1(Fq) — {semisimple continuous p : Gal(F//F) — GL3(F,) | det(p) =ws}/ ~ .

By its very construction, it is compatible with the parametrization of mod p tame inertial types
in the basic even case, cf.

4.5.3. Lemma. Let ’T‘SLZ C T be the anti-diagonal embedding G,, — G,, X G,,,. The subscheme
Xd0|pr2:1 C Xg, is stable under the action of TsL,, and the map L%0|pr2:1 induces bijections

open orbits in Xdolpr2:1/TSL2 ~ {types T of niveau 1 | det T = wy}

closed orbits in X, \pr2:1/TSL2 ~ {types 7 of niveau 2 | det T = wf}.
Proof. This follows from the case n = 0 in [3.3.2 and [3:3.3] O
4.5.4. Corollary. The map L¢70|pr2:1 s a bijection.

4.5.5. The basic odd case. Let us consider the case where
n=q—2€0, ie.d,=q—-1€D,;, and 23 =1€G,,.

Then
X, _slpr,=1 = Co 0o [ J0 Croo [ o 00 [ Jo Cos | Jo Coza x {1}.

For i € {0,17...,%7‘1;21}7 set r:=2i — 1. Thenr € {-1,1,...,9 —4,q — 2}, and we rewrite the
above chain as

X, slpr,=1 =C7* ooUO c! ooUO"'ooUO cit ooU() CI% x {1}.

Next, forr € {-1,1,...,q—4,q—2}, set s(r) := —Tg—l e{0,-1,..., —%, —q%l}. Then reconsider
the table from 3.2

(—1,0) | (g —2,0)
(1,-1) | (g—4,1)
(rs(r) | (g=3—rs(r)+r+1)
(a—4,-55%) | (1, 552
(¢—2,-5%) | (-1, 54).

For r ¢ {—1,q — 2}, it gives a rule to attach an isomorphism class of representations p to a point
of [x:1]=1[1:y] € P\ {0,00} =C"\ {0,00}: one takes

. unldal:)(u}"'1 0 s(r) unr(y)w;{_Q_T 0 s(r)+r+1
pe= ( 0 unr(z 1) Bwp = 0 unr(y~1) ©uwy '



Moreover, one takes
— +1 s(r)
p=ind(wy; ) @ wy
at the origin 0, and
p = ind(wg;Q_T) ® w;(r)ﬂﬂ ~ ind(wg}'s) ® w;(r+2)
at the point co. For r € {—1,¢ — 2}, one uses the surjection

G, — Al

2 — ti=z4271

and attach to t € Al =C~1\ {oo}, resp. t € Al =972\ {0}):

_ unr(z) 0 azt (unr(z7h) 0 a1
= ( 0 unr(z~1) ) Buwp™ = ( 0 unr(z) Buwp” -

We have thus a well-defined map

resp.

Lorg—2|pr,=1 © Xd,_s|pr,=1(Fq) — {semisimple continuous p : Gal(F/F) — GL2(F,) | detp =1}/ ~.

By its very construction, it is compatible with the parametrization of mod p tame inertial types
in the basic odd case, cf.

4.5.6. Lemma. The subscheme qu_2|pr2:1 C Xq,_, is stable under the action of ’i‘SL2 - ’T‘,
and the map L, q—2|pr,=1 induces bijections

open orbits in qufz\prfl/'i‘s[,z ~ {types T of niveau 1 | det 7 =1}
closed orbits in qu,2|pr2:1/'/st2 ~ {types T of niveau 2 | det T = 1}.
Proof. This follows from the case n = ¢ — 2 in [3.3.2) and [3:3.3] O
4.5.7. Corollary. The map L¢7q_2‘pr2=1 is a bijection.
4.5.8. The general case. Let
ne N, = EqHOq ie. d, € D,y and 2z € G,,(F,).

Choose a square root /z3 of z5. This choice is responsable to the addendum up to a sign in the
statement of the theorem 5.1l Set

dp—1
w, ? ifneE
7 := unr(y/z2) f s 4
Wy if n € Oy.
Then there is obviously a unique (bijective) map
X, |pry=2 F,) = {semisimple p:Gal(F/F) — GL2(F,) | detp= w?" unr(ZQ)}/ ~

such that the bijections

(Cna \/5) : Xdo‘P%:l(Fq) — an|P1"2:ZQ (Fq) ifn e Eq

and B
(Cna \/5) : qufz|pr2:1(Fq) — Xa,

given by the twisting action of (¢",/22) € G, (Fy) X G,,, on X (q) (Remark after 4.4.1)) correspond
on the Galois side to twisting by the character 7. This ends the proof of the theorem [4.5.1

pro=2(Fq) ifn €0,
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As a corollary of the proof, we obtain

4.5.9. Corollary. The map ¢, induces a bijection
X/T ~ {tame inertial types 7 : I(F/F) — GL2(F,)}.
Under this bijection open and closed orbits correspond to types of niveau 1 and 2 respectively.

4.5.10. Twisting. The Galois parametrization in theorem is compatible with twisting in
the following sense. Recall the twisting action of G,,(Fq) x G,, on X, depending on our fixed
generator ¢ of F¢, cf. Remark after The group G, (F,) x Gy, is naturally isomorphic to the
group of Galois characters via (¢",z) — wf} unr(z). Let

Rz, = {semisimple p : Gal(F/F) — GLa(F,) | det(p) = w?m unr(z2) }/ ~
be the set appearing on the right hand-side of theorem Suppose m € E; and let 7 :=

Ay —1
L N s . . N
unr(y/zz)w; be a ”choice of sign” inducing the Galois parametrization
bpmlpry=za * Xd lpry=z0 = Rom,z,-

Let an arbitrary Galois character y := wf unr(z) be given.
dmyon 1
It leads to the sign choice ' := unr(y/z2 - 2)w, * and the Galois parametrization

ch,m+2n|pr2=2222 : de+2n,|pr2=z2z2 = Rm+2n72222-

The two Galois parametrizations make the left-hand side and the back-side of the following half
cube

Xdo |pr2:1 de |prQZZ2

Xq

m-+2n ‘pr2222 22

Rm+2n,z2z2

commutative. The top of the half cube is commutative, by associativity of the G,, (F,) X G,,-action:

(CZn’Z\/g) = (Cnvz) © (Cnv \/g)

The bottom of the half cube is commutative, since ' = n - x. It follows that the right-hand side
(written in blue) is commutative as well. This means that the action of (¢", z) € G,,,(IF,) X G, on
Xd,, lpr,==, corresponds to twisting by the corresponding Galois character x = W unr(z) on the
corresponding set of Galois representations R, .,. The case m € Oy is similar.

5 The g-scheme of Satake parameters

We recall some notions and results from [PS]. In the following, all schemes and fiber products are
over SpeclF;. Let W be the Weyl group of GLz and w its nontrivial element.

5.1. Let T be the torus of invertible diagonal 2 x 2 matrices. We consider the scheme

VT,O := SingDiag, 5 X Gy,

where SingDiag, ., represents the semigroup of singular diagonal 2 x 2-matrices [PS| 7.1]. Consider
the extended semigroup

N A
Vil == T(Fy) x V-

It carries a natural W-action: the natural action of W on the factors T‘(Fq) and SingDiag,, , and
the trivial one on G,,.
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5.2. Definition. We define the scheme of mod p Satake parameters for GLgy to be the scheme
over Fg

— 1M
S(a) = VW,
5.3. The scheme S(q) is canonically fibered over the finite constant Fy-scheme 'f‘(]Fq) JW:
70 : S(q) — T(F,)/W.

The fibers of my are the connected components of S(q). The irreducible components of S(g) can be

labelled by the elements of ’i‘(]P‘q). This depends on a choice of order (t1,t2) on every regular orbit

{t1 # t2} in T(Fq)/W: the order induces an isomorphism 7, ! ({t,%2}) =~ Vao= (AL UgAl) x Gy,

and we can label the image of A} x G, (resp. of A} x G,) in 75 "({t1,t2}) by t1 (resp. to).
Composing with the determinant map T(F,)/W — G,,(F,) gives a morphism

S(q) — T(Fy)/W — G (F,).

5.4. The scheme S(gq) also admits the canonical projection pry : S(q) — G,,. Whence finally a
composed morphism

S(q) — T(Fy)/W X Gy — Gy (Fy) X Gy,

From now on, we drop the (¢q) from the notation, i.e. we will write S instead of S(¢) and so on.

6 The F,-morphism L from Satake to Galois

The aim of the present section is to establish the following theorem. Let Xy, be the base change
to F, of the F)-scheme X = X (q) of semisimple two-dimensional Galois representations, cf.

6.1. The G,,(F,) x T-action. Recall our choice of generator ¢ of the group Fy. According to

the remark after definition , there is a natural action of the group G,,(F,) x T on the scheme
X. This action extends linearly to Xr,. On the other hand, also the IF,-scheme S comes equipped

with a natural G,,(F,) x T-action. Explicitly, it is given as follows. Write
1 ~ . .
S = Vf(yg/w — (T(F,) x SingDiagy» xG,,)/W.

Let (n,z1,22) € Ny x Gy, X Gyp,. The element (" € G,,,(Fy) acts only via the factor r/I\‘(IF‘q), by
multiplication by diag(¢™, (™). The element (z1,23) € G,, x Gy, acts trivially on ’T(]Fq), and by
multiplication by (diag(z1, 22), 2122) on SingDiag,, XG This defines a G,,(Fy) x T-action
on V%l()] The action of G,,(F,) x {1} passes directly to the quotient S. As recalled above, the
decomposition of .S into connected components is given as

S= J] (v xSingDiagy.s xGp)/W.
vET(Fq)/W

If ~ is regular (i.e. consists of two elements), the T-action passes directly to the quotient (v x
SingDiagy 5 XGy,)/W ~ Vi . In the non-regular case, we actually take the induced action of ™
on (7y x SingDiagyy 5 XGyy, ) /W ~ Vg /W. This defines the G, (IF,) x T-action on S - actually only
a ”partial action” in the regular case.

As for the twisting action on Xr_, the G,,(F,) x T-action on S restricts to a G, () x G,,,-action

along the diagonal G,, — 'i‘, which will be referred to as the twisting action on S.

2We recall that the canonical inclusion of the torus T = Gy X Gy, inside the monoid V4 = Diagyyo XGry is
given by the map (z1, 22) — (diag(z1, 22), z122).
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6.2. Theorem. There is a quotient morphism of F,-schemes
L:S5— XIE‘q

which gives back the morphism L appearing in [PS2] in the case F = Q,. The morphism L is
Gm (Fq) x T-equivariant; in particular, it intertwines the twisting actions of G, (Fy) X Gy,

As in [PS2], the morphism is a quotient morphism, locally given by the toric construction of the
projective line (except on the two exterior components in the odd case, see below). Its construction
goes along the lines of [PS2].

For each (n,22) € Ny x G, we have the fibre Si¢n .,y of S at ((", 22) € Gy (Fy) X Gy, and the
fiber X (4, .,) of Xr, at (dy,22) € Dy X G,,. We will have a morphism

L(n’ZQ) : S(C?L1Z2) — X(dn,22)7
which will be {1} x '/I\‘SL2—equivariant. The full morphism L will be obtained by twisting, and
consequently will be equivariant with respect to the full G,,(F,) x T-actions.

6.3. The ordering on the irreducible components of S. Let (n,z;) € Ny x Gp,. Let
x,y resp. 21 be the canonical standard coordinates resp. Steinberg coordinate on each regular
resp. non-regular connected component of S(¢n .,). According to [PS, 7.5.6], we have the following
description of Si¢n ).

Suppose n is even, i.e. n € E;. Then Sn .,) is the disjoint union

AL TT Avuody TT-- T Ak wo Ay TT AL x {22}

indexed by the fibre of T(Fq) /W = G, (Fy) in ¢™. The irreducible components of Sien .,y can be
labelled by the sequence of ordered pairs of elements of 'f(IB‘q)

t; - diag(¢*, ¢%), " - diag(¢”, ¢*)

where n = 2s and t; := diag(¢?, (™) (and t¥ its w-conjugate) for i = 0, ..., qg—l. Choose a square

root /z2. The twisting action of the element (¢, \/z2) € G, (Fq) X Gy, gives an isomorphism

(C*,v/z2) : S(co,1) — S(¢en )
which preserves the ordering.

Suppose n is odd, i.e. n € Oy. Then Sien .,y is the disjoint union

AU Ay TT-- TT A wo A x {22}

indexed by the fibre of 'i‘(IFq)/W — Gy (Fy) in ¢". The irreducible components of S .,) can be
labelled by the sequence of ordered pairs of elements of ’i‘(IFq)

t; - diag(¢®,¢%), ¥ - diag(¢®, %)

where n = 2s — 1 and ¢; := diag(¢*~ 1"z, ¢~ %) (and t¥ is its w-conjugate) for i = 1, ..., 5L,

2
The twisting action of the element ((*, /22) € G, (Fy) X Gy, gives an isomorphism

(€%, v/z2)  S(am2,1) = Siern )
which preserves the ordering.

6.3.1. The morphism L in the even case. Let n € E;. We restrict first to the case n = 0 and
zo = 1. We have by definition

X(do,1) = CoF, ooUO Cir, OOUO"'OOUO C%f’,mq OOUU Cq%s,mq x {1}.
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Let Q; be the origin 0 on C;, for i € {0,1,..., q;25, %3} and let Q-1 be the point 0o on Cy_s y .
2 5

On the other hand, let P; be the origin on the i-th connected component of S(¢o 1) fori =0, ...,
We map the sequence of points P; to the sequence of points @;, i.e. we define

qg—1
5 -

Lo,y (FP;) == Q-

Next, suppose 0 < @ < q;zl and consider the i-th connected component Al Uy A}J of So,1y. Then
L(071)(Pi) =Q; € Cifl,]Fq N Ci,]Fq~ We define

Lo,1y(0,y) :=[1:yl €Ci-1r, and L 1)(,0) := [z :1] € C;,.

Finally, if ¢ = 0 resp. i = % we call the Steinberg variable z; simply x resp. y and put

Ly(w) :=[x:1] € Cor, resp. L1)(y) :=[1:y] € CqT_sJFq.
We have defined a quotient morphism of Fy-schemes
L(O,l) : S(CO’I) — X(d(),l)

which, locally, is the toric construction of the projective line: it identifies the open subset G,, in
the ”first” irreducible component A® of a connected component of S(co,1) with the open subset
G, in the ”second” irreducible component A! of the "next” connected component via the map
z + z~1, thus forming a P!. The morphism Lo,1) is Tsp,-equivariant. Indeed, in the regular case,
let t = diag(a,a™!) € ’i‘SL2 and P a point on the i-th connected component Al Uy A; of S(¢o1)-
Since t fixes P; and its image Q;, we may assume P # P;. If P = (0,y), then by definition of the
G,n-action on P!, cf.

L,1)(t.P) = L(Oyl)(O,a_ly) =11: a_ly] =a.[l:y] = pry(t). L) (P) = t.Lo,1)(P).

The calculation in the case P = (z,0) is similar. Finally, in the non-regular case, an element
t = diag(+1,+£1) € 'T‘SL2 NTY acts by multiplication by £1 on the Steinberg variable z1, hence
compatibly with its action in Xp, .
Let now n = 2s € E, and 22 € G,, be general. The action of (¢*,/22) € G, (Fq) x Gy, gives
the isomorphism
(¢*V72) : X(do,1) — X(dp,20)-

We define L4, .,) = (¢%,v/22) © L) © (¢, V7z2)" ' It is well-defined, i.e. independent of the

~

choice of square root /2. Since L(g,1) is Tsr,-equivariant, so is Lqg,, .,)-

6.3.2. The morphism L in the odd case. Let n € O,. We restrict first to the case n = ¢ — 2
and zo = 1. We have by definition

X(dy—21) =CoF, oo Uo CiF, o Uo oo Uo Cosp, oo Uo Coap, x{1}.

Moreover, on Cor, we write ¢ for the variable x (so that the double point is at ¢ = oo) and on
C a1 p, We write t for the variable y (so that the double point is at ¢t = oo, again).

Now let @; be the origin 0 on C;p, for i € {1,2,..., %2, %1}, On the other hand, let P; be
the origin on the i-th connected component of S(¢q-2 1) for i =1,.., %1. We map the sequence of
points P; to the sequence of points Q;, i.e. we define

Lig—21)(F;) = Q.
Next consider the i-th connected component A} Uy A} of Sca-21). Then L,_21)(P) = Q; €
Cz’—l,IFq n C@[[rq. We define

. o, a1
Lig2(0.y) = [1:y) € Cimvp, (fi#1)  and L on(@,0):=[o:1] € Cir, (ifi # T—).
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Finally, if ¢ = 1 resp. 7 = % we call ¢ the standard variable y resp. x on the i-th connected
component of S(cq—2,1) and put

Lig-2,1)(0,8) =t +t7" € Cop, TesD. L(g—o1)(t,0) =t +17" € Cozr .
We have defined a quotient morphism of Fy-schemes
Lig—2,1) * Sca-2,1) = X(d—2,1)

which, locally, is the toric construction of the projective line, except on the two ”outer” irreducible
components A of S(¢q—2 1), where it is the covering A — P*, ¢ — t +¢~'. The morphism L(,_s 1)

is Tsp,-equivariant. Indeed, for the interior components, the computation is the same as for L g 1),
and for the exterior ones, we precisely used the parametrization t — ¢ + ¢~ ! to define "an action

of G,,” on X(qg,_,1) (cf. .
Let now n = 2s — 1 € Oy and 22 € G, be general. The action of (¢*,/z2) € Gy, (Fy) X Gy

gives the isomorphism

(C°V72) : X(dy_n) — X(dp,22)-
We define L4, .,y := (¢°,y/Z2) © Lg—2,1) © (¢*, V72)"*. It is well-defined, i.e. independent of the
choice of square root ,/z2, and '/I\‘SLz—equivariant.

7 The F,-morphism . from Hecke to Galois

7.1. We identify W with the subgroup of GLy(F) generated by the matrix s = ( (1) (1) ) .

We let I C GLy(F) be the standard Iwahori subgroup of GLy(F') consisting of integral matrices
which are upper triangular mod p. Let I(Y) C I be its p-Sylow subgroup, i.e. matrices which are
upper unipotent mod p. Let ’H]%lq) be the pro-p Iwahori-Hecke algebra of the group GLy(F') with
coefficients in F,, i.e. the convolution algebra over F, generated by the I (W-double cosets in
GL2(F). If g € GLo(F'), we denote by T, € ”H[(F? the element corresponding to the double coset
IMgrM | Let Z(’H]%lq)) be the center of the algebra Hélq). The algebra H]g-i) decomposes into a
product of algebras H]}q indexed by the elements v € TV /Wy, cf. [V04, 3.1]. For simplicity, we
denote the image of T} in a direct factor H%q by the same letter.

Set T := T'(F,), and denote by TV its group of characters. The group W acts naturally on T
and TV, and the connected components of the scheme Spec(Z (HI(F?)) are canonically indexed by

1
0

)). Whence a canonical morphism of IF;-schemes

the quotient set TV /W. Moreover, set u = ( 2 ) and U =T, € H](Ft) Then U? is a free

invertible element of Z (’H]&

T0 X Prgpec(r, [U£2]) ° Spec(Z(?—l[(F?)) — TV /W x Spec(F,[U*?]).

Finally, restricting along the diagonal cocharacter F; — T induces a map ™ /W — (IFqX )V, whence
a composed morphism

Spec(Z(HY)) — TV /W x Spec(Fy[U+2]) — (F)¥ x Spec(F,[U*?]).

7.2. In [PS| Thm.B] we established the mod p pro-p-Iwahori Satake isomorphism
V]F(ql) : Spec Z(’H]%i)) —= S(q).

Recall our fixed choice of generator ¢ of F. Using the evaluation of cocharacters of T on ¢,
one gets an identification of TV with T(Fq). Similarly, recall our fixed choice of inclusion F, C F,
inducing the character w : F* — Ej; one gets an identification of (F))¥ = (w) with G,,,(Fy) = (().

3This element u corresponds to what is denoted by u~! in [PS] [PS2].
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Then, by construction, the isomorphism y]éql) fits into the commutative diagram

D
Spec Z(Hy!)) —— S(q)
0 XPTgpec(Fy [Uii’])l lwo XPry
TV /W x Spec(F,[U+2]) =—— T(F,)/W x G,
(F5)Y x Spec(Fy[UF?]) === G.(Fy) X G-

7.3. Definition. Composing YF(:) with the morphism L : S(q) — Xp, from yields a Langlands
morphism
L = LOYIF(ql) : SpecZ(’;’-lI(éZ ) — Xr,.

7.4. Viewing a H[(Ft)—module as a quasi-coherent module on Spec Z (’Hﬁ)) yields the functor
Z. : Mod(H{) — QCoh(Xg,),

generalizing the one from [PS2] 7.2] in the case of F' = Q,.
Furthermore, let ME) be the mod p spherical module, cf. [PS| Def. 7.4.1]. Recall that, if A%l)
P

denotes the maximal commutative subring of 7—[%) (associated with the dominant orientation, say),
P

then M%l) = A%l) as A%)—modules. The action of the Hecke operator T on ./\/l%l) is given by a mod
p and pro-p analogue (based on results of M.-F. Vignéras) of the classical Demazure operator. For
more details, we refer to loc.cit. Recall further from [PS] 7.4.2] that tensoring Mélq) over Z (H]I(*“t))

with an ?q—valued central character defines the spherical map

Sph : (Spec Z(Hl(Ft)))(Fq) — {left H%l)—modules}/ ~.

It induces a parametrization of all irreducible H%l)—modules. In general, modules of the form

Sph(v) are of length one or two, and they are always of length one if v* : Z (Hé‘?) — ﬁq is a
supersingular central character, cf. [PS| Thm. E]. Let us recall here the notion of a supersingular

) induces a product decomposition Z (HI(F?) =

central character: the product decomposition of Hﬁ
H'VETV/W Z(Hgg), where Z(H];q) denotes the center of the component algebra "H%q. In the case

of a regular orbit 7, one chooses an ordering (x|r, x*|r) on the set 7, the associated standard
coordinates X,Y € ng together with U? then generate Z (ng). If v is non-regular, the center
Z(Hy ) is generated by U? and Z = UTs + T,U + U.

A central character v* is called supersingular, if on its corresponding connected component
one has v*(X) = v*(Y) = 0 (regular case) or v*(Z) = 0 (non-regular case). A ”H%)—module with

central character 6 is called supersingular if € is a supersingular character.

7.5. Proposition. The morphism £ induces a bijection
S VA H(l) F supersing ~ X F irred
(Spec Z(Hy,))(Fy) — X, (Fy)

between the sets of supersingular simple Hecke modules, via Sph, and of irreducible Galois repre-
sentations, via L.

Proof. Let (n,z2) € Ny X Gp,. The isomorphism LVF(;) induces an isomorphism between the fibers

(Spec Z(H[(Ft)))(w",@) and S¢n .,), which in turn is mapped onto X (g4, .,y by L. The supersingular

16



central characters in (Spec Z(?—lé}q))(wn@) correspond to the points (z,y) = 0 (in the regular case)
and z; = 0 (in the non-regular case) in S¢» .,). Moreover, by construction of L, ., and ¢,, these
points are mapped in a 1 : 1 way to points in X(dng)(Fq) corresponding to irreducible Galois
representations. Letting n vary, the resulting injective map

(Spec Z (HI(qu))) (F,)supersing =y X (F,)irred

zZ2

is bijective, since source and target have the same cardinality @, cf. [V04, Rem. 5.1]. O

8 Relation to Grosse-Klonne’s functor

Combining the spherical map Sph with the morphism % gives a correspondence
Sph(v) ~ p(v)
from (certain) ’H,%l)—modules to semisimple Galois representations Gal(F/F) — GLa(F,). In [PS2]
q
we have shown that in the case F' = Q,, the correspondence Sph(v) ~» p(,) is the semisimple

mod p local Langlands Correspondenceﬂ for the group GL2(Qp).
In the general case F/Q,, Proposition shows that

Sph(v) ~ p.o)

induces a bijection between simple supersingular Hecke modules and irreducible Galois represen-
tations. In this section, we will show that this bijection is the (functorial) bijection in the case
n = 2 constructed by Grosse-Klonne [GKI8]. This makes use of the case n = 2 in the classification
of irreducible étale mod p Lubin-Tate (¢, I')-modules, the main result of the appendix.

8.1. To start with, recall the twisting action of G, (Fq) X Gy, on S from[6.1} Under the isomorphism
5’1;;), it corresponds to an action of (FX)" x G, on Spec(Z (7—[1(;1)))7 which, in particular, induces
an action of (F;)" on TY/W. In the sequel, we will denote the later as

TV /W x (F)Y — TV /W, (y,w") = y.w".

Note that this latter action is actually induced by an action of (IFqX)V on TV, which we denote by
(x,w™) — x.w™. The character y.w™ of T is given as t — x(t) - (W™ o det)(¢).

8.2. Let
Sph* : (Spec Z (Hélq)))(?q) —— {semisimple left ’H%l)—modules} [~

be the composition of Sph followed by semisimplification. It is then equivariant for the action
of (FX)Y x Gy, on the target deduced from the following twisting action of irreducible (or, more

generally, standard) H%l)—modules, cf. [PS2 2.5]. Let (n,z2) € Ny X Gy,. In the non-regular case,

q
the U-action gets multiplied by z3, the Ts-action remains unchanged and the component v gets
multiplied by w™ as above. In the regular case, the actions of the standard coordinates X,Y and
U? get multiplied by 22, 22 and 23 respectively and the component + gets multiplied by w” again.

8.3. Let Z(G) be the center of G := GLy(F'). It is isomorphic to F'* via the diagonal cocharacter
F* — GLy(F). Denote by Z(G)Y the group of smooth F,-valued characters of Z(G). It is
isomorphic to (FX)Y x G, via

Z2(G)Y = (F)Y X Gy e (], ().

Indeed, any smooth character F'’* — F; is trivial on the subgroup 1+mop, and we have normalized
local class field theory by sending 7 to ¢! in

4The category of smooth mod p representations of GL2(Q,) is equivalent to the category of ’H%l)—modules [O09).
q
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8.4. From and we get a twisting action of Z(G)Y on standard 'H]%l)—modules, that we
denote by

(M,n) — M @n.
Let F, C k C T, be a finite extension. Let 7—[,(:) be the pro-p Iwahori-Hecke algebra with coefficients

in k. According to [10.8} a given central character n : Z(G) — F; is k-rational (i.e. takes values
in £*) if and only if n(7) € k*. We therefore see that the twisting action restricts to an action of

k-rational characters on absolutely irreducible supersingular two-dimensional H,(Cl)—modules.

SS

8.5. Lemma. The correspondence Sph(v)* ~ p () is compatible with twisting by characters.

Proof. Twisting with central characters on semisimple spherical Hecke modules is compatible with
the action of G, (Fq) x Gy, on S. The morphism L is G, (Fy) X Gp,-equivariant by theorem
Under the Galois parametriz the G,,,(Fy) x Gy,-action on Xy, corresponds to twisting
with Galois characters, cf. Putting all this together, we see that the correspondence
Sph(v)** ~ py(y) is indeed compatible with twisting by characters. O

8.6. Next, we recall the main construction from [GKIS8] in the case of standard supersingular
modules of dimension n = 2.

Let Fy be the special Lubin-Tate group with Frobenius power series ¢(t) = nt +t%. Let F /F
be the extension generated by all torsion points of Fyy and let I' = Gal(F/F'). We thus have the
category of étale Lubin-Tate (¢, I')-modules over Fy((t)), cf. We identify in the following
I' ~ o} via the Lubin-Tate character xp.

0 1

0
not lead to confusion with the character of Fy denoted by w so far). In particular T, = U.

To be conform with the notation in [GKI18| sec. 2.1], we define w :=u = ) (this will

The projection onto the diagonal is an isomorphism I/ (1) ~ T and one has well-defined Hecke

operators T; € H,(cl) for all t € T. Set sg = ﬂ?l 7(; . Let ’Hgg’k C H,(cl) be the affine Hecke
algebra, i.e. the k-subalgebra generated by T, T, and all T;,¢ € T.

Let M be a two-dimensional standard supersingular ’H,(Cl)—module, arising from a supersingular
character x : Hgk — k of the affine subalgebra ’Hg&k C H,(Cl). Let eg € M such that Hgf)yk acts

on eg via y and put e; = T, 'eg. The character y determines two numbers 0 < kg, k; < ¢ — 1 with
(ko, k1) # (0,0), (¢—1,g—1), cf. [GKI8, Lem. 5.1]. One considers M as a k[[t]]-module with ¢ = 0
on M. Let I' = oy act on M via

A(m) = T22L (m)
for 4 € oy with reduction 7 € F; and (since n = 2) ¢*(y) = diag(¥,1) € T, cf. [GKIS, beginning
of sec. 4]. Moreover, there is a certain k[[t]][¢]-submodule V(M) of

k[[t]]le, T] @xanry M =~ K[[]][¢] @iy M-
The module V(M) is stable under the I'-action [GK18, Lem. 4.2] and thus the quotient
AM) = (k[[t))le] @k M)/V (M)

defines a k[[t]][¢, I']-module. It is torsion standard cyclic with weights (ko,k;) in the sense of
[GK18|, sec. 1.3], according to [GK18, Lemma 5.1]. Let A(M)* = Homy(A(M), k) be its k-linear
dual. By a general construction, the k((t))-vector space

A(M)" @iy k((2))
is then in a natural way an étale Lubin-Tate (p, I')-module of dimension 2. The correspondence

M~ A(M)* @ k(1))

extends to a fully faithful functor from a certain category of supersingular H,(Cl)—modules to the
category of étale (o, I')-modules over k((t)). We write

V(M) = V(AM)" @y k(1))
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for its composition with the functor ¥, cf. According to [GK18, Cor. 5.5], the map
V= V(M)

induces a bijection between (isomorphism classes of) 2-dimensional supersingular absolutely irre-
ducible ?—[,(Cl)—modules and absolutely irreducible representations Gal(F/F) — GLz(k).

8.7. Proposition. One has V(M ®@n) = V(M) ® n for any absolutely irreducible supersingular

two-dimensional ’H,(Cl)-module M and any character n : Gal(F/F) — k*. Moreover, if U% acts by
29 € kX on M, then det(p™1) = 29 on V(M).

Proof. The functor ¥ respects the tensor product. In our situation, this concretely means the
following. Write 7 = w$puy for a scalar A € k* and 0 < s < ¢— 2. Let D be an étale (¢,I')-module
over k((t)). We write D®n for the (¢, I')-module equal to the tensor product D by the 1-dimensional
module corresponding to 7: the ¢-action becomes multiplied by the scalar A and the I'-action
becomes twisted by the character w|r, cf. Then ¥ (D®n) = ¥ (D)®n according to For
the first statement, it suffices therefore to check that the functor M ~ D(M) := A(M)* @y k((2))
respects the tensor product with 7, for M as in the proposition.

Since M is irreducible, there is a unique v € TV /W, such that M remains irreducible over the
component algebra #;. In particular, v equals the connected component of the central character
of M. To any x € =, there is a corresponding T-eigenvector in M and M has a k-basis consisting of
eigenvectors. Consider an eigenvector m € M with eigenvalue x € . The corresponding T-action
onm®1 e M®mn is then given by X.(w;thx ), in the notation of By construction, the I'-action
on A(M ® n) is given by the action

a > Te: %a)
on the Hecke module M ® 7, for a € o, = T' with reduction @ € F and e*(a) = diag(a, 1) € T.
Since the T-action on m ® 1 € M ® 1 equals X.(w;}|qu) and

X-(Wilgx ) (e (@) = x(e*(@))w} (@),

and since M has a k-basis of such m, the I'-action on A(M ® 1) becomes therefore twisted by
the character w; ®[r. The contragredient action on the dual A(M ® n)* and, hence, on D(M ®n)
becomes then twisted by w§|r, as desired. By construction, the tFi p-action on A(M ® 1) is given
by the T, '-action on the Hecke module M ® 7. Since U = T, this t*i p-action becomes therefore
multiplied by n(7=!) = A7!. On the dual module D(M ® n) (where ¢ becomes invertible), the
p-action becomes therefore multiplied by A. We have shown that D(M ® n) = D(M) ® n, which
concludes the proof of the first statement.

For the second statement, suppose that U? acts by z3 € kX on M. The remarks right before
[GK16l Thm. 8.8] and [GK18, Cor. 5.5] in the case d = 1 show that the determinant of geometric
Frobenius on V(M) acts by b where b~! equals the 7, 2-action on M. Since U = T,,, this implies
b = zy and hence det(p~1) = 2z, on V(M). O

Recall the classification of irreducible 2-dimensional Galois representations, cf.

8.8. Proposition. Let M be a simple supersingular module such that V(M) ~ ind(wgf) where
1 <h<q—1. Then M has trivial U*-action and its T-action is given by (the W-orbit of) the
character diag(a, b) — a1,

Proof. Let p = ind(wgf). According to the UZ-action on M is given by the scalar det p(¢~!) =
w?(go_l) = 1. To determine the T-action, let D be the étale (p, I')-module with ¥ (D) ~ p, so that

A(M)* @k k((2)) = D.

Now, we make use of the case n = 2 of the main result of the appendix. It follows that D
admits a basis {go, g1} such that

v(g;) = f, ()M /et g,
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for all v € T and ¢(go) = g1 and ¢(g1) = —t~"4"Vg,. Here

Fo(t) = wr(n)t/y(t) € 1+ tk[[t]].

In particular, D is standard cyclic in the sense of [GK18], sec. 1.4] with corresponding o : I' — &
given by a; =1 for j = 1,2 (since f. (f) =1 mod t). Define the triple

(ko, k1, k2) = (h—1,g—h,h —1)

and let i; := ¢ — 1 — ko_j, so that i) = ia = ¢ — h and ¢y = 2¢ — h — 1. Define the triple
(ho, hq, hg) = (O,il,io —|—i1q). Note that hy = h(q — 1) Put fj = thjgj for 7 = 0,1 and let DfcD
be the k[[t]]-submodule generated by {fo, f1}. Let (D¥)* be the k-linear dual. Define e} € (D%)*
via €}(f;) = d;; and e, = 0 on tD*. Using the explicit formulae for the i-operator on k((t)) as
described in [GKIS|, Lemma 1.1] one may follow the argument of [GK16, Lemma 6.4] and show that
D* is a 1-stable lattice in D and that {ef, €]} is a k-basis of the ¢-torsion part of (DF)* satisfying

t410(ech) = ¢ and tRop(e}) = —ep.

But according to [GKI8, 1.15], there is only one 1/-stable lattice in A(M)* @1 k(()), namely
A(M)*. Tt follows that A(M) ~ (D*)* and so the weights of the torsion standard cyclic k[[t]][¢, T
module A(M) (in the sense of the definition in [GKIS8| sec. 1.3]) are (ko, k1). Moreover, e, €| are
a k-basis of M and ef is an eigenvector for the supersingular character x : ”H;llcf) , — K giving rise
to M. From o; = 1 we deduce from the definition of the I'-action on M, cf. [GKIS, beginning of
sec. 4] that Te:%v) =1 for all v € T'. Hence if A € TV is the restriction of x to T, then

Aoe*(a) =1

for any @ € F. Finally, [GK18, Lemma 4.1] shows that kg = e¢; mod (g — 1) where ¢, is such
that Ao aV(y)™! =4 for any v € I' and the coroot o (z) = diag(z,z~1), cf. [GKIS8, discussion
before 2.4]. This implies that

Mo Ck\/(a)—l — ah—l
for any @ € F. Since diag(a,b) = ¢*(a - b)a” (b)~* we arrive therefore at

Adiag(a@, b)) = Me*(@-b)av(®) ") ="

O

8.9. Theorem. The correspondence Sph(v) ~~ pe(,), when restricted to simple supersingular
modules, coincides with the base change from k to ﬁq of the bijection M — V(M).

Proof. According to and the correspondences Sph(v)™ ~» pg(,y and M +— V(M) are
compatible with twisting. It therefore suffices to compare the two maps on irreducible Galois
representations of the form p := ind(wgf), for 1 < h < q-—1, cf. [2.7 Let M be such that
V(M) ~ p. On the other hand, let Sph(v,) be the supersingular module corresponding to p in the
bijection Its U2-action is trivial and its T-action is given by the highest weight hw(F(h — 1)),
cf. [0:2.0] below. According to [8:8] these actions coincide with the corresponding actions on M.
Since both modules are simple supersingular, there is thus an isomorphism M =~ Sph(v,). O

9 Relation to weights

9.1. Weights. A weight is an (isomorphism class of an) irreducible F,-representation of the
finite group GL2(F,). For any integer r > 0 consider the r-th symmetric power Sym” E?z of the
standard GLy(F,)-representation. We denote by (x,y) for a moment the standard basis of F?z, S0

that Sym" F;ez = P, rﬁqﬂ*iyi. The standard action of GLy(F,) on Sym” E?Q is then given
by

( (Cl Z > (z"'y") = (az + cy)" " (bx + dy)’
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where a,b,c,d € F, are viewed in F, via our fixed embedding F, C F,. Let

T =02
F(r) :=socgLy(r,) Sym" IF,

be the socle. The representation F(r) is irreducible and contains the highest weight vector x”.
The g(q — 1) representations F(r) ® det® for 0 <r < ¢g—1 and 0 < s < ¢ — 2 exhaust all weights
and F(r) = Sym" Ty~ for 0 <r < p—1, cf. [{u03, 19.1].

9.2. Compatibility of ¥ with weights. Recall that we have ordered and labelled the irre-
ducible components of S by the elements of T(F,) Under the isomorphism 5’%3), we have a

corresponding ordering of the irreducible components of Spec Z (7—[]&)) by TV. For A € TV, we write

C* for the corresponding irreducible component. On the other hand, to any pair (r,s(r)) in the
table(3.1|or we can associate the weight F(r)®det*"™ . In this way, the irreducible components
of X, can be labelled by ordered pairs of weights (o,0’): the irreducible component C" is labelled

by the pair (F(r) @ det*™, F(q — 3 — r) ® det*"*™+1). Finally, we have the highest weight map
hw : {weights} — TV
F(r)y®det® +~—— r(1,0) +s(1,1)|r.
9.2.1. Proposition. Let 1, and v, be the embeddings
Al c Pt =)
around 0 and oo respectively. The morphism £ induces isomorphisms
) 25 Imoy, C ¢ and ™) 5 Im Lot C clea’),

Proof. The labellings are compatible with the twist by a non-regular character of the form w*® ® w*
and by the determinant character det® respectively. It therefore suffices to only consider the basic
even case n = 0 and the basic odd case n = ¢ — 2. We may also assume 25 = 1.

Supppose first n = 0. Then n = 2s with s = 0. The irreducible components of the scheme
Spec(Z(H[(Fi)))(wo,l) are labelled by the sequence of pairs of characters x;, x}, for ¢ = 0, ..., Uity

where x; := w’ ® w™’. By definition of L, and hence of ¥ = L o ,5’}-({11)7 2
LX) cC and Z(CXi+) C
(the latter if i < %) The weight-label of C; is the pair of weights (F(r) @ det*"™  F(¢—3 —7)®
det*MFTHL) where r = 2i and s(r) = —% = —i. For their highest weights we find indeed
hw(F(r) @ det *M) = w1 @ w3 = i@ w™ = y;
and
hw(F(q—3 —7) ® det s(r)+r+1) = I 2+s(1) @ ST = a—1=(+1) g it = X

Now suppose n = ¢ — 2. Then n = 2s — 1 with s = q%l. The irreducible components of the

scheme Spec(Z (HI(F?))(M*"‘J) are labelled by the sequence of pairs of characters
Xi (W @w?), xi' - (W ®w®),

fori=1,..., ’%1. Note that y; - (w® @ w*) = w ™! @ w™* =: x;. By definition of L,

L) CC (i#1) and L) CC fit1# 10

The weight-label of C; is the pair of weights (F(r) ® dets(r),F(q -3-7r® dets(r)”H) where

r=2i—1and s(r) = —ZF = —i. For their highest weights we find indeed

hw(F(r) ® det *") = w0 @ 3 — il g =i = g,
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and
hW(F(q _3_ 7“) ® det s(r)+r+1) _ oJc;{—Q-I-S(T) ® ws(r)+r+1 _ wq—l—(i"rl) ® w(“‘l)—l — X?Jrl'

It remains to check the cases i =1 and i = %1, where L is given by the map ¢+ ¢t +¢ . In the

case i = 1 the variable ¢ stands for the variable y and by definition of L,
2(C%) C ¢,

The component Cy has as weight-label the single weight F'(¢ — 2) and its highest weight is indeed
hw(F(q —2)) = x¥. In the case i = %1 the variable ¢ stands for the variable « and by definition
of L,

Xg=1

L(CF) C Co.

The component C%l has as weight-label the single weight F'(q —2) @)de‘cq%1 and its highest weight
is indeed hw(F(q — 2) ® det%) = Xagt- This concludes the proof. O

10 Appendix: Irreducible mod p Lubin-Tate (¢, [')-modules

Let F' denote a finite extension of Qp, with ring of integers o and residue field Fy. Let ¢ = pl.
Let 7 € op be a uniformizer and let F' be an algebraic closure of F'. Let n > 1 be an integer.

10.1. Let Fy be a Lubin-Tate group for m, with Frobenius power series ¢(t) € opl[t]]. The
corresponding ring homomorphism or — End(F}) is denoted by a — [a](t) = at+.... In particular,
[7](t) = ¢(t). Let Fo/F be the extension generated by all torsion points of Fys and let

Hp :=Gal(F/F,) and T :=Gal(F/F)/Hp = Gal(F./F).
Let z = (zj)j>0 be a op-generator of the Tate module of Fi,. In particular, for j > 0
zj = [m)(zj+1) = 2], mod
and Np(,)/p(—21) = 7. This implies
28 =z (1+ O(x'/?)) for j > 1 and 297" = —7(1 4+ O(x/9)).

The Galois action on the generator z is given by a character xp : Gal(F/F) — o}, which is
surjective and has kernel Hr. One has xr = wy mod .

10.2. We denote by C, the completion of an algebraic closure of @, and choose an embedding
F C C,. Recall that the tilt (C';, of the perfectoid field C, is an algebraically closed and perfect
complete non-archimedean field of characteristic p. Its valuation ring ocs is given by the projective

limit l.&anxq oc, /moc, and its residue field is Fq. There is a unique multiplicative section

s:Fy — oy, a— (7(a) mod W,T(aqil) mod T, T(aq&) mod 7, ...)
where 7 denotes the Teichmiiller map ?q — oc,. There is an inclusion
Fo((t) —= €, t > (.o,z; mod 7, ...)

and one has (C; = ocy, [1/t]. The field (C‘;, is endowed with a continuous action of Gal(F/F) and a
Frobenius ¢,, which raises any element to its ¢-th power. We let Fy((¢))*P denote the separable
algebraic closure of Fy((¢)) inside (C‘Z,. The field F,((¢)) and its separable closure Fy((t))%P inherit
the Frobenius action and the commuting Gal(F/F)-action from (C; and there is an isomorphism

Hp —= Gal(Fq((t))*" /Fq((t)))
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10.3. The theory of Lubin-Tate (¢,I')-modules and their relation to Galois representations is
developed in [KR09] and [Sch17]. We only need very basic facts of this theory, and mostly only
mod p. Note that the power series ring or[[t]] has a Frobenius endomorphism and a I'-action via

o)) = f([x]@®) and (7)) = f(Dxr(N](?)

for f(t) € opl[t]]. Via reduction mod =, these actions induce a Frobenius action and a I'-action
on F,[[t]] and its quotient field F,((¢)). This allows one to introduce an abelian tensor category
of étale Lubin-Tate (¢,T")-modules over F,((¢)). It turns out to be canonically equivalent to the
category of continuous finite-dimensional F,-representations of Gal(F'/F), cf. [KR09, 1.6], [Schi7,
3.2.7]. The functor ¥ from (p,I')-modules to Galois representations is given by

D~ #(D) := (Fq((1))*P @r, () D)7~
where Gal(F/F) acts diagonally (and via its projection to I' on the second factor).

10.4. Let k C F, be a finite extension of F,. One can consider a k-representation of Gal(F/F)
as an F,-representation with a k-linear structure. Similarly, one may introduce (¢, I")-modules
over k((t)) = k ®r, Fy((t)), where k has the trivial Frobenius and I'-action. The functor #* then
restricts to an equivalence of categories between étale (¢, T)-modules over k((¢)) and continuous
finite-dimensional k-representations of Gal(F/F).

10.5. We fix once and for all an element y € F,((¢))*P such that

Y@ =D/ =1 g,

For g € Gal(F/F), the power series

£ = X (@t _  xr(g)t €1+ tor[[t]

g(t) [xr(9)](t)

depends only on the class of g in I'. The same is true for its mod 7 reduction f,(t) = wy(g)t/g(t).
Note also that the formula f7(t) defines an element of or[[t] for any s € Z,,.

10.6. Lemma. One has g(y) = y wy, ;(9) f;ﬁ(t) in Fo((£))5P for all g € Gal(F/F,).

Proof. This is a generalization of the case F' = Q, treated in [Bel0, Lem. 2.1.3]. Let j > 1 and
choose m,f ; € oc, such that

g1
a—1

nf.J

T, :Zj.

We write 7; for 7, ; in the following calculations. Let g € Gal(F/F,,). Then

n

(9(m) /7)) T = g(z;)/2 = xr(9) £ (25)

q—1

and so the quotient of g(m;)/m; by fg © ' (z;) is a certain =1

q—1
nentiation with qq__ll € Z, is surjective on the subgroup 1 + () C o we may write this root as

7(Wny,j(9)), with an element wy s j(g) € Fy., and arrive at

th root of xr(g). Since expo-

q—1

g9(mj)/mj = T(wns.i(9)fg * 7 (2)-
The map g + wyy,;(g) is a character of the group Gal(F/F,), since
wny,j(9) = g(m;)/m; mod me,

in the field F, = oc, /mc, and this element is fixed by Gal(F/F,). Moreover, this character does

q"—=1 :
P -th root of unity,

not depend on the choice of 7;: a different choice 7r;» differs from m; by a
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i.e. by an element of F,. Hence g(n)/7; = g(m;)/m;. By this independence, we see (using the
element 77, as an alternative choice for 7;) that

wfbﬁjﬂ = wpy,; for j > 1.

By we may choose the m; compatibly in the sense that 77, /m; € 1+ m!/90¢,. Moreover,
further implies wflfgl =20 = —r(1+O0(x"/%)) and so (ms/mpp1)? ' =1 mod me,. The
quotient 7, /mnf1 mod mg, is therefore fixed by Gal(F/F,), in other words

9(Tng1)/Tng1 = 9(Tng)/mny  mod mc,
for all g € Gal(F/F,,) and so
Wnf1 = Wnft.

Now recall that there is an isomorphism @meq oc, = oc, of multiplicative monoids given

by reduction modulo w. We use the notation u = (u(j)) for elements in the projective limit
I'&HIHM oc,. The element y € ocy is given by (...,m; mod moc,, ...). By compatibility of the 7,

the element 7;4,, reduces mod 71/9 to the m-th coordinate of the element yl/qj € ocy- The
By

preimage (y(j)) of y under the above isomorphism is therefore given by y) = lim,,_, 0 T&']-j:m.
__g=1
the same argument, the preimage of the element f "~ (¢) has coordinates

q—1 q—1

7,709 = Tim (fy 7 (254m))°

m—o0

m

The composite map s : F; — ogy = I'&nszq oc,, which we also denote by s, is given by

as (r(a),(a? ), 7(a? "),...). Since

$(wnf(9)DY = 7w ()" ) = T(wnsi(9)),

we may put everything together and obtain

9@) o 9(Tjm) g A " F- A G
S = (ST = rlwars(9) Jim (fy " ()" = slwas (90D F, O,
Reducing this equation modulo 7 yields the assertion of the lemma. O

We now consider the (¢, I')-modules associated to the irreducible Galois representations of the
form ind(wﬁf).

10.7. Theorem. The étale Lubin-Tate (o,T')-module associated to an irreducible Galois repre-
sentation of the form ind(wzf) is defined over the ring F,((t)) and admits a basis eg, €1, ..., €n—1
in which

v(ej) = f_y(t)hq"(qfl)/(q"*l)ej
for all v € T. Moreover, one has ¢(e;) = ej+1 and @(e,_1) = (—1)" "1t~ Ve,.

Proof. Let D be the (¢,I')-module described in the statement and let W = ¥/(D). With x =
theg A ... A en_1, one has

o(z) = p)" (=) 1P Ve AL A e, Aeg =t Deg A L Ne, =
Moreover,
T ha’ (a1 / (") ha-1)/(a" 1) S0 o
—ha’ (g—1)/(¢" - - —h(g-1)/(¢"-) X0 d
y&)" 11 74 (t) = (wrMt/F, )" F, °T = w1t
§=0

which implies y(z) = wy(y)"x for all ¥ € . So det W = w}‘. Put k := Fy» as a coefficient field,
i.e. endowed with the trivial Frobenius action. To complete the proof, it remains to check that the
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— n—1
restriction of £ ®p, W to the inertia subgroup I(F/F) is given by wﬁf &) wgli} D...0 wif " There
is a ring isomorphism

k @, Fq((1))*? = 1:[ Fo(0))*P, 2 ® 2 = (¢(x)2)
7=0

where ¢, is the g-Frobenius on k. The induced Frobenius and Gal(F/F,,)-action on H;:Ol F,((t))P
are given as

o((xo, .., Tn-1)) = (@q(xnfl)a SDq(xO)v cen @q(xn72))

9((x0, -y tn1)) = (9(x0), -, 9(¥n-1))-
Choose o € F, C F,((¢))**P such that a?"~! = (=1)"~! and define the elements

vo = (ay",0,..,0)e0 + (0,ady? 0,...,0)e; + ... + (0, ..., O,Qqnflyqnflh)en_l
v = (0,ay",0,...,0)eq + (0,0,a9y" 0,....0)e; + ... + (ozqnflyqnflh,o7 oy, 0)en—1
Uno1 = (0,..0,ay™)eg + (aly?,0,...,0)e; + ... + (0,...,a?" 44" " 0)e,_y.

By definition of D, the vectors e; form a F,((t))-basis for D and it follows easily that the vectors
v; form a k ®p, F,((t))*P-basis for k ®r, (F,((t))*P ®g, (1)) D). Moreover,

0((0,...,0,07" "y " Me, 1) = (o€ y""0,...,0)0(en1)
= (a"y?""0,...,0)) (1)1t MaNey = (ayh, 0, ...,0)eq
since a?” = (—1)""'a and y9"t'~9 = y. This means
p(vo) = (0,a%y,0,...,0)p(eo) + (0,0,a yT "0, ...,0)p(e1) + ... + (" y4"",0, .., 0)p(en—1)

(0, a9y, 0, ..., 0)e; + (0,0, aq2yq2h,0, e 0)eg + ...+ (™, 0, ..., 0)eq
= 9.

Similarly, one shows ¢(v;) = v; for j > 1, so that

VQy s Up—1 € k QF, (Fq((t))SEP QF, (1)) D)‘pzl =k QF, ”//(D) =k QF, W.

. R b
Now if g € Gal(F'/F,,), then g(y) = ngf(g)cg with ¢, := f, "~ (t) by lemma |10.6/ and g(e;) =
,qjh
9

c e; by definition of D. Hence

9T g(e;) = (gl ;(9))7 e,

If g € I(F/F), then g(a) = a and then altogether

n—1

n—1
g(wo) = (ag(y)",0,..)g(e0) + (0,0%g(y)™, 0, ...)g(e1) + . + (0., g(y)*" ")g(en-1)
wgifl'(g) ! ((ayhv 07 "')60 + (07 aquhv 07 ...)61 + ..+ (07 [RE) aqnilyqnilh)enfl)
= w?:}(g) Vo,
where - refers to the left k-structure of H;:OI F,((t))%P. Similaﬂy, one shoWS g(v;) = wzlfijh(g)vj
for all j > 1 and g € I(F/F). Since w;{} = wy, s and hence wfbfﬂh = w;{}Jr "M this proves that the
restriction of k ®r, W to I(F/F) is given by the sum of the characters wﬁf, wﬁ}}, ...WJZT}—M' O
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10.8. One may pass from irreducible representations of the form ind(wz f) to general irreducible
representations by twisting with characters, cf. Note that any character n : Gal(F/F) — F;

can be written in the form WA for a scalar A € F: and 0 < s < ¢g—2. In particular, n is k-rational
for a finite extension k C F, of F, (i.e. 7 takes values in k) if and only if n(¢) € k*.

10.9. Lemma. Let k C Fq be a finite extension of Fy. The (p,I')-module associated to a Galois
character of the form wip\ with A € k* admits a basis e such that p(e) = A-e and y(e) = w}j(y) e
for all v €T.

Proof. Since the functor ¥ preserves the tensor product, we may discuss the two characters w?
and /i separately. For the twists by a character of I, such as w}, see [SV16, Remark 4.6]. So let
V =px =k and let

D(V) = (Fo((1)*P @r, V)1
be the associated (¢,I')-module. It is instructive to check the case k = F, first. Here, we choose
B eF, with 8971 = Xand put e = S 1 € Fo((t))*P @p, V. Since 8 # 0, we have e # 0. Moreover,
I(F/F) acts trivial on e and for ¢ € Gal(F/F) we find

ple) =pB)@p(1) =BI@X =A@ '=801=ec.

Hence e is indeed Gal(F/F)-invariant. Moreover, if ¢ denotes the Frobenius endomorphism on
D(V) we have
dle) =) @1 =p701=A®1=Xe.

Now suppose that k = Fy» for some n and A € k*. We use the ring isomorphism
k®r, F er =, H )P, x @z (gofl(sc)z)

where ¢, is the g-Frobenius on k. It is Gal(F/F,)-equivariant, where the Galois action on the
right-hand side is componentwise (see proof of the above theorem). By the normal basis theorem,
there is = € k* such that its conjugates cpé(x) are linearly independent over F,. The j-th copy
Fy((t))*°P in the above product has therefore a F,((t))*P-basis element e; := ¢} (z) € K =V on
which I(F/F) acts trivial and on which the element ¢™ € Gal(F'/F,,) acts by A~". Choose € F,

such that 9" ~! = A" and put v; = Bej. Then I(F/F) obviously acts trivial on v; and the same
holds for ¢™, since

" (v;) = " (B)p"(e) = BT A e; = BATA e = v;.
Hence, I(F/F) and ¢" act trivial on (v;) € Hn_l 4((£))*°P and then also on its preimage v =
r® B € k®r, Fg((t))*P. Note that v # 0 since x, 3 # 0. Write N = Hj 0 Lol and e = N(v). Then

e is fixed by I(F;/F) (since I(F/F) is normalized by the ¢/) and is fixed by ¢ by construction.
Hence, e is Gal(F'/F)-invariant. Note that e # 0, since e = N(z) ® N () and N(z), N(5) # 0 and

so e is indeed a basis element of D(V) on which I" acts trivial. Finally, write e = Z;’:—Ol @l (2) ® 2
with z; € Fq((¢))*P. The Frobenius endomorphism ¢ on D(V') satisfies

qu ® o(z)) = Z‘P (Pi(2) © 2;) = qu )@ 2;) = Ap(e) = e

O

10.10. Corollary. Let k C F, be a finite extension of F,. The (p,T')-module associated to an
irreducible Galois representation of the form (ind(wﬁf)) @ Wi, with A" € k™, is defined over the
ring k((t)) and admits a basis eg, €1, ...,en—_1 in which

Aey) = wp(y)*f, (R =D/
for all v € T. Moreover, one has ¢(e;) = Aejp1 and (e, 1) = (—1)" 1= Ma=D e,

Proof. This follows from the preceding lemma and the theorem. The fact that the module is
defined over k((t)) comes from [2.6| and O
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