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Abstract

Let p be an odd prime. Let F be a non-archimedean local field of residue characteristic p,
and let Fq be its residue field. Let H(1)

Fq be the pro-p-Iwahori-Hecke algebra of the p-adic group

GL2(F ) with coefficients in Fq, and let Z(H(1)
Fq ) be its center. We define a scheme X(q)Fq

whose geometric points parametrize the semisimple two-dimensional Galois representations of
Gal(F/F ) over Fq. Then we construct a morphism from SpecZ(H(1)

Fq ) to X(q)Fq generalizing

the morphism appearing in [PS2] for F = Qp. In the case F/Qp, we show that the induced
map from Hecke modules to Galois representations, when restricted to supersingular modules,
coincides with Grosse-Klönne’s bijection [GK18]. For this, we determine the Lubin-Tate (φ,Γ)-
modules associated to absolutely irreducible Galois representations.
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1 Introduction

Let p be an odd prime and F a non-archimedean complete local field with ring of integers oF and
residue field Fq of characteristic p. Let F be an algebraic closure of F and denote by Fq its residue

field. Let Gal(F/F ) be the absolute Galois group of F . Let H(1)
Fq

be the pro-p Iwahori-Hecke
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algebra of the p-adic group GL2(F ) with coefficients in Fq, and let Z(H(1)
Fq

) be its center. When

F = Qp, we constructed in [PS2] a morphism

L : SpecZ(H(1)
Fp

) −→ X

to the moduli scheme X of semisimple two-dimensional mod p representations of Gal(Qp/Qp) in-
troduced by Emerton-Gee in [Em19], with the following property: the push-forward along L of the

extended mod p spherical moduleM(1)

Fp
realizes the semisimple mod p Langlands correspondence

for GL2(Qp) defined by Breuil [Be11].

In the present work, we construct a Lubin-Tate version of the morphism L for the local field
F , with the property that it induces the correspondence defined by Grosse-Klönne when F/Qp, cf.
[GK18].

We start by defining a certain two-dimensional Fp-scheme X(q) depending only on the param-
eter q. Its connected components are families of chains of projective lines, parametrized by the
multiplicative groupGm, andX(q) coincides withX above when q = p. Our first main result (Thm.
4.5.1) is that the geometric points of X(q) parametrize the isomorphism classes of semisimple two-
dimensional mod p representations of Gal(F/F ) over Fq. Writing q = pf , the parametrization
depends on the Lubin-Tate fundamental character ωf : Gal(F/F ) → F×

q associated with a choice
of uniformizer π ∈ oF .

To go further, we will denote by GL2 the Langlands dual group of GL2 over the coefficient

field Fq and by W its Weyl group. Recall the extended Vinberg toric variety V
(1)

T̂
→ A1 associated

with the diagonal torus T̂ ⊂ GL2 and its special fibre at 0 ∈ A1

V
(1)

T̂,0
= T̂(Fq)× SingDiag2×2×Gm.

The geometry of the center Z(H(1)
Fq

) is best understood in terms of the mod p pro-p Iwahori-Satake

isomorphism [PS, Thm.B]

S
(1)
Fq

: SpecZ(H(1)
Fq

)
∼ // S(q).

Here, the Satake scheme S(q) := V
(1)

T̂,0
/W is the quotient of V

(1)

T̂,0
modulo its natural W -action. We

show that there is a completely natural quotient morphism of Fq-schemes

L : S(q) −→ X(q)Fq

to the base change X(q)Fq of X(q) (Thm. 6.2). Its construction is elementary algebraic geometry
and does not make use of the Galois parametrization of X(q). For example, on generic (regular)
connected components of S(q), the morphism L is just the toric construction of the projective line

(times Gm). In a second step, we precompose the morphism L with the isomorphism S
(1)
Fq

to
obtain a morphism

L : SpecZ(H(1)
Fq

) −→ X(q)Fq
.

It gives back the morphism L appearing in [PS2] when F = Qp. In general, the morphism L
satisfies several compatibilities, e.g. with regard to twist by characters or Serre weights, which we
discuss in sections 8 and 9.

Next, recall the extended mod p spherical moduleM(1)

Fq
from [PS, 7.4.1]. It is a distinguished

H(1)

Fq
-action on the maximal commutative subringA(1)

Fq
ofH(1)

Fq
and a mod p analogue (plus extension

to the pro-p Iwahori level) of the classical spherical module appearing in complex Kazhdan-Lusztig

theory [KL87, 3.9]. The quasi-coherent module (associated to) M(1)

Fq
over SpecZ(H(1)

Fq
), when

specialized at the closed points of SpecZ(H(1)

Fq
), can be used to obtain a parametrization of all
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irreducible H(1)

Fq
-modules [PS, 7.4.9/7.4.15]. Combined with the morphism L , we get a correspon-

dence parametrized by closed points

z ∈ MaxZ(H(1)

Fq
)

(M(1)

Fq
)z ρL (z)

between the H(1)

Fq
-modules (M(1)

Fq
)z and the semisimple Galois representations ρL (z) : Gal(F/F )→

GL2(Fq). When F/Qp, we show that the singular locus of this correspondence is 1-1 between

supersingular irreducible H(1)

Fq
-modules and irreducible Galois representations; more precisely, we

show that it agrees with the bijection established by Grosse-Klönne [GK18] in the case of GL2(F )
(Thm. 8.9).

The construction in [GK18] goes through mod p Lubin-Tate (φ,Γ)-modules and their relation
[KR09, Sch17] to mod p representations of Gal(F/F ). So for our comparison with [GK18], it is
necessary to classify the Lubin-Tate (φ,Γ)-modules corresponding to the absolutely irreducible
mod p representations of Gal(F/F ). In the cyclotomic case F = Qp, this is a result of Berger
[Be10]. We adapt Berger’s proof to the Lubin-Tate setting. As in his case, there is no point in
restricting to two-dimensional modules and we obtain our classification in any dimension (Thm.
10.7).

We recall some background on Lubin-Tate (φ,Γ)-modules in an appendix.

Notation: We keep the notation from the introduction. Let p > 2 be an odd prime. F denotes
a non-archimedean complete local field with ring of integers oF and residue field of characteristic p
and cardinal q = pf . We fix an algebraic closure F/F , denote by Fq/Fq its residue field extension,
and by Fqn ⊂ Fq the unique subextension of cardinality qn, for each n ≥ 1.

For n ≥ 1, we will denote by GLn the reductive group scheme of invertible n× n-matrices over
F , and use the same notation for its canonical model over oF and its special fiber over Fq. We will
denote by GLn the Langlands dual group of GLn over the coefficient field Fq, and use the same
notation for its base change to Fq.

All Galois representations are supposed to be continuous.

The second author thanks Laurent Berger for answering some questions on (φ,Γ)-modules.

2 Some reminders on mod p Galois representations

We recall some facts and fix some notation on mod p Galois representations.

2.1. Let π ∈ oF be a uniformizer. For any integer n ≥ 1, let πnf ∈ F be an element such that

πqn−1
nf = −π. We then have Serre’s fundamental character of level nf

ωnf : Gal(F/Fn) −→ F×
qn

given by g 7→ g(πnf )
πnf

∈ µqn−1(F ) followed by reduction mod π, cf. [Se72]. One has

ω
qn−1
q−1

nf = ωf |Gal(F/Fn)
.

Let I(F/F ) ⊂ Gal(F/F ) be the inertia subgroup and let I(F/F )t be its tame quotient. Choose
an element φ ∈ Gal(F/F ) lifting the Frobenius x 7→ xq on Gal(Fq/Fq). Since ωf : I(F/F ) → F×

q

is surjective [Se72, Prop. 2], we may and will assume ωf (φ) = 1. Note that the restriction

ωnf : I(F/F ) −→ F×
qn

of the character ωnf to I(F/F ) is canonical, since we defined Fq as the residue field of F and F×
qn

as its unique subfield of cardinality qn.
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2.2. We normalize local class field theory F× → Gal(F/F )ab by sending π to the geometric

Frobenius φ−1. In this way, we identify the smooth F×
q -valued characters of Gal(F/F ) and of

F×. This restricts to a bijection between smooth characters of the inertia subgroup I(F/F ) and

of F×
q . For example, the fundamental character ωf : F× → F×

q is the extension of the inclusion

ω : F×
q

⊂−→ F×
q to F× satisfying ωf (π) = 1.

2.3. Let F ⊆ Fn ⊆ F be the unique unramified extension of degree n over F . A smooth character

χ : Gal(F/Fn) → F×
q is regular if its Gal(Fn/F )- conjugates χ, χ

q, ..., χqn−1

are all distinct. The

irreducible smooth Fq-representations of Gal(F/F ) of dimension n are given by the representations

ind
Gal(F/F )

Gal(F/Fn)
(χ)

smoothly induced from the regular Fq-characters χ of Gal(F/Fn). The conjugates χ, χq, ..., χqn−1

of χ induce isomorphic representations and there are no other isomorphisms between the represen-
tations [V94, 1.14], [V04, 5.1].

2.4. A character ωh
nf for 1 ≤ h ≤ qn− 2 is regular if and only if its conjugates ωh

nf , ω
qh
nf , ..., ω

qn−1h
nf

are all distinct. Equivalently, if and only if h is q-primitive, that is, there is no d < n such that h

is a multiple of (qn − 1)/(qd − 1). The representation ind
Gal(F/F )

Gal(F/Fn)
(ωh

nf ) is then defined over Fqn .

It has a basis {v0, ..., vn−1} of eigenvectors for the characters ωh
nf , ω

qh
nf , ..., ω

qn−1h
nf of Gal(F/Fn)

such that φ(vi) = vi−1 and φ(v0) = vn−1. In particular, its determinant coincides with ωh
f on the

subgroup Gal(F/Fn) and takes φ to (−1)n−1.

2.5. For λ ∈ F×
q , let µλ or unr(λ) be the unramified character of Gal(F/F ) sending φ−1 to λ. Fix

δ with δn = (−1)n−1. The representation

ind(ωh
nf ) := (ind

Gal(F/F )

Gal(F/Fn)
(ωh

nf ))⊗ µδ

is then uniquely determined by the two conditions

det ind(ωh
nf ) = ωh

f and ind(ωh
nf )|I(F/F ) = ωh

nf ⊕ ω
qh
nf ⊕ ...⊕ ω

qn−1h
nf .

2.6. Let Fq ⊂ k ⊂ Fq be an intermediate extension of Fq. Every absolutely irreducible smooth
k-representation of Gal(F/F ) of dimension n is isomorphic to ind(ωh

nf ) ⊗ µλ for a q-primitive

1 ≤ h ≤ qn − 2 and a scalar λ ∈ F×
q such that λn ∈ k× and one has

ind(ωh
nf )⊗ µλ ≃ ind(ωh̃

nf )⊗ µλ̃

if and only if Gal(Fn/F ).ω
h
nf = Gal(Fn/F ).ω

h̃
nf and λn = λ̃n.

Since ω
qn−1
q−1

nf = ωf , every irreducible representation of Gal(F/F ) of dimension n is therefore

isomorphic to ind(ωh
nf )⊗ωs

fµλ for a q-primitive 1 ≤ h ≤ qn−1
q−1 −1, a scalar λ ∈ F×

q , and 0 ≤ s ≤ q−2.

2.7. Let n = 2. Since q2−1
q−1 − 1 = q and ind(ω2f ) ≃ ind(ωq

2f ), every irreducible representation of

Gal(F/F ) of dimension 2 is isomorphic to ind(ωh
2f )⊗ωs

fµλ for a q-primitive 1 ≤ h ≤ q−1, a scalar

λ ∈ F×
q and 0 ≤ s ≤ q − 2.

3 The q-parametrization of two-dimensional inertial types

A tame (two-dimensional) mod p inertial type is (the isomorphism class of) a continuous homo-
morphism

τ : I(F/F )t → GL2(Fq),

which extends to a representation of Gal(F/F ). A tame mod p inertial type is semi-simple as a
representation of I(F/F )t, so we can write τ = χ1 ⊕ χ2. In the terminology of [H09, sec.11], τ is
of niveau 1 if χq−1

i = 1 for i = 1, 2 and of niveau 2 otherwise.
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3.1 The basic even case

We will give a parametrization of the tame mod p inertial types with determinant ωf .

3.1.1. For r ∈ {0, 2, . . . , q − 5, q − 3}, set s(r) := − r
2 ∈ {0,−1, . . . ,−

q−5
2 ,− q−3

2 }. Then consider
the table with two columns:

(0, 0) | (q − 3, 1)
(2,−1) | (q − 5, 2)

...
...

...
(r, s(r)) | (q − 3− r, s(r) + r + 1)

...
...

...

(q − 5,− q−5
2 ) | (2, q−3

2 )

(q − 3,− q−3
2 ) | (0, q−1

2 ).

3.1.2. To each pair (r, s(r)), we attach the type of niveau 1 with determinant ωf

τ :=

(
ωr+1
f 0

0 1

)
⊗ ωs(r)

f ≃
(
ωq−2−r
f 0

0 1

)
⊗ ωs(r)+r+1

f .

According to the above table, this gives q−1
2 types of niveau 1.

To each pair (r, s(r)), we may also attach a type of niveau 2 with determinant ωf , namely

τ :=

(
ωr+1
2f 0

0 ω
q(r+1)
2f

)
⊗ ωs(r)

f ≃

(
ωq−r
2f 0

0 ω
q(q−r)
2f

)
⊗ ωs(r−2)+r−1

f .

According to the above table, this gives q−1
2 +1 = q+1

2 types of niveau 2. As in the case of F = Qp

[PS2, 3.3], one shows that all types with determinant ωf are obtained in this way.

3.2 The basic odd case

We will give a parametrization of the tame mod p inertial types with determinant 1.

3.2.1. For r ∈ {−1, 1, . . . , q−4, q−2}, set s(r) := − r+1
2 ∈ {0,−1, . . . ,−

q−3
2 ,− q−1

2 }. Then consider
the table with two columns:

(−1, 0) | (q − 2, 0)
(1,−1) | (q − 4, 1)

...
...

...
(r, s(r)) | (q − 3− r, s(r) + r + 1)

...
...

...

(q − 4,− q−3
2 ) | (1, q−3

2 )

(q − 2,− q−1
2 ) | (−1, q−1

2 ).

3.2.2. To each pair (r, s(r)), we attach the type of niveau 1 with determinant 1

τ :=

(
ωr+1
f 0

0 1

)
⊗ ωs(r)

f ≃
(
ωq−2−r
f 0

0 1

)
⊗ ωs(r)+r+1

f .

According to the above table, this gives q+1
2 types of niveau 1.

To each pair (r, s(r)), we may also attach a type of niveau 2 with determinant 1, namely

τ :=

(
ωr+1
2f 0

0 ω
q(r+1)
2f

)
⊗ ωs(r)

f ≃

(
ωq−r
2f 0

0 ω
q(q−r)
2f

)
⊗ ωs(r−2)+r−1

f .

According to the above table, this gives q−1
2 types of niveau 2. As in the case of F = Qp [PS2,

3.3], one shows that all types with determinant 1 are obtained in this way.
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3.3 The general case

3.3.1. Let
Nq := {0, 1, · · · , q − 2} and Dq := 1 +Nq = {1, · · · , q − 1}.

It splits into

Nq = Eq

∐
Oq

where
Eq := {2m}m=0,..., q−3

2
resp. Oq = {2m+ 1}m=0,..., q−3

2

is the subset of even resp. odd numbers, which both have cardinality (q − 1)/2. For each n ∈ Nq

let dn := 1 + n ∈ Dq.

3.3.2. Lemma. Let n ∈ Nq. The number of tame types of niveau 1 with determinant ωdn

f is{
q−1
2 if n ∈ Eq

q+1
2 if n ∈ Oq.

In particular, the total number of tame types of niveau 1 is q2−q
2 .

Proof. The first part follows from the niveau 1 part of the basic even case (if n even) or basic odd
case (if n odd) by twisting with powers of ωf . The second part follows from this, since

|Eq|
q − 1

2
+ |Oq|

q + 1

2
=
q − 1

2

(q − 1

2
+
q + 1

2

)
=
q2 − q

2
.

3.3.3. Lemma. Let n ∈ Nq. The number of tame types of niveau 2 with determinant ωdn

f is{
q+1
2 if n ∈ Eq

q−1
2 if n ∈ Oq.

In particular, the total number of tame types of niveau 2 is q2−q
2 .

Proof. The first part follows from the niveau 2 part of the basic even case (if n even) or basic odd
case (if n odd) by twisting with powers of ωf . The second part follows from this, since

|Eq|
q + 1

2
+ |Oq|

q − 1

2
=
q − 1

2

(q + 1

2
+
q − 1

2

)
=
q2 − q

2
.

4 The q-scheme of semisimple Galois representations

The following is inspired by the work of Emerton-Gee in the case F = Qp [Em19].

4.1. The projective line. Let
P1 := Proj(Fp[x, y])

be the projective line over Fp. It is the gluing of the two affine lines

A1
x := Spec(Fp[x]) ⊂ P1 ⊃ A1

y := Spec(Fp[y])

along the open Spec(Fp[x
±1]) = Spec(Fp[y

∓1]). The closed complement of A1
x is the point at infinity

∞ := [1 : 0] ∈ A1
y(Fp) and the closed complement of A1

y is the origin 0 := [0 : 1] ∈ A1
x(Fp):

P1 = A1
x ∪ {∞} = {0} ∪ A1

y.

There is a natural Gm-action on P1 by ”scaling”, given by (α, z) := αz for α ∈ Gm and z ∈ A1
x.

The space of orbits P1/Gm has three elements, the two closed orbits {0,∞} and the open orbit
P1 \ {0,∞}. The action depends on the choice of the affine coordinate x, but P1/Gm does not.
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4.2. The chains of P1’s. Let l ∈ N≥1. For each i ∈ {0, . . . , l − 1}, set Ci := Proj(Fp[xi, yi]), a
copy of the projective line. Then let

C̃(l) := C0
∐
C1
∐
· · ·
∐
Cl−2

∐
Cl−1

be the disjoint union of these l copies of P1. Finally let

C(l) := C0 ∞
⋃

0 C1 ∞
⋃

0 · · ·∞
⋃

0 Cl−2 ∞
⋃

0 Cl−1

be the Fp-scheme obtained by identifying the point at infinity of Ci with the origin of Ci+1 for all i
from 0 to l − 2, a chain of length l of copies of the projective line. In particular, it is a curve over
Fp, with l irreducible components and l− 1 singularities which are ordinary simple nodes, and the
canonical morphism

C̃(l) −→ C(l)

is its normalization.

4.3. The even and the odd q-chains. We call

C(q − 1

2
)

the even q-chain. There is a natural Gm-action on C( q−1
2 ) induced by the scaling action on each

component Ci and we denote by C( q−1
2 )/Gm = ∪i=0,..., q−3

2
Ci/Gm its space of Gm-orbits.

We call

C(q + 1

2
)

the odd q-chain. There is a natural Gm-action on each ”interior” component Ci for 0 < i < q−1
2 .

On the smooth part of the two ”exterior” components A1
x ⊂ C0 and A1

y ⊂ C q−1
2
, we pretend1 to

have a ”modified action” via the parametrization Gm → A1, t 7→ t+ t−1. In other words, we define
the space C0/Gm to consist of two elements, the point ∞ and its open complement. Similarly,
we define the space C q−1

2
/Gm to consist of two elements, the origin 0 and its open complement.

Finally, we let C( q+1
2 )/Gm = ∪i=0,..., q−1

2
Ci/Gm.

4.4. Connected components. For each n ∈ Nq and dn = 1 + n ∈ Dq, we define the Fp-scheme

Xdn(q) :=

{
C( q−1

2 )×Gm if n ∈ Eq

C( q+1
2 )×Gm if n ∈ Oq.

We define an action of the torus T̂ := Gm×Gm on Xdn
(q) as follows. Firstly, it acts on the factor

C( q∓1
2 ) by the first projection T̂ → Gm followed by the Gm-action described above. Secondly, it

acts on the factor Gm by the product T̂ = Gm × Gm → Gm followed by the Gm-action on itself
by multiplication. We let Xdn

(q)/T̂ denote the set of T̂-orbits.

4.4.1. Definition. We define the q-scheme of semisimple two-dimensional mod p Galois repre-
sentations to be the scheme over Fp

X(q) :=
∐

n∈Nq

Xdn
(q).

The T̂-action on each connected component Xdn
(q) induces a T̂-action on X(q). We let X(q)/T̂

denote the set of T̂-orbits on X(q).

The terminology for X(q) will become clear in the next subsection.

1Let Gm act on itself by multiplication. There is no Gm-action on A1 making the map t 7→ t+ t−1 equivariant.
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Remark. The action of T̂ on X(q) extends to an action of Gm(Fq) × T̂ as follows. Fix once
and for all a generator ζ of F×

q ; then the action of the element ζn ∈ Gm(Fq) is given by the family
of isomorphisms

∀ m ∈ Nq, Id : Xdm(q)
∼ // Xdm+2n(q)

(here we take the representative of m+ 2n modulo (q − 1) in Nq).

In particular, restricting the T̂-action along the diagonal embedding Gm → Gm × Gm = T̂,
we get an action of Gm(Fq)×Gm on X(q); we will refer to the latter Gm(Fq)×Gm-action as the
twisting action on X(q).

4.4.2. Let D(q) be the finite constant Fp-scheme such that D(q)(Fp) = Dq. The scheme X(q) is
canonically fibered over D(q):

d(q) : X(q) −→ D(q) with d(q)−1(dn) = Xdn
(q) for all dn ∈ Dq.

It also admits a canonical projection pr2 to Gm, whence a canonical morphism

d(q)× pr2 : X(q) −→ D(q)×Gm.

From now on, we drop the (q) from the notation, so we write X instead of X(q) and so on.

4.5. The q-Galois parametrization. Recall that we have fixed an arithmetic Frobenius φ ∈
Gal(F/F ). In the preceding subsection we have defined a certain Fp-scheme X. The aim of the
present subsection is to establish the following theorem.

4.5.1. Theorem. There is a canonical (up to a sign) bijection

ιφ : X(Fq) ∼=
{
semisimple ρ : Gal(F/F )→ GL2(Fq)

}
/ ∼ .

More precisely, for each n ∈ Nq and z2 ∈ Gm(Fq), there is a canonical (up to a sign) bijection:

ιφ,n|pr2=z2 : Xdn |pr2=z2(Fq) ∼=
{
semisimple ρ : Gal(F/F )→ GL2(Fq) | det(ρ) = ωdn

f unr(z2)
}
/ ∼ .

The proof proceeds along the lines of the case F = Qp [Em19], cf. also [PS2], by assigning
to the geometric standard coordinates (x, y), z2 on each irreducible component P1 × Gm of X an
isomorphism class of semisimple representations ρ : Gal(F/F )→ GL2(Fq).

4.5.2. The basic even case. Let us consider the case where

n = 0 ∈ Eq i.e. dn = 1 ∈ Dq, and z2 = 1 ∈ Gm.

Then
Xd0
|pr2=1 = C0 ∞

⋃
0 C1 ∞

⋃
0 · · ·∞

⋃
0 C q−5

2
∞
⋃

0 C q−3
2
× {1}.

For i ∈ {0, 1, . . . , q−5
2 , q−3

2 }, set r := 2i. Then r ∈ {0, 2, . . . , q− 5, q− 3}, and we rewrite the above
chain as

Xd0 |pr2=1 = C0 ∞
⋃

0 C2 ∞
⋃

0 · · ·∞
⋃

0 Cq−5
∞
⋃

0 Cq−3 × {1}.

Next, for r ∈ {0, 2, . . . , q − 5, q − 3}, set s(r) := − r
2 ∈ {0,−1, . . . ,−

q−5
2 ,− q−3

2 }. Then reconsider
the table from 3.1:

(0, 0) | (q − 3, 1)
(2,−1) | (q − 5, 2)

...
...

...
(r, s(r)) | (q − 3− r, s(r) + r + 1)

...
...

...

(q − 5,− q−5
2 ) | (2, q−3

2 )

(q − 3,− q−3
2 ) | (0, q−1

2 ).
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It gives a rule to attach an isomorphism class of representations ρ to a point of [x : 1] = [1 : y] ∈
P1 \ {0,∞} = Cr \ {0,∞}: one takes

ρ :=

(
unr(x)ωr+1

f 0

0 unr(x−1)

)
⊗ ωs(r)

f ≃
(

unr(y)ωq−2−r
f 0

0 unr(y−1)

)
⊗ ωs(r)+r+1

f .

Moreover, one takes

ρ := ind(ωr+1
2f )⊗ ωs(r)

f

at the origin 0, and

ρ := ind(ωq−2−r
2f )⊗ ωs(r)+r+1

f ≃ ind(ωr+3
2f )⊗ ωs(r+2)

f

at the point ∞. We have thus a well-defined map

ιφ,0|pr2=1 : Xd0
|pr2=1(Fq)→

{
semisimple continuous ρ : Gal(F/F )→ GL2(Fq) | det(ρ) = ωf

}
/ ∼ .

By its very construction, it is compatible with the parametrization of mod p tame inertial types
in the basic even case, cf. 3.1.

4.5.3. Lemma. Let T̂SL2 ⊂ T̂ be the anti-diagonal embedding Gm → Gm ×Gm. The subscheme

Xd0
|pr2=1 ⊂ Xd0

is stable under the action of T̂SL2 , and the map ιφ,0|pr2=1 induces bijections

open orbits in Xd0
|pr2=1/T̂SL2 ≃

{
types τ of niveau 1 | det τ = ωf

}
closed orbits in Xd0

|pr2=1/T̂SL2 ≃
{
types τ of niveau 2 | det τ = ωf

}
.

Proof. This follows from the case n = 0 in 3.3.2 and 3.3.3.

4.5.4. Corollary. The map ιφ,0|pr2=1 is a bijection.

4.5.5. The basic odd case. Let us consider the case where

n = q − 2 ∈ Oq i.e. dn = q − 1 ∈ Dq, and z2 = 1 ∈ Gm.

Then
Xdq−2 |pr2=1 = C0 ∞

⋃
0 C1∞

⋃
0 · · ·∞

⋃
0 C q−3

2
∞
⋃

0 C q−1
2
× {1}.

For i ∈ {0, 1, . . . , q−3
2 , q−1

2 }, set r := 2i− 1. Then r ∈ {−1, 1, . . . , q − 4, q − 2}, and we rewrite the
above chain as

Xdq−2
|pr2=1 = C−1

∞
⋃

0 C1 ∞
⋃

0 · · ·∞
⋃

0 Cq−4
∞
⋃

0 Cq−2 × {1}.

Next, for r ∈ {−1, 1, . . . , q−4, q−2}, set s(r) := − r+1
2 ∈ {0,−1, . . . ,−

q−3
2 ,− q−1

2 }. Then reconsider
the table from 3.2:

(−1, 0) | (q − 2, 0)
(1,−1) | (q − 4, 1)

...
...

...
(r, s(r)) | (q − 3− r, s(r) + r + 1)

...
...

...

(q − 4,− q−3
2 ) | (1, q−3

2 )

(q − 2,− q−1
2 ) | (−1, q−1

2 ).

For r /∈ {−1, q − 2}, it gives a rule to attach an isomorphism class of representations ρ to a point
of [x : 1] = [1 : y] ∈ P1 \ {0,∞} = Cr \ {0,∞}: one takes

ρ :=

(
unr(x)ωr+1

f 0

0 unr(x−1)

)
⊗ ωs(r)

f ≃
(

unr(y)ωq−2−r
f 0

0 unr(y−1)

)
⊗ ωs(r)+r+1

f .
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Moreover, one takes

ρ := ind(ωr+1
2f )⊗ ωs(r)

f

at the origin 0, and

ρ := ind(ωq−2−r
2f )⊗ ωs(r)+r+1

f ≃ ind(ωr+3
2f )⊗ ωs(r+2)

f

at the point ∞. For r ∈ {−1, q − 2}, one uses the surjection

Gm −→ A1

z 7−→ t := z + z−1

and attach to t ∈ A1 = C−1 \ {∞}, resp. t ∈ A1 = Cq−2 \ {0}):

ρ :=

(
unr(z) 0

0 unr(z−1)

)
≃
(

unr(z−1) 0
0 unr(z)

)
resp.

ρ :=

(
unr(z) 0

0 unr(z−1)

)
⊗ ω

q−1
2

f ≃
(

unr(z−1) 0
0 unr(z)

)
⊗ ω

q−1
2

f .

We have thus a well-defined map

ιφ,q−2|pr2=1 : Xdq−2
|pr2=1(Fq)→

{
semisimple continuous ρ : Gal(F/F )→ GL2(Fq) | det ρ = 1

}
/ ∼ .

By its very construction, it is compatible with the parametrization of mod p tame inertial types
in the basic odd case, cf. 3.2.

4.5.6. Lemma. The subscheme Xdq−2 |pr2=1 ⊂ Xdq−2 is stable under the action of T̂SL2 ⊂ T̂,
and the map ιφ,q−2|pr2=1 induces bijections

open orbits in Xdq−2
|pr2=1/T̂SL2 ≃

{
types τ of niveau 1 | det τ = 1

}
closed orbits in Xdq−2

|pr2=1/T̂SL2 ≃
{
types τ of niveau 2 | det τ = 1

}
.

Proof. This follows from the case n = q − 2 in 3.3.2 and 3.3.3.

4.5.7. Corollary. The map ιφ,q−2|pr2=1 is a bijection.

4.5.8. The general case. Let

n ∈ Nq = Eq

∐
Oq i.e. dn ∈ Dq, and z2 ∈ Gm(Fq).

Choose a square root
√
z2 of z2. This choice is responsable to the addendum up to a sign in the

statement of the theorem 4.5.1. Set

η := unr(
√
z2)

 ω
dn−1

2

f if n ∈ Eq

ω
dn
2

f if n ∈ Oq.

Then there is obviously a unique (bijective) map

Xdn
|pr2=z2(Fq)

∼−→
{
semisimple ρ : Gal(F/F )→ GL2(Fq) | det ρ = ωdn

f unr(z2)
}
/ ∼

such that the bijections

(ζn,
√
z2) : Xd0 |pr2=1(Fq)

∼ // Xdn |pr2=z2(Fq) if n ∈ Eq

and
(ζn,
√
z2) : Xdq−2

|pr2=1(Fq)
∼ // Xdn

|pr2=z2(Fq) if n ∈ Oq

given by the twisting action of (ζn,
√
z2) ∈ Gm(Fq)×Gm on X(q) (Remark after 4.4.1) correspond

on the Galois side to twisting by the character η. This ends the proof of the theorem 4.5.1.
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As a corollary of the proof, we obtain

4.5.9. Corollary. The map ιφ induces a bijection

X/T̂ ≃
{
tame inertial types τ : I(F/F )→ GL2(Fq)

}
.

Under this bijection open and closed orbits correspond to types of niveau 1 and 2 respectively.

4.5.10. Twisting. The Galois parametrization in theorem 4.5.1 is compatible with twisting in
the following sense. Recall the twisting action of Gm(Fq) × Gm on X, depending on our fixed
generator ζ of F×

q , cf. Remark after 4.4.1. The group Gm(Fq)×Gm is naturally isomorphic to the
group of Galois characters via (ζn, z) 7→ ωn

f unr(z). Let

Rm,z2 :=
{
semisimple ρ : Gal(F/F )→ GL2(Fq) | det(ρ) = ωdm

f unr(z2)
}
/ ∼

be the set appearing on the right hand-side of theorem 4.5.1. Suppose m ∈ Eq and let η :=

unr(
√
z2)ω

dm−1
2

f be a ”choice of sign” inducing the Galois parametrization

ιφ,m|pr2=z2 : Xdm
|pr2=z2 ≃ Rm,z2 .

Let an arbitrary Galois character χ := ωn
f unr(z) be given.

It leads to the sign choice η′ := unr(
√
z2 · z)ω

dm+2n−1

2

f and the Galois parametrization

ιφ,m+2n|pr2=z2z2 : Xdm+2n
|pr2=z2z2 ≃ Rm+2n,z2z2 .

The two Galois parametrizations make the left-hand side and the back-side of the following half
cube

Xd0
|pr2=1 Xdm

|pr2=z2

Xdm+2n |pr2=z2z2

R0,1 Rm,z2

Rm+2n,z2z2

(ζn,z)

η′

η

χ

commutative. The top of the half cube is commutative, by associativity of the Gm(Fq)×Gm-action:

(ζ2n, z
√
z2) = (ζn, z) ◦ (ζn,

√
z2).

The bottom of the half cube is commutative, since η′ = η · χ. It follows that the right-hand side
(written in blue) is commutative as well. This means that the action of (ζn, z) ∈ Gm(Fq)×Gm on
Xdm
|pr2=z2 corresponds to twisting by the corresponding Galois character χ = ωn

f unr(z) on the
corresponding set of Galois representations Rm,z2 . The case m ∈ Oq is similar.

5 The q-scheme of Satake parameters

We recall some notions and results from [PS]. In the following, all schemes and fiber products are
over SpecFq. Let W be the Weyl group of GL2 and w its nontrivial element.

5.1. Let T̂ be the torus of invertible diagonal 2× 2 matrices. We consider the scheme

VT̂,0 := SingDiag2×2× Gm,

where SingDiag2×2 represents the semigroup of singular diagonal 2×2-matrices [PS, 7.1]. Consider
the extended semigroup

V
(1)

T̂,0
:= T̂(Fq)× VT̂,0.

It carries a natural W -action: the natural action of W on the factors T̂(Fq) and SingDiag2×2 and
the trivial one on Gm.
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5.2. Definition. We define the scheme of mod p Satake parameters for GL2 to be the scheme
over Fq

S(q) := V
(1)

T̂,0
/W.

5.3. The scheme S(q) is canonically fibered over the finite constant Fq-scheme T̂(Fq)/W :

π0 : S(q) −→ T̂(Fq)/W.

The fibers of π0 are the connected components of S(q). The irreducible components of S(q) can be

labelled by the elements of T̂(Fq). This depends on a choice of order (t1, t2) on every regular orbit

{t1 ̸= t2} in T̂(Fq)/W : the order induces an isomorphism π−1
0 ({t1, t2}) ≃ VT̂,0 = (A1

x ∪0 A1
y)×Gm

and we can label the image of A1
x ×Gm (resp. of A1

y ×Gm) in π−1
0 ({t1, t2}) by t1 (resp. t2).

Composing with the determinant map T̂(Fq)/W → Gm(Fq) gives a morphism

S(q) −→ T̂(Fq)/W −→ Gm(Fq).

5.4. The scheme S(q) also admits the canonical projection pr2 : S(q) → Gm. Whence finally a
composed morphism

S(q) −→ T̂(Fq)/W ×Gm −→ Gm(Fq)×Gm.

From now on, we drop the (q) from the notation, i.e. we will write S instead of S(q) and so on.

6 The Fq-morphism L from Satake to Galois

The aim of the present section is to establish the following theorem. Let XFq
be the base change

to Fq of the Fp-scheme X = X(q) of semisimple two-dimensional Galois representations, cf. 4.4.1.

6.1. The Gm(Fq) × T̂-action. Recall our choice of generator ζ of the group F×
q . According to

the remark after definition 4.4.1, there is a natural action of the group Gm(Fq)× T̂ on the scheme
X. This action extends linearly to XFq . On the other hand, also the Fq-scheme S comes equipped

with a natural Gm(Fq)× T̂-action. Explicitly, it is given as follows. Write

S = V
(1)

T̂,0
/W =

(
T̂(Fq)× SingDiag2×2×Gm

)
/W.

Let (n, z1, z2) ∈ Nq × Gm × Gm. The element ζn ∈ Gm(Fq) acts only via the factor T̂(Fq), by

multiplication by diag(ζn, ζn). The element (z1, z2) ∈ Gm × Gm acts trivially on T̂(Fq), and by

multiplication by (diag(z1, z2), z1z2) on SingDiag2×2×Gm
2. This defines a Gm(Fq) × T̂-action

on V
(1)

T̂,0
. The action of Gm(Fq) × {1} passes directly to the quotient S. As recalled above, the

decomposition of S into connected components is given as

S =
∐

γ∈T̂(Fq)/W

(γ × SingDiag2×2×Gm)/W.

If γ is regular (i.e. consists of two elements), the T̂-action passes directly to the quotient (γ ×
SingDiag2×2×Gm)/W ≃ VT̂,0. In the non-regular case, we actually take the induced action of T̂W

on (γ×SingDiag2×2×Gm)/W ≃ VT̂,0/W. This defines the Gm(Fq)× T̂-action on S - actually only
a ”partial action” in the regular case.

As for the twisting action onXFq
, the Gm(Fq)×T̂-action on S restricts to a Gm(Fq)×Gm-action

along the diagonal Gm → T̂, which will be referred to as the twisting action on S.

2We recall that the canonical inclusion of the torus T̂ = Gm × Gm inside the monoid V
T̂

= Diag2×2 ×Gm is
given by the map (z1, z2) 7→ (diag(z1, z2), z1z2).
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6.2. Theorem. There is a quotient morphism of Fq-schemes

L : S −→ XFq

which gives back the morphism L appearing in [PS2] in the case F = Qp. The morphism L is

Gm(Fq)× T̂-equivariant; in particular, it intertwines the twisting actions of Gm(Fq)×Gm.

As in [PS2], the morphism is a quotient morphism, locally given by the toric construction of the
projective line (except on the two exterior components in the odd case, see below). Its construction
goes along the lines of [PS2].

For each (n, z2) ∈ Nq ×Gm, we have the fibre S(ζn,z2) of S at (ζn, z2) ∈ Gm(Fq)×Gm, and the
fiber X(dn,z2) of XFq

at (dn, z2) ∈ Dq ×Gm. We will have a morphism

L(n,z2) : S(ζn,z2) −→ X(dn,z2),

which will be {1} × T̂SL2 -equivariant. The full morphism L will be obtained by twisting, and

consequently will be equivariant with respect to the full Gm(Fq)× T̂-actions.

6.3. The ordering on the irreducible components of S. Let (n, z2) ∈ Nq × Gm. Let
x, y resp. z1 be the canonical standard coordinates resp. Steinberg coordinate on each regular
resp. non-regular connected component of S(ζn,z2). According to [PS, 7.5.6], we have the following
description of S(ζn,z2).

Suppose n is even, i.e. n ∈ Eq. Then S(ζn,z2) is the disjoint union

A1
z1

∐
A1

x ∪0 A1
y

∐
· · ·
∐

A1
x ∪0 A1

y

∐
A1

z1 × {z2}

indexed by the fibre of T̂(Fq)/W → Gm(Fq) in ζ
n. The irreducible components of S(ζn,z2) can be

labelled by the sequence of ordered pairs of elements of T̂(Fq)

ti · diag(ζs, ζs), twi · diag(ζs, ζs)

where n = 2s and ti := diag(ζi, ζ−i) (and twi its w-conjugate) for i = 0, ..., q−1
2 . Choose a square

root
√
z2. The twisting action of the element (ζs,

√
z2) ∈ Gm(Fq)×Gm gives an isomorphism

(ζs,
√
z2) : S(ζ0,1)

∼−→ S(ζn,z2)

which preserves the ordering.

Suppose n is odd, i.e. n ∈ Oq. Then S(ζn,z2) is the disjoint union

A1
x ∪0 A1

y

∐
· · ·
∐

A1
x ∪0 A1

y × {z2}

indexed by the fibre of T̂(Fq)/W → Gm(Fq) in ζ
n. The irreducible components of S(ζn,z2) can be

labelled by the sequence of ordered pairs of elements of T̂(Fq)

ti · diag(ζs, ζs), twi · diag(ζs, ζs)

where n = 2s− 1 and ti := diag(ζi−1+ q−1
2 , ζ−i+ q−1

2 ) (and twi is its w-conjugate) for i = 1, ..., q−1
2 .

The twisting action of the element (ζs,
√
z2) ∈ Gm(Fq)×Gm gives an isomorphism

(ζs,
√
z2) : S(ζq−2,1)

∼−→ S(ζn,z2)

which preserves the ordering.

6.3.1. The morphism L in the even case. Let n ∈ Eq. We restrict first to the case n = 0 and
z2 = 1. We have by definition

X(d0,1) = C0,Fq ∞
⋃

0 C1,Fq ∞
⋃

0 · · ·∞
⋃

0 C q−5
2 ,Fq

∞
⋃

0 C q−3
2 ,Fq

× {1}.
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Let Qi be the origin 0 on Ci,Fq
for i ∈ {0, 1, . . . , q−5

2 , q−3
2 } and let Q q−1

2
be the point∞ on C q−3

2 ,Fq
.

On the other hand, let Pi be the origin on the i-th connected component of S(ζ0,1) for i = 0, ..., q−1
2 .

We map the sequence of points Pi to the sequence of points Qi, i.e. we define

L(0,1)(Pi) := Qi.

Next, suppose 0 < i < q−1
2 and consider the i-th connected component A1

x ∪0 A1
y of S(ζ0,1). Then

L(0,1)(Pi) = Qi ∈ Ci−1,Fq ∩ Ci,Fq . We define

L(0,1)(0, y) := [1 : y] ∈ Ci−1,Fq and L(0,1)(x, 0) := [x : 1] ∈ Ci,Fq .

Finally, if i = 0 resp. i = q−1
2 we call the Steinberg variable z1 simply x resp. y and put

L(0,1)(x) := [x : 1] ∈ C0,Fq
resp. L(0,1)(y) := [1 : y] ∈ C q−3

2 ,Fq
.

We have defined a quotient morphism of Fq-schemes

L(0,1) : S(ζ0,1) −→ X(d0,1)

which, locally, is the toric construction of the projective line: it identifies the open subset Gm in
the ”first” irreducible component A1 of a connected component of S(ζ0,1) with the open subset
Gm in the ”second” irreducible component A1 of the ”next” connected component via the map
z 7→ z−1, thus forming a P1. The morphism L(0,1) is T̂SL2-equivariant. Indeed, in the regular case,

let t = diag(a, a−1) ∈ T̂SL2 and P a point on the i-th connected component A1
x ∪0 A1

y of S(ζ0,1).
Since t fixes Pi and its image Qi, we may assume P ̸= Pi. If P = (0, y), then by definition of the
Gm-action on P1, cf. 4.1,

L(0,1)(t.P ) = L(0,1)(0, a
−1y) = [1 : a−1y] = a.[1 : y] = pr1(t).L(0,1)(P ) = t.L(0,1)(P ).

The calculation in the case P = (x, 0) is similar. Finally, in the non-regular case, an element

t = diag(±1,±1) ∈ T̂SL2 ∩ T̂W acts by multiplication by ±1 on the Steinberg variable z1, hence
compatibly with its action in XFq

.
Let now n = 2s ∈ Eq and z2 ∈ Gm be general. The action of (ζs,

√
z2) ∈ Gm(Fq) × Gm gives

the isomorphism

(ζs,
√
z2) : X(d0,1)

∼−→ X(dn,z2).

We define L(dn,z2) := (ζs,
√
z2) ◦ L(0,1) ◦ (ζs,

√
z2)

−1. It is well-defined, i.e. independent of the

choice of square root
√
z2. Since L(0,1) is T̂SL2 -equivariant, so is L(dn,z2).

6.3.2. The morphism L in the odd case. Let n ∈ Oq. We restrict first to the case n = q − 2
and z2 = 1. We have by definition

X(dq−2,1) = C0,Fq ∞
⋃

0 C1,Fq ∞
⋃

0 · · ·∞
⋃

0 C q−3
2 ,Fq

∞
⋃

0 C q−1
2 ,Fq

× {1}.

Moreover, on C0,Fq
we write t for the variable x (so that the double point is at t = ∞) and on

C q−1
2 ,Fq

we write t for the variable y (so that the double point is at t =∞, again).

Now let Qi be the origin 0 on Ci,Fq for i ∈ {1, 2, . . . , q−3
2 , q−1

2 }. On the other hand, let Pi be

the origin on the i-th connected component of S(ζq−2,1) for i = 1, ..., q−1
2 . We map the sequence of

points Pi to the sequence of points Qi, i.e. we define

L(q−2,1)(Pi) := Qi.

Next consider the i-th connected component A1
x ∪0 A1

y of S(ζq−2,1). Then L(q−2,1)(Pi) = Qi ∈
Ci−1,Fq

∩ Ci,Fq
. We define

L(q−2,1)(0, y) := [1 : y] ∈ Ci−1,Fq
(if i ̸= 1) and L(q−2,1)(x, 0) := [x : 1] ∈ Ci,Fq

(if i ̸= q − 1

2
).
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Finally, if i = 1 resp. i = q−1
2 we call t the standard variable y resp. x on the i-th connected

component of S(ζq−2,1) and put

L(q−2,1)(0, t) := t+ t−1 ∈ C0,Fq resp. L(q−2,1)(t, 0) := t+ t−1 ∈ C q−1
2 ,Fq

.

We have defined a quotient morphism of Fq-schemes

L(q−2,1) : S(ζq−2,1) −→ X(dq−2,1)

which, locally, is the toric construction of the projective line, except on the two ”outer” irreducible
components A1 of S(ζq−2,1), where it is the covering A1 → P1, t 7→ t+ t−1. The morphism L(q−2,1)

is T̂SL2-equivariant. Indeed, for the interior components, the computation is the same as for L(0,1),
and for the exterior ones, we precisely used the parametrization t 7→ t + t−1 to define ”an action
of Gm” on X(dq−2,1) (cf. 4.3).

Let now n = 2s − 1 ∈ Oq and z2 ∈ Gm be general. The action of (ζs,
√
z2) ∈ Gm(Fq) × Gm

gives the isomorphism
(ζs,
√
z2) : X(dq−2,1)

∼−→ X(dn,z2).

We define L(dn,z2) := (ζs,
√
z2) ◦ L(q−2,1) ◦ (ζs,

√
z2)

−1. It is well-defined, i.e. independent of the

choice of square root
√
z2, and T̂SL2 -equivariant.

7 The Fq-morphism L from Hecke to Galois

7.1. We identify W with the subgroup of GL2(F ) generated by the matrix s =

(
0 1
1 0

)
.

We let I ⊂ GL2(F ) be the standard Iwahori subgroup of GL2(F ) consisting of integral matrices
which are upper triangular mod p. Let I(1) ⊂ I be its p-Sylow subgroup, i.e. matrices which are

upper unipotent mod p. Let H(1)
Fq

be the pro-p Iwahori-Hecke algebra of the group GL2(F ) with

coefficients in Fq, i.e. the convolution algebra over Fq generated by the I(1)-double cosets in

GL2(F ). If g ∈ GL2(F ), we denote by Tg ∈ H(1)
Fq

the element corresponding to the double coset

I(1)gI(1). Let Z(H(1)
Fq

) be the center of the algebra H(1)
Fq

. The algebra H(1)
Fq

decomposes into a

product of algebras Hγ
Fq

indexed by the elements γ ∈ T∨/W0, cf. [V04, 3.1]. For simplicity, we

denote the image of Tg in a direct factor Hγ
Fq

by the same letter.

Set T := T (Fq), and denote by T∨ its group of characters. The group W acts naturally on T
and T∨, and the connected components of the scheme Spec(Z(H(1)

Fq
)) are canonically indexed by

the quotient set T∨/W . Moreover, set u =

(
0 1
π 0

)
and U = Tu ∈ H(1)

Fq

3. Then U2 is a free

invertible element of Z(H(1)
Fq

). Whence a canonical morphism of Fq-schemes

π0 × prSpec(Fq [U±2]) : Spec(Z(H
(1)
Fq

)) −→ T∨/W × Spec(Fq[U
±2]).

Finally, restricting along the diagonal cocharacter F×
q → T induces a map T∨/W → (F×

q )
∨, whence

a composed morphism

Spec(Z(H(1)
Fq

)) −→ T∨/W × Spec(Fq[U
±2]) −→ (F×

q )
∨ × Spec(Fq[U

±2]).

7.2. In [PS, Thm.B] we established the mod p pro-p-Iwahori Satake isomorphism

S
(1)
Fq

: SpecZ(H(1)
Fq

)
∼ // S(q).

Recall our fixed choice of generator ζ of F×
q . Using the evaluation of cocharacters of T̂ on ζ,

one gets an identification of T∨ with T̂(Fq). Similarly, recall our fixed choice of inclusion Fq ⊂ Fq

inducing the character ω : F×
q → F×

q ; one gets an identification of (F×
q )

∨ = ⟨ω⟩ with Gm(Fq) = ⟨ζ⟩.
3This element u corresponds to what is denoted by u−1 in [PS, PS2].
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Then, by construction, the isomorphism S
(1)
Fq

fits into the commutative diagram

SpecZ(H(1)
Fq

)
S

(1)
Fq

∼
//

π0×prSpec(Fq [U±2])

��

S(q)

π0×pr2
��

T∨/W × Spec(Fq[U
±2])

��

T̂(Fq)/W ×Gm

��

(F×
q )

∨ × Spec(Fq[U
±2]) Gm(Fq)×Gm.

7.3. Definition. Composing S
(1)
Fq

with the morphism L : S(q)→ XFq
from 6.2 yields a Langlands

morphism

L := L ◦S
(1)
Fq

: SpecZ(H(1)
Fq

) −→ XFq
.

7.4. Viewing a H(1)
Fq

-module as a quasi-coherent module on SpecZ(H(1)
Fq

) yields the functor

L∗ : Mod(H(1)
Fq

) −→ QCoh(XFq
),

generalizing the one from [PS2, 7.2] in the case of F = Qp.

Furthermore, letM(1)
Fq

be the mod p spherical module, cf. [PS, Def. 7.4.1]. Recall that, if A(1)

Fp

denotes the maximal commutative subring of H(1)

Fp
(associated with the dominant orientation, say),

thenM(1)

Fp
= A(1)

Fp
as A(1)

Fp
-modules. The action of the Hecke operator Ts onM(1)

Fp
is given by a mod

p and pro-p analogue (based on results of M.-F. Vignéras) of the classical Demazure operator. For

more details, we refer to loc.cit. Recall further from [PS, 7.4.2] that tensoringM(1)
Fq

over Z(H(1)
Fq

)

with an Fq-valued central character defines the spherical map

Sph :
(
SpecZ(H(1)

Fq
)
)
(Fq) // {left H(1)

Fq
-modules}/ ∼ .

It induces a parametrization of all irreducible H(1)

Fq
-modules. In general, modules of the form

Sph(v) are of length one or two, and they are always of length one if v∗ : Z(H(1)
Fq

) → Fq is a

supersingular central character, cf. [PS, Thm. E]. Let us recall here the notion of a supersingular

central character: the product decomposition of H(1)
Fq

induces a product decomposition Z(H(1)
Fq

) =∏
γ∈T∨/W Z(Hγ

Fq
), where Z(Hγ

Fq
) denotes the center of the component algebra Hγ

Fq
. In the case

of a regular orbit γ, one chooses an ordering (χ|T, χs|T) on the set γ, the associated standard
coordinates X,Y ∈ Hγ

Fp
together with U2 then generate Z(Hγ

Fp
). If γ is non-regular, the center

Z(Hγ
Fp
) is generated by U2 and Z = UTs + TsU + U.

A central character v∗ is called supersingular, if on its corresponding connected component

one has v∗(X) = v∗(Y ) = 0 (regular case) or v∗(Z) = 0 (non-regular case). A H(1)

Fq
-module with

central character θ is called supersingular if θ is a supersingular character.

7.5. Proposition. The morphism L induces a bijection(
SpecZ(H(1)

Fq
)
)
(Fq)

supersing ∼−→ XFq (Fq)
irred

between the sets of supersingular simple Hecke modules, via Sph, and of irreducible Galois repre-
sentations, via ιφ.

Proof. Let (n, z2) ∈ Nq ×Gm. The isomorphism S
(1)
Fq

induces an isomorphism between the fibers

(SpecZ(H(1)
Fq

))(ωn,z2) and S(ζn,z2), which in turn is mapped onto X(dn,z2) by L. The supersingular
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central characters in (SpecZ(H(1)
Fq

)(ωn,z2) correspond to the points (x, y) = 0 (in the regular case)

and z1 = 0 (in the non-regular case) in S(ζn,z2). Moreover, by construction of L(n,z2) and ιφ, these

points are mapped in a 1 : 1 way to points in X(dn,z2)(Fq) corresponding to irreducible Galois
representations. Letting n vary, the resulting injective map(

SpecZ(H(1)
Fq

)
)
z2
(Fq)

supersing ∼−→ Xz2(Fq)
irred

is bijective, since source and target have the same cardinality q2−q
2 , cf. [V04, Rem. 5.1].

8 Relation to Grosse-Klönne’s functor

Combining the spherical map Sph with the morphism L gives a correspondence

Sph(v)⇝ ρL (v)

from (certain) H(1)

Fq
-modules to semisimple Galois representations Gal(F/F )→ GL2(Fq). In [PS2]

we have shown that in the case F = Qp, the correspondence Sph(v) ⇝ ρL (v) is the semisimple
mod p local Langlands correspondence4 for the group GL2(Qp).

In the general case F/Qp, Proposition 7.5 shows that

Sph(v)⇝ ρL (v)

induces a bijection between simple supersingular Hecke modules and irreducible Galois represen-
tations. In this section, we will show that this bijection is the (functorial) bijection in the case
n = 2 constructed by Grosse-Klönne [GK18]. This makes use of the case n = 2 in the classification
of irreducible étale mod p Lubin-Tate (φ,Γ)-modules, the main result 10.7 of the appendix.

8.1. To start with, recall the twisting action of Gm(Fq)×Gm on S from 6.1. Under the isomorphism

S
(1)
Fq

, it corresponds to an action of (F×
q )

∨ × Gm on Spec(Z(H(1)
Fq

)), which, in particular, induces

an action of (F×
q )

∨ on T∨/W . In the sequel, we will denote the later as

T∨/W × (F×
q )

∨ −→ T∨/W, (γ, ωn) 7→ γ.ωn.

Note that this latter action is actually induced by an action of (F×
q )

∨ on T∨, which we denote by
(χ, ωn) 7→ χ.ωn. The character χ.ωn of T is given as t 7→ χ(t) · (ωn ◦ det)(t).

8.2. Let

Sphss :
(
SpecZ(H(1)

Fq
)
)
(Fq) // {semisimple left H(1)

Fq
-modules}/ ∼

be the composition of Sph followed by semisimplification. It is then equivariant for the action
of (F×

q )
∨ × Gm on the target deduced from the following twisting action of irreducible (or, more

generally, standard) H(1)

Fq
-modules, cf. [PS2, 2.5]. Let (n, z2) ∈ Nq ×Gm. In the non-regular case,

the U -action gets multiplied by z2, the Ts-action remains unchanged and the component γ gets
multiplied by ωn as above. In the regular case, the actions of the standard coordinates X,Y and
U2 get multiplied by z2, z2 and z22 respectively and the component γ gets multiplied by ωn again.

8.3. Let Z(G) be the center of G := GL2(F ). It is isomorphic to F× via the diagonal cocharacter
F× → GL2(F ). Denote by Z(G)∨ the group of smooth Fq-valued characters of Z(G). It is
isomorphic to (F×

q )
∨ ×Gm via

Z(G)∨
∼−→ (F×

q )
∨ ×Gm, η 7→ (η|F×

q
, η(π)).

Indeed, any smooth character F× → F×
q is trivial on the subgroup 1+πoF , and we have normalized

local class field theory by sending π to φ−1 in 2.2.

4The category of smooth mod p representations of GL2(Qp) is equivalent to the category of H(1)

Fq
-modules [O09].
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8.4. From 8.2 and 8.3, we get a twisting action of Z(G)∨ on standard H(1)

Fq
-modules, that we

denote by
(M,η) 7−→M ⊗ η.

Let Fq ⊆ k ⊂ Fq be a finite extension. LetH(1)
k be the pro-p Iwahori-Hecke algebra with coefficients

in k. According to 10.8, a given central character η : Z(G) → F×
q is k-rational (i.e. takes values

in k×) if and only if η(π) ∈ k×. We therefore see that the twisting action restricts to an action of

k-rational characters on absolutely irreducible supersingular two-dimensional H(1)
k -modules.

8.5. Lemma. The correspondence Sph(v)ss ⇝ ρL (v) is compatible with twisting by characters.

Proof. Twisting with central characters on semisimple spherical Hecke modules is compatible with
the action of Gm(Fq) × Gm on S. The morphism L is Gm(Fq) × Gm-equivariant by theorem 6.2.
Under the Galois parametrization 4.5.1, the Gm(Fq)×Gm-action on XFq

corresponds to twisting
with Galois characters, cf. 4.5.10. Putting all this together, we see that the correspondence
Sph(v)ss ⇝ ρL (v) is indeed compatible with twisting by characters.

8.6. Next, we recall the main construction from [GK18] in the case of standard supersingular
modules of dimension n = 2.

Let Fϕ be the special Lubin-Tate group with Frobenius power series ϕ(t) = πt+ tq. Let F∞/F
be the extension generated by all torsion points of Fϕ and let Γ = Gal(F∞/F ). We thus have the
category of étale Lubin-Tate (φ,Γ)-modules over Fq((t)), cf. 10.3. We identify in the following
Γ ≃ o×F via the Lubin-Tate character χF .

To be conform with the notation in [GK18, sec. 2.1], we define ω := u =

(
0 1
π 0

)
(this will

not lead to confusion with the character of F×
q denoted by ω so far). In particular Tω = U .

The projection onto the diagonal is an isomorphism I/I(1) ≃ T and one has well-defined Hecke

operators Tt ∈ H(1)
k for all t ∈ T. Set s0 =

(
0 π

π−1 0

)
. Let H(1)

aff,k ⊂ H
(1)
k be the affine Hecke

algebra, i.e. the k-subalgebra generated by Ts, Ts0 and all Tt, t ∈ T.
Let M be a two-dimensional standard supersingular H(1)

k -module, arising from a supersingular

character χ : H(1)
aff,k → k of the affine subalgebra H(1)

aff,k ⊂ H
(1)
k . Let e0 ∈ M such that H(1)

aff,k acts

on e0 via χ and put e1 = T−1
ω e0. The character χ determines two numbers 0 ≤ k0, k1 ≤ q− 1 with

(k0, k1) ̸= (0, 0), (q−1, q−1), cf. [GK18, Lem. 5.1]. One considers M as a k[[t]]-module with t = 0
on M . Let Γ = o×F act on M via

γ(m) = T−1
e∗(γ)(m)

for γ ∈ o×F with reduction γ ∈ F×
q and (since n = 2) e∗(γ) = diag(γ, 1) ∈ T, cf. [GK18, beginning

of sec. 4]. Moreover, there is a certain k[[t]][φ]-submodule ∇(M) of

k[[t]][φ,Γ]⊗k[[t]][Γ] M ≃ k[[t]][φ]⊗k[[t]] M.

The module ∇(M) is stable under the Γ-action [GK18, Lem. 4.2] and thus the quotient

∆(M) :=
(
k[[t]][φ]⊗k[[t]] M

)
/∇(M)

defines a k[[t]][φ,Γ]-module. It is torsion standard cyclic with weights (k0, k1) in the sense of
[GK18, sec. 1.3], according to [GK18, Lemma 5.1]. Let ∆(M)∗ = Homk(∆(M), k) be its k-linear
dual. By a general construction, the k((t))-vector space

∆(M)∗ ⊗k[[t]] k((t))

is then in a natural way an étale Lubin-Tate (φ,Γ)-module of dimension 2. The correspondence

M ⇝ ∆(M)∗ ⊗k[[t]] k((t))

extends to a fully faithful functor from a certain category of supersingular H(1)
k -modules to the

category of étale (φ,Γ)-modules over k((t)). We write

V (M) := V (∆(M)∗ ⊗k[[t]] k((t)))
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for its composition with the functor V , cf. 10.3. According to [GK18, Cor. 5.5], the map

V 7→ V (M)

induces a bijection between (isomorphism classes of) 2-dimensional supersingular absolutely irre-

ducible H(1)
k -modules and absolutely irreducible representations Gal(F/F )→ GL2(k).

8.7. Proposition. One has V (M ⊗ η) = V (M) ⊗ η for any absolutely irreducible supersingular

two-dimensional H(1)
k -module M and any character η : Gal(F/F ) → k×. Moreover, if U2 acts by

z2 ∈ k× on M , then det(φ−1) = z2 on V (M).

Proof. The functor V respects the tensor product. In our situation, this concretely means the
following. Write η = ωs

fµλ for a scalar λ ∈ k× and 0 ≤ s ≤ q− 2. Let D be an étale (φ,Γ)-module
over k((t)). We writeD⊗η for the (φ,Γ)-module equal to the tensor productD by the 1-dimensional
module corresponding to η: the φ-action becomes multiplied by the scalar λ and the Γ-action
becomes twisted by the character ωs

f |Γ, cf. 10.9. Then V (D⊗η) = V (D)⊗η according to 10.10. For
the first statement, it suffices therefore to check that the functorM ⇝ D(M) := ∆(M)∗⊗k[[t]]k((t))
respects the tensor product with η, for M as in the proposition.

Since M is irreducible, there is a unique γ ∈ T∨/W , such that M remains irreducible over the
component algebra Hγ

k . In particular, γ equals the connected component of the central character
ofM . To any χ ∈ γ, there is a corresponding T-eigenvector inM andM has a k-basis consisting of
eigenvectors. Consider an eigenvector m ∈M with eigenvalue χ ∈ γ. The corresponding T-action
on m⊗ 1 ∈M ⊗ η is then given by χ.(ωs

f |F×
q
), in the notation of 8.1. By construction, the Γ-action

on ∆(M ⊗ η) is given by the action
a 7→ T−1

e∗(a)

on the Hecke module M ⊗ η, for a ∈ o×F = Γ with reduction a ∈ F×
q and e∗(a) = diag(a, 1) ∈ T.

Since the T-action on m⊗ 1 ∈M ⊗ η equals χ.(ωs
f |F×

q
) and

χ.(ωs
f |F×

q
)(e∗(a)) = χ(e∗(a))ωs

f (a),

and since M has a k-basis of such m, the Γ-action on ∆(M ⊗ η) becomes therefore twisted by
the character ω−s

f |Γ. The contragredient action on the dual ∆(M ⊗ η)∗ and, hence, on D(M ⊗ η)
becomes then twisted by ωs

f |Γ, as desired. By construction, the tkjφ-action on ∆(M ⊗ η) is given
by the T−1

ω -action on the Hecke module M ⊗ η. Since U = Tω, this t
kjφ-action becomes therefore

multiplied by η(π−1) = λ−1. On the dual module D(M ⊗ η) (where t becomes invertible), the
φ-action becomes therefore multiplied by λ. We have shown that D(M ⊗ η) = D(M) ⊗ η, which
concludes the proof of the first statement.

For the second statement, suppose that U2 acts by z2 ∈ k× on M . The remarks right before
[GK16, Thm. 8.8] and [GK18, Cor. 5.5] in the case d = 1 show that the determinant of geometric
Frobenius on V (M) acts by b where b−1 equals the T−2

ω -action on M . Since U = Tω, this implies
b = z2 and hence det(φ−1) = z2 on V (M).

Recall the classification of irreducible 2-dimensional Galois representations, cf. 2.7.

8.8. Proposition. Let M be a simple supersingular module such that V (M) ≃ ind(ωh
2f ) where

1 ≤ h ≤ q − 1. Then M has trivial U2-action and its T-action is given by (the W -orbit of) the
character diag(a, b) 7→ ah−1.

Proof. Let ρ = ind(ωh
2f ). According to 8.7, the U2-action onM is given by the scalar det ρ(φ−1) =

ωh
f (φ

−1) = 1. To determine the T-action, let D be the étale (φ,Γ)-module with V (D) ≃ ρ, so that

∆(M)∗ ⊗k[[t]] k((t)) ≃ D.

Now, we make use of the case n = 2 of the main result 10.7 of the appendix. It follows that D
admits a basis {g0, g1} such that

γ(gj) = fγ(t)
hqj/(q+1)gj
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for all γ ∈ Γ and φ(g0) = g1 and φ(g1) = −t−h(q−1)g0. Here

fγ(t) = ωf (γ)t/γ(t) ∈ 1 + tk[[t]].

In particular, D is standard cyclic in the sense of [GK18, sec. 1.4] with corresponding αj : Γ→ k×

given by αj = 1 for j = 1, 2 (since fγ(t) ≡ 1 mod t). Define the triple

(k0, k1, k2) = (h− 1, q − h, h− 1)

and let ij := q − 1 − k2−j , so that i0 = i2 = q − h and i1 = 2q − h − 1. Define the triple
(h0, h1, h2) = (0, i1, i0 + i1q). Note that h2 = h(q − 1). Put fj = thjgj for j = 0, 1 and let D♯ ⊂ D
be the k[[t]]-submodule generated by {f0, f1}. Let (D♯)∗ be the k-linear dual. Define e′i ∈ (D♯)∗

via e′i(fj) = δij and e′i = 0 on tD♯. Using the explicit formulae for the ψ-operator on k((t)) as
described in [GK18, Lemma 1.1] one may follow the argument of [GK16, Lemma 6.4] and show that
D♯ is a ψ-stable lattice in D and that {e′0, e′1} is a k-basis of the t-torsion part of (D♯)∗ satisfying

tk1φ(e′0) = e′1 and tk0φ(e′1) = −e′0.

But according to [GK18, 1.15], there is only one ψ-stable lattice in ∆(M)∗⊗k[[t]] k((t)), namely

∆(M)∗. It follows that ∆(M) ≃ (D♯)∗ and so the weights of the torsion standard cyclic k[[t]][φ,Γ]-
module ∆(M) (in the sense of the definition in [GK18, sec. 1.3]) are (k0, k1). Moreover, e′0, e

′
1 are

a k-basis of M and e′0 is an eigenvector for the supersingular character χ : H(1)
aff,k → k giving rise

to M . From αj = 1 we deduce from the definition of the Γ-action on M , cf. [GK18, beginning of
sec. 4] that T−1

e∗(γ) = 1 for all γ ∈ Γ. Hence if λ ∈ T∨ is the restriction of χ to T, then

λ ◦ e∗(a) = 1

for any a ∈ F×
q . Finally, [GK18, Lemma 4.1] shows that k0 ≡ ϵ1 mod (q − 1) where ϵ1 is such

that λ ◦ α∨(γ)−1 = γϵ1 for any γ ∈ Γ and the coroot α∨(x) = diag(x, x−1), cf. [GK18, discussion
before 2.4]. This implies that

λ ◦ α∨(a)−1 = ah−1

for any a ∈ F×
q . Since diag(a, b) = e∗(a · b)α∨(b)−1 we arrive therefore at

λ(diag(a, b)) = λ(e∗(a · b)α∨(b)−1) = b
h−1

.

8.9. Theorem. The correspondence Sph(v) ⇝ ρL (v), when restricted to simple supersingular

modules, coincides with the base change from k to Fq of the bijection M 7→ V (M).

Proof. According to 8.5 and 8.7, the correspondences Sph(v)ss ⇝ ρL (v) and M 7→ V (M) are
compatible with twisting. It therefore suffices to compare the two maps on irreducible Galois
representations of the form ρ := ind(ωh

2f ), for 1 ≤ h ≤ q − 1, cf. 2.7. Let M be such that
V (M) ≃ ρ. On the other hand, let Sph(vρ) be the supersingular module corresponding to ρ in the
bijection 7.5. Its U2-action is trivial and its T-action is given by the highest weight hw(F (h− 1)),
cf. 9.2.1 below. According to 8.8, these actions coincide with the corresponding actions on M .
Since both modules are simple supersingular, there is thus an isomorphism M ≃ Sph(vρ).

9 Relation to weights

9.1. Weights. A weight is an (isomorphism class of an) irreducible Fq-representation of the

finite group GL2(Fq). For any integer r ≥ 0 consider the r-th symmetric power Symr F⊕2

q of the

standard GL2(Fq)-representation. We denote by (x, y) for a moment the standard basis of F⊕2

q , so

that Symr F⊕2

q = ⊕i=0,...,rFqx
r−iyi. The standard action of GL2(Fq) on Symr F⊕2

q is then given
by (

a b
c d

)
(xr−iyi) = (ax+ cy)r−i(bx+ dy)i
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where a, b, c, d ∈ Fq are viewed in Fq via our fixed embedding Fq ⊂ Fq. Let

F (r) := socGL2(Fq) Sym
r F⊕2

q

be the socle. The representation F (r) is irreducible and contains the highest weight vector xr.
The q(q − 1) representations F (r)⊗ dets for 0 ≤ r ≤ q − 1 and 0 ≤ s ≤ q − 2 exhaust all weights

and F (r) = Symr F⊕2

q for 0 ≤ r ≤ p− 1, cf. [Hu05, 19.1].

9.2. Compatibility of L with weights. Recall that we have ordered and labelled the irre-

ducible components of S by the elements of T̂(Fq) 6.3. Under the isomorphism S
(1)
Fq

, we have a

corresponding ordering of the irreducible components of SpecZ(H(1)
Fq

) by T∨. For λ ∈ T∨, we write

Cλ for the corresponding irreducible component. On the other hand, to any pair (r, s(r)) in the

table 3.1 or 3.2, we can associate the weight F (r)⊗dets(r). In this way, the irreducible components
of XFq can be labelled by ordered pairs of weights (σ, σ′): the irreducible component Cr is labelled

by the pair (F (r)⊗ dets(r), F (q − 3− r)⊗ dets(r)+r+1). Finally, we have the highest weight map

hw : {weights} −→ T∨

F (r)⊗ det s 7−→ r(1, 0) + s(1, 1)|T.

9.2.1. Proposition. Let ισ and ισ′ be the embeddings

A1 ⊂ P1 = C(σ,σ
′)

around 0 and ∞ respectively. The morphism L induces isomorphisms

Chw(σ) ∼−→ Im ισ ⊂ C(σ,σ
′) and Chw(σ′) ∼−→ Im ισ′ ⊂ C(σ,σ

′).

Proof. The labellings are compatible with the twist by a non-regular character of the form ωs⊗ωs

and by the determinant character dets respectively. It therefore suffices to only consider the basic
even case n = 0 and the basic odd case n = q − 2. We may also assume z2 = 1.

Supppose first n = 0. Then n = 2s with s = 0. The irreducible components of the scheme

Spec(Z(H(1)
Fq

))(ω0,1) are labelled by the sequence of pairs of characters χi, χ
w
i , for i = 0, ..., q−1

2 ,

where χi := ωi ⊗ ω−i. By definition of L, and hence of L = L ◦S
(1)
Fq

,

L (Cχi) ⊂ Ci and L (Cχ
w
i+1) ⊂ Ci

(the latter if i < q−1
2 ). The weight-label of Ci is the pair of weights (F (r)⊗ dets(r), F (q− 3− r)⊗

dets(r)+r+1) where r = 2i and s(r) = − r
2 = −i. For their highest weights we find indeed

hw(F (r)⊗ det s(r)) = ωr+s(r) ⊗ ωs(r) = ωi ⊗ ω−i = χi

and

hw(F (q − 3− r)⊗ det s(r)+r+1) = ωq−2+s(r) ⊗ ωs(r)+r+1 = ωq−1−(i+1) ⊗ ωi+1 = χw
i+1.

Now suppose n = q − 2. Then n = 2s − 1 with s = q−1
2 . The irreducible components of the

scheme Spec(Z(H(1)
Fq

))(ωq−2,1) are labelled by the sequence of pairs of characters

χi · (ωs ⊗ ωs), χw
i · (ωs ⊗ ωs),

for i = 1, ..., q−1
2 . Note that χi · (ωs ⊗ ωs) = ωi−1 ⊗ ω−i =: χ̃i. By definition of L,

L (Cχ̃i) ⊂ Ci (if i ̸= 1) and L (Cχ̃
w
i+1) ⊂ Ci (if i+ 1 ̸= q − 1

2
).

The weight-label of Ci is the pair of weights (F (r) ⊗ dets(r), F (q − 3 − r) ⊗ dets(r)+r+1) where
r = 2i− 1 and s(r) = − r+1

2 = −i. For their highest weights we find indeed

hw(F (r)⊗ det s(r)) = ωr+s(r) ⊗ ωs(r) = ωi−1 ⊗ ω−i = χ̃i
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and

hw(F (q − 3− r)⊗ det s(r)+r+1) = ωq−2+s(r) ⊗ ωs(r)+r+1 = ωq−1−(i+1) ⊗ ω(i+1)−1 = χ̃w
i+1.

It remains to check the cases i = 1 and i = q−1
2 , where L is given by the map t 7→ t+ t−1. In the

case i = 1 the variable t stands for the variable y and by definition of L,

L (Cχ̃
w
1 ) ⊂ C0.

The component C0 has as weight-label the single weight F (q − 2) and its highest weight is indeed
hw(F (q − 2)) = χ̃w

1 . In the case i = q−1
2 the variable t stands for the variable x and by definition

of L,

L (C
χ q−1

2 ) ⊂ C q−1
2
.

The component C q−1
2

has as weight-label the single weight F (q−2)⊗det
q−1
2 and its highest weight

is indeed hw(F (q − 2)⊗ det
q−1
2 ) = χ q−1

2
. This concludes the proof.

10 Appendix: Irreducible mod p Lubin-Tate (φ,Γ)-modules

Let F denote a finite extension of Qp, with ring of integers oF and residue field Fq. Let q = pf .
Let π ∈ oF be a uniformizer and let F be an algebraic closure of F . Let n ≥ 1 be an integer.

10.1. Let Fϕ be a Lubin-Tate group for π, with Frobenius power series ϕ(t) ∈ oF [[t]]. The
corresponding ring homomorphism oF → End(Fϕ) is denoted by a 7→ [a](t) = at+.... In particular,
[π](t) = ϕ(t). Let F∞/F be the extension generated by all torsion points of Fϕ and let

HF := Gal(F/F∞) and Γ := Gal(F/F )/HF = Gal(F∞/F ).

Let z = (zj)j≥0 be a oF -generator of the Tate module of Fϕ. In particular, for j ≥ 0

zj = [π](zj+1) ≡ zqj+1 mod π

and NF (z1)/F (−z1) = π. This implies

zqj+1 = zj(1 +O(π1/q)) for j ≥ 1 and zq−1
1 = −π(1 +O(π1/q)).

The Galois action on the generator z is given by a character χF : Gal(F/F ) → o×F , which is
surjective and has kernel HF . One has χF ≡ ωf mod π.

10.2. We denote by Cp the completion of an algebraic closure of Qp and choose an embedding
F ⊆ Cp. Recall that the tilt C♭

p of the perfectoid field Cp is an algebraically closed and perfect
complete non-archimedean field of characteristic p. Its valuation ring oC♭

p
is given by the projective

limit lim←−x 7→xq
oCp

/πoCp
and its residue field is Fq. There is a unique multiplicative section

s : Fq −→ oC♭
p
, a 7→ (τ(a) mod π, τ(aq

−1

) mod π, τ(aq
−2

) mod π, ...)

where τ denotes the Teichmüller map Fq → oCp
. There is an inclusion

Fq((t))
⊂−→ C♭

p, t 7→ (..., zj mod π, ...)

and one has C♭
p = oC♭

p
[1/t]. The field C♭

p is endowed with a continuous action of Gal(F/F ) and a

Frobenius φq, which raises any element to its q-th power. We let Fq((t))
sep denote the separable

algebraic closure of Fq((t)) inside C♭
p. The field Fq((t)) and its separable closure Fq((t))

sep inherit

the Frobenius action and the commuting Gal(F/F )-action from C♭
p and there is an isomorphism

HF
≃−→ Gal(Fq((t))

sep/Fq((t))).
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10.3. The theory of Lubin-Tate (φ,Γ)-modules and their relation to Galois representations is
developed in [KR09] and [Sch17]. We only need very basic facts of this theory, and mostly only
mod p. Note that the power series ring oF [[t]] has a Frobenius endomorphism and a Γ-action via

φ(f)(t) = f([π](t)) and (γf)(t) = f([χF (γ)](t))

for f(t) ∈ oF [[t]]. Via reduction mod π, these actions induce a Frobenius action and a Γ-action
on Fq[[t]] and its quotient field Fq((t)). This allows one to introduce an abelian tensor category
of étale Lubin-Tate (φ,Γ)-modules over Fq((t)). It turns out to be canonically equivalent to the
category of continuous finite-dimensional Fq-representations of Gal(F/F ), cf. [KR09, 1.6], [Sch17,
3.2.7]. The functor V from (φ,Γ)-modules to Galois representations is given by

D ⇝ V (D) := (Fq((t))
sep ⊗Fq((t)) D)φ=1

where Gal(F/F ) acts diagonally (and via its projection to Γ on the second factor).

10.4. Let k ⊂ Fq be a finite extension of Fq. One can consider a k-representation of Gal(F/F )
as an Fq-representation with a k-linear structure. Similarly, one may introduce (φ,Γ)-modules
over k((t)) = k ⊗Fq

Fq((t)), where k has the trivial Frobenius and Γ-action. The functor V then
restricts to an equivalence of categories between étale (φ,Γ)-modules over k((t)) and continuous
finite-dimensional k-representations of Gal(F/F ).

10.5. We fix once and for all an element y ∈ Fq((t))
sep such that

y(q
n−1)/(q−1) = t.

For g ∈ Gal(F/F ), the power series

fg(t) =
χF (g)t

g(t)
=

χF (g)t

[χF (g)](t)
∈ 1 + toF [[t]]

depends only on the class of g in Γ. The same is true for its mod π reduction fg(t) = ωf (g)t/g(t).
Note also that the formula fsg (t) defines an element of oF [[t]] for any s ∈ Zp.

10.6. Lemma. One has g(y) = y ωq
nf (g) f

− q−1
qn−1

g (t) in Fq((t))
sep for all g ∈ Gal(F/Fn).

Proof. This is a generalization of the case F = Qp treated in [Be10, Lem. 2.1.3]. Let j ≥ 1 and
choose πnf,j ∈ oCp

such that

π
qn−1
q−1

nf,j = zj .

We write πj for πnf,j in the following calculations. Let g ∈ Gal(F/Fn). Then

(g(πj)/πj)
qn−1
q−1 = g(zj)/zj = χF (g)f

−1
g (zj)

and so the quotient of g(πj)/πj by f
− q−1

qn−1
g (zj) is a certain qn−1

q−1 -th root of χF (g). Since expo-

nentiation with qn−1
q−1 ∈ Z×

p is surjective on the subgroup 1 + (π) ⊂ o×F we may write this root as

τ(ωnf,j(g)), with an element ωnf,j(g) ∈ F×
qn , and arrive at

g(πj)/πj = τ(ωnf,j(g))f
− q−1

qn−1
g (zj).

The map g 7→ ωnf,j(g) is a character of the group Gal(F/Fn), since

ωnf,j(g) ≡ g(πj)/πj mod mCp

in the field Fq = oCp
/mCp

and this element is fixed by Gal(F/Fn). Moreover, this character does

not depend on the choice of πj : a different choice π′
j differs from πj by a qn−1

q−1 -th root of unity,
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i.e. by an element of Fn. Hence g(π′
j)/π

′
j = g(πj)/πj . By this independence, we see (using the

element πq
j+1 as an alternative choice for πj) that

ωq
nf,j+1 = ωnf,j for j ≥ 1.

By 10.1, we may choose the πj compatibly in the sense that πq
j+1/πj ∈ 1 + π1/qoCp . Moreover,

10.1 further implies πqn−1
nf,1 = zq−1

1 = −π(1 +O(π1/q)) and so (πnf/πnf,1)
qn−1 ≡ 1 mod mCp . The

quotient πnf/πnf,1 mod mCp is therefore fixed by Gal(F/Fn), in other words

g(πnf,1)/πnf,1 ≡ g(πnf )/πnf mod mCp

for all g ∈ Gal(F/Fn) and so
ωnf,1 = ωnf .

Now recall that there is an isomorphism lim←−x 7→xq
oCp
≃ oC♭

p
of multiplicative monoids given

by reduction modulo π. We use the notation u = (u(j)) for elements in the projective limit
lim←−x 7→xq

oCp . The element y ∈ oC♭
p
is given by (..., πj mod πoCp , ...). By compatibility of the πj ,

the element πj+m reduces mod π1/q to the m-th coordinate of the element y1/q
j ∈ oC♭

p
. The

preimage (y(j)) of y under the above isomorphism is therefore given by y(j) = limm→∞ πqm

j+m. By

the same argument, the preimage of the element f
− q−1

qn−1

g (t) has coordinates

f
− q−1

qn−1

g (t)(j) = lim
m→∞

(f
− q−1

qn−1
g (zj+m))q

m

.

The composite map s : Fq → oC♭
p
≃ lim←−x 7→xq

oCp , which we also denote by s, is given by

a 7→ (τ(a), τ(aq
−1

), τ(aq
−2

), ...). Since

s(ωnf (g)
q)(j) = τ(ωnf (g)

q−j+1

) = τ(ωnf,j(g)),

we may put everything together and obtain

g(y(j))

y(j)
= lim

m→∞
(
g(πj+m)

πj+m
)q

m

= τ(ωnf,j(g)) lim
m→∞

(f
− q−1

qn−1
g (zj+m))q

m

= s(ωnf (g)
q)(j)f

− q−1
qn−1

g (t)(j).

Reducing this equation modulo π yields the assertion of the lemma.

We now consider the (φ,Γ)-modules associated to the irreducible Galois representations of the
form ind(ωh

nf ).

10.7. Theorem. The étale Lubin-Tate (φ,Γ)-module associated to an irreducible Galois repre-
sentation of the form ind(ωh

nf ) is defined over the ring Fq((t)) and admits a basis e0, e1, ..., en−1

in which
γ(ej) = fγ(t)

hqj(q−1)/(qn−1)ej

for all γ ∈ Γ. Moreover, one has φ(ej) = ej+1 and φ(en−1) = (−1)n−1t−h(q−1)e0.

Proof. Let D be the (φ,Γ)-module described in the statement and let W = V (D). With x =
the0 ∧ ... ∧ en−1, one has

φ(x) = φ(t)h(−1)n−1t−h(q−1)e1 ∧ ... ∧ en−1 ∧ e0 = tqh−h(q−1)e0 ∧ ... ∧ en−1 = x.

Moreover,

γ(t)h
n−1∏
j=0

f
hqj(q−1)/(qn−1)

γ (t) = (ωf (γ)t/fγ(t))
hf

h(q−1)/(qn−1)
∑n−1

j=0 qj

γ = ωf (γ)
hth

which implies γ(x) = ωf (γ)
hx for all γ ∈ Γ. So detW = ωh

f . Put k := Fqn as a coefficient field,
i.e. endowed with the trivial Frobenius action. To complete the proof, it remains to check that the
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restriction of k⊗Fq W to the inertia subgroup I(F/F ) is given by ωh
nf ⊕ ω

qh
nf ⊕ ...⊕ ω

qn−1h
nf . There

is a ring isomorphism

k ⊗Fq Fq((t))
sep ≃−→

n−1∏
j=0

Fq((t))
sep, x⊗ z 7→ (φj

q(x)z)

where φq is the q-Frobenius on k. The induced Frobenius and Gal(F/Fn)-action on
∏n−1

j=0 Fq((t))
sep

are given as
φ((x0, ..., xn−1)) = (φq(xn−1), φq(x0), ..., φq(xn−2))

g((x0, ..., xn−1)) = (g(x0), ..., g(xn−1)).

Choose α ∈ Fq ⊂ Fq((t))
sep such that αqn−1 = (−1)n−1 and define the elements

v0 = (αyh, 0, ..., 0)e0 + (0, αqyqh, 0, ..., 0)e1 + ...+ (0, ..., 0, αqn−1

yq
n−1h)en−1

v1 = (0, αyh, 0, ..., 0)e0 + (0, 0, αqyqh, 0, ..., 0)e1 + ...+ (αqn−1

yq
n−1h, 0, ..., 0)en−1

...

vn−1 = (0, ...0, αyh)e0 + (αqyqh, 0, ..., 0)e1 + ...+ (0, ..., αqn−1

yq
n−1h, 0)en−1.

By definition of D, the vectors ei form a Fq((t))-basis for D and it follows easily that the vectors
vi form a k ⊗Fq

Fq((t))
sep-basis for k ⊗Fq

(Fq((t))
sep ⊗Fq((t)) D). Moreover,

φ((0, ..., 0, αqn−1

yq
n−1h)en−1) = (αqnyq

nh, 0, ..., 0)φ(en−1)

= (αqnyq
nh, 0, ..., 0))(−1)n−1t−h(q−1)e0 = (αyh, 0, ..., 0)e0

since αqn = (−1)n−1α and yq
n

t1−q = y. This means

φ(v0) = (0, αqyqh, 0, ..., 0)φ(e0) + (0, 0, αq2yq
2h, 0, ..., 0)φ(e1) + ...+ (αqnyq

nh, 0, ..., 0)φ(en−1)

= (0, αqyqh, 0, ..., 0)e1 + (0, 0, αq2yq
2h, 0, ..., 0)e2 + ...+ (αyh, 0, ..., 0)e0

= v0.

Similarly, one shows φ(vj) = vj for j ≥ 1, so that

v0, ..., vn−1 ∈ k ⊗Fq
(Fq((t))

sep ⊗Fq((t)) D)φ=1 = k ⊗Fq
V (D) = k ⊗Fq

W.

Now if g ∈ Gal(F/Fn), then g(y) = yωq
nf (g)cg with cg := f

− q−1
qn−1

g (t) by lemma 10.6 and g(ej) =

c−qjh
g ej by definition of D. Hence

g(y)q
jhg(ej) = (yωq

nf (g))
qjhej .

If g ∈ I(F/F ), then g(α) = α and then altogether

g(v0) = (αg(y)h, 0, ...)g(e0) + (0, αqg(y)qh, 0, ...)g(e1) + ...+ (0, ..., αqn−1

g(y)q
n−1h)g(en−1)

= ωqh
nf (g) · ((αyh, 0, ...)e0 + (0, αqyqh, 0, ...)e1 + ...+ (0, ..., αqn−1

yq
n−1h)en−1)

= ωqh
nf (g) · v0,

where · refers to the left k-structure of
∏n−1

j=0 Fq((t))
sep. Similarly, one shows g(vj) = ωq1−jh

nf (g)vj

for all j ≥ 1 and g ∈ I(F/F ). Since ωqn

nf = ωnf and hence ωq1−jh
nf = ωqn+1−jh

nf , this proves that the

restriction of k ⊗Fq W to I(F/F ) is given by the sum of the characters ωh
nf , ω

qh
nf , ..., ω

qn−1h
nf .

25



10.8. One may pass from irreducible representations of the form ind(ωh
nf ) to general irreducible

representations by twisting with characters, cf. 2.6. Note that any character η : Gal(F/F ) → F×
q

can be written in the form ωs
fµλ for a scalar λ ∈ F×

q and 0 ≤ s ≤ q−2. In particular, η is k-rational

for a finite extension k ⊂ Fq of Fq (i.e. η takes values in k) if and only if η(φ) ∈ k×.

10.9. Lemma. Let k ⊂ Fq be a finite extension of Fq. The (φ,Γ)-module associated to a Galois
character of the form ωs

fµλ with λ ∈ k× admits a basis e such that φ(e) = λ ·e and γ(e) = ωs
f (γ) ·e

for all γ ∈ Γ.

Proof. Since the functor V preserves the tensor product, we may discuss the two characters ωs
f

and µλ separately. For the twists by a character of Γ, such as ωs
f , see [SV16, Remark 4.6]. So let

V = µλ = k and let
D(V ) = (Fq((t))

sep ⊗Fq V )HF

be the associated (φ,Γ)-module. It is instructive to check the case k = Fq first. Here, we choose
β ∈ Fq with βq−1 = λ and put e = β⊗1 ∈ Fq((t))

sep⊗Fq
V . Since β ̸= 0, we have e ̸= 0. Moreover,

I(F/F ) acts trivial on e and for φ ∈ Gal(F/F ) we find

φ(e) = φ(β)⊗ φ(1) = βq ⊗ λ−1 = βλ⊗ λ−1 = β ⊗ 1 = e.

Hence e is indeed Gal(F/F )-invariant. Moreover, if ϕ denotes the Frobenius endomorphism on
D(V ) we have

ϕ(e) = ϕ(β)⊗ 1 = βq ⊗ 1 = λβ ⊗ 1 = λe.

Now suppose that k = Fqn for some n and λ ∈ k×. We use the ring isomorphism

k ⊗Fq
Fq((t))

sep ≃−→
n−1∏
j=0

Fq((t))
sep, x⊗ z 7→ (φj

q(x)z)

where φq is the q-Frobenius on k. It is Gal(F/Fn)-equivariant, where the Galois action on the
right-hand side is componentwise (see proof of the above theorem). By the normal basis theorem,
there is x ∈ k× such that its conjugates φj

q(x) are linearly independent over Fq. The j-th copy

Fq((t))
sep in the above product has therefore a Fq((t))

sep-basis element ej := φj
q(x) ∈ k = V on

which I(F/F ) acts trivial and on which the element φn ∈ Gal(F/Fn) acts by λ
−n. Choose β ∈ Fq

such that βqn−1 = λn and put vj = βej . Then I(F/F ) obviously acts trivial on vj and the same
holds for φn, since

φn(vj) = φn(β)φn(ej) = βqnλ−nej = βλnλ−nej = vj .

Hence, I(F/F ) and φn act trivial on (vj) ∈
∏n−1

j=0 Fq((t))
sep and then also on its preimage v =

x⊗β ∈ k⊗Fq
Fq((t))

sep. Note that v ̸= 0 since x, β ̸= 0. Write N =
∏n−1

j=0 φ
j and e = N(v). Then

e is fixed by I(F/F ) (since I(F/F ) is normalized by the φj) and is fixed by φ by construction.
Hence, e is Gal(F/F )-invariant. Note that e ̸= 0, since e = N(x)⊗N(β) and N(x), N(β) ̸= 0 and

so e is indeed a basis element of D(V ) on which Γ acts trivial. Finally, write e =
∑n−1

j=0 φ
j
q(x)⊗ zj

with zj ∈ Fq((t))
sep. The Frobenius endomorphism ϕ on D(V ) satisfies

ϕ(e) =
∑
j

φj
q(x)⊗ φ(zj) = φ(

∑
j

φ−1(φj
q(x))⊗ zj) = φ(

∑
j

λφj
q(x)⊗ zj) = λφ(e) = λe.

10.10. Corollary. Let k ⊂ Fq be a finite extension of Fq. The (φ,Γ)-module associated to an
irreducible Galois representation of the form (ind(ωh

nf ))⊗ ωs
fµλ, with λ

n ∈ k×, is defined over the
ring k((t)) and admits a basis e0, e1, ..., en−1 in which

γ(ej) = ωf (γ)
sfγ(t)

hqj(q−1)/(qn−1)ej

for all γ ∈ Γ. Moreover, one has φ(ej) = λej+1 and φ(en−1) = (−1)n−1t−h(q−1)λe0.

Proof. This follows from the preceding lemma and the theorem. The fact that the module is
defined over k((t)) comes from 2.6 and 10.4.
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[PS] C. Pépin, T. Schmidt, Generic and Mod p Kazhdan-Lusztig Theory for GL2, Representa-
tion Theory 27, 1142–1193, 2023.
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