Irreducible mod p Lubin-Tate (φ, Γ) -modules

Cédric Pépin and Tobias Schmidt

November 26, 2019

Abstract

Let F be a finite extension of \mathbb{Q}_p . We determine the Lubin-Tate (φ, Γ) -modules associated to the absolutely irreducible mod p representations of the absolute Galois group $\operatorname{Gal}(\overline{F}/F)$.

Contents

1	Introduction	1
2	Galois representations and Lubin-Tate (φ, Γ) -modules	2
3	The main result	9

1 Introduction

Let F be a finite extension of \mathbb{Q}_p with ring of integers o_F , residue field \mathbb{F}_q and uniformizer $\pi \in o_F$. Let \overline{F} be an algebraic closure of F and let $Gal(\overline{F}/F)$ be the absolute Galois group of F. By adapting the well-known formalism of Fontaine for the cyclotomic case, Kisin-Ren explained in [KR09] (see also the detailed exposition by Schneider [Sch17]) how to build an equivalence between the category of continuous representations of $Gal(\overline{F}/F)$ in finitely generated o_F -modules and a category of étale Lubin-Tate (φ, Γ) -modules. Let k/\mathbb{F}_q be a finite extension. Via reduction modulo π and extension of scalars, one deduces an equivalence of categories between smooth representations of $\operatorname{Gal}(\overline{F}/F)$ in finite dimensional k-vector spaces and a category of Lubin-Tate (φ, Γ) -modules over the Laurent series ring k(t). When $F = \mathbb{Q}_p$ and in the cyclotomic case, the (φ, Γ) -modules corresponding to the n-dimensional absolutely irreducible mod p Galois representations have been explicitly calculated by Berger [Be10] and then used by him, in the case of n=2, to give a direct proof of the compatibility of Colmez' p-adic local Langlands correspondence with Breuil's mod p correspondence for the group $GL_2(\mathbb{Q}_p)$ in the irreducible case. In view of extending such results to more general base fields $F \neq \mathbb{Q}_p$, we propose in this note to explicitly calculate the Lubin-Tate (φ,Γ) -modules corresponding to the absolutely irreducible mod p representations of $\mathrm{Gal}(F/F)$ for $F \neq \mathbb{Q}_p$, thereby generalizing Berger's result. As a method of proof, we adapt Berger's strategy to the Lubin-Tate setting.

In [GK18] (generalizing [GK16] for $F = \mathbb{Q}_p$) Grosse-Klönne constructs a fully faithful exact functor from the category of so-called supersingular modules for the pro-p Iwahori-Hecke algebra over k of the group $\mathrm{GL}_n(F)$ to the category of Lubin-Tate (φ, Γ) -modules over k((t)). It induces a bijection between the absolutely irreducible objects of rang n on both sides. In [PS1] we show, as an application of the results in this note, how to geometrically construct an inverse map to Grosse-Klönne's bijection in the case n=2.

The second author thanks L. Berger for answering some questions on (φ, Γ) -modules.

2 Galois representations and Lubin-Tate (φ, Γ) -modules

Let F_n/F be the unramified extension of degree n. The irreducible smooth $\overline{\mathbb{F}}_q$ -representations of $\operatorname{Gal}(\overline{F}/F)$ of dimension n are given by the representations

$$\operatorname{ind}_{\operatorname{Gal}(\overline{F}/F_n)}^{\operatorname{Gal}(\overline{F}/F)}(\chi)$$

smoothly induced from the regular $\overline{\mathbb{F}}_q$ -characters χ of $\operatorname{Gal}(\overline{F}/F_n)$. The $\operatorname{Gal}(F_n/F)$ -conjugates of χ induce isomorphic representations and there are no other isomorphisms between the representations [V94].

Let $\pi \in o_F$ be a uniformizer and let $q = p^f$. Let $\pi_{nf} \in \overline{F}$ be an element such that $\pi_{nf}^{q^n-1} = -\pi$. We then have Serre's fundamental character of level nf

$$\omega_{nf}: \operatorname{Gal}(\overline{F}/F_n) \longrightarrow \mathbb{F}_{q^n}^{\times}$$

given by $g \mapsto g(\pi_{nf})/\pi_{nf} \in \mu_{q^n-1}(\overline{F})$ followed by reduction mod π , cf. [Se72]. One has $\omega_{nf}^{\frac{q^n-1}{q-1}} = \omega_f|_{\operatorname{Gal}(\overline{F}/F_n)}$.

Let $\mathcal{I} \subset \operatorname{Gal}(\overline{F}/F)$ be the inertia subgroup and choose an element $\varphi \in \operatorname{Gal}(\overline{F}/F)$ lifting the Frobenius $x \mapsto x^q$ on $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$. Since $\omega_f : \mathcal{I} \to \mathbb{F}_q^{\times}$ is surjective [Se72, Prop. 2], we may and will assume $\omega_f(\varphi) = 1$.

A character ω_{nf}^h for $1 \leq h \leq q^n-2$ is regular if and only if its conjugates $\omega_{nf}^h, \omega_{nf}^{qh}, ..., \omega_{nf}^{q^{n-1}h}$ are all distinct. Equivalently, if and only if h is q-primitive, that is, there is no d < n such that h is a multiple of $(q^n-1)/(q^d-1)$. The representation $\operatorname{ind}_{\operatorname{Gal}(\overline{F}/F_n)}^{\operatorname{Gal}(\overline{F}/F)}(\omega_{nf}^h)$ is then defined over \mathbb{F}_{q^n} . It has a basis $\{v_0,...,v_{n-1}\}$ of eigenvectors for the characters $\omega_{nf}^h,\omega_{nf}^{qh},...,\omega_{nf}^{q^{n-1}h}$ of $\operatorname{Gal}(\overline{F}/F_n)$ such that $\varphi(e_i)=e_{i-1}$ and $\varphi(e_0)=e_{n-1}$. In particular, its determinant coincides with ω_f^h on the subgroup $\operatorname{Gal}(\overline{F}/F_n)$ and takes φ to $(-1)^{n-1}$.

For $\lambda \in \overline{\mathbb{F}}_q^{\times}$, let μ_{λ} be the unramified character of $\operatorname{Gal}(\overline{F}/F)$ sending φ to λ^{-1} . Fix δ with $\delta^n = (-1)^{n-1}$. The representation

$$\operatorname{ind}(\omega_{nf}^h) := (\operatorname{ind}_{\operatorname{Gal}(\overline{F}/F_n)}^{\operatorname{Gal}(\overline{F}/F)}(\omega_{nf}^h)) \otimes \mu_{\delta}$$

is then uniquely determined by the two conditions

$$\det\operatorname{ind}(\omega_{nf}^h)=\omega_f^h\quad\text{and}\quad\operatorname{ind}(\omega_{nf}^h)|_{\mathcal{I}}=\omega_{nf}^h\oplus\omega_{nf}^{qh}\oplus\ldots\oplus\omega_{nf}^{q^{n-1}h}.$$

Let k/\mathbb{F}_q be a finite extension. Every absolutely irreducible smooth k-representation of $\operatorname{Gal}(\overline{F}/F)$ of dimension n is isomorphic to $\operatorname{ind}(\omega_{nf}^h)\otimes\mu_\lambda$ for a q-primitive $1\leq h\leq q^n-2$ and a scalar $\lambda\in\overline{\mathbb{F}}_q^\times$ such that $\lambda^n\in k^\times$ and one has

$$\operatorname{ind}(\omega_{nf}^h) \otimes \mu_{\lambda} \simeq \operatorname{ind}(\omega_{nf}^{\tilde{h}}) \otimes \mu_{\tilde{\lambda}}$$

if and only if $\mathrm{Gal}(F_n/F).\omega_{nf}^h=\mathrm{Gal}(F_n/F).\omega_{nf}^{\tilde{h}}$ and $\lambda^n=\tilde{\lambda}^n.$

The theory of Lubin-Tate (φ, Γ) -modules and their relation to Galois representations is developed in [KR09] and [Sch17]. Let F_{ϕ} be a Lubin-Tate group for π , with Frobenius power series $\phi(t) \in o_F[[t]]$. The corresponding ring homomorphism $o_F \to \operatorname{End}(F_{\phi})$ is denoted by $a \mapsto [a](t) = at + \dots$ In particular, $[\pi](t) = \phi(t)$. Let F_{∞}/F be the extension generated by all torsion points of F_{ϕ} and let

$$H_F := \operatorname{Gal}(\overline{F}/F_{\infty})$$
 and $\Gamma := \operatorname{Gal}(\overline{F}/F)/H_F = \operatorname{Gal}(F_{\infty}/F)$.

Let $z=(z_j)_{j\geq 0}$ be a o_F -generator of the Tate module of F_ϕ . In particular, for $j\geq 0$

$$z_j = [\pi](z_{j+1}) \equiv z_{j+1}^q \mod \pi$$

and $N_{F(z_1)/F}(-z_1) = \pi$. This implies

$$z_{j+1}^q = z_j(1 + O(\pi))$$
 for $j \ge 1$ and $z_1^{q-1} = -\pi(1 + O(z_1))$.

The Galois action on the generator z is given by a character $\chi_L : \operatorname{Gal}(\overline{F}/F) \to o_F^{\times}$, which is surjective and has kernel H_F . One has $\omega_f \equiv \chi_L \mod \pi$.

The power series ring $o_F[[t]]$ has a Frobenius endomorphism and a Γ -action via $\varphi(f)(t) = f([\pi](t))$ and $(\gamma f)(t) = f([\chi_L(\gamma)](t))$ for $f(t) \in o_F[[t]]$. Via reduction mod π , these actions induce a Frobenius action and a Γ -action on $\mathbb{F}_q[[t]]$ and its quotient field $\mathbb{F}_q((t))$. This allows to introduce an abelian tensor category of étale Lubin-Tate (φ, Γ) -modules over $\mathbb{F}_q((t))$. It turns out to be canonically equivalent to the category of continuous finite-dimensional \mathbb{F}_q -representations of $\mathrm{Gal}(\overline{F}/F)$, cf. [KR09, 1.6], [Sch17, 3.2.7].

To explain the functor from (φ, Γ) -modules to Galois representations, we denote by \mathbb{C}_p the completion of an algebraic closure of \mathbb{Q}_p and choose an embedding $\overline{F} \subseteq \mathbb{C}_p$. Recall that the tilt \mathbb{C}_p^b of the perfectoid field \mathbb{C}_p is an algebraically closed and perfect complete non-archimedean field of characteristic p. Its valuation ring $o_{\mathbb{C}_p^b}$ is given by the projective limit $\varprojlim_{x\mapsto x^q} o_{\mathbb{C}_p}/\pi o_{\mathbb{C}_p}$ and its residue field is $\overline{\mathbb{F}}_q$. There is a unique multiplicative section

$$s: \overline{\mathbb{F}}_q \longrightarrow o_{\mathbb{C}^{\flat}_n}, a \mapsto (\tau(a) \mod \pi, \tau(a^{q^{-1}}) \mod \pi, \tau(a^{q^{-2}}) \mod \pi, \ldots)$$

where τ denotes the Teichmüller map $\overline{\mathbb{F}}_q \to o_{\mathbb{C}_p}$. There is an inclusion

$$\mathbb{F}_q((t)) \stackrel{\subset}{\longrightarrow} \mathbb{C}_p^{\flat}, \ t \mapsto (..., z_j \mod \pi, ...)$$

and one has $\mathbb{C}_p^{\flat} = o_{\mathbb{C}_p^{\flat}}[1/t]$. The field \mathbb{C}_p^{\flat} is endowed with a continuous action of $\operatorname{Gal}(\overline{F}/F)$ and a Frobenius φ_q , which raises any element to its q-th power. We let $\mathbb{F}_q((t))^{\text{sep}}$ denote the separable algebraic closure of $\mathbb{F}_q((t))$ inside \mathbb{C}_p^{\flat} . The field $\mathbb{F}_q((t))$ and its separable closure $\mathbb{F}_q((t))^{\text{sep}}$ inherit the Frobenius action and the commuting $\operatorname{Gal}(\overline{F}/F)$ -action from \mathbb{C}_p^{\flat} and there is an isomorphism

$$H_F \xrightarrow{\simeq} \operatorname{Gal}(\mathbb{F}_q((t))^{\operatorname{sep}}/\mathbb{F}_q((t))).$$

The functor \mathscr{V} from (φ, Γ) -modules to Galois representations is then given by

$$D \rightsquigarrow \mathscr{V}(D) := (\mathbb{F}_q((t))^{\text{sep}} \otimes_{\mathbb{F}_q((t))} D)^{\varphi=1}$$

where $Gal(\overline{F}/F)$ acts diagonally (and via its projection to Γ on the second factor).

Now suppose that k/\mathbb{F}_q is a finite extension. One can consider a k-representation of $\operatorname{Gal}(\overline{F}/F)$ as an \mathbb{F}_q -representation with a k-linear structure. Similarly, one may introduce (φ, Γ) -modules over $k(t) = k \otimes_{\mathbb{F}_q} \mathbb{F}_q(t)$, where k has the trivial Frobenius and Γ -action. The functor $\mathscr V$ then restricts to an equivalence of categories between étale (φ, Γ) -modules over k(t) and continuous finite-dimensional k-representations of $\operatorname{Gal}(\overline{F}/F)$.

3 The main result

We fix once and for all an element $y \in \mathbb{F}_q((t))^{\text{sep}}$ such that

$$u^{(q^n - 1)/(q - 1)} = t.$$

For $q \in \operatorname{Gal}(\overline{F}/F)$, the power series

$$f_g(t) = \chi_L(g)t/g(t) \in 1 + (\pi)[[t]]$$

depends only on the class of g in Γ . The same is true for its mod π reduction $\overline{f}_g(t) = \omega_f(g)t/g(t)$. Note that the formula $f_g^s(t)$ defines an element of $o_F[[t]]$ for any $s \in \mathbb{Z}_p$.

3.1. Lemma. One has
$$g(y) = y\omega_{nf}^{q}(g)\overline{f}_{g}^{-\frac{q-1}{q^{n}-1}}(t)$$
 in $\mathbb{F}_{q}((t))^{\text{sep}}$ for all $g \in \text{Gal}(\overline{F}/F_{n})$.

Proof. This is a version of [Be10, Lem. 2.1.3]. Let $j \geq 1$ and choose $\pi_{nf,j} \in o_{\mathbb{C}_p}$ such that

$$\pi_{nf,j}^{\frac{q^n-1}{q-1}} = z_j.$$

We write π_j for $\pi_{nf,j}$ in the following calculations. Let $g \in \operatorname{Gal}(\overline{F}/F_n)$. Then

$$(g(\pi_j)/\pi_j)^{\frac{q^n-1}{q-1}} = g(z_j)/z_j = \chi_L(g)f_q^{-1}(z_j)$$

and so the quotient of $g(\pi_j)/\pi_j$ by $f_g^{-\frac{q-1}{q^n-1}}(z_j)$ is a certain $\frac{q^n-1}{q-1}$ -th root of $\chi_L(g)$. Since exponentiation with $\frac{q^n-1}{q-1} \in \mathbb{Z}_p^{\times}$ is surjective on the subgroup $1+(\pi) \subset o_F^{\times}$ we may write this root as $\tau(\omega_{nf,j}(g))$, with an element $\omega_{nf,j}(g) \in \mathbb{F}_{q^n}^{\times}$, and arrive at

$$g(\pi_j)/\pi_j = \tau(\omega_{nf,j}(g))f_g^{-\frac{q-1}{q^{n-1}}}(z_j).$$

The map $g \mapsto \omega_{nf,j}(g)$ is a character of the group $\operatorname{Gal}(\overline{F}/F_n)$, since

$$\omega_{nf,j}(g) \equiv g(\pi_j)/\pi_j \mod \mathfrak{m}_{\mathbb{C}_p}$$

in the field $\overline{\mathbb{F}}_q = o_{\mathbb{C}_p}/\mathfrak{m}_{\mathbb{C}_p}$ and this element is fixed by $\operatorname{Gal}(\overline{F}/F_n)$. Moreover, this character does not depend on the choice of π_j : a different choice π'_j differs from π_j by a $\frac{q^n-1}{q-1}$ -th root of unity, i.e. by an element of F_n . Hence $g(\pi'_j)/\pi'_j = g(\pi_j)/\pi_j$. By this independence, we see (using the element π^q_{j+1} as an alternative choice for π_j) that

$$\omega_{nf,j+1}^q = \omega_{nf,j} \text{ for } j \geq 1.$$

Moreover, $\pi_{nf,1}^{q^n-1}=z_1^{q-1}=-\pi(1+O(z_1))$ and so $(\pi_{nf}/\pi_{nf,1})^{q^n-1}\equiv 1\mod \mathfrak{m}_{\mathbb{C}_p}$. The quotient $\pi_{nf}/\pi_{nf,1}\mod \mathfrak{m}_{\mathbb{C}_p}$ is therefore fixed by $\mathrm{Gal}(\overline{F}/F_n)$, in other words

$$g(\pi_{nf,1})/\pi_{nf,1} \equiv g(\pi_{nf})/\pi_{nf} \mod \mathfrak{m}_{\mathbb{C}_n}$$

for all $g \in \operatorname{Gal}(\overline{F}/F_n)$ and so

$$\omega_{nf,1} = \omega_{nf}$$
.

Now recall that there is an isomorphism $\varprojlim_{x\mapsto x^q} o_{\mathbb{C}_p} \simeq o_{\mathbb{C}_p^b}$ of multiplicative monoids given by reduction modulo π . We use the notation $u=(u^{(j)})$ for elements in the projective limit $\varprojlim_{x\mapsto x^q} o_{\mathbb{C}_p}$. The element $y\in o_{\mathbb{C}_p^b}$ is given by $(...,\pi_j \mod \pi o_{\mathbb{C}_p},...)$. Its preimage $(y^{(j)})$ under the above isomorphism is therefore given by $y^{(j)}=\lim_{m\to\infty}\pi_{j+m}^{q^m}$. By the same argument, the preimage of the element $\overline{f}_q^{-\frac{q-1}{q^{n-1}}}(t)$ has coordinates

$$\overline{f}_g^{-\frac{q-1}{q^n-1}}(t)^{(j)} = \lim_{m \to \infty} (f_g^{-\frac{q-1}{q^n-1}}(z_{j+m}))^{q^m}.$$

The composite map $s: \overline{\mathbb{F}}_q \to o_{\mathbb{C}_p^b} \simeq \varprojlim_{x \mapsto x^q} o_{\mathbb{C}_p}$, which we also denote by s, is given by $a \mapsto (\tau(a), \tau(a^{q^{-1}}), \tau(a^{q^{-2}}), \ldots)$. Since

$$s(\omega_{nf}(g)^q)^{(j)} = \tau(\omega_{nf}(g)^{q^{-j+1}}) = \tau(\omega_{nf,j}(g)),$$

we may put everything together and obtain

$$\frac{g(y^{(j)})}{y^{(j)}} = \lim_{m \to \infty} \left(\frac{g(\pi_{j+m})}{\pi_{j+m}}\right)^{q^m} = \tau(\omega_{nf,j}(g)) \lim_{m \to \infty} \left(f_g^{-\frac{q-1}{q^n-1}}(z_{j+m})\right)^{q^m} = s(\omega_{nf}(g)^q)^{(j)} \overline{f_g}^{-\frac{q-1}{q^n-1}}(t)^{(j)}.$$

Reducing this equation modulo π yields the assertion of the lemma.

We now consider the (φ, Γ) -modules associated to the irreducible Galois representations of the form $\operatorname{ind}(\omega_{nf}^h)$.

3.2. Theorem. The Lubin-Tate (φ, Γ) -module associated to an irreducible Galois representation of the form $\operatorname{ind}(\omega_{nf}^h)$ is defined over the ring $\mathbb{F}_q((t))$ and admits a basis $e_0, e_1, ..., e_{n-1}$ in which

$$\gamma(e_j) = \overline{f}_{\gamma}(t)^{hq^j(q-1)/(q^n-1)}e_j$$

for all $\gamma \in \Gamma$ and $\varphi(e_i) = e_{i+1}$ and $\varphi(e_{n-1}) = (-1)^{n-1}t^{-h(q-1)}e_0$.

Proof. Let D be the (φ, Γ) -module described in the statement and let $W = \mathcal{V}(D)$. With $x = t^h e_0 \wedge ... \wedge e_{n-1}$, one has

$$\varphi(x) = \varphi(t)^h (-1)^{n-1} t^{-h(q-1)} e_1 \wedge \ldots \wedge e_{n-1} \wedge e_0 = t^{qh-h(q-1)} e_0 \wedge \ldots \wedge e_{n-1} = x.$$

Moreover,

$$\gamma(t)^{h} \prod_{j=0}^{n-1} \overline{f}_{\gamma}^{hq^{j}(q-1)/(q^{n}-1)}(t) = (\omega_{f}(\gamma)t/\overline{f}_{\gamma}(t))^{h} \overline{f}_{\gamma}^{h(q-1)/(q^{n}-1)\sum_{j=0}^{n-1} q^{j}} = \omega_{f}(\gamma)^{h} t^{h}$$

which implies $\gamma(x) = \omega_f(\gamma)^h x$ for all $\gamma \in \Gamma$. So det $W = \omega_f^h$. Put $k := \mathbb{F}_{q^n}$ as a coefficient field, i.e. endowed with the trivial Frobenius action. To complete the proof, it remains to check that the restriction of $k \otimes_{\mathbb{F}_q} W$ to the inertia subgroup \mathcal{I} is given by $\omega_{nf}^h \oplus \omega_{nf}^{qh} \oplus \ldots \oplus \omega_{nf}^{q^{n-1}h}$. There is a ring isomorphism

$$k \otimes_{\mathbb{F}_q} \mathbb{F}_q((t))^{\text{sep}} \xrightarrow{\simeq} \prod_{j=0}^{n-1} \mathbb{F}_q((t))^{\text{sep}}, \ x \otimes z \mapsto (\varphi_q^j(x)z)$$

where φ_q is the q-Frobenius on k. The induced Frobenius and $\operatorname{Gal}(\overline{F}/F_n)$ -action on $\prod_{j=0}^{n-1} \mathbb{F}_q((t))^{\operatorname{sep}}$ are given as

$$\varphi((x_0,...,x_{n-1})) = (\varphi_q(x_{n-1}),\varphi_q(x_0),...,\varphi_q(x_{n-2}))$$

$$g((x_0,...,x_{n-1})) = (g(x_0),...,g(x_{n-1})).$$

Choose $\alpha \in \overline{\mathbb{F}}_q \subset \mathbb{F}_q((t))^{\text{sep}}$ such that $\alpha^{q^n-1} = (-1)^{n-1}$ and define the elements

$$v_{0} = (\alpha y^{h}, 0, ..., 0)e_{0} + (0, \alpha^{q} y^{qh}, 0, ..., 0)e_{1} + ... + (0, ..., 0, \alpha^{q^{n-1}} y^{q^{n-1}h})e_{n-1}$$

$$v_{1} = (0, \alpha y^{h}, 0, ..., 0)e_{0} + (0, 0, \alpha^{q} y^{qh}, 0, ..., 0)e_{1} + ... + (\alpha^{q^{n-1}} y^{q^{n-1}h}, 0, ..., 0)e_{n-1}$$

$$\vdots$$

$$v_{n-1} = (0, ..., 0, \alpha y^{h})e_{0} + (\alpha^{q} y^{qh}, 0, ..., 0)e_{1} + ... + (0, ..., \alpha^{q^{n-1}} y^{q^{n-1}h}, 0)e_{n-1}.$$

By definition of D, the vectors e_i form a $\mathbb{F}_q((t))$ -basis for D and it follows easily that the vectors v_i form a $k \otimes_{\mathbb{F}_q} \mathbb{F}_q((t))^{\text{sep}}$ -basis for $k \otimes_{\mathbb{F}_q} (\mathbb{F}_q((t))^{\text{sep}} \otimes_{\mathbb{F}_q((t))} D)$. Moreover,

$$\varphi((0,...,0,\alpha^{q^{n-1}}y^{q^{n-1}h})e_{n-1}) = (\alpha^{q^n}y^{q^nh},0,...,0)\varphi(e_{n-1})$$
$$= (\alpha^{q^n}y^{q^nh},0,...,0))(-1)^{n-1}t^{-h(q-1)}e_0 = (\alpha y^h,0,...,0)e_0$$

since $\alpha^{q^n} = (-1)^{n-1}\alpha$ and $y^{q^n}t^{1-q} = y$. This means

$$\varphi(v_0) = (0, \alpha^q y^{qh}, 0, ..., 0)\varphi(e_0) + (0, 0, \alpha^q y^{qh}, 0, ..., 0)\varphi(e_1) + ... + (\alpha^q y^{qh}, 0, ..., 0)\varphi(e_{n-1})$$

$$= (0, \alpha^q y^{qh}, 0, ..., 0)e_1 + (0, 0, \alpha^q y^{qh}, 0, ..., 0)e_2 + ... + (\alpha y^h, 0, ..., 0)e_0$$

$$= v_0.$$

Similarly, one shows $\varphi(v_j) = v_j$ for $j \ge 1$, so that

$$v_0,...,v_{n-1} \in k \otimes_{\mathbb{F}_q} (\mathbb{F}_q((t))^{\mathrm{sep}} \otimes_{\mathbb{F}_q((t))} D)^{\varphi=1} = k \otimes_{\mathbb{F}_q} \mathscr{V}(D) = k \otimes_{\mathbb{F}_q} W.$$

Now if $g \in \operatorname{Gal}(\overline{F}/F_n)$, then $g(y) = y\omega_{nf}^q(g)c_g$ with $c_g := \overline{f_g}^{-\frac{q-1}{q^n-1}}(t)$ by lemma 3.1 and $g(e_j) = c_g^{-q^jh}e_j$ by definition of D. Hence

$$g(y)^{q^{j}h}g(e_{j}) = (y\omega_{nf}^{q}(g))^{q^{j}h}e_{j}.$$

If $g \in \mathcal{I}$, then $g(\alpha) = \alpha$ and then altogether

$$g(v_0) = (\alpha g(y)^h, 0, ...)g(e_0) + (0, \alpha^q g(y)^{qh}, 0, ...)g(e_1) + ... + (0, ..., \alpha^{q^{n-1}} g(y)^{q^{n-1}h})g(e_{n-1})$$

$$= \omega_{nf}^{qh}(g) \cdot ((\alpha y^h, 0, ...)e_0 + (0, \alpha^q y^{qh}, 0, ...)e_1 + ... + (0, ..., \alpha^{q^{n-1}} y^{q^{n-1}h})e_{n-1})$$

$$= \omega_{nf}^{qh}(g) \cdot v_0,$$

where \cdot refers to the left k-structure of $\prod_{j=0}^{n-1} \mathbb{F}_q((t))^{\text{sep}}$. Similarly, one shows $g(v_j) = \omega_{nf}^{q^{1-j}h}(g)v_j$ for all $j \geq 1$ and $g \in \mathcal{I}$. Since $\omega_{nf}^{q^n} = \omega_{nf}$ and hence $\omega_{nf}^{q^{1-j}h} = \omega_{nf}^{q^{n+1-j}h}$, this proves that the restriction of $k \otimes_{\mathbb{F}_q} W$ to \mathcal{I} is given by the sum of the characters $\omega_{nf}^h, \omega_{nf}^{qh}, ..., \omega_{nf}^{q^{n-1}h}$.

As explained above, one may pass from irreducible representations of the form $\operatorname{ind}(\omega_{nf}^h)$ to the general case by twisting with characters. Note that any character $\operatorname{Gal}(\overline{F}/F) \to \overline{\mathbb{F}}_q^{\times}$ can be written in the form $\omega_f^s \mu_{\lambda}$, for $1 \leq s \leq q-1$ and $\lambda \in \overline{\mathbb{F}}_q^{\times}$.

3.3. Lemma. Let k/\mathbb{F}_q be a finite extension. The (φ,Γ) -module associated a Galois character of the form $\omega_f^s \mu_\lambda$ with $\lambda \in k^\times$ admits a basis e such that $\varphi(e) = \lambda \cdot e$ and $\gamma(e) = \omega_f^s(\gamma) \cdot e$ for all $\gamma \in \Gamma$.

Proof. Since the functor $\mathscr V$ preserves the tensor product, we may discuss the two characters ω_f^s and μ_λ separately. For the twists by a character of Γ , such as ω_f^s , see [SV16, Remark 4.6]. So let $V = \mu_\lambda = k$ and let

$$D(V) = (\mathbb{F}_q((t))^{\text{sep}} \otimes_{\mathbb{F}_q} V)^{H_F}$$

be the associated (φ, Γ) -module. It is instructive to check the case $k = \mathbb{F}_q$ first. Here, we choose $\beta \in \overline{\mathbb{F}}_q$ with $\beta^{q-1} = \lambda$ and put $e = \beta \otimes 1 \in \mathbb{F}_q((t))^{\text{sep}} \otimes_{\mathbb{F}_q} V$. Since $\beta \neq 0$, we have $e \neq 0$. Moreover, \mathcal{I} acts trivial on e and for $\varphi \in \text{Gal}(\overline{F}/F)$ we find

$$\varphi(e) = \varphi(\beta) \otimes \varphi(1) = \beta^q \otimes \lambda^{-1} = \beta \lambda \otimes \lambda^{-1} = \beta \otimes 1 = e.$$

Hence e is indeed $\operatorname{Gal}(\overline{F}/F)$ -invariant. Moreover, if ϕ denotes the Frobenius endomorphism on D(V) we have

$$\phi(e) = \phi(\beta) \otimes 1 = \beta^q \otimes 1 = \lambda \beta \otimes 1 = \lambda e.$$

Now suppose that $k = \mathbb{F}_{q^n}$ for some n and $\lambda \in k^{\times}$. We use the ring isomorphism

$$k \otimes_{\mathbb{F}_q} \mathbb{F}_q((t))^{\text{sep}} \xrightarrow{\simeq} \prod_{j=0}^{n-1} \mathbb{F}_q((t))^{\text{sep}}, \ x \otimes z \mapsto (\varphi_q^j(x)z)$$

where φ_q is the q-Frobenius on k. It is $\operatorname{Gal}(\overline{F}/F_n)$ -equivariant, where the Galois action on the right-hand side is componentwise (see proof of the above theorem). By the normal basis theorem, there is $x \in k^{\times}$ such that its conjugates $\varphi_q^j(x)$ are linearly independent over \mathbb{F}_q . The j-th copy $\mathbb{F}_q((t))^{\text{sep}}$ in the above product has therefore a $\mathbb{F}_q((t))^{\text{sep}}$ -basis element $e_j := \varphi_q^j(x) \in k = V$ on which \mathcal{I} acts trivial and on which the element $\varphi^n \in \operatorname{Gal}(\overline{F}/F_n)$ acts by λ^{-n} . Choose $\beta \in \overline{\mathbb{F}}_q$ such that $\beta^{q^n-1} = \lambda^n$ and put $v_j = \beta e_j$. Then \mathcal{I} obviously acts trivial on v_j and the same holds for φ^n , since

$$\varphi^n(v_j) = \varphi^n(\beta)\varphi^n(e_j) = \beta^{q^n}\lambda^{-n}e_j = \beta\lambda^n\lambda^{-n}e_j = v_j.$$

Hence, \mathcal{I} and φ^n act trivial on $(v_j) \in \prod_{j=0}^{n-1} \mathbb{F}_q((t))^{\text{sep}}$ and then also on its preimage $v = x \otimes \beta \in k \otimes_{\mathbb{F}_q} \mathbb{F}_q((t))^{\text{sep}}$. Note that $v \neq 0$ since $x, \beta \neq 0$. Write $N = \prod_{j=0}^{n-1} \varphi^j$ and e = N(v). Then $e = \sum_{j=0}^{n-1} \varphi^j$

is fixed by \mathcal{I} (since \mathcal{I} is normalized by the φ^j) and is fixed by φ by construction. Hence, e is $\operatorname{Gal}(\overline{F}/F)$ -invariant. Note that $e \neq 0$, since $e = N(x) \otimes N(\beta)$ and $N(x), N(\beta) \neq 0$ and so e is indeed a basis element of D(V) on which Γ acts trivial. Finally, write $e = \sum_{j=0}^{n-1} \varphi_q^j(x) \otimes z_j$ with $z_j \in \mathbb{F}_q(t)$ sep. The Frobenius endomorphism φ on D(V) satisfies

$$\phi(e) = \sum_j \varphi_q^j(x) \otimes \varphi(z_j) = \varphi(\sum_j \varphi^{-1}(\varphi_q^j(x)) \otimes z_j) = \varphi(\sum_j \lambda \varphi_q^j(x) \otimes z_j) = \lambda \varphi(e) = \lambda e.$$

3.4. Corollary. Let k/\mathbb{F}_q be a finite extension. The (φ,Γ) -module associated to an irreducible Galois representation of the form $(\operatorname{ind}(\omega_{nf}^h))\otimes \omega_f^s\mu_\lambda$, for $1\leq s\leq q-1$ and $\lambda^n\in k^\times$, is defined over the ring k((t)) and admits a basis $e_0,e_1,...,e_{n-1}$ in which

$$\gamma(e_j) = \omega_f(\gamma)^s \overline{f}_{\gamma}(t)^{hq^j(q-1)/(q^n-1)} e_j$$

for all $\gamma \in \Gamma$ and $\varphi(e_j) = \lambda e_{j+1}$ and $\varphi(e_{n-1}) = (-1)^{n-1} t^{-h(q-1)} \lambda e_0$.

 ${\it Proof.}$ This follows from the preceding lemma and the theorem.

Since $\omega_{nf}^{\frac{q^n-1}{q-1}}=\omega_f$, every irreducible representation of $\operatorname{Gal}(\overline{F}/F)$ of dimension n is therefore isomorphic to $\operatorname{ind}(\omega_{nf}^h)\otimes\omega_f^s\mu_\lambda$ for $1\leq s\leq q-1$, a scalar $\lambda\in\overline{\mathbb{F}}_q^\times$ and a q-primitive $1\leq h\leq \frac{q^n-1}{q-1}-1$.

References

- [Be10] L. Berger, On some modular representations of the Borel subgroup of $GL_2(\mathbb{Q}_p)$, Comp. Math. **146**(1) (2010), 58-80.
- [GK16] E. GROSSE-KLÖNNE, From pro-p-Iwahori-Hecke modules to (φ, Γ) -modules, I, Duke Math. Journal 165 No. 8 (2016), 1529-1595.
- [GK18] E. GROSSE-KLÖNNE, Supersingular Hecke modules as Galois representations, Preprint (2018) arXiv:1803.02616.
- [KR09] M. KISIN, W. REN, Galois representations and Lubin-Tate groups, Doc. Math., 14, 441-461, 2009.
- [PS1] C. PÉPIN, T. SCHMIDT, Mod p Hecke algebras and dual equivariant cohomology I: the case of GL_2 , Preprint 2018, https://arxiv.org/abs/1907.08808.
- [Sch17] P. Schneider, Galois representations and (φ, Γ) -modules, Cambridge Studies in Advanced Mathematics **164** (Cambridge University Press, 2017).
- [SV16] P. SCHNEIDER, O. VENJAKOB, Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions, Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat. 188, 401-468, 2016.
- [Se72] J.-P. SERRE, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15(4) (1972), 259-331.
- [V94] M.-F. VIGNERAS, A propos d'une conjecture de Langlands modulaire, in: Finite reductive groups, Ed. M. Cabanes, Prog. Math., vol. 141 (Birkhäuser, Basel, 1997).

Cédric Pépin, LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93 430 Villetaneuse, France E-mail address: cpepin@math.univ-paris13.fr

Tobias Schmidt, Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France $E\text{-}mail\ address:\ tobias.schmidt@univ-rennes1.fr$