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Abstract

Let F be a finite extension of Qp. We determine the Lubin-Tate (ϕ,Γ)-modules associated
to the absolutely irreducible mod p representations of the absolute Galois group Gal(F/F ).
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1 Introduction

Let F be a finite extension of Qp with ring of integers oF , residue field Fq and uniformizer π ∈ oF .
Let F be an algebraic closure of F and let Gal(F/F ) be the absolute Galois group of F . By adapting
the well-known formalism of Fontaine for the cyclotomic case, Kisin-Ren explained in [KR09] (see
also the detailed exposition by Schneider [Sch17]) how to build an equivalence between the category
of continuous representations of Gal(F/F ) in finitely generated oF -modules and a category of
étale Lubin-Tate (ϕ,Γ)-modules. Let k/Fq be a finite extension. Via reduction modulo π and
extension of scalars, one deduces an equivalence of categories between smooth representations of
Gal(F/F ) in finite dimensional k-vector spaces and a category of Lubin-Tate (ϕ,Γ)-modules over
the Laurent series ring k((t)). When F = Qp and in the cyclotomic case, the (ϕ,Γ)-modules
corresponding to the n-dimensional absolutely irreducible mod p Galois representations have been
explicitly calculated by Berger [Be10] and then used by him, in the case of n = 2, to give a direct
proof of the compatibility of Colmez’ p-adic local Langlands correspondence with Breuil’s mod p
correspondence for the group GL2(Qp) in the irreducible case. In view of extending such results
to more general base fields F 6= Qp, we propose in this note to explicitly calculate the Lubin-Tate
(ϕ,Γ)-modules corresponding to the absolutely irreducible mod p representations of Gal(F/F ) for
F 6= Qp, thereby generalizing Berger’s result. As a method of proof, we adapt Berger’s strategy to
the Lubin-Tate setting.

In [GK18] (generalizing [GK16] for F = Qp) Grosse-Klönne constructs a fully faithful exact
functor from the category of so-called supersingular modules for the pro-p Iwahori-Hecke algebra
over k of the group GLn(F ) to the category of Lubin-Tate (ϕ,Γ)-modules over k((t)). It induces
a bijection between the absolutely irreducible objects of rang n on both sides. In [PS1] we show,
as an application of the results in this note, how to geometrically construct an inverse map to
Grosse-Klönne’s bijection in the case n = 2.

The second author thanks L. Berger for answering some questions on (ϕ,Γ)-modules.
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2 Galois representations and Lubin-Tate (ϕ,Γ)-modules

Let Fn/F be the unramified extension of degree n. The irreducible smooth Fq-representations of
Gal(F/F ) of dimension n are given by the representations

ind
Gal(F/F )

Gal(F/Fn)
(χ)

smoothly induced from the regular Fq-characters χ of Gal(F/Fn). The Gal(Fn/F )-conjugates of χ
induce isomorphic representations and there are no other isomorphisms between the representations
[V94].

Let π ∈ oF be a uniformizer and let q = pf . Let πnf ∈ F be an element such that πq
n−1
nf = −π.

We then have Serre’s fundamental character of level nf

ωnf : Gal(F/Fn) −→ F×qn

given by g 7→ g(πnf )/πnf ∈ µqn−1(F ) followed by reduction mod π, cf. [Se72]. One has ω
qn−1
q−1

nf =
ωf |Gal(F/Fn)

.

Let I ⊂ Gal(F/F ) be the inertia subgroup and choose an element ϕ ∈ Gal(F/F ) lifting the
Frobenius x 7→ xq on Gal(Fq/Fq). Since ωf : I → F×q is surjective [Se72, Prop. 2], we may and
will assume ωf (ϕ) = 1.

A character ωhnf for 1 ≤ h ≤ qn − 2 is regular if and only if its conjugates ωhnf , ω
qh
nf , ..., ω

qn−1h
nf

are all distinct. Equivalently, if and only if h is q-primitive, that is, there is no d < n such that h

is a multiple of (qn − 1)/(qd − 1). The representation ind
Gal(F/F )

Gal(F/Fn)
(ωhnf ) is then defined over Fqn .

It has a basis {v0, ..., vn−1} of eigenvectors for the characters ωhnf , ω
qh
nf , ..., ω

qn−1h
nf of Gal(F/Fn)

such that ϕ(ei) = ei−1 and ϕ(e0) = en−1. In particular, its determinant coincides with ωhf on the

subgroup Gal(F/Fn) and takes ϕ to (−1)n−1.

For λ ∈ F×q , let µλ be the unramified character of Gal(F/F ) sending ϕ to λ−1. Fix δ with
δn = (−1)n−1. The representation

ind(ωhnf ) := (ind
Gal(F/F )

Gal(F/Fn)
(ωhnf ))⊗ µδ

is then uniquely determined by the two conditions

det ind(ωhnf ) = ωhf and ind(ωhnf )|I = ωhnf ⊕ ω
qh
nf ⊕ ...⊕ ω

qn−1h
nf .

Let k/Fq be a finite extension. Every absolutely irreducible smooth k-representation of Gal(F/F )

of dimension n is isomorphic to ind(ωhnf )⊗µλ for a q-primitive 1 ≤ h ≤ qn−2 and a scalar λ ∈ F×q
such that λn ∈ k× and one has

ind(ωhnf )⊗ µλ ' ind(ωh̃nf )⊗ µλ̃

if and only if Gal(Fn/F ).ωhnf = Gal(Fn/F ).ωh̃nf and λn = λ̃n.

The theory of Lubin-Tate (ϕ,Γ)-modules and their relation to Galois representations is de-
veloped in [KR09] and [Sch17]. Let Fφ be a Lubin-Tate group for π, with Frobenius power
series φ(t) ∈ oF [[t]]. The corresponding ring homomorphism oF → End(Fφ) is denoted by
a 7→ [a](t) = at + .... In particular, [π](t) = φ(t). Let F∞/F be the extension generated by
all torsion points of Fφ and let

HF := Gal(F/F∞) and Γ := Gal(F/F )/HF = Gal(F∞/F ).

Let z = (zj)j≥0 be a oF -generator of the Tate module of Fφ. In particular, for j ≥ 0

zj = [π](zj+1) ≡ zqj+1 mod π
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and NF (z1)/F (−z1) = π. This implies

zqj+1 = zj(1 +O(π)) for j ≥ 1 and zq−11 = −π(1 +O(z1)).

The Galois action on the generator z is given by a character χL : Gal(F/F ) → o×F , which is
surjective and has kernel HF . One has ωf ≡ χL mod π.

The power series ring oF [[t]] has a Frobenius endomorphism and a Γ-action via ϕ(f)(t) =
f([π](t)) and (γf)(t) = f([χL(γ)](t)) for f(t) ∈ oF [[t]]. Via reduction mod π, these actions
induce a Frobenius action and a Γ-action on Fq[[t]] and its quotient field Fq((t)). This allows to
introduce an abelian tensor category of étale Lubin-Tate (ϕ,Γ)-modules over Fq((t)). It turns out
to be canonically equivalent to the category of continuous finite-dimensional Fq-representations of
Gal(F/F ), cf. [KR09, 1.6], [Sch17, 3.2.7].

To explain the functor from (ϕ,Γ)-modules to Galois representations, we denote by Cp the
completion of an algebraic closure of Qp and choose an embedding F ⊆ Cp. Recall that the tilt
C[p of the perfectoid field Cp is an algebraically closed and perfect complete non-archimedean field
of characteristic p. Its valuation ring oC[

p
is given by the projective limit lim←−x 7→xq

oCp
/πoCp

and its

residue field is Fq. There is a unique multiplicative section

s : Fq −→ oC[
p
, a 7→ (τ(a) mod π, τ(aq

−1

) mod π, τ(aq
−2

) mod π, ...)

where τ denotes the Teichmüller map Fq → oCp
. There is an inclusion

Fq((t))
⊂−→ C[p, t 7→ (..., zj mod π, ...)

and one has C[p = oC[
p
[1/t]. The field C[p is endowed with a continuous action of Gal(F/F ) and a

Frobenius ϕq, which raises any element to its q-th power. We let Fq((t))sep denote the separable
algebraic closure of Fq((t)) inside C[p. The field Fq((t)) and its separable closure Fq((t))sep inherit

the Frobenius action and the commuting Gal(F/F )-action from C[p and there is an isomorphism

HF
'−→ Gal(Fq((t))sep/Fq((t))).

The functor V from (ϕ,Γ)-modules to Galois representations is then given by

D  V (D) := (Fq((t))sep ⊗Fq((t)) D)ϕ=1

where Gal(F/F ) acts diagonally (and via its projection to Γ on the second factor).

Now suppose that k/Fq is a finite extension. One can consider a k-representation of Gal(F/F )
as an Fq-representation with a k-linear structure. Similarly, one may introduce (ϕ,Γ)-modules
over k((t)) = k ⊗Fq

Fq((t)), where k has the trivial Frobenius and Γ-action. The functor V then
restricts to an equivalence of categories between étale (ϕ,Γ)-modules over k((t)) and continuous
finite-dimensional k-representations of Gal(F/F ).

3 The main result

We fix once and for all an element y ∈ Fq((t))sep such that

y(q
n−1)/(q−1) = t.

For g ∈ Gal(F/F ), the power series

fg(t) = χL(g)t/g(t) ∈ 1 + (π)[[t]]

depends only on the class of g in Γ. The same is true for its mod π reduction fg(t) = ωf (g)t/g(t).
Note that the formula fsg (t) defines an element of oF [[t]] for any s ∈ Zp.

3.1. Lemma. One has g(y) = yωqnf (g)f
− q−1

qn−1

g (t) in Fq((t))sep for all g ∈ Gal(F/Fn).
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Proof. This is a version of [Be10, Lem. 2.1.3]. Let j ≥ 1 and choose πnf,j ∈ oCp
such that

π
qn−1
q−1

nf,j = zj .

We write πj for πnf,j in the following calculations. Let g ∈ Gal(F/Fn). Then

(g(πj)/πj)
qn−1
q−1 = g(zj)/zj = χL(g)f−1g (zj)

and so the quotient of g(πj)/πj by f
− q−1

qn−1
g (zj) is a certain qn−1

q−1 -th root of χL(g). Since expo-

nentiation with qn−1
q−1 ∈ Z×p is surjective on the subgroup 1 + (π) ⊂ o×F we may write this root as

τ(ωnf,j(g)), with an element ωnf,j(g) ∈ F×qn , and arrive at

g(πj)/πj = τ(ωnf,j(g))f
− q−1

qn−1
g (zj).

The map g 7→ ωnf,j(g) is a character of the group Gal(F/Fn), since

ωnf,j(g) ≡ g(πj)/πj mod mCp

in the field Fq = oCp
/mCp

and this element is fixed by Gal(F/Fn). Moreover, this character does

not depend on the choice of πj : a different choice π′j differs from πj by a qn−1
q−1 -th root of unity,

i.e. by an element of Fn. Hence g(π′j)/π
′
j = g(πj)/πj . By this independence, we see (using the

element πqj+1 as an alternative choice for πj) that

ωqnf,j+1 = ωnf,j for j ≥ 1.

Moreover, πq
n−1
nf,1 = zq−11 = −π(1 + O(z1)) and so (πnf/πnf,1)q

n−1 ≡ 1 mod mCp
. The quotient

πnf/πnf,1 mod mCp
is therefore fixed by Gal(F/Fn), in other words

g(πnf,1)/πnf,1 ≡ g(πnf )/πnf mod mCp

for all g ∈ Gal(F/Fn) and so
ωnf,1 = ωnf .

Now recall that there is an isomorphism lim←−x 7→xq
oCp
' oC[

p
of multiplicative monoids given

by reduction modulo π. We use the notation u = (u(j)) for elements in the projective limit
lim←−x 7→xq

oCp
. The element y ∈ oC[

p
is given by (..., πj mod πoCp

, ...). Its preimage (y(j)) under

the above isomorphism is therefore given by y(j) = limm→∞ πq
m

j+m. By the same argument, the

preimage of the element f
− q−1

qn−1

g (t) has coordinates

f
− q−1

qn−1

g (t)(j) = lim
m→∞

(f
− q−1

qn−1
g (zj+m))q

m

.

The composite map s : Fq → oC[
p
' lim←−x 7→xq

oCp , which we also denote by s, is given by

a 7→ (τ(a), τ(aq
−1

), τ(aq
−2

), ...). Since

s(ωnf (g)q)(j) = τ(ωnf (g)q
−j+1

) = τ(ωnf,j(g)),

we may put everything together and obtain

g(y(j))

y(j)
= lim
m→∞

(
g(πj+m)

πj+m
)q

m

= τ(ωnf,j(g)) lim
m→∞

(f
− q−1

qn−1
g (zj+m))q

m

= s(ωnf (g)q)(j)f
− q−1

qn−1

g (t)(j).

Reducing this equation modulo π yields the assertion of the lemma.

We now consider the (ϕ,Γ)-modules associated to the irreducible Galois representations of the
form ind(ωhnf ).
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3.2. Theorem. The Lubin-Tate (ϕ,Γ)-module associated to an irreducible Galois representation
of the form ind(ωhnf ) is defined over the ring Fq((t)) and admits a basis e0, e1, ..., en−1 in which

γ(ej) = fγ(t)hq
j(q−1)/(qn−1)ej

for all γ ∈ Γ and ϕ(ej) = ej+1 and ϕ(en−1) = (−1)n−1t−h(q−1)e0.

Proof. Let D be the (ϕ,Γ)-module described in the statement and let W = V (D). With x =
the0 ∧ ... ∧ en−1, one has

ϕ(x) = ϕ(t)h(−1)n−1t−h(q−1)e1 ∧ ... ∧ en−1 ∧ e0 = tqh−h(q−1)e0 ∧ ... ∧ en−1 = x.

Moreover,

γ(t)h
n−1∏
j=0

f
hqj(q−1)/(qn−1)
γ (t) = (ωf (γ)t/fγ(t))hf

h(q−1)/(qn−1)
∑n−1

j=0 q
j

γ = ωf (γ)hth

which implies γ(x) = ωf (γ)hx for all γ ∈ Γ. So detW = ωhf . Put k := Fqn as a coefficient field,
i.e. endowed with the trivial Frobenius action. To complete the proof, it remains to check that

the restriction of k⊗Fq
W to the inertia subgroup I is given by ωhnf ⊕ ω

qh
nf ⊕ ...⊕ ω

qn−1h
nf . There is

a ring isomorphism

k ⊗Fq
Fq((t))sep

'−→
n−1∏
j=0

Fq((t))sep, x⊗ z 7→ (ϕjq(x)z)

where ϕq is the q-Frobenius on k. The induced Frobenius and Gal(F/Fn)-action on
∏n−1
j=0 Fq((t))sep

are given as
ϕ((x0, ..., xn−1)) = (ϕq(xn−1), ϕq(x0), ..., ϕq(xn−2))

g((x0, ..., xn−1)) = (g(x0), ..., g(xn−1)).

Choose α ∈ Fq ⊂ Fq((t))sep such that αq
n−1 = (−1)n−1 and define the elements

v0 = (αyh, 0, ..., 0)e0 + (0, αqyqh, 0, ..., 0)e1 + ...+ (0, ..., 0, αq
n−1

yq
n−1h)en−1

v1 = (0, αyh, 0, ..., 0)e0 + (0, 0, αqyqh, 0, ..., 0)e1 + ...+ (αq
n−1

yq
n−1h, 0, ..., 0)en−1

...

vn−1 = (0, ...0, αyh)e0 + (αqyqh, 0, ..., 0)e1 + ...+ (0, ..., αq
n−1

yq
n−1h, 0)en−1.

By definition of D, the vectors ei form a Fq((t))-basis for D and it follows easily that the vectors
vi form a k ⊗Fq

Fq((t))sep-basis for k ⊗Fq
(Fq((t))sep ⊗Fq((t)) D). Moreover,

ϕ((0, ..., 0, αq
n−1

yq
n−1h)en−1) = (αq

n

yq
nh, 0, ..., 0)ϕ(en−1)

= (αq
n

yq
nh, 0, ..., 0))(−1)n−1t−h(q−1)e0 = (αyh, 0, ..., 0)e0

since αq
n

= (−1)n−1α and yq
n

t1−q = y. This means

ϕ(v0) = (0, αqyqh, 0, ..., 0)ϕ(e0) + (0, 0, αq
2

yq
2h, 0, ..., 0)ϕ(e1) + ...+ (αq

n

yq
nh, 0, ..., 0)ϕ(en−1)

= (0, αqyqh, 0, ..., 0)e1 + (0, 0, αq
2

yq
2h, 0, ..., 0)e2 + ...+ (αyh, 0, ..., 0)e0

= v0.

Similarly, one shows ϕ(vj) = vj for j ≥ 1, so that

v0, ..., vn−1 ∈ k ⊗Fq (Fq((t))sep ⊗Fq((t)) D)ϕ=1 = k ⊗Fq V (D) = k ⊗Fq W.
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Now if g ∈ Gal(F/Fn), then g(y) = yωqnf (g)cg with cg := f
− q−1

qn−1

g (t) by lemma 3.1 and g(ej) =

c−q
jh

g ej by definition of D. Hence

g(y)q
jhg(ej) = (yωqnf (g))q

jhej .

If g ∈ I, then g(α) = α and then altogether

g(v0) = (αg(y)h, 0, ...)g(e0) + (0, αqg(y)qh, 0, ...)g(e1) + ...+ (0, ..., αq
n−1

g(y)q
n−1h)g(en−1)

= ωqhnf (g) · ((αyh, 0, ...)e0 + (0, αqyqh, 0, ...)e1 + ...+ (0, ..., αq
n−1

yq
n−1h)en−1)

= ωqhnf (g) · v0,

where · refers to the left k-structure of
∏n−1
j=0 Fq((t))sep. Similarly, one shows g(vj) = ωq

1−jh
nf (g)vj

for all j ≥ 1 and g ∈ I. Since ωq
n

nf = ωnf and hence ωq
1−jh
nf = ωq

n+1−jh
nf , this proves that the

restriction of k ⊗Fq
W to I is given by the sum of the characters ωhnf , ω

qh
nf , ..., ω

qn−1h
nf .

As explained above, one may pass from irreducible representations of the form ind(ωhnf ) to the

general case by twisting with characters. Note that any character Gal(F/F )→ F×q can be written

in the form ωsfµλ, for 1 ≤ s ≤ q − 1 and λ ∈ F×q .

3.3. Lemma. Let k/Fq be a finite extension. The (ϕ,Γ)-module associated a Galois character of
the form ωsfµλ with λ ∈ k× admits a basis e such that ϕ(e) = λ · e and γ(e) = ωsf (γ) · e for all
γ ∈ Γ.

Proof. Since the functor V preserves the tensor product, we may discuss the two characters ωsf
and µλ separately. For the twists by a character of Γ, such as ωsf , see [SV16, Remark 4.6]. So let
V = µλ = k and let

D(V ) = (Fq((t))sep ⊗Fq
V )HF

be the associated (ϕ,Γ)-module. It is instructive to check the case k = Fq first. Here, we choose
β ∈ Fq with βq−1 = λ and put e = β⊗1 ∈ Fq((t))sep⊗Fq V . Since β 6= 0, we have e 6= 0. Moreover,

I acts trivial on e and for ϕ ∈ Gal(F/F ) we find

ϕ(e) = ϕ(β)⊗ ϕ(1) = βq ⊗ λ−1 = βλ⊗ λ−1 = β ⊗ 1 = e.

Hence e is indeed Gal(F/F )-invariant. Moreover, if φ denotes the Frobenius endomorphism on
D(V ) we have

φ(e) = φ(β)⊗ 1 = βq ⊗ 1 = λβ ⊗ 1 = λe.

Now suppose that k = Fqn for some n and λ ∈ k×. We use the ring isomorphism

k ⊗Fq
Fq((t))sep

'−→
n−1∏
j=0

Fq((t))sep, x⊗ z 7→ (ϕjq(x)z)

where ϕq is the q-Frobenius on k. It is Gal(F/Fn)-equivariant, where the Galois action on the
right-hand side is componentwise (see proof of the above theorem). By the normal basis theorem,
there is x ∈ k× such that its conjugates ϕjq(x) are linearly independent over Fq. The j-th copy

Fq((t))sep in the above product has therefore a Fq((t))sep-basis element ej := ϕjq(x) ∈ k = V on

which I acts trivial and on which the element ϕn ∈ Gal(F/Fn) acts by λ−n. Choose β ∈ Fq such
that βq

n−1 = λn and put vj = βej . Then I obviously acts trivial on vj and the same holds for ϕn,
since

ϕn(vj) = ϕn(β)ϕn(ej) = βq
n

λ−nej = βλnλ−nej = vj .

Hence, I and ϕn act trivial on (vj) ∈
∏n−1
j=0 Fq((t))sep and then also on its preimage v = x ⊗ β ∈

k ⊗Fq Fq((t))sep. Note that v 6= 0 since x, β 6= 0. Write N =
∏n−1
j=0 ϕ

j and e = N(v). Then e
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is fixed by I (since I is normalized by the ϕj) and is fixed by ϕ by construction. Hence, e is
Gal(F/F )-invariant. Note that e 6= 0, since e = N(x) ⊗ N(β) and N(x), N(β) 6= 0 and so e is

indeed a basis element of D(V ) on which Γ acts trivial. Finally, write e =
∑n−1
j=0 ϕ

j
q(x) ⊗ zj with

zj ∈ Fq((t))sep. The Frobenius endomorphism φ on D(V ) satisfies

φ(e) =
∑
j

ϕjq(x)⊗ ϕ(zj) = ϕ(
∑
j

ϕ−1(ϕjq(x))⊗ zj) = ϕ(
∑
j

λϕjq(x)⊗ zj) = λϕ(e) = λe.

3.4. Corollary. Let k/Fq be a finite extension. The (ϕ,Γ)-module associated to an irreducible
Galois representation of the form (ind(ωhnf )) ⊗ ωsfµλ, for 1 ≤ s ≤ q − 1 and λn ∈ k×, is defined
over the ring k((t)) and admits a basis e0, e1, ..., en−1 in which

γ(ej) = ωf (γ)sfγ(t)hq
j(q−1)/(qn−1)ej

for all γ ∈ Γ and ϕ(ej) = λej+1 and ϕ(en−1) = (−1)n−1t−h(q−1)λe0.

Proof. This follows from the preceding lemma and the theorem.

Since ω
qn−1
q−1

nf = ωf , every irreducible representation of Gal(F/F ) of dimension n is therefore

isomorphic to ind(ωhnf )⊗ωsfµλ for 1 ≤ s ≤ q−1, a scalar λ ∈ F×q and a q-primitive 1 ≤ h ≤ qn−1
q−1 −1.
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