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Abstract. We establish a version of Kashiwara’s theorem for twisted sheaves of Berth-
elot’s arithmetic differential operators for a closed immersion between smooth p-adic
formal schemes. As an application, we give a geometric construction of simple modules
for crystalline distribution algebras of reductive groups.

On établit une version du théorème de Kashiwara - relative à une immersion fermée en-
tre deux schémas formels p-adiques - pour les faisceaux tordus des opérateurs différentiels
arithmétiques de Berthelot. Comme application de ce théorème, nous donnons une con-
struction géométrique des modules simples sur une algèbre de distributions arithmétiques
d’un groupe réductif.
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1. Introduction

Let X be a smooth complex variety and Y Ă X a smooth closed subvariety. A basic
result in D-module theory is Kashiwara’s theorem which states an equivalence of cate-
gories between the category of DY -modules, quasi-coherent over OY , and the category of
DX-modules, quasi-coherent over OX , with support in Y . Recall that a twisted sheaf of
differential operators on X is a sheaf of rings A on X together with a ring homomor-
phism ι : OX Ñ A such that the pair pι,A q is locally isomorphic to the pair pcan,DXq

where can : OX Ñ DX is the canonical inclusion. Originally, such twisted sheaves were
introduced in the early 1980s by Beilinson-Bernstein in order to study localisations of
Lie algebra representations with general infinitesimal character on complex flag varieties
[1]. It is well-known that the right module version of Kashiwara’s theorem generalizes
to twisted sheaves of differential operators [16, 4.3]. Under additional hypotheses on
the twisted sheaf A (e.g. an analogue of the order filtration on A ) one may establish
side-changing functors in the general setting of A -modules and then deduce a version of
Kashiwara’s theorem for left modules [15, 2.3].

In the arithmetic setting, let o denote a complete discrete valuation ring of mixed charac-
teristic p0, pq with uniformizer $, field of fractions K and perfect residue field. Let X be a

smooth formal scheme over o and let D:

X,Q be the sheaf of arithmetic differential operators
on X [2]. If Y Ă X is a closed smooth formal subscheme, Berthelot’s version of Kashi-

wara’s theorem gives an equivalence between the category of coherent left D:

Y,Q-modules

and the category of coherent left D:

X,Q-modules with support in Y. Berthelot gives a proof
of the theorem in his course on arithmetic D-modules 1997 at the Centre Emile Borel,
which, however, is not included in the corresponding reference [4]. In the appendix of [7]
Caro establishes a version of the theorem for log structures and coefficients.

Our goal in this paper is to establish a version of Kashiwara’s theorem for twisted sheaves
of arithmetic differential operators. Similar to the complex analytic setting, such twisted
sheaves appear naturally in the context of the localization theory of crystalline distribution
algebras of reductive groups, when varying the infinitesimal character of representations
[14, 18]. Following Beilinson-Bernstein, we define a twisted sheaf of arithmetic differential
operators to be a sheaf of rings A on X together with a ring homomorphism ι : OX,Q Ñ A

such that the pair pι,A q is locally isomorphic to the pair pcan,D:

X,Qq where can : OX,Q Ñ

D:

X,Q is the canonical inclusion. At this level of generality, as we have explained above,
there are no side-changing functors and one may only hope for a right module version of
Kashiwara’s theorem.

To formulate our main result, let A be a twisted sheaf of differential operators on X and
let i : Y Ñ X be the inclusion of a closed smooth formal subscheme defined by the ideal
I Ă OX. Let NA pI A q be the normalizer of the right ideal generated by I in A . We
show that

AY :“ i´1
`

NA pI A q{I A
˘

resp. AYÑX :“ i˚pA q



KASHIWARA’S THEOREM FOR TWISTED ARITHMETIC DIFFERENTIAL OPERATORS 3

are a twisted sheaf of arithmetic differential operators on Y resp. a pAY, i
´1A q-bimodule.

We obtain an adjoint pair of functors piA ,`, i
6

A q between the categories of right modules
over AY and A respectively: the direct image

iA ,`N :“ i˚pN bAY
AYÑXq

from right AY-modules to right A -modules and, in the opposite direction, the restriction
functor

i6A M :“ Homi´1A pAYÑX, i
´1M q.

Let CohrpAYq and Cohr,YpA q be the categories of coherent right AY-modules and coher-
ent right A -modules with support in Y, respectively. Our main result is the following.

Theorem (cf. 4.2.8). The functors iA ,`, i
6

A induce quasi-inverse equivalences of categories

CohrpAYq

iA ,` //
Cohr,YpA q

i6A

»oo .

For the proof, we proceed as follows. We first establish some complements on arithmetic
differential operators, notably the normalizer description for operators on closed sub-
spaces. We then give a full and self-contained proof of the Berthelot-Kashiwara theorem
for left D:

X,Q-modules. Note that Caro’s logarithmic Kashiwara theorem for coefficients
[7] contains this result as a special case. However, this special case is buried under a lot
of additional notation. We therefore believe that it is instructive, and a useful basis for
our future work, to have a clear direct proof in this special case, using only the tools of
the basic reference [2]. As in [7], the key ingredient is a lemma of Berthelot on a certain
matrix identity involving matrices over arithmetic differential operators. We give a full
proof of this lemma in 2.5 (in [7] only the rank 1-case is really considered). We then use

side-changing functors to obtain Berthelot-Kashiwara for right D:

X,Q-modules. Finally,

we prove sufficiently many properties and compatibilities of the adjoint pair piA ,`, i
6

A q to
reduce the proof of the main theorem to a local situation. This allows us to undo the
twist and then conclude via right Berthelot-Kashiwara.

In the final section, we give an application to the representation theory of crystalline
distributions algebras. We fix a connected split reductive group G over o and denote its
$-adic completion by G. Let D:pGqQ be its crystalline distribution algebra, as introduced
and studied in [13]. Irreducible modules over D:pGqQ can be considered as local data for
certain admissible locally analytic GpKq-representations and thus, are of interest in the
so-called p-adic local Langlands programme. We let X be the formal flag variety of G.
In [18] Sarrazola-Alzate generalizes a classical construction of Beilinson-Bernstein [1] and
Borho-Brylinski [5] to the arithmetic setting and constructs a family of twisted sheaves of

arithmetic differential operators D:

X,Q,λ on X, indexed by certain characters λ of a Cartan
subalgebra of LiepGq b Q. We apply our Berthelot-Kashiwara theorem to the sheaves

D:

X,Q,λ. For algebraic λ (i.e. when λ lifts to a character of a maximal split torus in G)
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this leads to a class of simple D:

X,Q,λ-modules, parametrized by closed smooth subschemes
Y Ă X. By the arithmetic localisation theorem [14], their global sections give rise to
simple D:pGqQ-modules.

Acknowledgements. We thank Daniel Caro for having made available to us a very pre-
liminary version of the article [7] and for helpful discussions regarding certain points in
this article. We also thank the anonymous referee, whose comments have improved the
exposition of the material at several places.

Notations and Conventions. Throughout the article, o denotes a complete discrete valu-
ation ring with mixed characteristic p0, pq. We denote by K its fraction field and by k its
residue field, which is assumed to be perfect. We let $ be a uniformizer of o. A formal
scheme X over o which is locally noetherian and such that $OX is an ideal of definition
is called an o-formal scheme. We denote its special fibre by Xs.

2. Complements on arithmetic differential operators

2.1. Arithmetic differential operators. In this subsection we assume a certain famil-
iarity with the basic notions of divided powers and divided power envelopes. Our basic
references are [2, 3]

Let X be an o-formal scheme, which is smooth over S :“ Spfpoq, with structure sheaf OX.

Let m ě 0. Let Pn
X{S,pmq, n ě 0 be the projective system of sheaves of principal parts of

level m and order n of X relative to S. There are two morphisms p0, p1 : Pn
X{S,pmq Ñ OX,

induced from the two projection morphisms XˆXÑ X, making Pn
X{S,pmq a commutative

OX-algebra in two ways, on the left (via p0) and on the right (via p1). The two structures
are denoted by di : OX Ñ Pn

X{S,pmq for i “ 0, 1. If X has étale coordinates t1, ..., td and

τi :“ p˚1ptiq ´ p
˚
0ptiq P OXˆX, then Pn

X{S,pmq is a free OX-module (for both its left and right

structure) on the basis τ tku :“ τ
tk1u
1 ¨ ¨ ¨ τ

tkdu
d for |k| ď n.

The sheaf of arithmetic differential operators on X of level m and order n is the OX-dual

D pmq
X,n :“ HomOX

pPn
X{S,pmq,OXq. An element P P D pmq

X,n acts on OX via the composition

OX
d1
ÝÑ Pn

X{S,pmq
P
ÝÑ OX.

The union D pmq
X :“ YnD

pmq
X,n is a ring and there is a natural ring homomorphism D pmq

X Ñ

D pm`1q
X . We denote by pD pmq

X “ lim
ÐÝi

D pmq
X {$i the $-adic completion and let

D:

X :“ lim
ÝÑ
m

pD pmq
X and D:

X,Q :“ D:

X bZ Q.

We shall also need to consider the usual (i.e. with divided powers) ring of algebraic

differential operators DX :“ lim
ÝÑm

D pmq
X on the o-formal scheme X, cf. [9, 16.8]. We denote

by pDX its $-adic completion.
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It will be useful to make the following definition.

Definition 2.1.1. An OX-ring is a pair pA , ιA q consiting of a sheaf of rings A on X,
together with a ring morphism ιA : OX Ñ A . A morphism between two OX-rings pA , ιA q
and pA 1, ιA 1q is a morphism f : A Ñ A 1 of sheaves of rings satisfying f ˝ ιA “ ιA 1 .

One obtains thereby a category of OX-rings. In situations where the morphism of rings
ιA is understood, we will often drop it from the notation and just write A instead of
pA , ιA q.
There are obvious variants of this category when the structure sheaf OX is replaced by
another sheaf associated with the formal scheme X, such as OX,Q or OX,Q{J (for an ideal
sheaf J Ď OX,Q).

All the rings D pmq
X ,DX, pD

pmq
X , pDX,D

:

X are OX-rings, and D:

X,Q is even an OX,Q-ring.

2.2. Side-changing functors. Let X be an o-formal scheme of relative dimension d,
which is smooth over S :“ Spfpoq. Let

ωX :“
d
ľ

Ω1
X{S

be the module of differentials of highest degree, with its natural right DX-action [3, 1.2.1].
As in the classical setting, the functors ωX bOX

p´q and HomOX
pωX,´q induce mutually

inverse equivalences of categories between left and right D pmq
X -modules, for any m ě 0

[3, 1.2.7(c)]. The following proposition is certainly well-known, we record it for a lack of
reference.

Proposition 2.2.1. Let Y Ď Xs be a closed subset. The functors ωX bOX
p´q and

HomOX
pωX,´q induce mutually inverse equivalences of categories between left and right

D:

X,Q-modules supported on Y .

Proof. Since ωX is a coherent OX-module, its spaces of local sections over affine opens in

X are $-adically complete. Its DX-action extends therefore to a pDX-action. The functors
ωX bOX

p´q and HomOX
pωX,´q descend therefore to equivalences between left and right

pD pmq
X -modules. Inverting p and passing to the inductive limit over all m ě 0 yields the

proposition in the case Y “ Xs. The general case follows from the fact that both functors
ωX bOX

p´q and HomOX
pωX,´q “ p´q bOX

ω´1
X preserve the support condition. �

2.3. Operators on closed subspaces. Let

i : Y ÝÑ X

be a closed immersion between two o-formal schemes, which are smooth over S :“ Spfpoq.
Let r :“ dimY and d :“ dimX.

It is well-known that the adjoint pair of functors pi˚, i
´1q induces an equivalence of cat-

egories between abelian sheaves on Y and abelian sheaves on X with support in Y. We
denote by i˚ the functor OY bi´1OX

i´1p´q from OX-modules to OY-modules.
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Let I Ď OX be the ideal sheaf defining the closed immersion i. There is the Hom
sheaf Homopi

´1I ,OYq on Y, which is an OY-module via multiplication on the target,
i.e. psfqpaq :“ spfpaqq for local sections s P OY, f P Homopi

´1I ,OYq, and a P i´1I .
Similarly, the sheaf HomKpi

´1IQ,OY,Qq is an OY,Q-module.

Lemma 2.3.1. Let A P tD pmq
X , pD pmq

X ,D:

Xu. The restriction map A Ñ HomopI ,OXq, P ÞÑ
P |I induces a OY-linear morphism

i˚A ÝÑ Homopi
´1I ,OYq.

Proof. The morphism i7 : i´1OX Ñ OY induces a morphism

Homopi
´1I , i´1OXq ÝÑ Homopi

´1I ,OYq.

Let A P tD pmq
X , pD pmq

X ,D:

Xu. Applying i´1 to the restriction morphism A Ñ HomopI ,OXq

and composing with the above morphism yields a morphism i´1A Ñ Homopi
´1I ,OYq.

Since the latter is i´1OX-linear and the target a OY-module, it extends to a OY-linear
morphism i˚A Ñ Homopi

´1I ,OYq, as claimed. �

We call the morphism appearing in the lemma θpmq, pθpmq, θ: in the cases D pmq
X , pD pmq

X ,D:

X

respectively.

According to [2, 2.1.4.3], for any n ě 0, there is a canonical OY-linear morphism

Pn
pmqpiq : i˚Pn

X{S,pmq ÝÑ Pn
Y{S,pmq.

Dualising and taking the union over all n yields a OY-linear morphism D pmq
Y Ñ i˚D pmq

X .
Completing $-adically, taking the union over all m ě 0 and finally inverting p yields a
OY,Q-linear morphism D:

Y,Q ÝÑ i˚D:

X,Q.

Proposition 2.3.2. There is an exact sequence of OY,Q-modules

0 ÝÑ D:

Y,Q ÝÑ i˚D:

X,Q
θ:Q
ÝÑ HomKpi

´1IQ,OY,Qq.

Proof. The exactness is a local question and we may assume that X is affine. We let
A :“ OpXq and I :“ OpI q. By the Jacobi criterion, e.g. [6, Prop.3.5], we may even
assume that X has étale coordinates t1, ..., td P A such that

‚ the images of t1, ..., tr in A “ A{I are étale coordinates for Y,
‚ the ideal I Ď A is generated by tr`1, ..., td.

Fix m ě 0 and let P n
A{o,pmq “ OpPn

X{S,pmqq and D pmq
A “ OpD pmq

X q. There is a natural

morphism of left A-modules

0 ÝÑ kerpδq ÝÑ AbA P
n
A{o,pmq

δ
ÝÑ P n

A{o,pmq
ÝÑ 0

where the map δ equals the global sections of the morphism i˚Pn
X{S,pmq Ñ Pn

Y{S,pmq. Since

δ is A-linear on the right, we have A bA pP
n
A{o,pmqIq Ď kerpδq. The A-linear morphism δ
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maps the elements 1 b pτ
tk1u
1 ¨ ¨ ¨ τ

tkru
r q with k1 ` ¨ ¨ ¨ ` kr ď n bijectively to a A-basis of

P n
A{o,pmq

and so is indeed surjective. Moreover, we have

kerpδq “ t
ÿ

kPNdzNr
Aτ tkuu,

where k R Nr means that kj ą 0 for some j ą r. In particular, all A-modules in the above
short exact sequence are free and dualizing gives the exact sequence

0 ÝÑ HomApP
n
A{o,pmq

, Aq ÝÑ HomApAbA P
n
A{o,pmq, Aq

δ˚
ÝÑ HomApkerpδq, Aq ÝÑ 0.

Since A is flat over Z, the localization map HomApkerpδq, Aq Ñ HomAQ
pkerpδqQ, AQq is

injective and we have the exact sequence

0 ÝÑ HomApP
n
A{o,pmq

, Aq ÝÑ HomApAbA P
n
A{o,pmq, Aq

δ˚
ÝÑ HomAQ

pkerpδqQ, AQq.

The formula q!τ tku “ τ k, where q is the euclidian division of k by pm [2, 1.3.5.2], shows
that

kerpδqQ “ t
ÿ

kPNdzNr
AQτ

k
u.

On the other hand, given ti P I (i.e. i ą r), the image of τ ki “ p1b ti ´ ti b 1qk P Abo A
in the quotient Abo A equals 1b tki . Hence, the image of the set td1pfq|f P Iu Ă P n

A{o,pmq

in AQ bA P
n
A{o,pmq generates the AQ-module kerpδqQ. For a given element

P “ P ` ID pmq
A,n P HomApAbA P

n
A{o,pmq, Aq “ AbA HomApP

n
A{o,pmq, Aq “ D pmq

A,n {ID
pmq
A,n

we therefore have

δ˚pP q “ 0 if and only if P ˝ d1pIq Ď IQ.

Since A{I is p-torsionfree, one has A X IQ “ I and so the condition P ˝ d1pIq Ď IQ is
equivalent to P ˝ d1pIq Ă AX IQ “ I. In other words, the sequence

0 ÝÑ HomApP
n
A{o,pmq

, Aq ÝÑ HomApAbA P
n
A{o,pmq, Aq ÝÑ HomopI, Aq

is exact. Taking the union over n ě 0 yields the exact sequence

0 ÝÑ D pmq

A
ÝÑ D pmq

A {ID pmq
A

θpmq
ÝÑ HomopI, Aq,

where θpmq is the global sections of the map appearing in 2.3.1 for A “ D pmq
X . By left-

exactness of $-adic completion, we obtain the exact sequence

0 ÝÑ
z

D pmq

A
ÝÑ

{

D pmq
A {ID pmq

A

zθpmq
ÝÑ

{HomopI, Aq.
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Since $-adic completion is exact on finitely generated modules over the noetherian ring

D pmq
A , the completion of D pmq

A {ID pmq
A equals pD pmq

A {I pD pmq
A . Therefore, yθpmq admits the

factorisation

pD pmq
A {I pD pmq

A
θ̂pmq
ÝÑ HomopI, Aq ÝÑ

{HomopI, Aq

where pθpmq is the global sections of the map appearing in 2.3.1 for A “ pD pmq
X . Since A is

$-adically complete, the o-module HomopI, Aq is $-adically separated and hence injects
into its $-adic completion. Therefore the induced sequence

0 ÝÑ pD pmq

A
ÝÑ pD pmq

A {I pD pmq
A

θ̂pmq
ÝÑ HomopI, Aq

remains exact. Taking an inductive limit over m ě 0 and inverting p yields the claim. �

Definition 2.3.3. Let J Ď OX,Q be an ideal. The normalizer of the ideal J D:

X,Q is the

subset of D:

X,Q equal to

N pJ D:

X,Qq :“ ND:X,Q
pJ D:

X,Qq :“ tP P D:

X,Q|PJ Ď J D:

X,Qu.

Lemma 2.3.4. One has the following basic properties:

(i) N pJ D:

X,Qq is a sub-OX,Q-ring of D:

X,Q.

(ii) J D:

X,Q Ď N pJ D:

X,Qq is a two-sided ideal.

(iii) The quotient N pJ D:

X,Qq{J D:

X,Q is an OX,Q{J -ring.

Proof. Let N :“ N pJ D:

X,Qq. It is clear that N contains OX,Q and is stable under
addition. Given P,Q P N , one has

pPQqJ Ď P pQJ q Ď P pJ D:

X,Qq Ď pPJ qD:

X,Q Ď J D:

X,Q,

and so PQ P N . This shows (i). For (ii), note that J D:

X,Q is certainly contained in N

as a right ideal. If P P N , then PJ D:

X,Q Ď J D:

X,Q, so that J D:

X,Q is also a left ideal
in N . This gives (ii). The point (iii) is a consequence of (i) and (ii) by observing that
the induced ring homomorphism

OX,Q
Ď
Ñ N Ñ N {J D:

X,Q

factores through the quotient morphism OX,Q Ñ OX,Q{J . �

Corollary 2.3.5. Let i : Y Ñ X be a closed immersion between two smooth o-formal
schemes, given by the ideal I Ď OX. There is a canonical isomorphism of OY,Q-rings

D:

Y,Q » i´1
`

N pIQD:

X,Qq{IQD:

X,Q
˘

.
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Proof. According to 2.3.2, one has

i˚D
:

Y,Q »
tP P D:

X,Q|P pIQq Ď IQu

IQD:

X,Q

as OX,Q{J -modules. We claim that

N :“ N pIQD:

X,Qq “ tP P D:

X,Q|P pIQq Ď IQu.

If P P N and f P IQ, then there is Q P D:

X,Q and h P IQ such that Pf “ hQ. It follows
P pfq “ Pfp1q “ hQp1q P hOX,Q Ď IQ. This gives the forward inclusion. The inclusion
being an equality may be checked locally. We may therefore assume that X is affine. Let
A “ OpXq, I “ OpI q and A “ A{I. One has

N :“ OpN q “ tP P D:

A,Q|PIQ Ď IQD:

A,Qu.

The above isomorphism says that the restriction map P ÞÑ P , where P paq :“ P paq ` IQ
for a P AQ induces a surjective AQ-linear morphism

res : tP P D:

A,Q|P pIQq Ď IQu ÝÑ D:

A,Q

with kernel equal to IQD:

A,Q. Let P P D:

A,Q with P pIQq Ď IQ and take f P IQ. Given
h P IQ, we have Pfphq “ P pfhq Ď IQ, since fh P IQ, and hence PfpIQq Ď IQ. To
calculate respPfq, we observe that

PfpAQq “ P pfAQq Ď P pIQq Ď IQ.

Hence respPfq “ 0, whence Pf P IQD:

A,Q. This shows P P N and establishes the
isomorphism of OX,Q{IQ-modules

i˚D
:

Y,Q »
N pIQD:

X,Qq

IQD:

X,Q
.

However, since the map res is a ring homomorphism, this isomorphism is in fact an
isomorphism of OX,Q{IQ-rings. It remains to apply the functor i´1. �

2.4. β-bounded operators. In this subsection, X is a smooth o-formal scheme endowed
with local coordinates x1, ..., xM . Let A :“ OpXq.

The following basic result for local sections of D:

X is [2, 2.4.4]. Since its proof contains
many arguments which we will refer to in the following, we will recall the proof here. This
also allows us to fix some notations.

Proposition 2.4.1. Let ||.|| be a Banach norm on AQ. For any operator

P “
ÿ

ν

aνB
rνs
“
ÿ

ν

aνB
ν
{ν! P ΓpX, pDXq
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we denote by P i P ΓpXi,DXi,kq the reduction of P modulo $i`1. The following three
conditions are equivalent:

(i) P P ΓpX,D:

Xq

(ii) There are constants α, β P R, α ą 0 such that for any i ě 0

ordpP iq ď αi` β

(iii) There are constants c, η P R, η ă 1, such that for any ν

||aν || ď cη|ν|.

Proof. piq ñ piiq : Since X is quasi-compact and quasi-separated, the functor ΓpX, .q

commutes with direct limits and we have ΓpX,D:

Xq “ lim
ÝÑm

ΓpX, pD pmq
X q. We may therefore

choose m large enough and write P as

P “
ÿ

ν

bνB
xνy
“
ÿ

ν

q!bνB
rνs

where bν P A tends to zero for |ν| Ñ 8, and where, for any ν P N, we have written
ν “ pmqν ` r, 0 ď r ă pm. Let v be the normalized valuation of o. According to [2,
Lem. 2.4.3], there exists α1, β1 P R, α1 ą 0 such that vpqν !q “ evppqν !q ě α1ν ` β1 for
any ν P N. Summing over all entries of ν, we therefore find α, β2 P R, α ą 0 such that
vpq!q ě α´1|ν| ` β2 for any ν P NM . Fix i. For any ν with |ν| ě αpi ´ β2 ` 1q, the
inequality |ν| ě αpi´ β2 ` 1q gives therefore

vpq!q ě i` 1.

The latter means q!bν P $
i`1A and so this coefficient of P reduces to zero in P i. It follows

ordpP iq ď αpi´ β2 ` 1q “ αi` β

where β :“ αp1´ β2q.

piiq ñ piiiq : To prove (iii), we may take for ||.|| the Banach norm of AQ, coming from the
p-adic filration on A. It satisfies ||b|| ď 1 for any b P A. Now suppose that ordpP iq ď αi`β
for all i. Fix ν. If |ν| ą αi ` β, one has aν P $

i`1A, and hence ||aν{$
i`1|| ď 1. So for

any i ě 0 such that |ν| ą αi` β, i.e. α´1p|ν| ´ βq ą i, one has ||aν || ď |$|
i`1. Now take

i such that

i` 1 ě α´1
p|ν| ´ βq ą i.

Then, by what we have just shown,

||aν || ď |$|
α´1p|ν|´βq

for any ν. With η :“ |$|α
´1

and c :“ |$|´βα
´1

we therefore have ||aν || ď cη|ν| for any ν
where η ă 1.
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piiiq ñ piq : Suppose that ||aν || ď cη|ν| with η ă 1. Here, we may again assume that ||.||
is the Banach norm on AQ coming from the p-adic filtration on A. We first show that, for
m ě 0 sufficiently big, the elements bν :“ aν{q! tend to zero for |ν| Ñ 8 in the Banach

algebra AQ. By hypothesis we may write η “ p´
α
e with α ą 0 and obtain

vppaνq :“ ´ logp ||aν || ě |ν|p´ logp ηq ´ logp c “ |ν|
´α

e

¯

` µ

où µ “ ´ logp c. An upper bound for the p-adic valuation of q! is given by |ν|{pmpp ´ 1q
[2, Lem. 2.4.3]. Hence,

vppbνq “ vppaνq ´ vppq!q ě |ν|

ˆ

α

e
´

1

pmpp´ 1q

˙

` µ.

Thus, for sufficiently big m, we obtain indeed vppbνq Ñ 8 for |ν| Ñ 8. For the remaining
statement, let λ :“ α{e. If

|ν| ě ´µpλ´ 1{pmpp´ 1qq´1,

then vppbνq ě 0 and hence ||bν || ď 1. This implies bν P A. Suppose therefore that µ ă 0.
Adjusting m we may suppose that pm ą λ´1p´µ` 1{p´ 1q. Then

pm ą ´µpλ´ 1{pmpp´ 1qq´1.

So for all
|ν| ă ´µpλ´ 1{pmpp´ 1qq´1

we obtain q “ 0, which implies bν “ aν P A. �

Let n ě 1 and let P P MnpΓpX, pDXqq be a given n ˆ n-matrix, with entries in the

ring ΓpX, pDXq. It will be convenient to write P “
ř

ν aνB
rνs, with coefficients aν P

MnpΓpX,OXqq. In particular, we may speak of the order ordpP q of P , whenever the
sum is finite. In general, we write for any integer ` ě 0

rP s` :“ $´`
ÿ

νPE`

aνB
rνs and σ`pP q :“

ÿ

`1ď`

$`1
rP s`1

where E` :“ tν P NM , vppaνq “ `u is a finite set. Here, vpp¨q :“ ´ logp || ¨ || where || ¨ ||
denotes the Banach norm on MnpAQq coming from the p-adic filtration on MnpAq. By
definition one has

ordpσ`pP qq “ ordpP `q

where P ` is the reduction of P modulo $``1. This implies

ordpσ`pP `Qqq ď maxpordpσ`pP qq, ordpσ`pQqqq

for two operators P,Q.

Lemma 2.4.2. Let α ą 0. One has the equivalence

ordpσ`pP qq ď α`` β for all ` ô ordprP s`q ď α`` β for all `.
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Proof. If `1 ‰ `, then E` is disjoint from E`1 . This implies the general identity

ordpσ`pP qq “ max
`1ď`

ordp$`1
rP s`1q.

In particular, the implication ñ is clear. On the other hand, if rP s`1 ď α`1` β for any `1,
then the right hand side in the above identity is bounded by α`` β, since α ą 0. �

Definition 2.4.3. Let P PMnpΓpX, pDXqq and β ą 0. The operator P is called β-bounded,
if for all ` ě 0

ordpσ`pP qq ď βp`` 1q.

Lemma 2.4.4. Let β ą 0 and let P` be a $-adically convergent sequence of β-bounded

elements in MnpΓpX, pDXqq. Then P “ lim` P` is β-bounded.

Proof. Fix n ě 0. By the inequality before the lemma 2.4.2, we have ordpσnpP qq ď
maxpordpσnpP´P`qq, ordpσnpP`qqq. Choose ` sufficiently large such that P´P` is divisible
by $n`1. Then σnpP ´ P`q “ 0 and the claim follows. �

The interest in this notion comes from the following result.

Proposition 2.4.5. Any P P MnpΓpX,D
:

Xqq is β-bounded for some β ą 0. Conversely,

any β-bounded P PMnpΓpX, pDXqq belongs to MnpΓpX,D
:

Xqq.

Proof. According to the above discussion, P is β-bounded iff ordprP s`q ď βp`` 1q for all
` or, equivalently, if ordpP `q ď βp`` 1q for all `. Thus, Prop. 2.4.1 implies the claim. �

2.5. A key lemma. In this subsection, X is a smooth o-formal scheme endowed with
local coordinates x1, ..., xM . Let A :“ OpXq. The main steps in the proof of the key
lemma presented here are extracted from Caro’s discussion in [7].

Let 1 P MnpΓpX, pDXqq be the identity in the matrix ring MnpΓpX, pDXqq. We consider

ΓpX, pDXq to be a subring of MnpΓpX, pDXqq via the injective ring homomorphism

ΓpX, pDXq ÝÑMnpΓpX, pDXqq, P ÞÑ P1.

Let m ě 1 and let R PMnpΓpX, pD
pmq
X qq be a given nˆ n-matrix.

By Prop. 2.4.5, R is α-bounded for some α ą 0, so that ordpσ`pRqq ď αp` ` 1q for all `.
In the following we fix β ą 0 sufficiently large, such that

pHYPq 2α ` pm ď β.

We start with two auxiliary lemmas. Let t :“ xM .

Lemma 2.5.1. For any U P MnpΓpX,DXqq there is an operator Q P MnpΓpX,DXqq such
that

rtp
m

, Qs ” U mod $ and ordpQq ď ordpUq ` pm.
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Proof. Soit Bt :“ BxM . We first establish the general identity

tp
m

B
rN`pms
t ´ B

rN`pms
t tp

m

“ ´B
rNs
t mod $

for any integer N . Indeed, one has

B
rN`pms
t tp

m

“
ÿ

ν`ν1“N`pm

B
rνs
t pt

pm
qB
rν1s
t .

Since B
rνs
t pt

pmq “ 0 for ν ą pm and ” 0 mod $ for 0 ă ν ă pm, only the terms indexed
by p0, N ` pmq and ppm, Nq survive in the sum. This yields the claimed identity. Now

write U “
ř

ν aνB
rνs and take Q “ ´

ř

ν aνB
rν`p0,...,0,pmqs. Then ordpQq ď ordpUq`pm and

rtp
m
, Qs “

ř

νp´aνqB
rpν1,...,νM´1qsptp

m
B
rνM`p

ms

t ´ B
rνM`p

ms

t tp
m
q

”
ř

νp´aνqB
rpν1,...,νM´1qsp´B

rνM s
t q mod $

” U.

�

Lemma 2.5.2. Let Q` P MnpΓpX,DXqq such that ordpQ`q ď βp` ` 2q. Then $``1Q` is
β-bounded.

Proof. Let P “ $``1Q`. If i ď `, one has P i “ 0 and therefore ordpP iq ď βpi ` 1q
trivially. If i ą `, then

ordpP iq ď ordpP q ď βp`` 2q ď βpi` 1q.

�

We now construct by induction a sequence P` PMnpΓpX,DXqq (depending on the matrix
R) such that

(i) P0 “ 1, σ`pP`q “ P` and P``1 ” P` mod $``1

(ii) P` is β-bounded

(iii) tp
m
P` ” P`pt

pm ´$σ`´1pRqq mod $``1.

Suppose that P0, ..., P` are already constructed. We will construct P``1 in the following.

Since $σ` ” $σ`´1 mod $``1, the property (iii) implies

rtp
m
, P`s `$P`σ`pRq “ tp

m
P` ´ P`pt

pm `$σ`pRqq

” tp
m
P` ´ P`pt

pm `$σ`´1pRqq mod $``1 ” 0 mod $``1.



14 CHRISTINE HUYGHE AND TOBIAS SCHMIDT

On the other hand, since σ`pP`q “ P` by (i), one has P` “
ř

`1ď`
$`1rP`s`1 and hence

P`σ`pRq “
ÿ

`1,`2ď`

$`1``2rP`s`1rRs`2 ”
ÿ

`1,`2ď`,`1``2ď``1

$`1``2rP`s`1rRs`2 mod $``2.

So alltogether one obtains

rtp
m

, P`s `$
ÿ

`1,`2ď`,`1``2ď``1

$`1``2rP`s`1rRs`2 ” 0 mod $``1.

So there is an operator U` PMnpΓpX,DXqq such that

´$``1U` “ rt
pm , P`s `$

ÿ

`1,`2ď`,`1``2ď``1

$`1``2rP`s`1rRs`2 .

By the above discussion

´$``1U` ” rt
pm , P`s `$P`σ`pRq mod $``2.

Assertion 1: One has ordpU`q ď βp`` 1q ` 2α.

To prove the assertion, we use that P` is β-bounded by (ii). In particular, ordpP`q “
ordpσ`pP`qq ď βp`` 1q which gives ordprtp

m
, P`sq ď βp`` 1q.

Again, by (ii), we have ordprP`s`1q ď βp`1 ` 1q for all `1. This gives

ordprP`s`1rRs`2q ď ordprP`s`1q ` ordprRs`2q ď βp`1 ` 1q ` αp`2 ` 1q ď βp`` 1q ` 2α.

Note that the last inequality follows from αp`2 ´ 1q ď βp` ´ `1q which in turn follows
directly from `1 ` `2 ď `` 1 and α ď β. This implies the assertion.

We now use the lemma 2.5.1 to find an operator Q` PMnpΓpX,DXqq such that

rtp
m

, Q`s ” U` mod $ and ordpQ`q ď ordpU`q ` p
m. p˚q

We now set

P``1 :“ σ``1pP` `$
``1Q`q PMnpΓpU,DXqq.

Assertion 2: The operator P``1 satisfies (i),(ii),(iii) above.

We start with (iii). Modulo $``2 one certainly has the two congruences

tp
m

P``1 ” tp
m

pP` `$
``1Q`q

and

P``1pt
pm
´$σ`pRqq ” pP` `$

``1Q`qpt
pm
´$σ`pRqq

so it suffices to show that the two right-hand sides are congruent. But modulo $``2, one
has
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tp
m
pP` `$

``1Q`q “ tp
m
P` `$

``1tp
m
Q`

” tp
m
P` `$

``1pU` `Q`t
pmq

” tp
m
P` `$

``1Q`t
pm ´ prtp

m
, P`s `$P`σ`pRqq

“ pP` `$
``1Q`qt

pm ´$P`σ`pRq

” pP` `$
``1Q`qpt

pm ´$σ`pRqq

where the first congruence is the property (*) and the middle congruence is the congruence
before assertion 1.

To see (ii), we just note that our hypothesis (HYP) implies ordpQ`q ď βp``2q by assertion
1. Hence, $``1Q` is β-bounded by lemma 2.5.2. Let `1 ď `` 1. Since σ`1 ˝ σ``1 “ σ`1 we
find

ordpσ`1pP``1qq “ ordpσ`1pP``$
``1Q`qq ď maxpordpσ`1pP`qq, ordpσ`1p$

``1Q`qqq ď βp`1` 1q

where we have used the inequality before lemma 2.4.2 and the fact that P` and $``1Q`

are β-bounded. Let `1 ě `` 1. Since σ`1 ˝ σ``1 “ σ``1 we find

ordpσ`1pP``1qq “ ordpP``1q ď maxpordpσ``1pP`qq, ordpσ``1p$
``1Q`qqq ď βp``1q ď βp`1`1q.

Hence, P``1 is β-bounded.

It remains to see (i). The identity P``1 “ σ``1pP``1q is trivial. In particular, we may
write

P``1 “
ÿ

vppa
``1
ν qď``1

a``1
ν B

rνs

where a``1
ν PMnpΓpU,OXqq are the coefficients of P``1. By definition, one has

a``1
ν “ a`ν `$

``1ãν

where ãν are the coefficients of Q`. Because of σ`pP`q “ P`, one has a`ν “ 0 for all

coefficients a`ν with vppa
`
νq ě ` ` 1. In turn, the inequality vppa

`
νq ď ` implies vppa

``1
ν q “

vppa
`
νq ď ` by the ultrametric inequality for vp.

This means

P``1 mod $``1
”

ÿ

vppa
``1
ν qď`

a`νB
rνs
“

ÿ

vppa`νqď`

a`νB
rνs
“ σ`pP`q “ P`

which completes (i).
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So there is indeed a sequence pP`q` with the properties (i)-(iii) as claimed. Choose m1 ě m

such that P` PMnpΓpX,D
pm1q
X qq for all ` by prop. 2.4.5. We may consider its limit

P “ lim
`
P` PMnpΓpX, pD

pm1q
X qq.

Then we have inside MnpΓpX, pD
pm1q
X qq

(1) P ” 1 mod $

(2) tp
m
P “ P ptp

m
´$Rq.

Thus we have proved the following lemma.

Lemma 2.5.3. (Berthelot’s key lemma) Let t :“ xM and let R P MnpΓpX, pD
pmq
X qq be a

given nˆ n-matrix. There exist m1 ě m and P PMnpΓpX, pD
pm1q
X qq, such that

(1) P ” 1 mod $

(2) tp
m
P “ P ptp

m
´$Rq in MnpΓpX, pD

pm1q
X qq.

Note that, as a consequence of (1), the matrix P appearing in the lemma is invertible in

the $-adically complete ring MnpΓpX, pD
pm1q
X q.

Corollary 2.5.4. Let M be a finitely generated ΓpX, pD pmq
X q-module with generators e1, ..., en.

Suppose that tp
m
ei ” 0 mod $ for all i. Then there is m1 ě m and a set of generators

e11, ..., e
1
n for the ΓpX, pD pm1q

X q-module ΓpX, pD pm1q
X q b

ΓpX, pD
pmq
X q

M with the property tp
m
e1i “ 0

for all i.

Proof. Write pD
pmq
X :“ ΓpX, pD pmq

X q and e be the column vector T pe1, ..., enq. By assumption,

there is R PMnp pD
pmq
X q such that

tp
m

e “ $Re.

By the key lemma, there are m1 ě m and P PMnp pD
pm1q
X q, such that

(1) P ” 1 mod $

(2) tp
m
P “ P ptp

m
´$Rq in Mnp pD

pm1q
X q.

Let
M 1 :“ pD

pm1q
X b

pD
pmq
X

M and e1 :“ P p1b eq.

Here, 1b e is the column vector T p1b e1, ..., 1b enq P pM
1qn, so that

e1i “
ÿ

j

Pij b ej PM
1 for i “ 1, ..., n.

The e1i are generators for the left pD
pm1q
X -module M 1. Indeed, given y P M 1 with y “

ř

λi b ei, then y “
ř

λ1i b e
1
i with pλ11, ..., λ

1
nq :“ pλ1, ..., λnq ¨ P

´1. Moreover, (2) implies

tp
m

e1 “ tp
m

P p1b eq “ P ptp
m

´$Rqp1b eq “ P p1b ptp
m

e´$Reqq “ 0.



KASHIWARA’S THEOREM FOR TWISTED ARITHMETIC DIFFERENTIAL OPERATORS 17

�

3. The Berthelot-Kashiwara theorem

Let

i : Y ÝÑ X

be a closed immersion between smooth formal o-schemes given by an ideal sheaf I Ď OX.

3.1. Direct image and adjointness. Let D:

XÐY,Q be the associated transfer module, a

pi´1D:

X,Q,D
:

Y,Qq-bimodule, cf. [3, 3.4]. Let N be a left D:

Y,Q-module. Its direct image

along i is the left D:

X,Q-module

i`N :“ i˚pD
:

XÐY,Q bD:Y,Q
N q.

This yields a functor i` from left D:

Y,Q-modules to left D:

X,Q-modules, cf. [4, 4.3.7], which

preserves coherence [4, 4.3.8]. If Z
k
Ñ Y is a second closed immersions of smooth formal

o-schemes and if we restrict to coherent modules, then there is a natural isomorphism
pi ˝ kq` » i` ˝ k` of functors [4, 3.5.2].

Proposition 3.1.1. (i) The right D:

Y,Q-module D:

XÐY,Q is flat.

(ii) The functor i` is exact.

(iii) If S Ď Y is a closed subset and N is a left D:

Y,Q-module supported on S, then i`N
is supported on S.

Proof. (i) maybe proved be adapting the proof in the classical setting [10, 1.3.5] as follows.
Fix a level m ě 0. By definition [3, 3.4.1],

D pmq
YÐX “ i´1

`

D pmq
X bOX

ω´1
X

˘

bi´1OX
ωY

where ωX and ωY are the modules of differentials of highest order on X and Y respectively.
Since (i) is a local question, we may from now on assume that X is affine equipped with
local coordinates t1, ..., td P OX, that I “ ptr`1, ..., tdq for some 0 ď r ă d and that
t1, ..., tr are local coordinates for Y. Let Bi be the derivation relative to ti. We identify
i´1ω´1

X bi´1OX
ωY with OY via the section

pdt1 ^ ¨ ¨ ¨ ^ dtdq
b´1

b pdt1 ^ ¨ ¨ ¨ ^ dtrq.

Note that D1 :“ ‘νB
xν1y
1 ¨ ¨ ¨ B

xνry
r OX Ă D pmq

X is a subring of D pmq
X . It is clear that D pmq

X »

orBspmq bo D
1 as a right D1-module, where orBspmq equals the free o-module on the basis

B
xνr`1y

r`1 ¨ ¨ ¨ B
xνdy
d . It follows that

D pmq
YÐX » orBspmq bo pi

´1D1 bi´1OX
OYq.
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It is easy to see that i´1D1 bi´1OX
OY » D pmq

Y as a right D pmq
Y -module. This means

D pmq
XÐY » orBspmq bo D pmq

Y

as right D pmq
Y -modules. In particular, D pmq

XÐY is free, and hence flat, as a right D pmq
Y -module.

According to [11, 2.2.2] the sheaf of rings D pmq
Y is locally noetherian, hence [2, 3.2.4] implies

that pD pmq
XÐY is flat as a right pD pmq

Y -module. Passing to the limit and inverting p, we finally

see that D:

XÐY is flat as a right D:

Y,Q-module, as claimed. The point (ii) follows from (i).
Finally (iii) follows from the fact that, for any abelian sheaf K on Y, the stalk of i˚K
at x P X equals Kx if x P Y and is zero otherwise. Hence, if S Ă Y is closed and N is
supported on S and x P YzS, then

pi`N qx “ pD
:

XÐY,Q bD:Y,Q
N qx “ D:

XÐY,Q,x bD:Y,Q,x
Nx “ 0.

�

We define the following functor from left D:

X,Q-modules to left D:

Y,Q-modules:

i6M :“ Hom
i´1D:X,Q

pD:

XÐY,Q, i
´1M q.

Proposition 3.1.2. (i) The functor i6 is right adjoint to i`. In particular, i6 is left-exact.

(ii) If Z
k
Ñ Y is a second closed immersion of smooth formal o-schemes, and if k6, i6

preserve coherence, then there is a natural isomorphism pi ˝ kq6 » k6 ˝ i6.

(iii) If S Ď X is a closed subset and M is a coherent left D:

X,Q-module supported on S,

then i6M is supported on S XY.

Proof. Since i is a closed immersion, i˚ has the right adjoint i´1. Therefore, for any
coherent left D:

Y,Q-module N and any coherent left D:

X,Q-module M , one has

HomD:X,Q
pi`N ,M q “ Hom

i´1D:X,Q
pD:

XÐY,Q bD:Y,Q
N , i´1M q.

One obtains (i) by combining this with the standard tensor-hom adjunction

Hom
i´1D:X,Q

pD:

XÐY,Q bD:Y,Q
N , i´1M q “ HomD:Y,Q

pN ,Hom
i´1D:X,Q

pD:

XÐY,Q, i
´1M qq.

(ii) follows from uniqueness of adjoint functors and the fact that for coherent modules
we have pi ˝ kq` » i` ˝ k`. For (iii), for any abelian sheaf K on X, the stalk of i´1K
at x P Y equals Kx. Hence, if S Ă X is a closed subset and M is supported on S and
x P YzS, then pi6M qx “ 0. Indeed, this is a local statement, and we may suppose that
the coherent module M has a global finite presentation. This means that i´1M can be

written as cokerpfq for some i´1D:

X,Q-linear morphism pi´1D:

X,Qq
‘s f
ÝÑ pi´1D:

X,Qq
‘t. Take

an open U Ď Y containing x with UXS “ H. For any y P U, one has pi´1M qy “ My “ 0.
Hence fy is surjective for any y P U and so f |U is surjective, i.e. i´1M |U “ 0. Taking the
limit over all open neigbourhoods V Ă U of x, one finds
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pi6M qx “ lim
ÝÑ

xPVĂU

Hom
i´1D:X,Q|V

pD:

XÐY,Q|V, i
´1M |Vq “ 0.

�

3.2. Berthelot-Kashiwara for left modules. We start with an auxiliary lemma.

Lemma 3.2.1. Let N be an K-vector space and s ě 1. Let N rrBrνsss be the K-subspace

of all formal infinite sums
ř

νPNs nνB
rνs with nν P N on formal symbols Brνs. We regard N

as a K-subspace of N rrBrνsss via n ÞÑ nBr0s. Define for i “ 1, ..., s a linear operator ti on

N rrBrνsss through ti ¨ pnνB
rνs
q :“ nνpB

rν´eisq when νi ą 0 and zero else. Then
č

i“1,...,s

ker
`

N rrBrνsss
ti¨
ÝÑ N rrBrνsss

˘

“ N.

Proof. It suffices the check the forward inclusion, the reverse inclusion being clear. By
induction on s it suffices to treat the case s “ 1. Writing

ř

νPNmνB
rνs :“ t ¨

ř

νPN nνB
rνs,

one has mν “ nν`1. If
ř

νPN nνB
rνs P kerptq, then nν`1 “ mν “ 0 for all ν. �

Let CohpD:

Y,Qq and CohY
pD:

X,Qq be the categories of coherent left D:

Y,Q-modules and

coherent left D:

X,Q-modules with support in Y, respectively.

Proposition 3.2.2. (i) The functor i` restricts to a functor i` : CohpD:

Y,Qq Ñ CohY
pD:

X,Qq.

(ii) The unit ηN : N
»
ÝÑ pi6 ˝ i`qN is an isomorphism for any N P CohpD:

Y,Qq.

(ii) The functor i` : CohpD:

Y,Qq Ñ CohY
pD:

X,Qq is fully faithful.

Proof. (i) is [4, 4.3.8], as we already stated above. Now (ii) is a local question and we
may assume that X is affine equipped with local coordinates t1, ..., td P OX and that
I “ ptr`1, ..., tdq for some 0 ď r ă d. Let Bi be the derivation relative to ti. We identify
ωX with OX via the section dt1 ^ ¨ ¨ ¨ ^ dtd and similarly for ωY. It then follows from the
existence of the adjoint operator [3, 1.2.2] and the fact that

D:

XÑY,Q “ i˚D:

X,Q “ i´1
pD:

X,Q{I D:

X,Qq,

that we have an isomorphism of pi´1D:

X,Q,D
:

Y,Qq-bimodules

D:

XÐY,Q » i´1
pD:

X,Q{D
:

X,QI q.

It follows that ϕ ÞÑ ϕp1q gives a natural identification

i6M “ Hom
i´1D:X,Q

pD:

XÐY,Q, i
´1M q »

č

i“r`1,...,d

kerpi´1M
ti¨
ÝÑ i´1M q.

Suppose now that M “ i`N . According to [2, 3.4.5] and [2, 3.6.2], there is an inductive

system of coherent pD pmq
Y -submodules N pmq Ă N , such that lim

ÝÑm
N pmq “ N . We have
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seen in the proof of 3.1.1, that there is a natural isomorphism

D pmq
XÐY » orBspmq bo D pmq

Y

as right D pmq
Y -modules for any m. If we define an (injective) transition map orBspmq Ñ

orBspm`1q as in [2, 2.2.3.1], then the isomorphism is compatible with the transition maps

D pmq
XÐY Ñ D pm`1q

XÐY and D pmq
Y Ñ D pm`1q

Y . Hence, if M “ OpM q, N “ OpN q and N pmq “

OpN pmqq and if orBspmqpbo N
pmq denotes the $-adic completion of the o-module orBspmqbo

N pmq, then

M » lim
ÝÑ
m

porBspmqpbo N
pmq
qQ.

Moreover, for i “ r ` 1, ..., d, the action of ti P OX on M is given on the right-hand side
by the action on the left-hand factor orBspmq. Since orBspmq is a free o-module, the tensor
product orBspmqbo N

pmq is canonically isomorphic to the o-module of all finite formal sums
ř

νPNd´r nνB
xνy with nν P N

pmq. Its completion orBspmqpbo N
pmq is therefore isomorphic to

the o-module given by all formal infinite sums
ř

νPNd´r nνB
xνy with nν P N

pmq and nν Ñ 0

in the $-adic topology of N pmq. Using the notation of 3.2.1 with s “ d ´ r, we obtain
thus an injective K-linear map from porBspmqpbo N

pmqqQ into N rrBrνsss. It is equivariant

for the action of ti on N rrBrνsss given by ti ¨ pnνB
rνs
q :“ nνpB

rν´eisq when νi ą 0 and zero
else. Passing to the limit over m yields K-linear injection

M Ñ N rrBrνsss,

which is equivariant for the action of ti for all i “ r ` 1, ..., d. According to the lemma
3.2.1 we obtain

N Ď
č

i“r`1,...,d

kerpM
ti¨
ÝÑMq Ď

č

i“r`1,...,d

kerpN rrBrνsss
ti¨
ÝÑ N rrBrνsssq “ N.

This implies i6M » N . Hence the unit of the adjunction is an isomorphism. This
shows (i). The statement (i) implies immediately that i` is faitful. For the fullness, let
γ : i`pN q Ñ i`pN 1q be a morphism. A preimage is given by the morphism

η´1
N 1 ˝ i

6
pεi`pN 1q ˝ i`pηN 1q ˝ γq ˝ ηN : N ÝÑ N 1

where ε : i` ˝ i
6 Ñ id is the counit of the adjunction, cf. the proof of [19, Tag 07RB]. �

We now work towards the essential surjectivity of i` : CohpD:

Y,Qq Ñ CohY
pD:

X,Qq. Note

that if i` is essentially surjective, then i6 preserves coherence, by part (ii) of the preceding
proposition.

Lemma 3.2.3. Let Y Ă X be of codimension 1 and let M P CohY
pD:

X,Qq. The counit of

the adjunction εM : pi` ˝ i
6qM � M is surjective.

https://stacks.math.columbia.edu/tag/07RB
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Proof. The surjectivity of εM is a local problem. We may therefore assume that X is
an open affine with local coordinates x1, ..., xM such that I is generated by t :“ xM .
According to [2, 3.6], we can assume that there is m ě 0 such that

M » D:

X,Q b pD
pmq
X,Q

Mm

with a coherent pD pmq
X,Q -module Mm supported on Y. Let pD

pmq
X :“ ΓpX, pD pmq

X q and pD
pmq
X,Q :“

ΓpX, pD pmq
X,Q q. Let Mm “ ΓpX,Mmq. Let M̊m ĂMm be a finitely generated pD

pmq
X -submodule

such that pD
pmq
X,QM̊m “ Mm. Let e1, ..., en P M̊m such that M̊m “

ř

i
pD
pmq
X ei. The module

M̊m{$M̊m has support contained in Y and hence tp
m
ēi “ 0 for all i (increasing m if

necessary), where ēi “ ei mod $M̊m. By 2.5.4, there are generators e11, ..., e
1
n for the

pD
pm1q
X -module pD

pm1q
X b

pD
pmq
X

M̊m with the property tp
m
e1i “ 0 for all i.

Now
M » D:

X,Q b pD
pm1q
X,Q

Mm1 with Mm1 :“ pD pm1q
X,Q b

pD
pmq
X,Q

Mm.

Let D:X,Q “ ΓpX,D:

X,Qq,M :“ ΓpX,M q and M0 :“ ΓpX, i6M q. Since ΓpX,Mm1q “

pM̊m1qQ, it is clear that the e1i are generators for the D:X,Q-module M . As we have seen
in the proof of 3.2.2, we have M0 “ kerptq Ď M. The counit εM is therefore surjective, if

and only if D:X,QM0 “M . This is the case if e1i P D
:

X,QM0 for all i.

Since tp
m
e1i “ 0 for all i, it suffices to show the following claim: given an element u P M

with tju “ 0 for some 1 ď j ď pm, then u P D:X,QM0. To prove the claim, we use a finite
induction on j, the case j “ 1 being clear. So suppose j ą 1 and that the statement holds
for j ´ 1. We have

tj´1
pju` tBuq “ Bptjqu` tjBu “ Bptjuq “ Bp0q “ 0

and so, by induction hypothesis, ju ` tBu P D:X,QM0. Similarly, tj´1ptuq “ 0 implies

tu P D:X,QM0 and hence also ´Bptuq P D:X,QM0. Alltogether,

pj ´ 1qu “ ju´ u “ ju` ptB ´ Btqu “ ju` tBu´ Bptuq P D:X,QM0.

and it remains to divide by j ´ 1. This completes the induction step and establishes the
equality D:X,QM0 “M . Hence the proposition is proved. �

Theorem 3.2.4. (Berthelot-Kashiwara theorem, left version) The functors i`, i
6 induce

mutually inverse equivalences of categories

CohpD:

Y,Qq

i` //
CohY

pD:

X,Qq
i6

»oo .

Proof. We first suppose that Y Ă X be of codimension 1. It suffices to show that the
counit of the adjunction εM : pi` ˝ i

6qM � M is an isomorphism for any M . This is
a local question and we may assume that X is affine with coordinates x1, ..., xd and that
I is generated by t :“ xd. Since pi` ˝ i

6qM � M is surjective according to 3.2.3 we
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may also assume that M is globally generated, as D:

X,Q-module, by finitely many sections

e1, ..., en P i
6M “ kerptq Ď M . Hence there is a free D:

Y,Q-module L of rank n and a
linear surjection

i`L � M .

Let K be the kernel of this morphism, a coherent D:

X,Q-module with support in Y.

The morphism i`i
6K � K is surjective, again by 3.2.3. Similarly to the above, K is

therefore globally generated, as D:

X,Q-module, by finitely many sections f1, ..., fm P i
6K “

kerptq Ď K . Consider the D:

Y,Q-submodule

V :“
ÿ

j

D:

Y,Qfj Ď i6K .

By construction, the composite map i`V Ñ i`i
6K Ñ K is a linear surjection

i`V � K .

Moreover,
V Ď i6K Ď i6i`L » L ,

where the second inclusion holds by left-exactness of i6, cf. 3.1.2, and the final isomorphism
holds by 3.2.2. Hence, i`V ãÑ i`L is injective with image K . All in all,

i`pL {V q » i`L {i`V » i`L {K » M .

The D:

Y,Q-module L {V is finitely presented and hence coherent. So i` is essentially sur-

jective. Moreover, L {V » pi6˝i`qpL {V q » i6M . So the functor i6 takes CohY
pD:

X,Qq into

CohpD:

Y,Qq and is a quasi-inverse to i`. This proves the theorem in case of codimension
1.
In the general case, we again reduce to the case where X is affine with coordinates x1, ..., xd
and that I is generated by xr`1, ..., xd. Define a series of closed subschemes of X by
Yk :“ V pxr`1, ..., xd´k´1q for k “ 1, ..., d´ r, i.e.

Y “ Y1 Ă Y2 Ă ¨ ¨ ¨Yd´r´1 Ă Yd´r Ă X

and ik : Yk Ă Yk`1 is a closed immersion between smooth formal schemes of codimension
1. We use a finite induction on k. We call pSkq the following statement :

pikq` ˝ ¨ ¨ pi1q` induces an equivalence of categories between CohpD:

Y,Qq and CohY
pD:

Yk,Qq

with quasi-inverse pi1q
6 ˝ ¨ ¨ pikq

6.

By the codimension 1 case, the functor pik`1q` is an equivalence of categories between

CohpD:

Yk,Qq and CohYkpD:

Yk`1,Qq with quasi-inverse pik`1q
6. In particular, pS1q is true.

Suppose that pSkq is true. According to 3.1.1(iii) and 3.1.2(iii), the functor pik`1q` restricts

to an equivalence between objects supported on Y, i.e. to an equivalence CohY
pD:

Yk,Qq and

CohY
pD:

Yk`1,Qq with quasi-inverse pik`1q
6. This establishes pSk`1q. The statement pSd´rq

then establishes the theorem, since i` “ pid´rq` ˝ ¨ ¨ pi1q` and i6 “ pi1q
6 ˝ ¨ ¨ pid´rq

6. To
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see the latter equality, note that all functors i`, pid´rq`, ..., pi1q` are essentially surjective.
According to part (ii) of 3.2.2, all functors i6, pi1q

6, ..., pid´rq
6 therefore preserve coherent

modules. But then i6 “ pi1q
6 ˝ ¨ ¨ pid´rq

6 by part (ii) of 3.1.2, as claimed. �

3.3. Side-changing. We deduce the right version by using the side-changing functors
ωX bOX

p´q and HomOX
pωX,´q, cf. 2.2. We consider the pD:

Y,Q, i
´1D:

X,Qq-bimodule

D:

XÑY,Q :“ i˚D:

X,Q.

Denote by ir,` the functor from right D:

Y,Q-modules to right D:

X,Q-modules given by

ir,`pN q :“ N bD:Y,Q
D:

XÑY,Q

as well as the functor from right D:

X,Q-modules to right D:

Y,Q-modules given by

i6rpM q :“ Hom
i´1D:X,Q

pD:

XÑY,Q, i
´1M q.

Lemma 3.3.1. (i) The left D:

Y,Q-module D:

XÑY,Q is flat.

(ii) One has a natural isomorphism ir,`pN q » ωX bOX
i`pHomOY

pωY,N qq.

(iii) One has a natural isomorphism i6rpM q » ωY bOY
i6pHomOX

pωX,M qq.

Proof. Given the definition of the transfer module [3, 3.4.1]

D:

XÐY,Q “ i´1
`

D:

X,Q bOX
ω´1
X

˘

bi´1OX
ωY,

part (ii) follows formally exactly as in the classical case [10, Lemma 1.3.4]. Since i`
is exact by 3.1.1, so is ir,`, and then (ii) implies the flatness of the left D:

Y,Q-module

D:

XÑY,Q (one may also give a direct argument along the lines of the proof of part (i)
of 3.1.1). This shows (i). Finally, as in the proof of part (i) of 3.1.2, one verifies that

Hom
i´1D:X,Q

pD:

XÑY,Q, i
´1p´qq is right adjoint to p´qbD:Y,Q

D:

XÑY,Q and so (iii) follows from

unicity of adjoint functors. �

Let CohrpD:

Y,Qq and Cohr,YpD:

X,Qq be the categories of coherent right D:

Y,Q-modules and

coherent right D:

X,Q-modules with support in Y, respectively.

Theorem 3.3.2. (Berthelot-Kashiwara theorem, right version) The functors ir,`, i
6
r in-

duce mutually inverse equivalences of categories

CohrpD:

Y,Qq

ir,` //
Cohr,YpD:

X,Qq

i6r

»oo .

Proof. Taking into account 2.2.1, this is a consequence of 3.2.4 and 3.3.1. �
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4. The Berthelot-Kashiwara theorem in the twisted case

4.1. Twisted sheaves. The following definition, adapted to arithmetic differential op-
erators, is taken from [1]. Note that, given an OX,Q-ring pA , ιA q, and an open subset
U Ă X, the sheaf A and the morphism ιA may be restricted to U and yield the OU,Q-ring
pA |U, ιA |Uq. We say that two OX,Q-rings pA , ιA q and pA 1, ιA 1q are locally isomorphic, if
there is a (Zariski) open covering of X by open subsets U together with isomorphisms
pA |U, ιA |Uq » pA 1|U, ιA 1 |Uq (in the category of OU,Q-rings, cf. 2.1.1) for all U.

Definition 4.1.1. A twisted sheaf of arithmetic differential operators on X is an OX,Q-ring

A , which is locally isomorphic to the OX,Q-ring D:

X,Q.

Let in the following A be a twisted sheaf of arithmetic differential operators on X.

Lemma 4.1.2. Let A opp be the opposite ring, i.e. the order of multiplication is reversed.
Then A opp is an OX,Q-ring.

Proof. Being a local statement, we can assume that X has étale coordinates. The existence
of the adjoint operator says that pD:

X,Qq
opp is isomorphic to D:

X,Q [3, 1.2.2/3]. Since this
holds even as OX,Q-rings, the lemma follows. �

Definition 4.1.3. Let J Ď OX,Q be an ideal. The normalizer of the ideal J A is the
subset of A equal to

NA pJ A q :“ tP P A |PJ Ď J A u.

Lemma 4.1.4. One has the following basic properties:

(i) NA pJ A q is a sub-OX,Q-ring of A .

(ii) J A Ď NA pJ A q is a two-sided ideal.

(iii) The quotient NA pJ A q{J A is an OX,Q{J -ring.

(iv) A {J A is a pNA pJ A q{J A ,A q-bimodule.

Proof. The proof of (i)-(iii) is identical to the proof of 2.3.4. The point (iv) is easy to
check. �

Now let i : Y ÝÑ X be a smooth closed formal subscheme defined by some coherent ideal
I Ď OX. According to 4.1.4 the sheaf on Y

AY :“ i´1
`

NA pIQA q{IQA
˘

is an OY,Q-ring.

Lemma 4.1.5. If A “ D:

X,Q, then AY “ D:

Y,Q.

Proof. This is 2.3.5. �

Corollary 4.1.6. AY is a twisted sheaf of arithmetic differential operators on Y.

Before we proceed, we recall an elementary lemma.
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Lemma 4.1.7. Let X be a topological space and F1,F2 Ď G abelian sheaves. If F1,x “ F2,x

inside the stalk Gx for all x P X, then F1 “ F2.

Proof. By symmetry, it suffices to see F1 Ď F2. The stalk of the sheaf pF1 ` F2q{F2

vanishes at every x P X, so that pF1 ` F2q{F2 “ 0, i.e. F1 Ď F2. �

Proposition 4.1.8. Let Z
k
Ñ Y

i
Ñ X be closed immersions of smooth formal o-schemes.

There is a canonical isomorphism pAYqZ » AZ as OZ,Q-rings.

Proof. Let J Ď OX be the ideal defining the closed immersion i˝k : ZÑ X. In particular,

I Ď J . Let J be the image of i´1pJ {I q in OY,Q. By construction, the rings pAYqZ
and AY are contained in k˚pAYq and i˚pA q respectively. Hence there is an injective ring
homomorphism

ϕ : pAYqZ ÝÑ pi ˝ kq˚pA q

compatible with the OZ-structures. It suffices to see impϕq “ AZ. This is a local question,

by 4.1.7, and so we may assume A » D:

X,Q. Then AY » D:

Y,Q and AZ » D:

Z,Q by 4.1.5
and ϕ becomes the canonical injective morphism

k´1
`

ND:Y,Q
pJ D:

Y,Qq{J D:

Y,Q
˘

Ñ pi ˝ kq˚pD:

X,Qq.

Its image equals D:

Z,Q, according to 2.3.5. �

In the following we take the canonical isomorphism pAYqZ » AZ as an identification.

4.2. Direct image and the main theorem. Let

i : Y ÝÑ X

be a closed immersion between smooth formal o-schemes defined by some ideal I Ă

OX. Let A be a twisted sheaf of arithmetic differential operators on X. We have the
pNA pI A q{I A ,A q-bimodule A {I A , cf. 4.1.4.

Definition 4.2.1. The transfer bimodule along i is the pAY, i
´1A q-bimodule

AYÑX :“ i˚pA q “ i´1
pA {I A q.

Proposition 4.2.2. Let Z
k
Ñ Y

i
Ñ X be closed immersions of smooth formal o-schemes.

There is a natural isomorphism as pAZ, pi ˝ kq
´1A q-bimodules

AZÑY bk´1AY
k´1AYÑX » AZÑX.

Proof. One has

AZÑY bk´1AY
k´1AYÑX » pOZ bk´1OY

k´1AYq bk´1AY
k´1pOY bi´1OX

i´1A q

» pOZ bk´1OY
k´1AYq bk´1AY

pk´1OY bpi˝kq´1OX
pi ˝ kq´1A q

» OZ bpi˝kq´1OX
pi ˝ kq´1A “ AZÑX.
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In the middle isomorphism we have use the compatibility of inverse images with tensor
products, e.g. [10, C.1.11(i)]. �

Definition 4.2.3. Let M be a right AY-module. Its direct image along i is the right
A -module

iA ,`M :“ i˚pM bAY
AYÑXq.

It is clear that this yields a functor iA ,` from right AY-modules to right A -modules.

Lemma 4.2.4. (i) The left AY-module AYÑX is flat.

(ii) The functor iA ,` is exact.

Proof. Part (i) is a local question and so we may assume A “ D:

X and AYÑX “ D:

YÑX.
The claim follows then from part (i) of 3.3.1. Since i˚ is exact, (i) implies (ii). �

Proposition 4.2.5. Let Z
k
Ñ Y

i
Ñ X be closed immersions of smooth formal o-schemes.

There is a natural isomorphism pi˝kqA ,` “ iA ,`˝kA ,` as functors from right AZ-modules
to right A -modules.

Proof. Using the 4.2.2 one finds

pi ˝ kqA ,`pM q » pi ˝ kq˚pM bAZ
AZÑXq

» i˚pk˚pM bAZ
pAZÑY bk´1AY

k´1AYÑXqqq

» i˚pk˚pM bAZ
AZÑYq bAY

AYÑXq

» iA ,`pkA ,`pM qq.

In the third isomorphism, we have used the projection formula [10, C.1.11(iii)]. For this,
note that k! “ k˚ and that AYÑX is flat as left AY-module 4.2.4. �

We define the following functor from right A -modules to right AY-modules:

i6A M :“ Homi´1A pAYÑX, i
´1M q.

Proposition 4.2.6. The functor iA ,` has a right adjoint, given by the functor i6A .

Proof. This is a sort of right version of the argument given in part (i) of 3.1.2. Since i is
a closed immersion, i˚ has the right adjoint i´1. Therefore, for any right AY-module N
and any right A -module M , one has

HomA piA ,`N ,M q “ Homi´1A pN bAY
AYÑX, i

´1M q.

One obtains (i) by combining this with the standard tensor-hom adjunction

Homi´1A pN bAY
AYÑX, i

´1M q “ HomAY
pN ,Homi´1A pAYÑX, i

´1M qq.

�
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Corollary 4.2.7. Let Z
k
Ñ Y

i
Ñ X be closed immersions of smooth formal o-schemes.

Then pi ˝ kq6A “ k6A ˝ i
6

A as functors from right A -modules to right AZ-modules.

Proof. This follows from and 4.2.5 and 4.2.6 by uniqueness of adjoint functors. �

We come to the main result of this paper. Let CohrpAYq and Cohr,YpA q be the cate-
gories of coherent right AY-modules and coherent right A -modules with support in Y,
respectively.

Theorem 4.2.8. (Berthelot-Kashiwara for twisted sheaves) The functors iA ,`, i
6

A induces
mutually inverse equivalences of categories

CohrpAYq

iA ,` //
Cohr,YpA q

i6A

»oo .

Proof. Let N be a coherent right AY-module and M be a coherent right A -module

supported on Y. It suffices to see that the counit iA ,` ˝ i
6

A pM q Ñ M and the unit

N Ñ i6A ˝ iA ,`pN q of the adjunction are isomorphisms. These are local problems and

we may therefore suppose that A “ D:

X,Q. Then AYÑX “ D:

YÑX,Q and the pair piA ,`, i
6

A q

becomes the adjoint pair pir`, i
6
rq studied in 3.3. Hence 3.3.2 implies the assertions. �

5. Applications to crystalline distribution algebras

Let G be a connected split reductive group scheme over o.

5.1. The crystalline distribution algebra. We briefly review the construction of the
crystalline distribution algebra of G, as introduced in [13]. Let I be the kernel of the
morphism o-algebras εG : orGs Ñ o which represents 1 P G. Then I{I2 is a free o “
orGs{I-module of finite rank. Let t1, . . . , tN P I whose classes modulo I2 form a base of
I{I2. Let m ě 0 be an integer. The m-PD-envelope of I is denoted by PpmqpGq. This
algebra is a free o-module with basis

ttku “ t
tk1u
1 ¨ ¨ ¨ t

tkN u
N ,

where qi!t
tkiu
i “ tkii with i “ pmqi ` r et r ă pm [2, 1.5]. The algebra PpmqpGq has

a descending filtration by the ideals Itnu “
À

|k|ěn o ¨ t
tku. The quotients P n

pmqpGq :“

PpmqpGq{I
tn`1u are generated, as o-module, by the elements ttku where |k| ď n and there

is an isomorphism P n
pmqpGq »

À

|k|ďn ot
tku as o-modules. There are canonical surjections

prn`1,n : P n`1
pmq pGq� P n

pmqpGq.

We note
LiepGq :“ HomopI{I

2, oq.

The Lie-algebra LiepGq is a free o-module with basis ξ1, . . . , ξN dual to t1, . . . , tN . For m1 ě

m, the universal property of divided power algebras of level m gives homomorphisms of
filtered algebras ψm,m1 : Ppm1qpGq Ñ PpmqpGq which induce on quotients homomorphisms
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of algebras ψnm,m1 : P n
pm1qpGq Ñ P n

pmqpGq. The module of distributions of level m and order

n is D
pmq
n pGq :“ HomopP

n
pmqpGq, oq The algebra of distributions of level m is defined to be

DpmqpGq :“ lim
ÝÑ
n

Dpmqn pGq

where the limit is taken with respect to the maps Homoppr
n`1,n, oq.

Form1 ě m, the algebra homomorphisms ψnm,m1 give dually linear maps Φn
m,m1 : D

pmq
n pGq Ñ

D
pm1q
n pGq and finally a morphism of filtered algebras Φm,m1 : DpmqpGq Ñ Dpm

1qpGq. The
direct limit DistpGq “ lim

ÝÑm
DpmqpGq equals the classical distribution algebra of the group

scheme G [8, II.§4.6.1]. Instead of passing to this limit, we let G be the completion of G
along its special fibre. We write Gi “ Spec orGs{πi`1. The morphism Gi`1 ãÑ Gi induces
DpmqpGi`1q Ñ DpmqpGiq. We put

pDpmqpGq :“ lim
ÐÝ
i

DpmqpGiq.

If m1 ě m, one has the morphisms Φ̂m,m1 : pDpmqpGq Ñ pDpm
1qpGq and one can define the

crystalline distribution algebra of G as

D:pGqQ :“ lim
ÝÑ
m

pDpmqpGq bQ.

5.2. Twisted sheaves on the flag variety. We let B Ă G be a Borel subgroup scheme
containing a maximal split torus T , with unipotent radical N . Let X :“ G{B be the flag
scheme and let X̃ :“ G{N . The right translation action of T on X̃ makes the projection

ξ : X̃ ÝÑ X

a T -torsor over X.

We exhibit a certain class of twisted sheaves of arithmetic differential operators on the
p-adic completion X of X. This construction goes back to the fundamental work of
Beilinson-Bernstein [1] and Borho-Brylinski [5]. It was adapted to the setting of arithmetic
differential operators by Sarrazola-Alzate [18].1

Let T and X̃ be the completion of T and X̃ respectively. Then T acts from the right on
X̃. We also write ξ for the projection morphism X̃ Ñ X arising from ξ by completion.
We put

D̃:

X,Q :“ pξ˚pD
:

X̃,Qqq
T .

The right T -action on X̃ leads to a central embedding D:pT qQ Ñ D̃:

X,Q.

Now we fix a character of the crystalline distribution algebra D:pT qQ of T , i.e. a homo-
morphism

1Note that [18] assumes o “ Zp, however, a large part of the results and constructions are valid in full
generality.
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λ : D:pT qQ ÝÑ K.

Note that, by restriction, λ may be viewed as a weight, i.e. a linear form of the Cartan
subalgebra

t :“ LiepT q bQ Ă g “ LiepGq bQ,
but not every weight extends to a character of D:pT qQ. If λ P XpT q, i.e. λ lifts to an
algebraic character of T , then we denote the corresponding G-equivariant line bundle on
X (with p inverted) by OX,Q,λ. Finally, we denote the trivial character (which restricts to
zero on LiepT q) by λ “ 0.

We define

D:

X,Q,λ :“ D̃:

X,Q bD:pT qQ,λ K,

compare [18, Def. 5.0.1]. Since pD:

T ,Qq
T “ D:pT qQ according to [13, Thm. 4.4.9.2], the

ring D̃:

X,Q is locally, on an open subset trivializing the torsor, isomorphic to D:

X,Q bK

D:pT qQ. It follows that D:

X,Q,λ is indeed locally isomorphic to D:

X,Q, i.e. D:

X,Q,λ is a
twisted sheaf of arithmetic differential operators on X depending on the character λ. If
λ P XpT q, then there is a natural left action of D:

X,Q,λ on OX,Q,λ. For λ “ 0 one recovers

D:

X,Q,0 “ D:

X,Q.

We need to determine the opposite ring of D:

X,Q,λ in terms of the weight λ. To do this, for
any ring A, we denote by Aopp its opposite ring, i.e. the same underlying abelian group,
but where the order of multiplication reversed. For any Zp-algebra A, we denote by Â its

p-adic completion and let ÂQ :“ ÂbQ.

Lemma 5.2.1. There are ring isomorphisms pÂqopp » yAopp and pAoppqQ “ pAQq
opp.

Proof. The canonical ring homomorphism A Ñ pyAoppqopp extends to a bijection Â »

pyAoppqopp. Passing to opposite rings gives the first claim. The argument in the second
case is similar. �

Let ρ “ 1
2

ř

Φ` α be half the sum over the positive roots of pG, T q with respect to B.

Proposition 5.2.2. There is a ring isomorphism pD:

X,Q,λq
opp » D:

X,Q,2ρ´λ.

Proof. By construction, one has D:

X,Q,λ “ lim
ÝÑmě0

pD pmq
X,Q,λ with twisted sheaves D pmq

X,λ , their

p-adic completions pD pmq
X,λ and their corresponding Q-algebras pD pmq

X,Q,λ. By the preceding

lemma, it suffices to fix m and to show isomorphisms pD pmq
X,λq

opp » D pmq
X,2ρ´λ compatible

with variation in m. Let A pmq
X :“ OX bo D

pmqpGq. According to [18, 3.5.13], there is a
surjective morphism of OX-rings

Φ
pmq
X,λ : A pmq

X Ñ D pmq
X,λ
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which gives, upon inversion of p and restriction to the generic fibre ι : XQ ãÑ X, the
classical morphism ΦXQ,λ : OXQ bK Upgq Ñ DXQ,λ. Following [15, 4.15.1], we denote by ϕ
the anti-isomorphism of the OXQ-ring OXQ bK Upgq induced by x ÞÑ ´x on g. It restricts

to an anti-isomorphism of A pmq
X , which we also denote by ϕ. Let J pmq :“ ker Φ

pmq
X,λ and

Jλ :“ ker ΦXQ,λ. Then J pmq
λ “ A pmq

X X ι˚Jλ. Following [1], we denote by b˝ the kernel
of the canonical morphism α : OXQ bK g Ñ DXQ and by λ˝ the morphism b˝ Ñ OXQ

induced by λ (using that b˝{rb˝, b˝s » OXQ bK t). The two-sided ideal J then equals
the right-ideal generated by kerλ˝. By [15, 4.15.1] the anti-isomorphism ϕ maps kerλ˝ to
kerp2ρ´λq˝ (note that Kashiwara writes g̃ for b˝, cf. [15, 4.3]). It follows ϕpJλq “ J2ρ´λ

and this implies ϕpJ pmq
λ q “ J pmq

2ρ´λ. This gives an isomorphism pD pmq
X,λq

opp » D pmq
X,2ρ´λ.

Compatibility with m may be checked after inverting p and restricting to the generic fibre
XQ. But then, by construction, the isomorphism coincides with the classical isomorphism
DXQ,λ » DXQ,2ρ´λ [15, 4.15.1]. �

Let in the following

i : Y ÝÑ X

be a smooth closed formal subscheme defined by some coherent ideal I Ď OX. According
to 4.1.6 and 4.1.2 the sheaf

D:

Y,Q,λ :“ i´1
`

ND:X,Q,2ρ´λ
pI D:

X,Q,2ρ´λq{I D:

X,Q,2ρ´λ
˘opp

is a twisted sheaf of arithmetic differential operators on Y. If λ P XpT q, we let

OY,Q,λ :“ i˚OX,Q,λ “ i´1
pOX,Q,λ{I OX,Q,λq.

It is a line bundle on Y.

Proposition 5.2.3. Let λ P XpT q.

(i) The line bundle OY,Q,λ is naturally a left D:

Y,Q,λ-module.

(ii) Assume that the special fibre and the rigid-analytic generic fibre of Y are connected.

Then OY,Q,λ is a simple left D:

Y,Q,λ-module.

Proof. We recall that D:

X,Q,λ naturally acts from the left on OX,λ,Q. Let f P OX,λ,Q and P P

D:

X,Q,2ρ´λ be local sections. Identifying the OX,Q-ring D:

X,Q,2ρ´λ with pD:

X,Q,λq
opp, there is a

well-defined local section P pfq P OX,Q,λ. Whether or not the subset ND:X,Q,2ρ´λ
pI D:

X,Q,2ρ´λq

stabilizes the submodule I OX,Q,λ Ă OX,Q,λ is a local question. We may hence fix a local

OX,Q-linear isomorphism between OX,Q,λ and OX,Q. If then P P ND:X,Q,2ρ´λ
pI D:

X,Q,2ρ´λq

and f P IQ, then there is Q P D:

X,Q,2ρ´λ and h P IQ such that Pf “ hQ. It follows

P pfq “ Pfp1q “ hQp1q P hOX,Q Ď IQ.

In this way, the right module structure of OX,Q,λ over D:

X,Q,2ρ´λ “ pD
:

X,Q,λq
opp makes
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OX,Q,λ{IQOX,Q,λ a right module over the ring

ND:X,Q,2ρ´λ
pI D:

X,Q,2ρ´λq{I D:

X,Q,2ρ´λ.

This implies that OY,Q,λ “ i´1pOX,Q,λ{IQOX,Q,λq is a left module over D:

Y,Q,λ, as claimed.
For (ii) we assume that the special fibre Ys and the rigid-analytic generic fibre YK of Y

are connected. Let J Ď OY,Q,λ be a D:

Y,Q,λ-stable submodule. Then J is a coherent
OY,Q-module. We claim that the intersection SupppJ q X SupppOY,Q,λ{J q is empty.
Indeed, let us assume for a contradiction that

y P SupppJ q X SupppOY,Q,λ{J q.

Choose an open affine rig-connected U Ă Y containing the point y. Making U smaller if
necessary, we may undo the twist and assume that the restrictions of OY,Q,λ and D:

Y,Q,λ to

U are isomorphic to OU,Q and D:

U,Q respectively. But then the sheaf J |U is corresponds

to a nonzero and proper D:

U,Q-submodule of OU,Q. This is in contradiction to the fact that

OU,Q is a simple D:

U,Q-module, cf. [12, Prop. 2.3.6]. So SupppJ q X SupppOY,Q,λ{J q is
empty. Since SupppJ q and SupppOY,Q,λ{J q are closed subsets of Ys and their union
equals Ys, the connectedness of Ys implies then that one of them is empty, thus either
J “ 0 or J “ OY,Q,λ. So OY,Q,λ is a simple left D:

Y,Q,λ-module, as claimed. �

5.3. Geometric construction of simple modules. We keep the notation. In partic-
ular, λ : D:pT qQ Ñ K is a character giving rise to the twisted sheaf D:

X,Q,λ on the flag

variety X. Let i : YÑ X be a smooth closed formal subscheme with twisted sheaf D:

Y,Q,λ.

Let θ : Zpgq Ñ K be a character of the center Zpgq of Upgq, which corresponds to the
weight of t induced by λ under the classical Harish-Chandra homomorphism. We let

D:pGqQ,θ :“ D:pGqQ bZpgq,θ K

be the corresponding central reduction. We recall the localization theorem for leftD:pGqQ,θ-
modules. Recall that ρ “ 1

2

ř

Φ` α.

Theorem 5.3.1. (a) Suppose that λ` ρ is dominant and regular (as a weight of t). The

global section functor induces an equivalence of categories between coherent left D:

X,Q,λ-

modules and coherent left H0pX,D:

X,Q,λq-modules.

(b) The G-action on X induces an algebra isomorphism

D:pGqQ,θ
»
ÝÑ H0

pX,D:

X,Q,λq.

Proof. If λ lifts to an algebraic character of T , then this summarizes the main results of
[14] and [17]. The case of a general character is the main result of [18]. �

We come to the main application of our results.
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Theorem 5.3.2. (i) There is an equivalence of categories

i`,λ : CohpD:

Y,Q,λq
»
ÝÑ CohY

pD:

X,Q,λq

preserving simple objects on both sides. If λ P XpT q, let BY|X,λ :“ i`,λOY,Q,λ.

(ii) Let λ` ρ be dominant and regular and let Y have connected special and generic fibre.
If λ P XpT q, then H0pX,BY|X,λq is a simple D:pGqQ,θ-module.

(iii) Let λ` ρ be dominant and regular and let λ P XpT q. Let Y,Y1 be two smooth closed
formal subschemes of X with connected special and generic fibre. If H0pX,BY|X,λq »

H0pX,BY1|X,λq as D:pGqQ,θ-modules, then Ys “ Y1
s.

Proof. The point (i) follows from 5.2.2 and the Berthelot-Kashiwara theorem for right

modules over pD:

X,Q,λq
opp “ D:

X,Q,2ρ´λ, cf. 4.2.8. The points (ii) and (iii) follow from 5.2.3
together with the localisation theorem. �

Remark: In the setting of (iii), an isomorphism H0pX,BY|X,λq » H0pX,BY1|X,λq does not
in general imply an equality of Y and Y1 as closed formal subschemes of X, even in the
case λ “ 0.
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