KASHIWARA’S THEOREM FOR TWISTED ARITHMETIC
DIFFERENTIAL OPERATORS

CHRISTINE HUYGHE AND TOBIAS SCHMIDT

ABSTRACT. We establish a version of Kashiwara’s theorem for twisted sheaves of Berth-
elot’s arithmetic differential operators for a closed immersion between smooth p-adic
formal schemes. As an application, we give a geometric construction of simple modules
for crystalline distribution algebras of reductive groups.

On établit une version du théoreme de Kashiwara - relative a une immersion fermée en-
tre deux schémas formels p-adiques - pour les faisceaux tordus des opérateurs différentiels
arithmétiques de Berthelot. Comme application de ce théoréme, nous donnons une con-
struction géométrique des modules simples sur une algebre de distributions arithmétiques
d’un groupe réductif.
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2 CHRISTINE HUYGHE AND TOBIAS SCHMIDT

1. INTRODUCTION

Let X be a smooth complex variety and ¥ < X a smooth closed subvariety. A basic
result in Z-module theory is Kashiwara’s theorem which states an equivalence of cate-
gories between the category of Zy-modules, quasi-coherent over Oy, and the category of
P x-modules, quasi-coherent over Oy, with support in Y. Recall that a twisted sheaf of
differential operators on X 1is a sheaf of rings &/ on X together with a ring homomor-
phism ¢ : Ox — &/ such that the pair (¢, 47) is locally isomorphic to the pair (can, Zx)
where can : Ox — Yy is the canonical inclusion. Originally, such twisted sheaves were
introduced in the early 1980s by Beilinson-Bernstein in order to study localisations of
Lie algebra representations with general infinitesimal character on complex flag varieties
[1]. It is well-known that the right module version of Kashiwara’s theorem generalizes
to twisted sheaves of differential operators [16, 4.3]. Under additional hypotheses on
the twisted sheaf &7 (e.g. an analogue of the order filtration on ) one may establish
side-changing functors in the general setting of .o7-modules and then deduce a version of
Kashiwara’s theorem for left modules [15] 2.3].

In the arithmetic setting, let o denote a complete discrete valuation ring of mixed charac-
teristic (0, p) with uniformizer w, field of fractions K and perfect residue field. Let X be a
smooth formal scheme over o and let @;Q be the sheaf of arithmetic differential operators
on X [2]. If Y < X is a closed smooth formal subscheme, Berthelot’s version of Kashi-
wara’s theorem gives an equivalence between the category of coherent left .@%@—modules

and the category of coherent left _@;Q—modules with support in ). Berthelot gives a proof
of the theorem in his course on arithmetic Z-modules 1997 at the Centre Emile Borel,
which, however, is not included in the corresponding reference [4]. In the appendix of [7]
Caro establishes a version of the theorem for log structures and coefficients.

Our goal in this paper is to establish a version of Kashiwara’s theorem for twisted sheaves
of arithmetic differential operators. Similar to the complex analytic setting, such twisted
sheaves appear naturally in the context of the localization theory of crystalline distribution
algebras of reductive groups, when varying the infinitesimal character of representations
[14, 18]. Following Beilinson-Bernstein, we define a twisted sheaf of arithmetic differential
operators to be a sheaf of rings .o/ on X together with a ring homomorphism ¢ : Oy g — &
such that the pair (¢,.27) is locally isomorphic to the pair (can, .@;Q) where can : Ox g —

@;Q is the canonical inclusion. At this level of generality, as we have explained above,
there are no side-changing functors and one may only hope for a right module version of
Kashiwara’s theorem.

To formulate our main result, let &7 be a twisted sheaf of differential operators on X and
let i : Y — X be the inclusion of a closed smooth formal subscheme defined by the ideal
S < Ox. Let Ny (S ) be the normalizer of the right ideal generated by .# in /. We
show that

gy =i (Nf(IA )| IA) resp. dhy_x:=1i"(A)
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are a twisted sheaf of arithmetic differential operators on 9) resp. a (%, i '</)-bimodule.
We obtain an adjoint pair of functors (i. 4, ZL) between the categories of right modules
over /) and & respectively: the direct image

i N = (N Ry Ty )
from right .2%)-modules to right .«/-modules and, in the opposite direction, the restriction
functor

ZEJ‘% = Homi—lg{(ﬂmﬁx, iil,ﬂ).

Let Coh” (#) and Coh™? (/) be the categories of coherent right o%-modules and coher-
ent right @/-modules with support in ), respectively. Our main result is the following.

Theorem (cf. . The functors i 4, ii% induce quasi-inverse equivalences of categories

i.d,+
Coh"(afy) _=_ Coh™? ().

-
Yot

For the proof, we proceed as follows. We first establish some complements on arithmetic
differential operators, notably the normalizer description for operators on closed sub-
spaces. We then give a full and self-contained proof of the Berthelot-Kashiwara theorem
for left .@;Q—modules. Note that Caro’s logarithmic Kashiwara theorem for coefficients
[7] contains this result as a special case. However, this special case is buried under a lot
of additional notation. We therefore believe that it is instructive, and a useful basis for
our future work, to have a clear direct proof in this special case, using only the tools of
the basic reference [2]. As in [7], the key ingredient is a lemma of Berthelot on a certain
matrix identity involving matrices over arithmetic differential operators. We give a full
proof of this lemma in (in [7] only the rank 1-case is really considered). We then use
side-changing functors to obtain Berthelot-Kashiwara for right @;@—modules. Finally,

we prove sufficiently many properties and compatibilities of the adjoint pair (i -, zfy) to
reduce the proof of the main theorem to a local situation. This allows us to undo the
twist and then conclude via right Berthelot-Kashiwara.

In the final section, we give an application to the representation theory of crystalline
distributions algebras. We fix a connected split reductive group G over o and denote its
w-adic completion by G. Let D(G)g be its crystalline distribution algebra, as introduced
and studied in [13]. Trreducible modules over D(G)g can be considered as local data for
certain admissible locally analytic G(K)-representations and thus, are of interest in the
so-called p-adic local Langlands programme. We let X be the formal flag variety of G.
In [I§] Sarrazola-Alzate generalizes a classical construction of Beilinson-Bernstein [I] and
Borho-Brylinski [5] to the arithmetic setting and constructs a family of twisted sheaves of
arithmetic differential operators .@;Q’ , on X, indexed by certain characters A of a Cartan
subalgebra of Lie(G) ® Q. We apply our Berthelot-Kashiwara theorem to the sheaves
9;(@7 ,. For algebraic A (i.e. when A lifts to a character of a maximal split torus in G)
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this leads to a class of simple .@;Q’ y-modules, parametrized by closed smooth subschemes
2 < X. By the arithmetic localisation theorem [I4], their global sections give rise to
simple DT(G)g-modules.

Acknowledgements. We thank Daniel Caro for having made available to us a very pre-
liminary version of the article [7] and for helpful discussions regarding certain points in
this article. We also thank the anonymous referee, whose comments have improved the
exposition of the material at several places.

Notations and Conventions. Throughout the article, o denotes a complete discrete valu-
ation ring with mixed characteristic (0,p). We denote by K its fraction field and by & its
residue field, which is assumed to be perfect. We let @ be a uniformizer of 0. A formal
scheme X over o which is locally noetherian and such that w0 is an ideal of definition
is called an o-formal scheme. We denote its special fibre by X;.

2. COMPLEMENTS ON ARITHMETIC DIFFERENTIAL OPERATORS

2.1. Arithmetic differential operators. In this subsection we assume a certain famil-
iarity with the basic notions of divided powers and divided power envelopes. Our basic
references are [2, [3]

Let X be an o-formal scheme, which is smooth over & := Spf(o), with structure sheaf Ox.

Let m > 0. Let PQ/G,(m), n = 0 be the projective system of sheaves of principal parts of
level m and order n of X relative to &. There are two morphisms pg, p; : Py J6,(m) Ok,
induced from the two projection morphisms X x X — X, making P% Je,(m) & commutative
Ox-algebra in two ways, on the left (via py) and on the right (via p;). The two structures
are denoted by d; : Oy — Q/G’(m) for i« = 0,1. If X has étale coordinates tq,...,t; and

7 1= pi(t:) — Py (i) € Oxxx, then Py g ) is a free Ox-module (for both its left and right
structure) on the basis 718 ;= 7M. .. Tikd} for || < n.

The sheaf of arithmetic differential operators on X of level m and order n is the Ox-dual
.@g:? = Homg, (Pareb/e,(my Ox). An element P € ‘@3(671) acts on O via the composition

d n P

The union 2L := Un.@g,? is a ring and there is a natural ring homomorphism Z{™ —

2" We denote by 24 = lim, 2" /' the w-adic completion and let

2} =lm 2 and 2%, := 2@, Q.

m

We shall also need to consider the usual (i.e. with divided powers) ring of algebraic
differential operators Zx := limy @ém) on the o-formal scheme X, cf. [0, 16.8]. We denote

by @x its w-adic completion.
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It will be useful to make the following definition.

Definition 2.1.1. An Ox-ring is a pair (&7, 1,) consiting of a sheaf of rings &/ on X,
together with a ring morphism ¢, : Ox — <7. A morphism between two Ox-rings (7, 1)
and (7', 1) is a morphism f : &/ — &7’ of sheaves of rings satisfying f oty = ty.

One obtains thereby a category of O%-rings. In situations where the morphism of rings
Ly is understood, we will often drop it from the notation and just write .« instead of
(”Qfa L&Z/)'

There are obvious variants of this category when the structure sheaf 0% is replaced by
another sheaf associated with the formal scheme X, such as 0% g or 0% o/_# (for an ideal

sheaf 7 < Oxq).
All the rings @ém), Dy, @3(67”)’ @x, @; are Ox-rings, and @je,@ is even an Ox g-ring.

2.2. Side-changing functors. Let X be an o-formal scheme of relative dimension d,
which is smooth over & := Spf(o). Let

d
Wy = /\Q;/G

be the module of differentials of highest degree, with its natural right Zx-action [3], 1.2.1].
As in the classical setting, the functors wy ®g, (—) and Homg, (wx, —) induce mutually
inverse equivalences of categories between left and right .@B(Em)—modules, for any m > 0
[3, 1.2.7(c)]. The following proposition is certainly well-known, we record it for a lack of
reference.

Proposition 2.2.1. Let Y < X, be a closed subset. The functors wx Qg, (—) and
Homg, (wx, —) induce mutually inverse equivalences of categories between left and right
Qi,Q-modules supported on Y .

Proof. Since wy is a coherent Ox-module, its spaces of local sections over affine opens in
X are w-adically complete. Its Zy-action extends therefore to a Zy-action. The functors
wx Qg, (—) and Homg, (wx, —) descend therefore to equivalences between left and right
@ém)—modules. Inverting p and passing to the inductive limit over all m > 0 yields the
proposition in the case Y = X,. The general case follows from the fact that both functors
wx ®g, (—) and Home, (wx, —) = (—) g, wy ' preserve the support condition. O

2.3. Operators on closed subspaces. Let

1:9 — X
be a closed immersion between two o-formal schemes, which are smooth over & := Spf(o).
Let r := dim%) and d := dim X.

It is well-known that the adjoint pair of functors (i, i ') induces an equivalence of cat-
egories between abelian sheaves on ) and abelian sheaves on X with support in ). We
denote by ¢* the functor Oy ®;-14, i~ (—) from Ox-modules to Oy-modules.
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Let .# < Ox be the ideal sheaf defining the closed immersion ¢. There is the Hom
sheaf Hom,(i 1.7, Oy) on 9, which is an Oy-module via multiplication on the target,
iLe. (sf)(a) := s(f(a)) for local sections s € Oy, f € Hom,(i"'.F,0y), and a € i '.7.
Similarly, the sheaf Homy (i~' Fy, Oy q) is an Oy g-module.

Lemma 2.3.1. Let o/ € {@;m), éa(am)7 _@;} The restriction map &/ — Hom,( S, O%), P —
P| s induces a Oy-linear morphism

i* o — Hom,(i"' I, Oy).
Proof. The morphism i* : i~'0x — Oy induces a morphism
Hom,(i"' I i Ox) —> Hom, (i7", Oy).

Let o € {.@;m) , .@ém), 2%}, Applying i~! to the restriction morphism &7 — Home (.7, O%)
and composing with the above morphism yields a morphism i1/ — Hom,(i"'.7, Oy).
Since the latter is ¢~ 'Ox-linear and the target a Oy-module, it extends to a Oy-linear
morphism i*o/ — Hom,(i"*.7, Oy), as claimed. O

We call the morphism appearing in the lemma (™), 5(’”), 0" in the cases .@;m), .@;m), .@;
respectively.

According to [2, 2.1.4.3], for any n > 0, there is a canonical Oy-linear morphism
Pl (1) + T Pxye my) — Payye m)-

Dualising and taking the union over all n yields a Oy-linear morphism _@ggm) — i*.@a(em).
Completing w-adically, taking the union over all m > 0 and finally inverting p yields a
Oy g-linear morphism @QTJ,@ — i*@;@.

Proposition 2.3.2. There is an exact sequence of Oy g-modules

0— Dy —i*Dig — Homi (i Ig, Oy q).
Proof. The exactness is a local question and we may assume that X is affine. We let

A:= 0(X) and I := O(#). By the Jacobi criterion, e.g. [6, Prop.3.5], we may even
assume that X has étale coordinates tq, ..., ty € A such that

e the images of ¢1,...,t, in A = A/I are étale coordinates for 9),

e the ideal I < A is generated by t,,1, ..., t4.
Fix m > 0 and let Py, . = O(Pyg n) and 2{" = 6(2{"). There is a natural
morphism of left A-modules

Afo,(m)
where the map J equals the global sections of the morphism i*P} Je.m) — Py/e.m)- Since

§ is A-linear on the right, we have A ®4 (Plo.om!) < ker(d). The A-linear morphism §
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maps the elements 1 ® (7, L Tﬁkr}) with ky + - - - + k, < n bijectively to a A-basis of

Pz 1o (m) and so is indeed surJective. Moreover, we have
er(d) = { Y] Az},
keNA\N"

where k£ ¢ N” means that k; > 0 for some j > r. In particular, all A-modules in the above
short exact sequence are free and dualizing gives the exact sequence

0— HomA(PZ/ ()’ , A) — Hom7(A ®4 Phomy A) AN HomA(ker(é),Z) —0

Since A is flat over Z, the localization map Hom(ker(8), A) — Homy, (ker(8)g, Ag) is
injective and we have the exact sequence

0— Homz(PZ"/oy(m),Z) — Homy(A ®4 PX/O,(m),Z) 2, Homz, (ker(8)q, Ag).

The formula ¢!7*} = 7% where ¢ is the euclidian division of k by p™ [2, 1.3.5.2], shows
that

ker(6)g = { ), Aqr}.

keNA\N"
On the other hand, given ¢; € I (i.e. i > r), the image of =010t -t;®1)f e A®, A
in the quotient A®, A equals 1®1;. Hence, the image of the set {di(f)|f € I} = P},
in Ag ®a P Jo,(m) €merates the Ag-module ker(d)g. For a given element

we therefore have
§*(P) =0 if and only if Pod(I) < Iy.

Since A/I is p-torsionfree, one has A n Iy = I and so the condition P o d;(I) € Ig is
equivalent to Pod;(I) € An Iy = I. In other words, the sequence

0— HomA(PZ/ o (m ),Z) — Hom#(A ®4 PX/U?(m),Z) — Hom, (1, A)

is exact. Taking the union over n > 0 yields the exact sequence
9( m)
0— 2 — 2" /12 5 Hom, (1, A),

where ™ is the global sections of the map appearing in 1| for & = D (m), By left-
exactness of w-adic completion, we obtain the exact sequence

/\

gm

A

0 s 9 1 O o (1L A).

|
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Since w-adic completion is exact on finitely generated modules over the noetherian ring
.@Xn), the completion of .@Xn) i @/&m) equals Qﬁlm) i @ﬁ,’”). Therefore, 0™ admits the
factorisation

—_—

2\ 1™ o Hom, (I, A) — Hom, (I, A)
where 8™ is the global sections of the map appearing in for o = -@;sm)- Since A is

w-adically complete, the o-module Hom,(I, A) is w-adically separated and hence injects
into its w-adic completion. Therefore the induced sequence

~(m ~lm ~(m H(m) J—
0— 20— 5177 5 Hom, (1, A)

remains exact. Taking an inductive limit over m > 0 and inverting p yields the claim. [J

Definition 2.3.3. Let ¢ < Ox g be an ideal. The normalizer of the ideal /.@;Q is the
subset of ‘9;@ equal to

N(J Drg) =Ny (J Prg) ={PEDiolP J = 7P}
Lemma 2.3.4. One has the following basic properties:
(i) JV(/@;Q) is a sub-O% g-ring of .@;Q.
(i1) /.@;Q - JV(/.@;Q) is a two-sided ideal.
(iii) The quotient /(/.@;}Q)//.@;Q is an Oxq/ # -ring.

Proof. Let N = N ( Z 9;(@). It is clear that .4 contains 0% g and is stable under
addition. Given P,(Q € .4, one has

(PQ) .7 < P(QF) S P(FPLg) < (P I g S I Dhg

and so PQ € 4. This shows (i). For (ii), note that ¢ ‘@;Q is certainly contained in .4

as a right ideal. If P € .4, then Pj@;(@ c /_@;Q, so that /@;Q is also a left ideal
in 4. This gives (ii). The point (iii) is a consequence of (i) and (ii) by observing that
the induced ring homomorphism

Oxg >N =N J D
factores through the quotient morphism Ox g — Oxq/ 7. O

Corollary 2.3.5. Let i : Y — X be a closed immersion between two smooth o-formal
schemes, given by the ideal & = O%. There is a canonical isomorphism of Oy q-rings

%,Q ~ rl(,/V(f@@;Q)/fQ@;Q).
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Proof. According to [2.3.2] one has
i
ot AP € DrolP(H) = S}
=Dy > T
j@ 9%,@

as Oxq/_#-modules. We claim that

N = /V(JQ@;@) —{Pe @;@w(,ﬂ@) < ).

If Pe A& and f e Hy, then there is Q) € 932@ and h € Sy such that Pf = h(Q. It follows
P(f) = Pf(1) = hQ(1) € hOx g < Hy. This gives the forward inclusion. The inclusion

being an equality may be checked locally. We may therefore assume that X is affine. Let
A=0(X),l =0(F)and A= A/I. One has

N:=0(N)={Pe D} o|PIy < IgZ) o}
The above isomorphism says that the restriction map P — P, where P(@) := P(a) + Iy
for @ € Ag induces a surjective Ag-linear morphism
res: {P e QLQ\P(IQ) c lp} — .@%Q

with kernel equal to [Q-@ILQ' Let P e .@L’Q with P(Ig) € Ig and take f € Ig. Given
h € Iy, we have Pf(h) = P(fh) < Hy, since fh € Iy, and hence Pf(ly) < Ip. To
calculate res(Pf), we observe that

Pf(Ag) = P(fAq) < P(lg) < Io.

Hence res(Pf) = 0, whence Pf € ]@‘@ILQ' This shows P € N and establishes the
isomorphism of % g/ #p-modules

i
. @T - W(f@-@x@)
b 2,Q — 7 @T .
Q<%0
However, since the map res is a ring homomorphism, this isomorphism is in fact an
isomorphism of Oy o/ #p-rings. It remains to apply the functor 1. 0J

2.4. f-bounded operators. In this subsection, X is a smooth o-formal scheme endowed
with local coordinates 1, ..., zp. Let A:= 0(%).

The following basic result for local sections of .@; is [2, 2.4.4]. Since its proof contains
many arguments which we will refer to in the following, we will recall the proof here. This
also allows us to fix some notations.

Proposition 2.4.1. Let ||.|| be a Banach norm on Ag. For any operator

P =Y a,d = /vl e T(X, Ix)
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we denote by P; € T'(X;, Dx. i) the reduction of P modulo @', The following three
conditions are equivalent:

(i) Pe (X, 7))

(ii) There are constants o, f € R, > 0 such that for any i =0

ord(P;) < ai + f3

(iii) There are constants c,n € R,n <1, such that for any v

llay|| < en'.

Proof. (i) = (ii) : Since X is quasi-compact and quasi-separated, the functor I'(X,.)
commutes with direct limits and we have I'(X, .@;) =lim I'(X, .@ém)). We may therefore
choose m large enough and write P as

P= Z bZQ<Z> _ ZQ”’KQM

where b, € A tends to zero for |v| — o0, and where, for any v € N, we have written
v =7p"q, +7,0 <r < p" Let v be the normalized valuation of 0. According to [2]
Lem. 2.4.3], there exists o/, ' € R,/ > 0 such that v(g,!) = ev,(¢,!) = o'v + ' for
any v € N. Summing over all entries of v, we therefore find «, 8” € R,a > 0 such that
v(q!) = a7y + B" for any v € N¥. Fix i. For any v with |v| = a(i — 8" + 1), the

inequality |v| = a(i — 8" + 1) gives therefore
v(g!) =i+ 1.
The latter means g!b, € @'t A and so this coefficient of P reduces to zero in P;. It follows
ord(Py) < a(i— " +1) = ai +
where 3 := a1l — ).

(1) = (i4i) : To prove (iii), we may take for ||.|| the Banach norm of Ag, coming from the
p-adic filration on A. It satisfies ||b|| < 1 for any b € A. Now suppose that ord(P;) < ai+ [
for all i. Fix v. If |v| > «i + 3, one has a, € @™ A, and hence ||a,/=" || < 1. So for
any i > 0 such that |v| > i + 8, i.e. a (Jy| — B) > 4, one has ||a,|| < |=|"t!. Now take
7 such that
i+1=a (v -B)>i
Then, by what we have just shown,
[la || < [e]|* (=)

for any v. With 1 := |@|® " and ¢ := |@|#*"" we therefore have ||a,|| < en“ for any v
where 1 < 1.
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(#3i) = (i) : Suppose that ||a,|| < en?! with n < 1. Here, we may again assume that ||.||
is the Banach norm on Ag coming from the p-adic filtration on A. We first show that, for
m = 0 sufficiently big, the elements b, := a,/q! tend to zero for [v| — co in the Banach

algebra Ag. By hypothesis we may write n = p~ ¢ with a > 0 and obtain

Q@
vp(ay) = —log, ||a,|| = |v|(—log,n) —log,c = |v| (E> +

out y = —log,c. An upper bound for the p-adic valuation of ¢! is given by |v|/p™(p — 1)
[2, Lem. 2.4.3]. Hence,

Q 1
v,(b,) = vy(a,) —v,(q!) = v (———)—i—,u.
p(0) = ) = 1y(a) > 1 (£~ ——
Thus, for sufficiently big m, we obtain indeed v,(b,) — o for |v| — co. For the remaining
statement, let A := a/e. If

> —p(A=1/p"(p - 1),
then v,(b,) = 0 and hence ||b,|| < 1. This implies b, € A. Suppose therefore that p < 0.
Adjusting m we may suppose that p™ > A=} (—u + 1/p — 1). Then

p" > —p(A = 1/p"(p— 1)) 7"

V|

So for all
vl < —p(A=1/p"(p = 1)~
we obtain ¢ = 0, which implies b, = a, € A. O

Let n = 1 and let P € M,(I'(X, .@gg)) be a given n x n-matrix, with entries in the
ring I'(X, .@%) It will be convenient to write P = 3] a,0", with coefficients a, €
M, (T'(X, O%)). In particular, we may speak of the order ord(P) of P, whenever the
sum is finite. In general, we write for any integer ¢ > 0

[Pl =o' Z a, 0 and o,(P):= Z @’ [Py
veE, <t
where Ey := {v € N™ v,(a,) = ¢} is a finite set. Here, v,(-) := —log, || - || where || - ||
denotes the Banach norm on M, (Ag) coming from the p-adic filtration on M, (A). By
definition one has o
ord(oy(P)) = ord(Py)
where Py is the reduction of P modulo w*!. This implies
ord(oy(P + @Q)) < max(ord(oy(P)),ord(cs(Q)))
for two operators P, ().

Lemma 2.4.2. Let a > 0. One has the equivalence
ord(oy(P)) < al + B for all ¢ < ord([P],) < al + B for all ¢.
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Proof. If ¢ # ¢, then E, is disjoint from E,. This implies the general identity
ord(oy(P)) = max ord(w’ [P]y).
<

In particular, the implication = is clear. On the other hand, if [P]y < af’ + 3 for any ¢/,
then the right hand side in the above identity is bounded by af + 3, since o > 0. OJ

Definition 2.4.3. Let P € M, (I'(X, @x)) and B > 0. The operator P is called 3-bounded,
if for all £ >0

ord(o,(P)) < S0+ 1).

Lemma 2.4.4. Let f > 0 and let P, be a w-adically convergent sequence of B-bounded
elements in M, (I'(X, P%x)). Then P = lim, P, is $-bounded.

Proof. Fix n = 0. By the inequality before the lemma we have ord(c,(P)) <
max(ord (o, (P—F;)),ord(o,(P))). Choose ¢ sufficiently large such that P— P is divisible
by @w"*!. Then 0,(P — P;) = 0 and the claim follows. O

The interest in this notion comes from the following result.
Proposition 2.4.5. Any P € M, (I'(X, .@;)) is B-bounded for some 3 > 0. Conversely,
any B-bounded P € M, (I'(X, @x)) belongs to M, (T'(%X, 21)).
Proof. According to the above discussion, P is f-bounded iff ord([P],) < (¢ + 1) for all
¢ or, equivalently, if ord(P;) < B(¢+1) for all £. Thus, Prop. implies the claim. O

2.5. A key lemma. In this subsection, X is a smooth o-formal scheme endowed with
local coordinates x,...,zy. Let A := €(X). The main steps in the proof of the key
lemma presented here are extracted from Caro’s discussion in [7].

Let 1 € M,(T'(X,Z%)) be the identity in the matrix ring M, (I'(X, Z¢)). We consider
['(X, Z%) to be a subring of M,,(I'(X, Zx)) via the injective ring homomorphism

I'(%, Jx) — M,(T'(X, %)), P P1.

Let m > 1 and let R e M, (I'(X, .@ém))) be a given n x n-matrix.
By Prop. R is a-bounded for some « > 0, so that ord(c,(R)) < a(¢ + 1) for all /.
In the following we fix § > 0 sufficiently large, such that
(HYP) 2 + p™ < B.
We start with two auxiliary lemmas. Let t := x);.

Lemma 2.5.1. For any U € M,(I'(X, Z%)) there is an operator Q € M, (I'(X, Z%x)) such
that

m

[t"",Q]=U mod w and ord(Q) < ord(U) + p™.
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Proof. Soit 0y := 0,,,. We first establish the general identity

tpmé’t[Nerm] — é’t[N+pm]tpm = —(')EN] mod w
for any integer N. Indeed, one has
o e = 3 A

v+v'=N+pm
Since AM(#7™) = 0 for v > p™ and = 0 mod @ for 0 < v < p™, only the terms indexed
by (0, N + p™) and (p™, N) survive in the sum. This yields the claimed identity. Now

write U = 3}, a,0 and take Q = — 2 a, Q00" Then ord(Q) < ord(U) +p™ and

[tpm, Q] _ Z (—(ZV)Q[(VI ..... var—1)] (tpm§£VM+pm] — 815[1/M+pm]tpm)

U.

Lemma 2.5.2. Let Q; € M,(I'(X, Z%x)) such that ord(Q,) < B({ +2). Then @**1Q, is
B-bounded.

Proof. Let P = @w'™Q,. If i < {, one has P; = 0 and therefore ord(P;) < B(i + 1)
trivially. If ¢ > £, then

ord(P;) < ord(P) < B({ +2) < B(i + 1).
O]
We now construct by induction a sequence P, € M, (I'(X, Z%)) (depending on the matrix
R) such that
(i) Py =1,00(P) = P; and Pyyy = P, mod w'*?
(ii) Py is B-bounded
(iii) " P, = P(t"" — woy_1(R)) mod w1,
Suppose that F, ..., P, are already constructed. We will construct P, in the following.
Since wo, = woy_; mod w'*! the property (iii) implies

[tpm,Pg] + ngO'g<R) = tpmpg — Pg(tpm + YEO'g(R))

tr" Py — Py(t*" + woy_1(R)) mod ! = 0 mod 't
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On the other hand, since o¢(P;) = P, by (i), one has P, = Y}, _,@w" [Py];, and hence

Poy(R) = >, @""2[P]y[R], = > @ 2P}, [R]s, mod w'*?,

ly,6o<t 01,02 <l,01 +l<l+1

So alltogether one obtains

[t*", P)] + @ > w2y, [R]e, = 0 mod @

£y o<l by +Lo<l+1

So there is an operator Uy, € M, (I'(X, %)) such that

—o'U, = [, P) + @ > @[ Pole, [Rle,-

01,0201 +L2<l+1

By the above discussion

—'U, = [, P)] + wPoy(R) mod w't?,

Assertion 1: One has ord(Uy) < S(£ + 1) + 2a..

To prove the assertion, we use that P, is S-bounded by (ii). In particular, ord(F) =
ord(c¢(P;)) < B(¢ + 1) which gives ord([tP", P]) < (¢ + 1).
Again, by (ii), we have ord([F]s,) < B(¢1 + 1) for all ¢;. This gives

ord([Prle, [R]e,) < ord([Prle,) + ord([R]e,) < Bl + 1)+ a(le+ 1) < B(L+ 1) + 2a.

Note that the last inequality follows from «(¢y — 1) < (¢ — ¢1) which in turn follows
directly from ¢ + 5 < ¢+ 1 and a < . This implies the assertion.

We now use the lemma to find an operator Q, € M,,(I'(X, Z%)) such that

[t"", Q] = Uy mod w and ord(Q,) < ord(U;) + p™. (%)
We now set
Pri1 = 0p 1 (P + @' 1Qy) € M, (T(U, %)).
Assertion 2: The operator Py satisfies (i),(ii),(iii) above.
We start with (iii). Modulo @’*? one certainly has the two congruences
7" Py =t (P + @' Q)

and
P (t" — woy(R)) = (P + @™'Qy)(#" — wou(R))
2

so it suffices to show that the two right-hand sides are congruent. But modulo w*?, one
has



KASHIWARA’S THEOREM FOR TWISTED ARITHMETIC DIFFERENTIAL OPERATORS 15

tpm(pz + leQL)) — " Py + w1 Q,

tmeg + w£+1(Ug + Qgtpm)

= tmeg + w”ngtpm — ([tpm, Pg] + ngO'g<R))
= (P + @™ Q)" — wPoy(R)

(Pg + wZ—HQg)(tpm — WO'@(R))

where the first congruence is the property (*) and the middle congruence is the congruence
before assertion 1.

To see (ii), we just note that our hypothesis (HYP) implies ord(Q,) < 5(¢+2) by assertion
1. Hence, w’*'Q, is 3-bounded by lemma [2.5.2| Let ¢/ < ¢ + 1. Since oy 0 0y41 = op We
find

ord(cp(Pyy1)) = ord(ow (P + o Qy)) < max(ord(op(Fy)), ord(op (™ Qy))) < B0 +1)

where we have used the inequality before lemma and the fact that P, and @*'Q,
are $-bounded. Let ¢ > ¢ + 1. Since oy 0 0441 = 0441 we find

ord(op(Pyps1)) = ord(Pyi1) < max(ord(opy1(P)), ord(op (w1 Q) < B(L+1) < B(I/+1).
Hence, Py, is S-bounded.

It remains to see (i). The identity Ppyq1 = 0p1(Ppy1) is trivial. In particular, we may
write

Py = Z a’ ol

vp(abTh)<e+1

where a," € M, (T'(4, O%)) are the coefficients of Py,y. By definition, one has

41 _ ¢ 041~
a, =a, + W ay
where @, are the coefficients of @),. Because of 04(F;) = P, one has a’t = 0 for all

£+1) _

v

coefficients al, with v,(a)) = ¢ + 1. In turn, the inequality v,(a’) < ¢ implies vp(a
v,(al) < £ by the ultrametric inequality for v,.

This means

p(al)<t

vplagth)<t v

which completes (i).
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So there is indeed a sequence (), with the properties (i)-(iii) as claimed. Choose m’' = m
such that Py € M, (I'(X, @;m ))) for all £ by prop. [2.4.5, We may consider its limit

P =lim P, e M,(T'(X, 20,

Then we have inside M, (T'(X, .@ém/)))

(1) P=1mod w

(2) *" P = P(t"" — wR).

Thus we have proved the following lemma.

Lemma 2.5.3. (Berthelot’s key lemma) Let t := x); and let R € M, (I'(X, @ém))) be a
giwen n x n-matriz. There exist m' = m and P € M,(I'(X, .@ém/))), such that

(1) P =1 mod w

(2) " P = P(t"" — wR) in M,(T(X, 2U")).

Note that, as a consequence of (1), the matrix P appearing in the lemma is invertible in
the w-adically complete ring M, (I(X, 20").

Corollary 2.5.4. Let M be a finitely generated T'(X, @;m))—module with generators ey, ..., €,.
Suppose that t*"e; = 0 mod w for all i. Then there is m' = m and a set of generators

ey, ....el for the T(X, .@a(em,))-module r'(x, Q;m/)) ®p M with the property t*" e} = 0
for all 1.

Proof. Write D{™ := T(%, 2™) and ¢ be the column vector Z(ey, ..., ,). By assumption,
there is R € Mn(D;m)) such that

x,20)

t*" e = wRe.
By the key lemma, there are m’ > m and P € Mn(ﬁ;ml)), such that
(1) P=1mod w
(2) " P = P(t"" — wR) in M,(D{").
Let
M’ = D" ®pen M and ¢ := P(1®¢).
Here, 1 ® ¢ is the column vector T(1®ey,...,1 ®e,) € (M")", so that
e = ZPij®ej eM fori=1,..n.

J

The e} are generators for the left ﬁ;m/)—module M'. Indeed, given y € M’ with y =
i ®e;, then y = SN ®¢e! with (N}, ..., \.) := (A, ..., \n) - P~L. Moreover, (2) implies
Z ) Yy 7 A 1 »'\n ) ) 9 p

m

e =" P(1®e) = P’ —wR)(1®e) = P(1® (1" e — wRe)) = 0.
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3. THE BERTHELOT-KASHIWARA THEOREM
Let
1:9 — X

be a closed immersion between smooth formal o-schemes given by an ideal sheaf ¢ < O.

3.1. Direct image and adjointness. Let @;HQ’Q be the associated transfer module, a
(i_1@;7Q,@%’Q)—bimodule, cf. [3, 3.4]. Let A be a left .@%Q—module. Its direct image
along 7 is the left 9;7Q—module

i N =i D}y g Ry, )

This yields a functor i, from left .@%@—modules to left .@;@—modules, cf. [4 4.3.7], which

preserves coherence [4, 4.3.8]. If 3 x, ) is a second closed immersions of smooth formal
o-schemes and if we restrict to coherent modules, then there is a natural isomorphism
(tok)y ~ iy oky of functors [4], 3.5.2].

Proposition 3.1.1. (i) The right @%@—module @;(_%Q is flat.

(ii) The functor i, is exact.

(iii) If S < Q) is a closed subset and AN is a left @%7@—m0dule supported on S, then i, N
1s supported on S.

Proof. (i) maybe proved be adapting the proof in the classical setting [10, 1.3.5] as follows.
Fix a level m > 0. By definition [3, 3.4.1],

.@g(n_)x =1 (.@ém) Qo w;l) Ri—16, Wy

where wy and wy are the modules of differentials of highest order on X and ) respectively.
Since (i) is a local question, we may from now on assume that X is affine equipped with
local coordinates ti,...,t; € Ox, that & = (t,41,...,tq) for some 0 < r < d and that
ti,...,t, are local coordinates for ). Let ¢; be the derivation relative to ¢;. We identify
i_lw; ®;-10, wy With Oy via the section

(dty A Adt)® T @ (dEy A -+ - A dE,).

l

Note that D' := @, - o 0y = 2™ is a subring of 2™, 1t is clear that 2™ ~
0[0]™ ®, D’ as a right D'-module, where 0[d]™) equals the free o-module on the basis
ol 0% Tt follows that

Ty = 0[2]™ @, (i7D' ®i1, Ou).
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It is easy to see that i ' D' ®;-14, Oy ~ .@ém) as a right an)—module. This means
Py = old]™ @, 2"

(m

as right .@@ )_modules. In particular, .@3(6@@ is free, and hence flat, as a right .@ém)—module.
According to [11] 2.2.2] the sheaf of rings .@gﬂ) is locally noetherian, hence [2, 3.2.4] implies
that @3(672)@ is flat as a right @ém)—module. Passing to the limit and inverting p, we finally

see that .@Jﬂ_@ is flat as a right .@%@—module, as claimed. The point (ii) follows from (i).
Finally (iii) follows from the fact that, for any abelian sheaf £ on %), the stalk of i,.#
at x € X equals J, if x € 2) and is zero otherwise. Hence, if S < 9) is closed and .4 is
supported on S and x € Y\, then

; _ (gt — gt -
i+ )2 = (Zx9q ®@%7@ N e = Dxcp .00 ®9§n,@,z Nz = 0.

We define the following functor from left @;Q—modules to left @%@—modules:
M= Homi_l%@(.@;_%@’rl,///).

Proposition 3.1.2. (i) The functor i is right adjoint toi,. In particular, i* is left-evact.

(i) If 3 LA 9) is a second closed immersion of smooth formal o-schemes, and if k?, i
preserve coherence, then there is a natural isomorphism (i o k)¥ ~ kf o f.

i) If S < X 1s a closed subset and .# is a coherent left 9L -module supported on S,
(iii) Eo)
then % is supported on S N'Y).

Proof. Since i is a closed immersion, i, has the right adjoint i~!. Therefore, for any

coherent left .@%7Q—module A and any coherent left @;Q—module A , one has
. o f -1
Hom@;@(uﬂ/, M) = Homi_@;@(@%(_m’@ ®%’Q N AT M.
One obtains (i) by combining this with the standard tensor-hom adjunction
f —1 — i —1
Homi,@;@(‘@xgm@ ®%,@ N AT M) = Hom%@(g/i/, Homﬂ@;@(.@x%@@,z M)).

(ii) follows from uniqueness of adjoint functors and the fact that for coherent modules
we have (i o k), ~ i, ok,. For (iii), for any abelian sheaf .# on X, the stalk of i~!.%¢"
at r € 2 equals #,. Hence, if S © X is a closed subset and .# is supported on S and
v e Y\S, then (i*.#), = 0. Indeed, this is a local statement, and we may suppose that
the coherent module .# has a global finite presentation. This means that i ~1.# can be

written as coker(f) for some i_lgjgv(@—linear morphism (i_lg;@)@s L, (i_l.@;@)@. Take
an open 4 € 9) containing x with NS = . For any y € 4, one has (i '.#), = .4, = 0.
Hence f, is surjective for any y € 4 and so f|y is surjective, i.e. i~ '.#Z |y = 0. Taking the
limit over all open neighourhoods U < 4 of x, one finds
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(i*), = lim Homi_lg;(@'m(.@;_%@%Z'—l,///|m) = 0.
zeYci ’

3.2. Berthelot-Kashiwara for left modules. We start with an auxiliary lemma.

Lemma 3.2.1. Let N be an K -vector space and s = 1. Let N[[0™]] be the K -subspace
of all formal infinite sums Y s nZQ[Z] with n, € N on formal symbols oM. We regard N
as a K -subspace of N[[0Y]] via n — nd%W. Define fori =1,....s a linear operator t; on
N[[2"M]] through t; - (n, ™) := n, (8% 1) when v; > 0 and zero else. Then

) er (VII2HT] 5 N ) =

Proof. 1t suffices the check the forward inclusion, the reverse inclusion being clear. By
induction on s it suffices to treat the case s = 1. Writing >, _m, o™ :=¢-> n, o
one has m, = n,41. If 3 n, 0! € ker(t), then n, 1 = m, = 0 for all v. O

Let Coh(.@%@) and Coh@(.@;@) be the categories of coherent left .@%@—modules and
coherent left .@;Q-modules with support in ¥), respectively.

Proposition 3.2.2. (i) The functori restricts to a functori.. : Coh(.@%@) — Coh@(.@;@).
(ii) The unit ny : N — (i" 0i, )N is an isomorphism for any N € Coh(.@%,(@).
(ii) The functor i, : Coh(Z] o) — Coh? (24 ) is fully faithful.

Proof. (1) is [4, 4.3.8], as we already stated above. Now (ii) is a local question and we
may assume that X is affine equipped with local coordinates ty,...,t; € Ox and that
I = (ty41,...,tq) for some 0 < r < d. Let J; be the derivation relative to ;. We identify
wx with Ox via the section dt; A - - - A dt; and similarly for wyg. It then follows from the
existence of the adjoint operator [3] 1.2.2] and the fact that

Dk po =" Dho =1 (DLo/ I Dho),
that we have an isomorphism of (i’l.@;@, Qg’Q)-bimodules
‘@;&—@7(@ = fl(@;@/@;,@f)‘
It follows that ¢ — (1) gives a natural identification
M = Homi_l%@(.@;(_@@,% AR ﬂ ker(i ' 5 it A).

i=r+1,...,d
Suppose now that .# =i, .4". According to [2, 3.4.5] and [2 3.6.2], there is an inductive
system of coherent @%m)—submodules N™ < 4 such that lim A (m) = 4. We have
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seen in the proof of that there is a natural isomorphism
Py = o[0]™ @, 2"

as right .@%m)—modules for any m. If we define an (injective) transition map o[d]™ —
0[2]'™*V) as in [2, 2.2.3.1], then the isomorphism is compatible with the transition maps
@3(:1_)@ — @3(3_%1) and @ng) — Qggmﬂ). Hence, if M = O(#),N = O(4) and N™ =
O ™) and if 0[0]™&, N™ denotes the w-adic completion of the o-module 0[2]™ ®,
N then

M =~ lim(o[2] ™ &, N"™)q.
Moreover, for i = r + 1,...,d, the action of t; € 0% on M is given on the right-hand side
by the action on the left-hand factor o[0]™). Since 0[d]"™ is a free o-module, the tensor
product 0[0]"™ ®, N is canonically isomorphic to the o-module of all finite formal sums
3 s 1, 0% with n, € N, Tts completion 0[d]™&, N(™ is therefore isomorphic to
the o-module given by all formal infinite sums Y . 17,0% with n, € N(™ and n, — 0
in the w-adic topology of N(™ . Using the notation of with s = d — r, we obtain
thus an injective K-linear map from (o[d]"™®, N™)q into N[[2™]]. It is equivariant
for the action of ¢; on N[[0]] given by t; - (n,0¥) := n, (8~%1) when v; > 0 and zero
else. Passing to the limit over m yields K-linear injection

M — N[[2"1]],

which is equivariant for the action of ¢; for all i = r + 1,...,d. According to the lemma

[3.2.1] we obtain

This implies i*.# ~ .#. Hence the unit of the adjunction is an isomorphism. This
shows (i). The statement (i) implies immediately that i, is faitful. For the fullness, let
v iy (A) = i (A7) be a morphism. A preimage is given by the morphism

My 0 (Ei,(ary 0 s () o) oy o N —> A
where € : i, 0’ — id is the counit of the adjunction, cf. the proof of [19, Tag 07RB]. [

We now work towards the essential surjectivity of i : Coh(.@%@) - Coh@(.@;@). Note

that if i is essentially surjective, then 7% preserves coherence, by part (ii) of the preceding
proposition.

Lemma 3.2.3. Let ) < X be of codimension 1 and let A € Coh@(.@;@). The counit of
the adjunction € 4 : (i, 0 %)M — M is surjective.
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Proof. The surjectivity of € 4 is a local problem. We may therefore assume that X is
an open affine with local coordinates z1,...,x); such that . is generated by t := x),.
According to [2, 3.6], we can assume that there is m > 0 such that

M~ @;Q ®9A3(€778 M,

with a coherent @;g—module M, supported on Q). Let D{™ := T'(%X, 2{™) and 15;”8 =
(X, @;"8) Let M,, = T'(X, #,,). Let M,, = M,, be a finitely generated ﬁ;m)—submodule
such that ﬁg’ng = M,,. Let eq,...,e, € Mm such that Mm =>. ﬁ;m)ei. The module
Mm/w]\/[m has support contained in ) and hence t*"¢; = 0 for all i (increasing m if
necessary), where €; = e; mod me. By m, there are generators e, ...,e, for the
ﬁ;m/)-module ﬁ;m,) ®pm) M,, with the property "¢/ = 0 for all i.
Now : -
M~ ‘@;Q ®@3(€ng) My  with M,y = @3(6%) ®@§n8 My,
Let Dlo = I'(X,21y),M = T'(X,.#) and M, := T(X,i%#). Since T'(X, M) =
(Mm/)@, it is clear that the e} are generators for the D;Q—module M. As we have seen
in the proof of 3.2.2] we have My = ker(t) € M. The counit ¢ 4 is therefore surjective, if
and only if D;QMO = M. This is the case if € € D;’@MO for all 3.
Since tP" ¢} = 0 for all 4, it suffices to show the following claim: given an element u € M
with #/u = 0 for some 1 < j < p™, then u € D;QMO. To prove the claim, we use a finite

induction on j, the case 7 = 1 being clear. So suppose j > 1 and that the statement holds
for j — 1. We have

7 (ju + tou) = Ot )u + tou = d(Hu) = (0) = 0
and so, by induction hypothesis, ju + tdu € D;QMO. Similarly, #~(tu) = 0 implies
tu € D;QMO and hence also —d(tu) € D;QMO. Alltogether,

(j = Du=ju—u=ju+t(td - ot)u = ju+ tou — o(tu) € D o Mo.

and it remains to divide by 5 — 1. This completes the induction step and establishes the
equality D;QMO = M. Hence the proposition is proved. 0

Theorem 3.2.4. (Berthelot-Kashiwara theorem, left version) The functors i, i induce
mutually inverse equivalences of categories
Py V(i
Coh(%y o) =h Coh™(Zx ) -
Proof. We first suppose that 2) < X be of codimension 1. It suffices to show that the
counit of the adjunction € 4 : (iy 0 i").# — .# is an isomorphism for any .#. This is

a local question and we may assume that X is affine with coordinates z, ..., x4 and that
# is generated by t := x4. Since (i, oi%).# — A is surjective according to we
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may also assume that .Z is globally generated, as .@;Q—module, by finitely many sections
€1,...,en € i'M = ker(t) € 4. Hence there is a free .@%Q—module % of rank n and a
linear surjection

1L — M.
Let % be the kernel of this morphism, a coherent _@ g-module with support in 2.
The morphism i, %% — & is surJectlve again by - Similarly to the above, J¢ is
therefore globally generated, as @x o-module, by finitely many sections fi, ..., fm € z“%’ =

ker(t) < J# . Consider the .@@7Q—Submodule
V=Y Dyl A
J

By construction, the composite map i, % — i,i%# — J# is a linear surjection
Z-+/V - e%/
Moreover,
Vit citi,l ~2,

where the second inclusion holds by left-exactness of i, cf. and the final isomorphism
holds by [3.2.2] Hence, i, ¥ — i, .Z is injective with image 2. All in all,

The Qg)’Q—module Z /Y is finitely presented and hence coherent. So i is essentially sur-

jective. Moreover, Z/¥ =~ (if0i, )(L/¥) ~ i*.# . So the functor i* takes Coh? (2] ) into
Coh(.@g Q) and is a quasi-inverse to ¢,. This proves the theorem in case of codimension

In the general case, we again reduce to the case where X is affine with coordinates 1, ..., x4

and that . is generated by z,,1,...,x4. Define a series of closed subschemes of X by

Dy = V(xps1, .., tgpp1) for k=1,....d —r, ie.
2):9")1C2)2C"'Q‘jdfrflczyd7rc%

and ig : Y < Y41 is a closed immersion between smooth formal schemes of codimension

1. We use a finite induction on k. We call (S) the following statement :

(ix)+ © - (i1)+ induces an equivalence of categories between Coh(.@ o) and Coh@(.@% o)

with quasi-inverse (i1)% o - - (ig)".

By the codimension 1 case, the functor (ix.1)y is an equivalence of categories between

Coh(.@%k@) and Coh@k(.@%kﬂﬁ) with quasi-inverse (z’kH)h In particular, (S;) is true.

Suppose that (Sy) is true. According to[3.1.1](iii) and [3.1.2[(iii), the functor (iy4+1)+ restricts

to an equivalence between objects supported on 9), i.e. to an equivalence Coh? (.@%k@) and
Cohm(.@%k%@) with quasi-inverse (ig,)". This establishes (Sgy1). The statement (S,;_,.)
then establishes the theorem, since i, = (ig_,); o - - (i1)4 and i = (i1)% o - - (ig_,)%. To
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see the latter equality, note that all functors i, (ig_)+, ..., (i1)+ are essentially surjective.

According to part (ii) of [3.2.2] all functors i, (i1)%, ..., (i4_,)* therefore preserve coherent
modules. But then i* = (i;)% o - - (iq_,.)" by part (ii) of [3.1.2] as claimed. O

3.3. Side-changing. We deduce the right version by using the side-changing functors
wx e, (—) and Homg, (wx,—), cf. We consider the (.@%7@,i_1.@;,(@)—bimodule

@T — il
X-2,0Q - xQ
Denote by i, . the functor from right @%@—modules to right @;Q—modules given by
i (N) = N @y Dk g
as well as the functor from right .@;Q—modules to right @QB’Q—modules given by

E(AM) = Homi,l%(g;%@, ).

Lemma 3.3.1. (i) The left 9%’@-m0dule 9;_@@ is flat.
(ii) One has a natural isomorphism i, (N) ~ wx gy i+ (Homegy (wy, A)).
(iii) One has a natural isomorphism (M) ~ wy ®a, i*(Homg, (wx, A)).

Proof. Given the definition of the transfer module [3], 3.4.1]
Pty =1 (Prg®ox wi') ®irr0y wy,

part (i) follows formally exactly as in the classical case [0, Lemma 1.3.4]. Since i,
is exact by , so is 4,4, and then (ii) implies the flatness of the left .@%Q—module

.@;ﬁ o (one may also give a direct argument along the lines of the proof of part (i)
of [3.1.1). This shows (i). Finally, as in the proof of part (i) of [3.1.2] one verifies that
Homi_@;@(@;_@@, i~1(—)) is right adjoint to (—) ®%’@ @;_@@ and so (iii) follows from
unicity of adjoint functors. O

Let Cohr(.@%?@) and Cohr’@(@;@) be the categories of coherent right .@%},Q—modules and
coherent right Qin—modules with support in 9), respectively.

Theorem 3.3.2. (Berthelot-Kashiwara theorem, right version) The functors z'T,Jr,i” m-
duce mutually inverse equivalences of categories

Z'T,+
Coh'(Z4 o) —=_ Coh™(ZL) .

ir

Proof. Taking into account this is a consequence of |3.2.4] and |3.3.1}] 0
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4. THE BERTHELOT-KASHIWARA THEOREM IN THE TWISTED CASE

4.1. Twisted sheaves. The following definition, adapted to arithmetic differential op-
erators, is taken from [I]. Note that, given an Oxg-ring (7, 1), and an open subset
i < X, the sheaf & and the morphism ¢, may be restricted to 4l and yield the & g-ring
(& |y, Lr|y). We say that two Ox g-rings (&7, 1) and (&', 1) are locally isomorphic, if
there is a (Zariski) open covering of X by open subsets 4l together with isomorphisms
(A |y, Lr|y) ~ (& |y ter]u) (in the category of Oy g-rings, cf. for all 4L

Definition 4.1.1. A twisted sheaf of arithmetic differential operators on X is an O g-ring
</, which is locally isomorphic to the Ox g-ring @;Q.

Let in the following .7 be a twisted sheaf of arithmetic differential operators on X.

Lemma 4.1.2. Let o/°PP be the opposite ring, i.e. the order of multiplication is reversed.
Then /PP is an Ox g-ring.

Proof. Being a local statement, we can assume that X has étale coordinates. The existence
of the adjoint operator says that (9;5’@)"1’7’ is isomorphic to 9;(@ [3, 1.2.2/3]. Since this
holds even as 0% g-rings, the lemma follows. 0

Definition 4.1.3. Let ¢ < Oxq be an ideal. The normalizer of the ideal ¢ .o is the
subset of .7 equal to
Nl J )= (Ped|P g < g},

Lemma 4.1.4. One has the following basic properties:
(1) Ney( F ) is a sub-Oxg-ring of o .

(1) Fd < Ny( FA) is a two-sided ideal.

(111) The quotient Nyy( F )] F o is an Oxq/ 7 -ring.
(w) o] F is a(Ny( FA) F A, )-bimodule.

Proof. The proof of (i)-(iii) is identical to the proof of The point (iv) is easy to
check. O

Now let 7 : ) — X be a smooth closed formal subscheme defined by some coherent ideal
4 < O%. According to the sheaf on Q)

oty 1= i_l(e/j/ﬂ(j(@%)/f@ﬂ)
is an Oy g-ring.
Lemma 4.1.5. If o/ = 9;57@, then sty = 9%)7(@.
Proof. This is [2.3.5 O
Corollary 4.1.6. 4y is a twisted sheaf of arithmetic differential operators on Q).

Before we proceed, we recall an elementary lemma.
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Lemma 4.1.7. Let X be a topological space and Fi, Fo < G abelian sheaves. If Fy . = Foq
inside the stalk G, for all x € X, then F; = F».

Proof. By symmetry, it suffices to see F; © F,. The stalk of the sheaf (F; + F2)/Fa
vanishes at every x € X, so that (F; + F3)/Fe =0, i.e. F; S Fo. O

Proposition 4.1.8. Let 3 LA D)) L X be closed immersions of smooth formal o-schemes.
There is a canonical isomorphism (9hy)s ~ /5 as O3 g-1ings.

Proof. Let # < O be the ideal defining the closed immersion 70k : 3 — X. In particular,
J < #. Let _# be the image of i"*(_¢# /%) in Oyq. By construction, the rings (2%))s
and .o/ are contained in k*(<#y) and i* (/) respectively. Hence there is an injective ring
homomorphism
p: ()3 — (10 k)" ()

compatible with the &3-structures. It suffices to see im(y) = 5. This is a local question,
by @ and so we may assume .o/ ~ .@;Q. Then oy ~ .@%,Q and o/ ~ .@;Q by
and ¢ becomes the canonical injective morphism

K (N (T Dyo)| T Dyg) = (00 k)" (Zhg).

Its image equals 9;@, according to [2.3.5| 0

In the following we take the canonical isomorphism (.<#))s; ~ @4 as an identification.

4.2. Direct image and the main theorem. Let
1:Y) — X
be a closed immersion between smooth formal o-schemes defined by some ideal . <

Ox. Let o/ be a twisted sheaf of arithmetic differential operators on X. We have the
(Ny( I )| I o, of)-bimodule of | I of , cf. |A.1.4]

Definition 4.2.1. The transfer bimodule along i is the (%), i </ )-bimodule
ﬂ@_)x = Z*(ﬂ) = Zﬁl(d/jﬂ)

Proposition 4.2.2. Let 3 LA ) L X be closed immersions of smooth formal o-schemes.
There is a natural isomorphism as (<5, (i o k)~1.a)-bimodules

VQ{B_)@ ®k—1£¢m k_lﬂm_,x =~ «52%3—%{
Proof. One has
%_)@ ®k*1%9_) ki_l,jy@_,x ~ (6)3 ®k71ﬁg} ]{3_1&{@) ®k*1m@ k_l(ﬁ@ ®i’1@3€ i_lﬂ)
~ (O3 @10y k™ ) @p-1.4y (K71 Oy Qioky-10x (10 k)" )

~ O3 Qiok)-10y (10 k)1 = o5 5.
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In the middle isomorphism we have use the compatibility of inverse images with tensor
products, e.g. [10, C.1.11(i)]. O

Definition 4.2.3. Let .# be a right @%-module. Its direct image along i is the right
o/-module
bt M= (M Ry Sy ).

It is clear that this yields a functor i, , from right 2%)-modules to right «/-modules.

Lemma 4.2.4. (i) The left ofy-module ofy_x is flat.
(ii) The functor i y is exact.

Proof. Part (i) is a local question and so we may assume &/ = 9; and “y_x = @%Hx-
The claim follows then from part (i) of Since i, is exact, (i) implies (ii). O

Proposition 4.2.5. Let 3 LA D)) L X be closed immersions of smooth formal o-schemes.
There is a natural isomorphism (i0k)u + = i 1 0k 4 as functors from right o/5-modules
to right </ -modules.

Proof. Using the one finds
(ok)w (M) ~ (i0k)( M Qo H5-.%)

0

s (s (M @y (H5s) Oty k™))

0

Z*(k* (,// Qs 5273_,@) ®WQJ @{m—&?)

o~ Z%7+(k%,+('%))

In the third isomorphism, we have used the projection formula [0, C.1.11(iii)]. For this,
note that k& = k, and that oy _,x is flat as left .o%)-module [4.2.4] O

We define the following functor from right .27-modules to right @%-modules:

Zlii% = HOmiflﬂ(%@_,x, Z._l.%).
Proposition 4.2.6. The functor i, 1 has a right adjoint, given by the functor zij

Proof. This is a sort of right version of the argument given in part (i) of [3.1.2| Since i is
a closed immersion, 4, has the right adjoint i~!. Therefore, for any right %-module .4’
and any right «7-module .#, one has

Hom oy (i + Ny M) = Homy—1(N Rury r@{m—ﬁe,i_l/fl).
One obtains (i) by combining this with the standard tensor-hom adjunction

HOmi—lyy(e/V ®4272j 52%2)%%7 2'71%) = HOmWQJ (JV, HOmi—lﬂ(eﬂZ{@Hx, 271%))
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Corollary 4.2.7. Let 3 LA 2) L X be closed immersions of smooth formal o-schemes.
Then (i o k:)if = k;i{ o zif as functors from right o7 -modules to right o/5-modules.

Proof. This follows from and [4.2.5| and [4.2.6] by uniqueness of adjoint functors. O

We come to the main result of this paper. Let Coh"(c#%) and Coh™¥ (<) be the cate-
gories of coherent right .2%)-modules and coherent right 27-modules with support in ),
respectively.

Theorem 4.2.8. (Berthelot-Kashiwara for twisted sheaves) The functors iz ., ii{ induces
mutually inverse equivalences of categories

it
Coh"(afy) —=_ Coh™?(&).

b
(%

Proof. Let .4 be a coherent right @%-module and .# be a coherent right .«/-module
supported on g). It suffices to see that the counit ¢, 4 o zi{(/// ) — 4 and the unit
N — ii« 0 ig 4+ () of the adjunction are isomorphisms. These are local problems and
we may therefore suppose that o7 = @;Q. Then oy ,x = 70 _x g and the pair (s +, Zi{>
becomes the adjoint pair (i,,,i%) studied in . Hence implies the assertions. [

5. APPLICATIONS TO CRYSTALLINE DISTRIBUTION ALGEBRAS
Let G be a connected split reductive group scheme over o.

5.1. The crystalline distribution algebra. We briefly review the construction of the
crystalline distribution algebra of G, as introduced in [13]. Let I be the kernel of the
morphism o-algebras g : 0[G| — o which represents 1 € G. Then I/I? is a free 0 =
0[G]/I-module of finite rank. Let t1,...,tx € I whose classes modulo I? form a base of
I/I?. Let m = 0 be an integer. The m-PD-envelope of I is denoted by P, (G). This
algebra is a free o-module with basis

§) gl gl

where qi!tgki} = th with i = p™g; + 7 et 7 < p™ [2, 1.5]. The algebra Py (G) has
a descending filtration by the ideals 7" = Dj=n 0 t!&} The quotients P( )(G) =
Py (G)/I" 1} are generated, as o-module, by the elements ¢**} where |k| < n and there
is an isomorphism P ,(G) ~ @| kl<n ottt} as o-modules. There are canonical surjections

prHin s BEEL(G) = Py (G).

We note

Lie(G) := Hom,(I/I?, o).
The Lie-algebra Lie(G) is a free o-module with basis &3, ..., &y dual to ty, ..., ty. Form' >
m, the universal property of divided power algebras of level m gives homomorphisms of
filtered algebras ¥, m 1 Py (G) — Puny(G) which induce on quotients homomorphisms
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of algebras vy, ..« P (G) — P, (G). The module of distributions of level m and order
n is Dém)(G) := Hom, (P, (G), 0) The algebra of distributions of level m is defined to be

(m
D'™(G) := lim DI (G)

where the limit is taken with respect to the maps Hom,(pr"™1" o).

For m’ > m, the algebra homomorphisms vy, ., give dually linear maps @7 D™ (G) —

D,(qm/)(G) and finally a morphism of filtered algebras ®,, ., : D™ (G) — D™)(G). The
direct limit Dist(G) = lim D™)(@) equals the classical distribution algebra of the group
scheme G [8, 11.§4.6.1]. Instead of passing to this limit, we let G be the completion of G
along its special fibre. We write G; = Spec o[G]/7*"!. The morphism G;;; — G; induces

D™(G) := lim D™)(G).

A~

If m’ > m, one has the morphisms ®,, v : D™(G) — D™)(G) and one can define the
crystalline distribution algebra of G as

D'(G)g := lim D' (G) ® Q.

m

5.2. Twisted sheaves on the flag variety. We let B < G be a Borel subgroup scheme
containing a ma)fimal split torus 7', with unipotent radical V. Let X := G/B be the flag
scheme and let X := G/N. The right translation action of 7" on X makes the projection

X — X
a T-torsor over X.

We exhibit a certain class of twisted sheaves of arithmetic differential operators on the
p-adic completion X of X. This construction goes back to the fundamental work of
Beilinson-Bernstein [I] and Borho-Brylinski [5]. It was adapted to the setting of arithmetic
differential operators by Sarrazola-Alzate [I8][]

Let 7" and X be the completion of T and X respectively. Then T acts from the right on
X. We also write £ for the projection morphism X — X arising from & by completion.
We put

Pgi= (& ZL )
The right T-action on X leads to a central embedding D(7)g — Q;Q

Now we fix a character of the crystalline distribution algebra D(T)q of T, i.e. a homo-
morphism

Note that [18] assumes o = Z,, however, a large part of the results and constructions are valid in full
generality.
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A: DY (T)g — K.
Note that, by restriction, A may be viewed as a weight, i.e. a linear form of the Cartan
subalgebra
t:=Lie(T)®Q c g = Lie(G) ®Q,
but not every weight extends to a character of DT(T)g. If A € X(T), i.e. A lifts to an
algebraic character of T', then we denote the corresponding G-equivariant line bundle on
X (with p inverted) by Ox g Finally, we denote the trivial character (which restricts to
zero on Lie(T)) by A = 0.
We define
DL on = Do Opt(men K,
compare [I8, Def. 5.0.1]. Since (.@;-’@)T = D'(T)q according to [13, Thm. 4.4.9.2], the
ring .@;Q is locally, on an open subset trivializing the torsor, isomorphic to .@;Q QK
DY (T)g. It follows that 9;57@’/\ is indeed locally isomorphic to @;Q, ie. ‘@JE,Q«\ is a

twisted sheaf of arithmetic differential operators on X depending on the character A. If
A € X(T'), then there is a natural left action of .@;Q y on Ox g For A = 0 one recovers

T _gf
@%7@70 - ‘@x7(@.

We need to determine the opposite ring of .@;Q’ , in terms of the weight A. To do this, for
any ring A, we denote by A°PP its opposite ring, i.e. the same underlying abelian group,
but where the order of multiplication reversed. For any Z,-algebra A, we denote by A its
p-adic completion and let /1@ = A®Q.

Lemma 5.2.1. There are ring isomorphisms (A)%P ~ Ao and (A%PP)g = (Ag)°PP.

Proof. The canonical ring homomorphism A — (/?’\pp)"pp extends to a bijection A~

(Z"\m?)"pp. Passing to opposite rings gives the first claim. The argument in the second
case is similar. U

Let p = 5 > 5+ « be half the sum over the positive roots of (G,T) with respect to B.
Proposition 5.2.2. There is a ring isomorphism (.@;’QA)"T’P ~ _@;Q,pr)\.

Proof. By construction, one has 9;57@’/\ = li_I)anO @;’8)\ with twisted sheaves @)(gi\), their
p-adic completions .@g’j\) and their corresponding Q-algebras 93%8,» By the preceding

lemma, it suffices to fix m and to show isomorphisms (.@)((mg )PP~ .@)(g;)p_)\ compatible

with variation in m. Let Qf)((m) = Ox ®, D™ (G). According to [I8, 3.5.13], there is a
surjective morphism of Ox-rings

o) o 2

)
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which gives, upon inversion of p and restriction to the generic fibre ¢ : Xg — X, the
classical morphism ®x » : Ox, @k U(g) — Dx, . Following [15, 4.15.1], we denote by ¢
the anti-isomorphism of the O -ring Ox, ®x U(g) induced by x + —x on g. It restricts

to an anti-isomorphism of %)((m), which we also denote by ¢. Let ¢ (m) .= ker @g;n; and

= ker ®x, 5. Then //\m) = szf)((m) N tx_#x. Following [1], we denote by b° the kernel
of the canonical morphism « : Ox, ®k g — Dx, and by A\° the morphism b° — Oy,
induced by A (using that b°/[b°,b°] ~ O, ®k t). The two-sided ideal # then equals
the right-ideal generated by ker \°. By [15], 4.15.1] the anti-isomorphism ¢ maps ker A° to
ker(2p—A)° (note that Kashiwara writes g for b°, cf. [15], 4.3]). It follows p(_Z\) = Fo,-x
and this implies (_Z™) = /2(:1)/\. This gives an isomorphism (.@)((m/\) )oPP .@)(Z;)p_)\.
Compatibility with m may be checked after inverting p and restricting to the generic fibre
Xg. But then, by construction, the isomorphism coincides with the classical isomorphism
DXQ,A =~ DXQ,Qp—A [15, 4151] O

Let in the following
1:Y — X
be a smooth closed formal subscheme defined by some coherent ideal .# < O%. According

to 4.1.6l and 4.1.2 the sheaf
‘@%,@,A = iil(‘/V@T (j‘@;,Q,Qp—))/j‘@;Q,Qp—)\)Opp

X,Q,2p—A

is a twisted sheaf of arithmetic differential operators on ). If A € X(7T'), we let
ﬁ@#@,)\ = Z'*ﬁx@’)\ = i_l(ﬁx@)\/jﬁx?@’)\).

It is a line bundle on 2).

Proposition 5.2.3. Let A € X(T).

(1) The line bundle Oy g, is naturally o left 9%7@’/\-m0dule.

(ii) Assume that the special fibre and the rigid-analytic generic fibre of ) are connected.
Then Oy ts a simple left .@%QA—module.

Proof. We recall that .@;@7)\ naturally acts from the left on 0% yq. Let f € Ox g and P e

.@;’Q’Q ,—x be local sections. Identifying the Ox g-ring .@;@72 ,— With (.@;Q 1), there is a

well-defined local section P(f) € Oxg,x. Whether or not the subset .47, . (7 _@; 0.2 N
X,0,20— A )

stabilizes the submodule .# 0% g » © Ox g, is a local question. We may hence fix a local
O% g-linear isomorphism between Ox g\ and Oxq. If then P € A7, (I .@;@%_,\)
X,0,2p—\ ]

and f € H, then there is Q) € 9;(@7217_)\ and h € Jy such that Pf = h(Q). It follows
P(f) = Pf(1) = hQ(1) € hOxq < S

In this way, the right module structure of Ox g\ over 9;@’2 X = (9;;7@,)\)07”” makes
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Ox,02/P00x, & right module over the ring
Nt (fg;,@gp—x)/f@je@gp—x

X,Q,2p—A

This implies that Oy g =i ' (Oxgr/F00xq.) is a left module over 9%),@,» as claimed.
For (ii) we assume that the special fibre ), and the rigid-analytic generic fibre Qg of
are connected. Let # < Oy be a .@%@?/\—s‘cable submodule. Then ¢ is a coherent
Oy o-module. We claim that the intersection Supp(_#) n Supp(Oyqnr/ 7 ) is empty.
Indeed, let us assume for a contradiction that

y € Supp(_Z) 0 Supp(Oy o/ 7 )-

Choose an open affine rig-connected i < %) containing the point y. Making $f smaller if
necessary, we may undo the twist and assume that the restrictions of 0y g » and @; o to

[ are isomorphic to Oy g and .@LTLQ respectively. But then the sheaf # | is corresponds
to a nonzero and proper QQ’Q-submodule of Oy . This is in contradiction to the fact that

Oy is a simple @i@—module, cf. [12, Prop. 2.3.6]. So Supp(_#) n Supp(Oy o/ 7) is
empty. Since Supp(_#Z) and Supp(Oy g/ F ) are closed subsets of ), and their union
equals ), the connectedness of ), implies then that one of them is empty, thus either
F =0or ¢ = 0Oygxr So Oyg,y is asimple left @QB’Q’)\—module, as claimed. O

5.3. Geometric construction of simple modules. We keep the notation. In partic-
ular, A : DY(T)g — K is a character giving rise to the twisted sheaf 9;6,@«\ on the flag

variety X. Let ¢ : ) — X be a smooth closed formal subscheme with twisted sheaf .@%’Q e

Let 6 : Z(g) — K be a character of the center Z(g) of U(g), which corresponds to the
weight of t induced by A under the classical Harish-Chandra homomorphism. We let

D'(G)ge = D'(G)q @20 K

be the corresponding central reduction. We recall the localization theorem for left DT(G)g o-
modules. Recall that p = 3 >4 a.

Theorem 5.3.1. (a) Suppose that X\ + p is dominant and regular (as a weight of t). The
global section functor induces an equivalence of categories between coherent left ‘@;,Q,/\'

modules and coherent left H°(X, .@;Q/\)-modules.

(b) The G-action on X induces an algebra isomorphism
D'(@)qo = H'(X, T g)-

Proof. It X\ lifts to an algebraic character of 7', then this summarizes the main results of
[14] and [I7]. The case of a general character is the main result of [I§]. O

We come to the main application of our results.



32 CHRISTINE HUYGHE AND TOBIAS SCHMIDT

Theorem 5.3.2. (i) There is an equivalence of categories
iy Coh(2 ) — Coh? (2] ,)
preserving simple objects on both sides. If A€ X(T'), let Byjxx 1= i+ O gx-

(ii) Let X+ p be dominant and regular and let ) have connected special and generic fibre.
If\e X(T), then H(X, Byx,) is a simple DY(G)q¢-module.

(iii) Let A+ p be dominant and regular and let A\ € X (T'). Let),%)’ be two smooth closed
formal subschemes of X with connected special and generic fibre. If H°(X,Bypxa) =~
HO(X, By x5) as DY(G)ge-modules, then 9 = ..

Proof. The point (i) follows from [5.2.2| and the Berthelot-Kashiwara theorem for right
modules over (@;Q’)\)Opp = @;sz—/\? cf. |4.2.8, The points (ii) and (iii) follow from |5.2.3
together with the localisation theorem. L

Remark: In the setting of (iii), an isomorphism H®(X, Byx) ~ H°(X, Byx,\) does not
in general imply an equality of ) and )’ as closed formal subschemes of X, even in the
case A = 0.
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