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ABSTRACT. Let 0 be a complete discrete valuation ring of mixed characteristic (0, p) and
Xo a smooth formal o-scheme. Let X — X be an admissible blow-up. In the first part, we
introduce sheaves of differential operators D; . on X, for every sufficiently large positive
integer k, generalizing Berthelot’s arithmetic differential operators on the smooth formal
scheme X(. The coherence of these sheaves and several other basic properties are proven.
In the second part, we study the projective limit sheaf Dy o, = k&nk @;7 . and introduce
its abelian category of coadmissible modules. The inductive limit of the sheaves Dx o,
over all admissible blow-ups X, is a sheaf Dy, on the Zariski-Riemann space of X,
which gives rise to an abelian category of coadmissible modules. Analogues of Theorems
A and B are shown to hold in each of these settings, i.e., for D;&k, Dx 0, and Dz, -
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1. INTRODUCTION

Let 0 be a complete discrete valuation ring of mixed characteristic (0, p), with uniformizer
w and fraction field L. In [23] some of us (together with D. Patel) have introduced sheaves
of arithmetic differential operators Dl,k on certain semistable formal models X,, of the
rigid analytic projective line over L (for positive integers k > n). A key result of [23] is

that X, is DL,k—afﬁne. When n = 0, the formal model X; is formally smooth over Spf(o),
1
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and the sheaf @&0 equals Berthelot’s sheaf of arithmetic differential operators, as defined
in [7], and @B’O—afﬁnity was known before by a result of one of us [21].

In this paper we generalize the construction of [23] and define and study sheaves of
arithmetic differential operators on arbitrary admissible formal blow-ups of an arbitrary
given smooth formal scheme X, over o.

At the moment, the main application of this generalization is the localization theorem of
[18]: in this context X is the smooth model of the flag variety of a connected split reductive
group G over L, and the main result of [18] establishes then an anti-equivalence between
the category of admissible locally analytic G(L)-representations (with trivial character)
[24] and the category of so-called coadmissible equivariant arithmetic D-modules on the
system of all formal models of the rigid analytic flag variety of G.

In the following we describe the construction and the main results of this article. Let
Xy be a smooth formal scheme over o and let Dg:) be Berthelot’s sheaf of arithmetic
differential operators of level m on Xy as defined in [7]. For any number k& > 0, we

have the subalgebra Dgeko’m) consisting of those differential operators which are generated,
locally where we have coordinates x1, ...,z and corresponding derivations ¢4, ..., 0y, by
operators of the form

M 2|
wk|g‘a<ﬁ>(m) _ wk(l/1+...+l/1u) H al<l/l>(m) ’ Where al<l/l>(m) _ lp’iﬂJ~a;/l .
- =1 Vl!

Given an admissible blow-up pr : X — X, we let kyx be the minimal k such that @Oy < Z
for any coherent ideal sheaf Z on Xy whose blow-up is X. Our first basic result, cf. 2.1.12]
says that

Dg?’m) = pr*'Dgeko’m) = Ox Qpr-10y, prfli)gfo’m)
is naturally a sheaf of rings on X whenever k > kzx. We define
DE™ =lmDY™/w' and DY, =lmDE™ @Q,
and call these sheaves arithmetic differential operators of congruence Zeveﬁ k on X.

The structure theory of these differential operators goes largely parallel to the classical
smooth setting (when X = X, and k& = 0), as developed by Berthelot [7]. In particular,

the sheaves @gf’m), @gﬂm) and 9; . are sheaves of coherent rings on X. We then show
that Cartan’s theorems A and B hold for the sheaf D; > When restricted to an affine open

IThe terminology is motivated by the relation to congruence subgroups in reductive groups in the case
of formal models of flag varieties, cf. [I§].
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subscheme 4 of X, cf. [2.2.15] This means that the global sections functor I'(¢l, —) furnishes
an equivalence of categories between the coherent modules over @L,k and over I'(4L, D;re’k),
respectively. A key result (the ’invariance theorem’) shows that in case of a morphism
X’ — X between admissible blow-ups of X, the categories of coherent modules over ’D;,’k

and over 9;,1« respectively, are naturally equivalent, cf. [2.3.81 As a consequence, we
obtain global versions of theorem A and B on the whole blow-up X provided the base X

is affine, cf. [2.3.12

Our next objective is to pass to the projective limit

Dxoo = L&n ‘D;,k
k

and to define the category Cx of coadmissible Dx -modules. We show that it is a full
abelian subcategory of the category of all Dy ,-modules. Its construction relies on the
fact that the ring of local sections I'(, Dx o) over an open affine ¥ of X is a Fréchet-Stein
algebra. Our terminology (as well as the general philosophy behind these constructions)
goes back to the fundamental work of P. Schneider and J. Teitelbaum who introduced the
concept of a Fréchet-Stein algebra and defined and studied the category of coadmissible
modules over such a ring, cf. [24]. In fact, we show that the global sections functor
['(, —) induces an equivalence of categories between Cy and the category of coadmissible
I'(%B, Dx o )-modules, cf. 3.1.13] Moreover, any coadmissible Dy ,-module has vanishing
higher cohomology on U (or on preimages of open affines in Xg). These results should be
regarded as Cartan’s theorems A and B in this setting, cf. [3.1.13| and [3.1.16]

Finally we consider the Zariski-Riemann space of Xy, i.e., the projective limit
(Xp) = lim X
of all admissible formal blow-ups X — X, cf. [9]. One can then form the inductive limit

Dy = lim spy' Dixr
x
where spy : (X¢) — X is the projection map. This is a sheaf of rings on (Xy). We define
the category of coadmissible D x,,-modules and show that it is an abelian category. We
establish analogues of Cartan’s theorems A and B in this setting, cf. [3.2.6]

After we had developed much of the theory presented here (which began with [22] 23])
we became aware of the article [25] by A. Shiho, where he introduces sheaves of p-adic
differential operators of negative level —m, as they are called there. These are closely
related to the sheaves considered here, where the congruence level k corresponds to Shiho’s
level —m. We are currently investigating the implications that Shiho’s work has in our
context.

We also want to mention that K. Ardakov and S. Wadsley are developing a theory of
D-modules on general smooth rigid-analytic spaces, cf. [I, 3, 4]. In their work they
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consider deformations of crystalline differential operators (as in [5]), whereas we take
as a starting point certain deformations of Berthelot’s arithmetic differential operators.
Though we have not carried this out in the present paper, it is not too difficult to see that
the category of coadmissible Dy \-modules as defined here, when pulled back to the site
of the rigid-analytic space of classical points of (Xy), coincides with the corresponding
category studied in [I], 3], 4].

Acknowledgments. T.S. would like to acknowledge support of the Heisenberg programme
of Deutsche Forschungsgemeinschaft (SCHM 3062/1-1). M.S. is grateful for the hos-
pitality and support of the following institutions where work on this project has been
accomplished: Institut de Recherche Mathématique Avancée (IRMA) of the University
of Strasbourg, Centre Henri Lebesgue, Institut de Recherche Mathématique de Rennes
(IRMAR).

Notations and Conventions. We denote by w a uniformizer of the complete discrete
valuation ring o, and we let |.|, be the absolute value on L = F'rac(o) which is normalized
by |pl, = p~*. Throughout this paper & = Spf(0). A formal scheme X over & such that
wQy is an ideal of definition and which is locally noetherian is called a &-formal scheme.
If the G-formal scheme X is smooth over & we denote by Ty its relative tangent sheaf.
A coherent sheaf of ideals Z < Oy is called open if for any open 4 < X the restriction of
T to 4 contains w*Oy (for some k € N depending on ). A formal scheme which arises
from blowing up an open ideal sheaf on X will be called an admissible blow-up of X. For
an integer ¢ > 0 we also denote X; the scheme

X; = X xg Spec (0/w" o) |

where the Cartesian product is taken in the category of locally ringed spaces. Without
further mentioning, all occuring modules will be left modules. We let N = {0,1,2,...} be
the set of non-negative integers.

2. ARITHMETIC DIFFERENTIAL OPERATORS WITH CONGRUENCE LEVEL

Let X be a smooth and separated G-formal scheme, and let

Xo; = X9 xg Spec (0/w' o) .
Let us write Za for the diagonal ideal of the closed immersion of formal schemes Xy —
Xo x Xy and Zx ; for the diagonal ideal : Xy ; — Xo,; x Xy,;. We also introduce X g, the
generic fiber of X. It is a rigid analytic space over L. We write Z for the diagonal ideal
of the closed immersion of analytic spaces Xoq < Xog x Xog. We have specialization
maps X — Xo and X g x Xog — Xo x Xo which we denote by sp. There is a canonical

isomorphism sp*(Za) ~ Za. Finally, the relative tangent sheaf T, is a locally free Ox,-
module of finite rank equal to the relative dimension M of X, over &.

2.1. The main construction.
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2.1.1. Definitions over Xy. The sheaf of relative differential operators of X, ; over o/w' !,
as introduced in [I3, 16.8], will be denoted by Dx, .. It naturally acts on the structure
sheaf Ox, . Its subsheaf D% = of differential operators of order < n is defined by

(2.1.1) QO,i = HOm(’)XO’i (OXO,iXXO,i/IZ-;l7 OXO,i) :

It is a sheaf of locally free Ox, ,-modules of finite type and we have Dy, , = lim D% .
For fixed n, the projective limit lim D%  is a locally free Ox,-module of finite type.
Taking the inductive limit produces a sheaf of rings

Dy, = liny (m Dx)

n K3

on Xy. It naturally acts on the structure sheaf Oy, and can be described in local coordi-
nates as follows. Let Ly € X, be an open affine endowed with étale coordinates xy, ...,z

and corresponding set of derivations 0y, ..., 0. Write @Z[V] € Dy, for the differential op-
erator defined by V!(?l[y] — oV, and put v = (vy,..., ) € NM, o = TV, a}”l]. One has
the following description, involving finite sums,

Dy (8h) = {faye[”] 0y € Ox, <uo>} .

v

Since Xy is a smooth &-formal scheme, one also has the usual sheaves of arithmetic
differential operators defined by Berthelot in [7]. In particular, for a fixed non-negative

m, Dgg;) will denote the sheaf of differential operators over X, of level m. Taking i
to be endowed with local coordinates x1,. ..,y as before, one introduces the following
differential operators

(2.1.2) o =gl

where ¢, denotes the quotient of the euclidean division of v by p™. For v = (v1,...,vy) €
NM | we also define 0% = Hlj\il 8Z<Vl>. Restricted to iy, the sheaf Dg?;) is a sheaf of free

Oy,-modules with basis given by the elements 0. Berthelot introduces also the following
sheaves over X

DG = im D /o' and DY, =l DY @ Q.

Let k be a non-negative integer, called a congruence level. We define subsheaves @gﬁ;m)
of subalgebras of the previous sheaves Dggj) in the following way. Take 4y endowed with

local coordinates x1, ..., x) as before. Then the sheaf Dgfo’m) is free over i, as a sheaf of
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Oy,-modules with a basis given by the elements w*! 0% . In particular, one has
<0
(2.1.3) DE™ (1) = {Z @ a,0% | a, € Ox, (uo)} .

It is easy to check that these sheaves define a subsheaf of Dgg) and we call them level m
arithmetic differential operators of congruence level k on Xy. We then define as before

DE™ = DE ! DE™ = limDE™ and DY, =lm DY @ Q.
Of course, for £k = 0 one recovers the sheaves of Berthelot Dg)o,m) = Dggf). Note also, by
definition, the sheaf D;ka is a sheaf of (Q-algebras.

We have the following description over an affine open Uy of Xy endowed with coordinates
T, T,

Dl (o) = {Zwk”'aué[”] 4, € Ox,a(tly), and 3C > 0,7 < 1|]a,| < 077”'} :

where | - | is any Banach norm on the affinoid algebra Ox, o(o)-

2.1.2. Definitions over Xog. We refer to [I0, 1.1.1] for a basic discussion of the sheaf
of algebraic differential operators over a smooth rigid analytic space such as Xoq. It
is defined in the following way, analogously to the definition given in [I3] 16.8] which
we have recalled in As before, Zn denotes the diagonal ideal of the immersion
Xo,0 — Xo,0 X Xo,g. One puts

n =n+1
(2.1.4) D%o,@ = ’Homoxo@ (O%o,@xxo,@/IA 70360,@)’
which is a sheaf of locally free Ox, ,-modules of finite type and Dy, , = h_I)nn D%, o The
latter is a sheaf of rings acting naturally on the structure sheaf Oy, of the rigid analyic
space Xo,Q-

Suppose now that
pr: X — Xy

is an admissible blow-up of the formal scheme X defined by a coherent sheaf of open ideals
T of Oy, containing w®. We remark that the ideal Z is not determined by the blow-up
pr: X — X, i.e., different open ideal sheaves can give rise to isomorphic blow-ups. (For
example, the blow-ups defined by Z and by @w"Z are isomorphic as formal schemes over
Xo. The same holds for the ideals Z and Z".) In the sequel we denote by k7 the minimal
k such that =" € 7 and put

(2.1.5) kx = min{kz | X is the blowing-up of Z on X,}.
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Let us define now for k > kyx the Ox-module
@gek’m) = pr*DgekO’m) )

Note that @gf’m) depends not only on the formal scheme X, but also on the blow-up
morphism pr, but we suppress this dependence in the notation. We have the following
commutative diagram of ringed spaces, involving the specialization maps Xy g — X, and
Xg — X, which we denote both by sp, and the isomorphism pr : Xg — Xg o induced by
the morphism pr on generic fibres:

Xo —~ Xo0

lsp lsp

%T)%O

Note that Dy, ~ pr*Dy,, for the corresponding sheaves of differential operators on Xgq
respectively X g, as follows from the definition of these sheaves.

Lemma 2.1.6.
(i) There is a canonical isomorphism Dz, , ~ sp*Dx, inducing an injective morphism
of sheaves of rings
D%O — Sp*D%O,Q .

(ii) There is a canonical injective map of sheaves of abelian groups

k,m
D(x ) - Sp*ﬂx@ )

which becomes an isomorphism upon tensoring with Q.

Proof. We have a canonical map Ox g — sp,Ozx,, that is locally an isomorphism over the
formal scheme X (resp. X;) and is thus an isomorphism of sheaves. Let us begin by (i). We
have a canonical map Dy, , — sp*Dx,. To check that this is an isomorphism, we can work
locally on X, and assume that X, is affine, endowed with local coordinates x1,...,xy,.
Then, using notations we see that both sheaves are free Oy, ,-modules with basis ¢*
and o respectively. The previous map takes 0“ to oMyl and is an isomorphism of sheaves
of Oy, ,-modules. We obtain the second map of (i) by adjunction and its injectivity follows
again using local coordinates. As in [I3] 16.8.9], the ring structure on both sheaves makes
use of the descriptions resp. . That the map Dy, — sp,Dx,, is compatible
with ring structures comes then from the fact that sp*(Za) ~ Za and

=n+1

Sp*((9350 ® O%O/IZ—H) = 0350,@ ® OxO,Q/IA
Let us prove (ii). From the previous isomorphism, we get an isomorphism

sp*pr*Dyx, = prisp* Dy, = priDyx,, =~ Dy ,
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that induces a canonical map pr*Dy, — sp,Dx, . Composing with the map Dgfo’m) — Dy,
we get a map

k7
pr*@éom) — sp, Dy,

It is a local question to prove that this map is injective. Let 4 < Xy be an open affine
formal scheme of X, such that § < pr='4l,, with 4, endowed with local coordinates
x1,...,2y. Then these local coordinates give local coordinates always denoted 1, ..., x),
over the generic fiber g of 4. Using notations [2.1.2, the sheaf pr*DgZ’m) is a free Oy-

module with basis the operators @*“ 3% whereas the sheaf sp. Dy, is a free Oy ® Q-

module with basis ¢%. The map we consider takes w0 to @l /v16%.  Since U
is flat over o, the map Oy — Oy ® Q is injective, and this proves that the canonical
map pr*Dgg)’m) — sp, Dy, is injective as well. The same argument shows that this map
becomes an isomorphism upon tensoring with Q.

0

Following [23], given k > kx, we will construct a p-adically complete sheaf of arithmetic

differential operators @gekm)

over the (usually non-smooth) formal scheme X.

2.1.3. Construction of the ring of differential operators of level k over X. We first observe
that the sheaf sp,Dx, acts on sp,Ox, ~ Oxq. By [2.1.6, the sheaf Dgf’m) is a subsheaf
of sp,Dx, and 2)%”) ~ 8p, Dy, We will first check that if £ > kx, the action of sp,Dx,
on Oz restricts to an action of @g?’m) on Ox. This can be checked locally on X. For
this, we assume that Xy = SpfA, where A is a smooth, complete, 0-algebra, endowed with
local coordinates 1, ..., x) . Since X is smooth over Spfo, both rings A and A/w A are
integral domains. We also introduce the differential operators 0% and @kl o according
to[2.1.2) of D™ = I'(X,, Dggf)) and D®™) = T(X,, Dg?o’m)) respectively. We also denote
I =T(Xy,Z) where V(Z) is the center of the blowing-up X.

Consider the N-graded A-algebra

B=@®B,

where the degree n-part B,, equals the n-th power I” of the ideal I. In particular, I° = A.
This means that

x = Proj(B)
the formal completion of Proj(B). The algebra B is integral, as A is integral. Let t € Bp
be a homogeneous element of degree D > 0, and let C; = B[1/t]y be the algebra of
degree 0 elements in the homogeneous localization B[1/t]. Then C; is non-zero, since B

is integral. Put D, (t) = Spf ét. These open sets form a basis for the Zariski topology of
X.
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Let us observe that the algebra B is a graded subalgebra of A[T]. Indeed, there is a
graded injective ring morphism

B—— A[T]

T, € B, — x,T".

By definition, ((t) = tTP. Since localization is flat, we get from this an injective graded
morphism B[1/t] — A[1/t][T*'], where A[1/t][T*'] is graded by the degree of T'. Because
Cy = B[1/t]o is the subring of degree zero elements in B[1/t], we get an injection

(2.1.7) O, — A[L/1].

Since A{1/t} = T'(D(t), Ox,), and because @g?o’m) acts on the structure sheaf Ox,, we get
that A{1/t} is a D™ -module and thus a D*™-module. Moreover, as A[1/t] is integral
and noetherian, it embeds into its p-adic completion A{1/t}. This leads us to the following

Lemma 2.1.8.
(i) A[1/t] is a D' -submodule of A{1/t},
(i3) If k = kx, then Cy is a D™ -submodule of A[1/t].

Proof. Before giving the proof, we need some notation. Given a fixed nonnegative integer
m and a nonnegative integer v, one denotes as before by ¢ the quotient of the Euclidean
division of v by p™. Let v > 1/ be two nonnegative integers and v := v — 1/; then for the
corresponding numbers ¢, ¢’ and ¢”, we define

v q!
(219) {V’} = q,!q”! Y

which is an integer because ¢ = ¢’ + ¢”. Let us begin with the proof of (i). It is enough
to prove that for each i < M, for each invertible s € A[1/t], for each v € N,

o e

8u+1'

We will prove this by induction on v, the case v = 0 being straightforward. We have

O R 3 M S S LS
n=0 H

cf. [7, (iv) of 2.2.4]. By induction hypothesis the elements (9i<“>(s_1) lie in s~™@*+D A which

proves that 07" (s71) € s~ **? A. By applying this to s = ¢~ for n > 0, we see that (i)
holds.

Let us prove now (ii). We begin the proof with an auxiliary assertion (it is here where we
use the assumption k > kx).

Assertion. Let f eI, 1 € N, then wk18§l>(f) el
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Proof of the assertion. The proof relies on the Leibniz formula [7, 2.3.4.1]. We proceed
by induction on 7. For r = 0 the assertion is trivial and for » = 1, it is true if [ > 1 since
w” e I. For r = 1, it is also true if [ = 0 since f € I. Let us assume that the result is true
for s < r. It is enough to prove that

VgeIVhel" : wklé’l@(hg) e ™,
Denote f = hg, the Leibniz formula of loc. cit. states that

!

N o

o) = 2 hH e e )
=0

By induction hypothesis, for all j < I, @*d“(h) € I" and w*=Do7(g) € I, which

implies that w’“l&z@( f) € I"*1. This establishes the assertion.

After this preliminary discussion, let d > 0. Let us first prove by induction on v that for

an arbitrary element s € I¢ which becomes invertible in A[1/¢], one has

[I/d

gVl ’

(2.1.10) R Ca =

This is true for v = 0. Consider then the formula [7, (iv) of 2.2.4] with notation [2.1.9]

wk(y+1)a{u+1>(s_1) _ Z {1/ + 1}S_1wk(u+1—p)a<u+l—#>(S)wkua§u><s—1) ‘
pn=0 K
By the induction hypothesis, one knows for any integer u < v,
_ Ird
W (s e g
and, by our auxiliary assertion above, one knows
(v+1—py I
Sflwk(wrlf,u)ail/ iz (8) e
5
This implies
Jé Jpd Jé(p+1) SV_“Id(“'H) Jw+1)d

—1,_k(v+1—p) AXv+1—p) kp Ay ¢ —1 — —
s w az (S)w a@ (S )E s Su+1 - Su+2 - Su+2 = Sl/+2 )
which proves our claim. Applying this claim to the element s = t% € 1P gives for p < p™
dD
s o> gy o« 1"
aw oM (t >Etd(u+1)'

Then, using again the Leibniz formula, we deduce from this and the auxiliary assertion,
for a given homogeneous element g € B of degree dD, i.e % € C}, the identity

wkuaj@ (2) _ Z v wk(u—u)al@—w(g)wkuaZ{lO(t—d) ’
td =
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whose right-hand terms are contained in
I,udD

IdD CCt'

td(p+1)

This completes the proof of the lemma. 0
From this we get the

Corollary 2.1.11. C, is a D*®™ -submodule of A{l/t}g if k = kx.

k@@l@ acts continuously on C;. We can

thus extend this action by continuity to get an action on @t. By construction this action
is induced by the action of I'(Xo, sp,Dx,,) on A{l/t}q. O

Proof. Using previous notations, we see that w

After these local considerations, we come back now to the general situation.

Corollary 2.1.12. Let k > kyx. The sheaf @gf’m) = pr*ﬂgg)’m) is a subsheaf of rings of
the sheaf sp,Dx,. Moreover it is locally free over Ox.

Proof. The assertion is local on X and we can assume that X, = Spf A is affine, endowed

with local coordinates z1,...,xy. Then, the sheaf Dg’m) is a free Ox-module generated
by the operators w"“ % (using notations [2.1.2)). By the formula of Berthelot [7, 2.2.4],

one has
ow . o) — <Z * Z/> ot
= = Z = b

<z+z’> <z+z’> {erz’}_l
— e Zp .
v v v

To check that Dggk’m) is a subsheaf of rings of sp,Dy,, we thus only have to check, by

linearity, that if b is a section in Ox () where U = Spf Cm], cf. [2.1.11} for some non

zero t € A, and non zero h € Cy, and if v € NM| then the element 0% - b lies in Dgek’m) (D).
By [7, 2.2.4], one has

g = Y {Zl}wklwlé<w><b)wk1/’| pr

|4

where

v+v'=v

Since @2 10%7(b) € Ox () by [2.1.11] this proves that DF"™ is a subring of Dy, O

We finally define the following sheaves of differential operators over X and X,

(21.13)  DE™ = DE™ /it DE™ = lim DE™ and DL, = lm D™ @ Q.

We have the following local description over an affine open U < pr—!(Lly) where g is an
affine open of Xy endowed with coordinates x, ...,z and derivations 0y, ..., Ou:
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9;1@(%) = {Z a,@ o | 4, € Ox (W), and IC > 0,7 < 1s.t.|a,| < Cn for all g} ,

v

where |.| denotes any Banach norm on Ox o(0).

2.2. First properties. We keep here the hypotheses from the previous section. In par-
ticular, Xy denotes a smooth formal G-scheme and

pr: X — X
denotes an admissible blow-up. For a given natural number £ > 0 we let
Tep =@ (pr)*(Ta,) |
where T, is the relative tangent sheaf of X, over G.

Lemma 2.2.1.

(i) The sheaf Tx . is a locally free Ox-module of rank equal to the relative dimension
of Xy over G.
(i1) Suppose m : X' — X is a morphism over Xo from another admissible blow-up
X — Xo. Let K,k > 0. One has as subsheaves of Ty ® L

(‘Tx@k/ = ?Dk,_kﬂ'*<(.]‘x7k)
Proof. This follows directly from the definitions. Note that (pr')* = 7#* o pr* in (ii). O

Before stating the next proposition, let us recall that Sym(™ (Tx k) denotes the graded
level m symmetric algebra generated by the sheaf Ty defined in [I7, sec. 1]. This is a
graded Ox-algebra

Sym(™ ‘Tx k @ Symd (Txx)

d=0

Over some sufficiently small open affine set f < pr—!(8ly) such that Ty, is free with basis
&1, ..., &, one has the description using notation (i.e. zj!fl@> =q,1¢))

Symd (Ter) () = P Ox(u kd§<y>

lv|=d

where the right hand side is a free Ox(4)-module. For the rest of this subsection we fix

a number k > kx (2.1.5).

Proposition 2.2.2.
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(i) The sheaves Dgek’m) are filtered by the sheaves of differential operators of order

< d, which are Ox-coherent modules, and which we denote by Dgéf;im). There is a
canonical isomorphism of sheaves of graded algebras

gr <®(k’m)) ~ Sym™ (Txs) .

Moreover the sheaves D( are quasi-coherent Ox,-modules.
(ii) There is a basis B of the topology of X (resp. X;), consisting of open oﬁine subsets,

such that for any st € B (resp. U; € B), the ring @;m (L) (resp. DXZ_ ( U;)) is
two-sided noetherian.

(111) For every formal affine open $4 < X (resp. affine open U; < X;), the ring
@ggk’m) (L) (resp. Dg’ém)(Ul)) is two-sided noetherian.

(iv) The sheaves of rings @gf’m) (resp. 1)&?’”)) are coherent.

v) For every formal affine open 4 < X, the ring DEM (§1) is two-sided noetherian.
x
(vi) The sheaf of rings ®g€k,m) is coherent.

Proof. We only do the proof of (i) to (iv) in the case of @gf ™) since the same proof works
for the sheaf @g];i’m). Denote by @;ko’?g) the sheaf of differential operators of Dgeko’m) of order

< d, and @gf;jm) = pr*@%? . It is straightforward that we have an exact sequence of
Ox,-modules on X,

(2.2.3) 0 — DL — DE — Sym{™ (Txos) — 0.

Now we apply pr* and get an exact sequence since Symﬁlm) (Txo.k) is a locally free Ox,-
module of finite rank. This gives (i). Let  be an affine subset of pr=(4ly), where tly = X
has some coordinates x1, ...,z . One has the following description

DI (4) = {Z @a, 0% | a, € O*(u)} |

Since i is affine and the filtration steps ®x  are coherent Ox-modules for all d, the
previous exact sequences gives us the followmg 1somorphlsm

gr (DE™) () = Sym§) (Te) (1)

Since the latter level m symmetric algebra is known to be noetherian [17, Prop. 1.3.6],
this proves (ii). As B we may take the set of open affine subsets of X that are contained
in some pr—(4), for some open Uy = X, endowed with global coordinates. Let now
0,4 € B such that U < 4. Since the sheaf Dgf ™) is an inductive limit of coherent
Ox-modules, one has

(2.2.4) Ox(V) ®oywy DE™ (L) ~ DE™ (1) .
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In particular D¢ () is flat over D™ (4). This remark and (i) prove the coherence
of the sheaves @gf’m) exactly as in the proof [7, 3.1.3].

Let us now prove (iii) for "left noetherian’ (the proof of the right version is similar). Let
i be an affine open of X, D = Dl(f’m), D =T, D), A=T, Ox) and U = | J4; a finite
cover of I by open 4; € B. Since the sheaf D is an inductive limit of coherent O¢-modules,
one has

(2.2.5) D=0y®aD

and D is a flat D-module. Moreover, thanks to (ii), we know that Dx(Ll;) is noetherian
for each [. Let (M;) be an increasing sequence of left ideals of D, and consider

M;=DRp M; =0y ®4 M,

which form an increasing sequence of sheaves of ideals of D by flatness of D over D. The
sequence I'(84;, M;) is thus an increasing sequence of ideals of T'(4l;, D), that is stationary
since this algebra is noetherian. Since M; is an inductive limit of finite type A-modules,
M; is an inductive limit of coherent Ox-modules, thus

Vi, Mﬂul ~ Oy, @0 (4) 'L, M;) and T'(U, M;) = M,

Finally we see that M,y is stationary for each [. Since there are finitely many affine
open 4, we see that the sequence (M;) and thus (M;) are stationary. This proves (iii).
Since @gc ™) (40) is the p-adic completion of @gekm) (40), it is also left and right noetherian
[7, 3.2.3], which proves (v).

The coherence of @g ™ follows from (iii), and the fact that Dg?i’m) is a quasi-coherent
Ox,-module, literally as in [7, 3.3.3]. O

From these considerations, and under our initial condition k > ky, we have the following
local versions of Cartan’s Theorem A and B for the restrictions of the sheaves Dg’é’m) and

@gf ™) 0 an open affine (formal) subscheme.

Proposition 2.2.6. (Local theorem A and B for fixed m)

(i) Let U; < X; be an open affine subscheme of X;. The functor I'(U;,.) estab-

m)

lishes an equivalence of categories between coherent @8? -modules and finite

type F(UZ, @(k ™ )-modules. In particular, the functor ['(U;, .) is exact on coherent

D(k ™ _modules. Moreover, for any coherent @ ™ _module M and any q > 0 one
has HY(U;, M) = 0.

(i) Let s < X be cm open affine formal subscheme of X. The functors M — T'(4, M)
and M — D ®M are quasz inverse equivalences of categories between the cat-
egory of coherent left @g ) _modules and the category of left T'(4, Duk m))—modules
of finite type.
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(113) Let 81 be as in (ii). The functor I'(M,.) is exact on coherent @&k’m)-modules.

Moreover, for any coherent @gg’m)—module M and any ¢ > 0 one has H1(4, M) =
0.

Note that (ii) and (iii) of the proposition remains true for the sheaf @&k(én ) and coherent
modules over this sheaf by [7, 3.4.6].

Proof. For the convenience of the reader, we start by recalling the following result

Auziliary result 2.2.7. (cf. [7, Prop. 3.1.3]) Let X be a scheme, D be a sheaf of rings
over X such that, for all affine open U < X, I'(U, D) is a noetherian ring. We fix an
homomorphism Ox — D such that the left multiplication by the sections of Oy induces
a structure of Ox-coherent ring over D.

(i) The sheaf D is a left coherent sheaf of rings.

(ii) A left D-module M is coherent if and only if it is a quasi-coherent O x-module
and, for all affine open U of an affine cover of X, I'(U, M) is a left I'(U, D)-module
of finite type.

(117) Assume that X is affine and let D = T'(X, D). The functors M — T'(X, M) and
M — D® M are quasi-inverse equivalences of categories between the category of
coherent left D-modules and the category of left D-modules of finite type. 0J

Consider now the following situation, compare [7, 3.3.3]. Let X’ be an G-formal scheme
and let D be a sheaf of rings over X', endowed with a homomorphism Oy — D, D; =
D/pitl, D = lim D;. In addition, assume the following conditions (Berthelot’s conditions)
(1) As an Oyx-module, D is the filtered inductive limit of a family of Ox-module D
such that D, /p'D, are Ox;-quasi-coherent and Dy ~ lim. D,/p'Di.
(2) For every open set {4 < X', the ring I'({, D) is left noetherian.

Aulezary rgsult 2.2.8. With the previous hypotheses suppose that X’ is afﬁne and let
D =T'(X',D). Then D is left noetherian. If M is a D-module one defines a D-module

M* =1mD; Qo,, M/p"*"M .

For a D-module M, the following statements are equivalent
(1) For all i, the D;-module M /p"** M is coherent and the canonical homomorphism

M — lim M/ p"t1 M is an isomorphism.

(it) There exists an isomorphism M ~ lim M;, where (M;) is a projective system
of coherent D;-modules, such that the transition morphisms factorize via isomor-
phisms M;/p'M; ~ M;_;.

(117) There exists a finite type D-module M and an isomorphism M ~ M2 .

(iv) M is a coherent D-module.

Proof. The ring D is noetherian by [7, Prop. 3.3.4] and the other results come from [7,
Prop. 3.3.9]. O
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Under the same hypotheses, Berthelot proves in addition the following.

Auziliary result 2.2.9. (cf. [7, Prop. 3.3.10/11]) With the previous hypotheses, suppose
that X’ is affine. The functors I'(X’,-) and M — M?* are equivalences between the
category of coherent D-modules and the category of finite type D-modules. If M is a
coherent D-module, then Yq > 1, H1(X', M) = 0. O

Now it is clear that part (i) of our proposition follows from auxiliary result [2.2.7]

since by (iii) of[2.2.2] the rings Dgﬁ’m)(Ui) are indeed noetherian. Again, from (iii) of[2.2.2]

we see that the rings Dgek’m) (L) are noetherian. Moreover the sheaf D;k’m) is a filtered

inductive limit of the Oy-coherent sheaves Dgf ’dm) defined in the proof of [2.2.2, This means

that Berthelot’s conditions (1) and (2) are satisfied for X' = X and D = D;’“m). Hence,
the auxiliary results [2.2.8 and [2.2.9 can be applied in our context, proving (ii) of the
proposition. The point (iii) is a direct consequence of (ii). This ends the proof of the

proposition [2.2.6] O
Proposition 2.2.10. Let &4 < X be an open affine formal subscheme of X, and M a
7 (k;m)

coherent Dy -module. Then there are integers a,b > 0 and a short exact sequence of

coherent @ﬂcm) -modules:
~ a ~ b
(DE™)" — (DE™) -0,

Proof. Denote D™ = (Ll D (™)) \which is a noetherian ring by [2.2.2and M = T'(8(, M),
which is a finite type D) module by the previous proposition [2.2.6, Since the algebra
DU is noetherian, there exists a finite presentation of D™)-modules

(f)<m>)“ . (f)<m>)b M0,

Tensoring this presentation by @ﬂgm) over the ring D™ and observing that
M = D™ @pm M
again by gives the result. O
Proposition 2.2.11. We have:
(i) The morphism of sheaves @g{kén) — @%m) is left and right flat.

(ii) The sheaf of rings ®3€k is coherent.

(111) For any affine open 4 < X, T'(4, @ km“ ) is left and right flat over F(L( @;5))

(iv) For any affine open th < X, I'(4L, @x k) is left and right flat over T'(U, D km)).

Proof. Let us first observe that (ii) follows from the flatness statement of (i) and the last
part of thanks to [7, 3.6.1]. For (i), we follow Berthelot’s method described in [7,
3.5.3]. For the proof we can restrict ourselves to proving that if 4l is an affine open of X
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contained in the basis of open sets B from [2.2.2 then the map @g&g@) U — @g‘jggﬂ)(ﬂ) is
left and right flat. In this situation, we have the following explicit description, assuming
that pr*Jy, is free restricted to U, with basis 0y,..., 0y as in[2.1.14]

D™ () = {Z o, 0 | b, € B} < D™ (81) = {Zwklvlb@@ b, € B,b, — 0}

where the convergence is in the w-adic topology of B = Ox(4). With this description,
we can copy Berthelot’s proof of [7, 3.5.3], replacing everywhere the operators 0w by
M o® as follows. First of all, by inserting suitable powers of w into the formula [7,

(2.2.5.1)] we see that the o-algebra Dgg’m) (81) is generated by B and the operators ww*?" 8l[pT]
for 1 <r<mand1<1[1< M. Now write

D™ = DEM(81), and DE™ = DE™ (u)

the latter being the w-adic completion of D%*™ [7, 4.3.3.2]. By the above explicit de-
scription, the two canonical maps D%*™) — Dkm) _, Dg ™) are injective and this is also

true for the canonical map Dkm) _, plem+1), Indeed, the latter is induced by mapping
q !
(2.2.12) G0 1y ] 2 Wi
Dim+1y

and is therefore injective by the above explicit description and the fact that o is tor-
sionfree. Let us consider the subring E of Dg m) generated by the subsets D®*™) and

D¥m+1) - Gince Dg’mﬂ) = Dg’m), we see that
N(k,m
Eq=Dy™.
As in Berthelot’s proof, we have the following
Auziliary result 2.2.13. E = Dm) 4 plam+1)

Proof. Denote by E' = Dkm) 4 pkm+1)  We have to prove that E’ is a subalgebra of
D®m+1) Tt is enough to prove that if (P,Q) € D®m x DEm+1) then P-Q € E' and
Q - P € F'. Since the proof is the same in both cases, we only treat the product P - Q.
As Q € D®m+) there exists ¢ > 0 such that @¢Q € D®™ . As P e D®E™ | there exist
(P, Ry) € D™ D®Em) such that P = P, + @ Ry, then PQ = w°R1Q + PIQQ € E', as
@R, Q € D®™ and P,Q e Dkm+D), 0

Denote by E the w-adic completion of £. We can then prove the
Auziliary result 2.2.14. EQ = ﬁg’mﬂ) .

Proof. By construction, there are maps

/\z' : D(k,m-ﬁ-l)/wiD(k,m-i-l) N E/WZE '
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Let us prove that these maps are bijective. If R € D®*™+1 is such that \;(R) € @w'E then
there exist (P, Q) € D®m x Dkm+1) quch that R = @'(P + Q), thus @'P = R — ©'Q
has finite order, and P € D%*™) that implies that R € D®*™+1) and ), is injective. Pick
now Re F, and (P,Q) € Dkm) 5 Dm+1) guch that R = P + . The operator P can be
written P = P, + w'Ry, with P, € D%™) and R, € ﬁ(k’m), then P = P, + R+ @'R; and
M\i(P, + R mod 'D®m+1)) = P mod w'E, so that ); is surjective. We finally see that
A; is bijective, which proves the auxiliary result. 0

Now the remaining thing to prove is that E is noetherian, since this result implies that
E is flat over E. thus that D(k ™) is flat over D( ™. The proof that F is noetherian
proceeds by induction. By our above remark, F is generated as (left) D*™)_module by the
elements wk‘ﬂpmH(Q[ mH])Z for v € NM. Let 1 <1 < M. Inserting appropriate powers of
w into the corresponding formula in Berthelot’s proof one finds [ kpm ”[pmﬂ] ,b] € D)
for any b € B and so [wkpm+lal[pm+1],P] e D®m) for any P e Dk*m) Usmg the general
commutator identity (valid in any associative ring) [Q", P] = [Q"~ 1, PlQ + Q"7 'Q, P]
one deduces from this inductively

("""l Pl e 3 DRt oy

n<v

This is the analogue of the key formula [7, (3.5.3.2)]. Now let 1 < j < M and consider the

subring F; of E generated by Ey = D®m) and the operators wkpm+18[ P for 1<1<y.
Then Ej is noetherian by prop. and, by our above discussion, EM = F. With the
key formula at hand, one may now follow Berthelot’s proof word for word to obtain that

E;_1 noetherian implies E; noetherian. This proves (i).
Let us now prove (iii). Denote 15,%!3 = [(4L, @&k(g )) and consider a an injective map of

coherent ]A),(fg

-modules a : M — N. As a consequence of (ii) and (iii) of [2.2.6, we know

that the sheaf @gﬂg )is a flat ﬁ,gﬁg—module. In particular, the map « provides an injection

of coherent @gf& )_modules

(k m+1)

Using the flatness result (i) we also have an injection of coherent Dy )_modules

Pl g oy M > Bl g

(O N .

D,ij(’;

Then we identify (resp. for V)

7 (km+1 (k,m+1) o 1
Dil,(gﬁ ) ®D(m) M ~ @ m+ ®B§JF@+1) D;(;}S_ ) ®ﬁi(!,8 M .
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Finally taking global sections of the previous injection and using again we get an

injection of coherent ﬁ,g’gl)—modules

A(m+1) A(m+1)
Do " ®pem M = Dyg " @pem N,
that proves (iii). Assertion (iv) follows from the previous one, since, as il is quasi-compact,

D(4, DY) = lim D(8L, DY)

and we deduce from (iii) that, for all integer m’ = m, the module I'(4L, @gﬂ 0 l)) is left and

right flat over I'(4, @gc (SL )). We obtain thus (iv) by passing to the inductive limit over m.
This ends the proof of the proposition [2.2.11] O

We deduce from this the corresponding version of proposition [2.2.6| for the sheaf ﬂij,k'

Corollary 2.2.15. (Local theorem A and B for varying m) Let 4 = X be an open affine

formal subscheme of X. Then :
(i) The algebra D} = T(4l, D;k) is coherent.

(ii) For any open affine subset 34 < X, any coherent @Lk—module M, and any ¢ > 0
one has HI(L, M) = 0.

(111) The functor T'(L,.) establishes an equivalence of categories between coherent @Lk—

modules and coherent D,Tf-modules. In particular, the functor I'(4,.) is exact on
coherent DL7k-m0duleS.

Proof. Denote ﬁ,gyg = (4L, @gﬂéﬂ )). Since the scheme {4l is quasi-compact, the functors
HI(4l, ) commute with inductive limits and we have

D} =1lim D'y .

m

By (iii) of [2.2.11} the maps ﬁ,g’g — ﬁ,g’:é“) are flat, and by [2.2.2| these algebras ﬁ,ing are

noetherian. This showes that the algebra D,i is coherent [7), 3.6.1].
Let M be a coherent @ka—module. The proof of [7, 3.6.2] literally applies in our situation

and shows that there is a non-negative integer mg and a coherent @&ké” %) _module N such
that

M=~ D, Bpor N -
Denote M = I'(4, M) and for m = mq
m 7 (k,m)
M) = ‘DLLQ ®®$©m0) N,

so that M ~ lim M), Then, Vm = mg, H1(U, M™) = 0 by , and by passing to
the inductive limit we see that H?(, M) = 0, which proves (ii).
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The rest of the proof follows 2.3.7, 2.4.1, 2.4.2 of [21]. For the convenience of the reader,
let us summmarize the arguments here. From [2.2.10, the D kmo )_coherent module N

admits a resolution \
(3m)" — (B479) 5 =0

Tensoring this resolution with the sheaf DLk gives us a resolution of coherent @L e

modules. Since the global section functor is exact on the category of coherent @L K-
modules because of (ii), we get an exact sequence of coherent D,Tc—modules

a b
(D,L) - (D,L) M —0.
To see that D} ®pr M ~ M, we are thus reduced to the case M = @L &, for which it is
k g

obvious. We prove similarly that if M is a D,i—coherent module, then

M S DD, @ M),
by reducing to the case where M = D};. This proves the proposition. O
We now give a flatness result when the congruence level k varies.

Proposition 2.2.16. Let k, k:/ be nonnegative integers such that k' = k > kx, then the

morphism of sheaves of rings @ m) — D;k(gl) 15 left and right flat.

Proof. By induction, it is enough to prove that the morphism D k+1 m e, @g&; ) is left

and right flat. It is also enough to prove the following statement : 1f il is an affine open

of the basis of open sets B from [2.2.2) then the map @ ka) (U) — @g&l) (L) is left

and right flat. Denote D, = I['(4, @;m) and Dy, = F(L[, @gek’m)) (resp. with k& + 1).
In our situation, we have the following explicit description (resp. with k& + 1), where
B = TI'(4, Ox), assuming that pr*Ty, is free restricted to i, with basis i,...,0y as

in 2.1.14
<00
Dy, = {Zwk"|byé<“> b, € B} and Dy = {Zwk"|byﬁ<”> |b, € B,b, — o} .

Here, convergence is with respect to the p-adic topology on B. Moreover we have the
inclusion D, < D;,. As in the proof of the proposition [2.2.11]above, we will use Berthelot’s
method [7, 3.5.3], and introduce

E - ﬁk+1 + Dk .
Then, since Dy, g = Dy11,0, it is clear that Fg = ZA?HL@. Moreover, we have the following

Auziliary result 2.2.17. The B-module E is a B-algebra and its p-adic completion E is
canonically isomorphic to Dy.
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Proof. Let us first prove that F is a ring. Any element P of E can be written as
P=Q+R, withQe Dy, and Re Dy .
To prove that E is a ring, it is enough to prove that
Yy, oo . lA)kH c F, and lA)kH L flo® < B

Fix v, and take Q) € lA?kH. We can then write Q = Q1 + @ Q,, with Q; € Dy,1 and
Q)2 € Dyq. Since el g Q1 € Dy, and Q) - oW e Dy it remains to prove that
oW . HQ, € E (resp. wQ, - @Y € E). Let us write

Qy = Z el AT o

with coefficients b,, € B tending p-adically to zero in B. Besides the coefficients appearing
in we need other modified binomial coefficients [7), (1.1.2.2)]

©-Oft ==

Then, following [7), (2.2.4)] we have the following formulas

W . (DI +leDp , o

= DY (e T (b)) 04T € Dy

Passing to the limit in the complete ring Dk+1 we see that @*ow . ©lQ, e ﬁk+1-
Similarly, we have

/
(B DI ey pwy | kel 5> by,w((k+1><|u’|+u|><Z tr >Q<u+u'> ,
B B v

which proves that @%!Q, - @3 € F and that F is a ring.
Let ¢ > 0 be an integer and consider now the canonical map

\:D./@w'Dy — E/o'E

Let P e E, and Q € ﬁk+1,R € Dy, such that P = @Q + R. There exist ()1 € Dy,1 and
Q2 € Dy such that Q = Q + @'Q. Then

P=XQ;+ R)mod='FE ,

where Q1 and R are the class of Q1 and R in _the quotient Dy/w"Dy. This proves that
the map A is surjective. Suppose now that A(P) = 0 for some P € Dy, then there exist
Q € Dy, and R € Dy, such that P = @'(Q + R). As

w'Q=P—w'Re Dy,
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we see from the explicit description of Dyyy above that ) € Dyiq and finally that P €
w' Dy, which proves that A is injective and thus an isomorphism. This completes the
proof of the auxiliary result. O

Now, to prove the proposition, it s enough to prove that E is noetherlan If this is the
case, then E is flat over E, thus E@ is flat over Eg and Dk@ is flat over Dk+1 Q-
Recall [7, (2.2.5)] that the rmg Dk is generated by the algebra B and the elements

0P = kPl with 1 < i < M, 1 < a < m. Let us define the following alge-
bras: let Fy = ﬁk+1, and for j > 1 E; be the B-algebra of E generated by lA)kH and
the w"’”@fm with 1 <7 < 7 and v; € N. We also introduce for each j and s an integer
satisfying 1 < s < m the subalgebra E; ; of F; generated by E;_; and the """ 6][5” "l with
1<a<s Wedefine F;o = Ej_; for j > 1. By definition, we have F;,, = F;. Now we
use the

Auziliary result 2.2.18. For each j < M, s < m, the algebra F; ; is two-sided noetherian.
The algebra E is two-sided noetherian.

Proof. We will prove the result by induction on both 7 and s. Note that Fy = lA)kH is
noetherian by [2.2.2] By definition, Ey = Ej and is thus noetherian.

Next, let us prove that if F;,_; is noetherian, then Ej; is noetherian if 1 < s < m and
1 < j < M. For this, note that, if b € B, we have as in [7, 3.5.3.2],

s s ps S—1q s Ali

[k ol b = (J@Ip lbyatr ol
i<ps

thus noticing that if + < p*, wkiﬁj[-i] € Ejs_1, we have

[wkpsﬁj[ps]ab] e Z lA?(kH)wkpiﬁjm cEjs 1.

1<p$
Consider the finite type D H)_module F := Zi<ps ﬁ(k“)wkpi@j[.i]. Then for each finite
sum P =3, bzw(k“)‘ﬂ@@, we observe that [wkpsaj[.ps], P] € F. Since F is a finite type

ﬁ(k“)—module, it is p-adically complete, and thus also for each infinite sum P € ZA)(’““)

we have [w’fpsaj[?"“], Ple F < E;s_;. Moreover, [wkpsﬁj[ps], wkp“aj[?’“ ]=0fora<s—1. As
E; .1 is an algebra and as we have the formula for P, Q) € E;
(=&, PQY = [0 PIQ + PI=07". ]
we see that VP e I ;_;
[wkps(’)j[»ps], P] S Ej’sfl .
Then, by induction on [, we deduce that
(2.2.19) W= 1,YP e By, [(@ 0P ), Ple Y By (@t ol

i<l—1
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Define A := @’ é’J[-p " for the rest of the proof. We follow now Berthelot’s argument in
the proof of [7, 3.5.3]. We do the proof for 'left noetherian’ (the right version is similar).
Let I be a left ideal of E;; and J be the set of elements R of E; ,_; such that there exists
P e I that can be written

P=RA'"+ Y RA",
i<i—1
with R; € Ejﬁ,l. If Ry and R, are in J, write
= RIA" + >0 RA and Py = RA” + Y RIAT

i<li—1 i<lp—1
with R; and R] elements of Ej,_;. Assume l; > l,, then, using (2.2.19)), we can write
P+ A"TEPy = (Ry + Ry)A" + YT RIAT €1,
i<li—1

with elements R € E; 1. In particular, we deduce from this that J is a left ideal of
Ejs—1 generated by a finite set of elements Ry, ..., R,. Moreover I (| Ej;s_1 is a left ideal
of F;_1 generated by a finite set of elements Q1,...,Q,. We see easily then that I is
generated by the elements Ry, ..., Ry, Q1, ..., Q. This proves that Ej ; is noetherian and
ends the proof of the auxiliary result. O

As we have remarked above, the proof of the proposition [2.2.16]is now complete. 0

Corollary 2.2.20. Let 4 < X be an open affine formal subscheme of X. If k' = k > kx,
then T'(4, Dféﬂ ) is left and right flat over I'(4L, "D(k ™) ).

Proof. Denote Dk,Q = T'(4, @;5) and similarly for &’. Let M < N be an injection of
finite type ﬁk/,@—modules and put

AN (K m A (K m
M= D5 >®ﬁk,@ M, resp. N =D >®ﬁm N

Using the equivalence of categories and the exactness in [2.2.6] we have an injection of

coherent ®u<@ )_modules M — N. Using the previous flatness result [2.2.16] we have an

injection of coherent Du@ )_modules

(2.2.21) DL @1y M > DR @ 1) N

DL DL

Taking global sections and using again [2.2.6, we observe that
(k, m (k, m
(s, DAY D M) = T(L, Dy ®p,, M)
o~ F(Ll @ km) ®ﬁk ﬁk ®ﬁk’ M)
~ Do ®p, M
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and similarly for N. Finally, with formula (2.2.21]) we arrive at an injection
Do ®p,, , M = Dro®p,, N,
which proves the corollary. 0

We compare now rings with different levels k. Let e = e¢(L/Q),) be the ramification index
of the extension Q, < L.

Proposition 2.2.22. Let ¢’ € N such that e/ > -5

(i) If k = kx, and k' = k + €', then we have the following inclusions of sheaves of
TINgs
7 (k,0) 7 (k,m)
(D;r&k’ - ®Tx,k+e’ — Dyg < 9%,5 - D;,k :

(ii) Suppose e < p—1. Ifk = kx, and k' = k+1, then we have the following inclusions
of sheaves of rings

il il 7 (k,0) 7 (km) i
®%,k’ - Dx,k+1 - ®3€,Q - 935,@ - ®x,k .

Proof. 1t is enough to prove (i). The only non trivial inclusion is
i 7 (k,0)
Dirie = Dy
which we may prove locally over some affine open 4 < X of the basis of open sets B from
2.2.2l We use the following notations

B =T(4,0x), Dy =T D), Df =T, DL,) .

As before ([2.1.14)), we have then the following descriptions, assuming that pr*Jx, is free
restricted to U, with basis dy,..., dar,

Dy = {Zwk|”byé”| b, € B,b, — o} :

Dl = {Zwkl”'b,,g[”] |b, € Bg and 3C > 0,7 < 1| [b,] < 077’4} ,

where | - | is any Banach algebra norm on Bg. For the rest of the proof we endow By
with the gauge norm | - | associated with the lattice B < Bg. We need the following
Auziliary result 2.2.23. Let v = (v4,...,vy), then we have

|%|1 — Mlog,(|v| +1) = M < v,(!) < p|ﬁ|1 :
Proof. [20] 1.1.2]. O
Let P = Zzw(“e')'z'bzém € D,Lre,, then there exist R > 0 and S > 0 such that

log, [b, > Rl 5



ARITHMETIC STRUCTURES FOR DIFFERENTIAL OPERATORS ON FORMAL SCHEMES 25

We can write

w
P = Z wtlle, 0% with ¢, =

Then the following inequality holds

Under the conditions of the statement, log, |c,|| — +c0 if |¢| — +o0, which proves that
Pe lA)k@. This ends the proof of the proposition [2.2.22 U

We now complete these results by additional flatness results when k varies.

Proposition 2.2.24. Let k' > k > kx.

(i) The morphism of sheaves of rings @x p @;yk 15 left and right flat.
(ii) Let sk < X be an open affine. Then T'(4L, Dx,k) is left and right flat over I'(4L, D;Jﬁ,).

Proof. 1t is enough to prove (ii). Denote D,Z = I'(4, D;k) (resp. for k'), and for any

integer m > 0, D(m = (4, ®(km) (resp. for k’). Since 4 is quasi-compact, we know
that

D} =l D}y .

m

Let uw : M — N be an injection of coherent D,Tc,—modules, then we have the

Auziliary result 2.2.25. There exist an integer m = 0 and an injection u™ of coherent
D,(;,%—modules u™ © M s N guch that following properties are satisfied.

(i) There are canonical isomorphisms

N(m) =, N .

(7i) There is a commutative diagram of coherent D,L—modules

m ®ul™ m
D}, ®p M &l ®p N

I X

Mc¢ - N

Proof. In order to prove the auxiliary result, we first remark that the morphism u can
be extended to any finite presentation of M and N as D,Z,—modules. Thus, there exists a
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diagram of presentations of D,Z,—modules
(D})* —*= (D))" ——= M —=0
(D) =7 (D)! ——= N ——0

Furthermore, there exists m such that the matrices of the maps A and B (and of the two
vertical arrows completing the square) have coefficients in Dk, These then define maps

A: (D,(;%)“ — (D,(;%) (resp. for B),

whose cokernel is a coherent ﬁg%—module denoted by M (resp. NU™ is the cokernel
of B). We finally get from this the following commutative diagram of exact sequences

(D) == (D)’ —= M™) —0

R

m)\e B Am m
(D) —2= (D) — N ——0

where by definition (™ is the induced map by u between M ™) and N™ . By construction
there are canonical isomorphism

DI, ®ﬁ](€'rln(é M ~ M (resp. for N) .

Define now K to be the kernel of the map u™ : M — N then as D]TC, is flat over
D,i?% by [2.2.11], we have an exact sequence of D!,-modules

i
showing that
D}, ®s0m K =0,
k ®Dl(c/,()}
and again, as D], is flat over ﬁ,&?%, that
Finally, the D,(c, -coherent modules M /K and N satisfy the required properties.
This ends the proof of the auxiliary result. OJ

Take M N and u(™ : M < N as given by the auxiliary result. As ZA?,(;%? is

flat over 13,(;% by [2.2.20, we have an injection of coherent lA),(:’g—modules

DG ®pgn M = Diig @p N
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We can tensor this map by D/,Tc which is a flat ﬁ,&g-module 2.2.11, and use the properties
of M and N to get an injection

DL@Dl,M;’DI];@D,Z,N’

and this proves the proposition. 0

We end this part by some global properties of coherent sheaves over X (resp. coherent
D,L—modules) when the base X, is affine. In general, the formal scheme X is projective
over Xy and we can consider the Serre twist Ox(1). It is a locally free sheaf of rank 1 over
X. If 8y is an open affine formal subscheme of Xy, and if ¢ € Z(ly), then the restriction
of the sheaf Ox(1) to the open subset D, (t) is generated by t. As usual, Z denotes the
ideal sheaf on Xy which gives rise to the blow-up X.

If M is a sheaf of Ox-modules over X and if r € Z, then we let M(r) denote the twisted
sheaf

M(r) = M&x X(r) .

Lemma 2.2.26. Let Xy be a noetherian affine formal scheme. For all integers r, there
is an isomorphism Ox o(—1) ~ Ox o(—1).

Proof. We can assume as in [2.1.3] that X, = Spf(A), and that the ideal Z is generated by
the elements (ww**, f1,..., f.). The formal scheme X is then covered by the open formal
subschemes

Do) = spta {41,
and
Ox(-1)(D () = A{ 2 L
* I fi u;
where u; is a generator of Ox(1)|p, (5. By definition, we have a section

whx

€ Ox(—1)(Dy (7)) .

a:
Uo

Moreover the following equations hold

kzx )
= Loy,
whx whx  okx ok
o w € Ox(D.(f)) - o

This proves that Oxg(—1) is free with basis a = @ /ug. If r > 0, Oxg(-7r) =~
Oxo(—1)%" is thus a free Oxg-module of rank one as well. Since Oxg(r) is the dual
of Ox (), it is then also a free Ox g-module of rank one. O



28 CHRISTINE HUYGHE, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

We assume from now on until the rest of this subsection 2.2 that the formal scheme X, i Is
affine. Let & > kx. To simplify the notation, we write D := Dy m) and we denote by D

the p-adic completion of this sheaf. We also let Dt = lim D(k m )

Let us first consider the reduction D; = D / w1 D. This is a coherent sheaf thanks to m
and a quasi-coherent sheaf of Ox,-modules. Let M be a coherent D;-module.

Lemma 2.2.27. There exist a,r € N such that there is a surjection of coherent D;-modules
(Di(—a))" — M.

Proof. As the sheaf M is quasi-coherent over the noetherian scheme X, it is an inductive
limit of its Ox,-coherent subsheaves. Moreover D; is an inductive limit of the coherent
sheaves D, ,, of differential operators of order less than n. We can thus write

M zli_n)l./\/l(")

neN

where M is a coherent Ox,-module. Take an open affine subscheme U < X;. Then
D;(U) is noetherian and M(U) is a D;(U)-module of finite type. Hence, there exists
N > 0 such that

lim D;(U) - M™(U) = Dy(U) - MM (U) = M(U) .
Since
M(U) =iy Dy(U) - M™(U)

we see that D;(U) - MWM(U) = M(U) and using (iii) of , we find a surjection
Dy ® Mfév ) M. As X, is quasi-compact, X; can be covered by a finite number of

affine open subsets. There exists therefore N’ and a surjection D; QMW — M. As MDY
is a coherent Ox,-module, there exist 7 € N, a € N and a surjection (Ox,(—a))" — MW
and this proves the lemma. O

Lemma 2.2.28. (1) There exists a = 0 such that
¥b = a,Vl >0, H(X;,D;(b)) = 0.
(ii) Let M be a coherent D;-module, then there exists a = 0 such that
Vb > a,Vl > 0, H(X;, M(b)) =

Proof. We have RI'(X;,D;(b)) = RI'(Xo,,) o Rpr,D;(b). As X,; is affine, it is enough
to prove that Rlpr,D;(b) = 0 for [ > 1 and for b > a. Take iy = X, affine, endowed
with coordinates @1, ...,z and let 8 = pr*(Ly) and U = 8 x Spec(o/w'0). Denote
by Oy(1) the restriction to il of the Serre twist over X. Then D, is a free Op-module,
so that there exists ¢ such that

Vb= ¢, V1 >0, H'(U, D;(b)) =0 .
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By taking the maximum a of the constants ¢ for each affine open Ly of a finite cover of
X, by such affine subschemes iy, we get that R'pr,D;(b) = 0 for [ > 0 and b > a and
this proves part (i) of the lemma. For the second assertion, we will prove the following
statement by decreasing induction on K :

For all coherent D;-modules N, there exists a > 0, such that
VL > K,VYb > a, HL(Xi,/\/'(b)) =0

If K > M + 1, the result is clear, since N is a quasi-coherent sheaf on a scheme of
dimension M. Suppose now that the result is true for a given K > 2, and consider a
coherent D;-module N. By the previous lemma, there exist a and r and a exact sequence
of coherent D;-modules

0—>M— D] > N(a)—0

Tensoring this sequence by Oy, (¢1 + ¢2) where ¢, ¢y are non negative integers and looking
at the cohomology long exact sequence, we get exact sequences for all L

HL(XZ‘,®2<01 + 02)) - HL(Xi,N(CL +c1 + CQ)) i HL+1(Xi,M(Cl + CQ)) .

By the induction hypothesis, there exists ¢; such that VL > K,Vd > ¢;, H/(X;, M(d)) =
0, and by (i), there exists ¢y such that VL > 1,Vd > ¢y, H (XZ,Q (d)) = 0. Finally, if
d=a+c +cy, forevery L > K —1> 1, we get that HX(X;, N'(d)) = 0. This proves (ii)
by induction as claimed. 0

Proposition 2.2.29. (i) For any coherent D-module M, there exist a,7 € N and a
surjection of coherent D-modules

(D(-a)) > M.

(ii) For any coherent @Q—module M, there exist r € N and a surjection of coherent
Do-modules

A~ T
(Do) — M.
(iii) For any coherent Df-module M, there exist v € N and a surjection of coherent
Dt -modules

(@T)T — M.

Proof. Let M be a coherent D-module. For part (i), we need to show that there exists a
non negative integer a such that the twist M(a) is generated by a finite number of global
sections. Let M, be the torsion part of M, which is a coherent submodule of M, since
D(Y) is noetherian for every affine open Y. Over an affine open 4 of X, the module M, (4l)
is a finite type module over @(il) and there exists a constant ¢ such that wM, () = 0.
Since X can be covered by a finite number of open affine formal subschemes, there exists
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L such that @M, = 0. Then for i > L, and denoting Gy = M/ (wM + M,) we have
exact sequences

0= Go B M/m* M — M/miM 0.

Since Gy is a coherent Dy-module, there exists a; = 0 so that H'(Xy, Go(b)) = 0 for every
b > a;. As a consequence, if b = aq, for all i« > L we have surjections

(X, M/ M(b)) — (X, M/ M(b)) .

Since M /w?M is a coherent D _;-module, there exists a > a; and a surjection s :
Dy — M/wlM(a) defined by global sections ey, ..., e, € T'(X; 1, M/wlM(a)). Fi-
nally we see by induction on ¢ that these sections ey, ..., e, can be lifted to global sections
of T'(X, M/w!M(a)) for every i, and thus to global sections of T'(X, M(a)). These sec-
tions define a map Dr— M(a) that is surjective since it is surjective mod w. This proves
the part (i).

Assertion (ii) follows from (i) and lemma For (iii), we remark that, if M is a
coherent Df-module, there exists a coherent D-module A such that

M2@T®@N.

We can then apply (ii) to N and this proves (iii). O

2.3. An invariance theorem for admissible blow-ups. We keep here the hypotheses
from the previous section. In particular, Xy denotes a smooth formal G-scheme and

pr: X — X

denotes an admissible blow-up. Let pr’ : ¥’ — X, be another admissible formal blow-
up and let 7 : X’ — X be a morphism over Xj, inducing an isomorphism between the
associated rigid-analytic spaces Xg and Xf (which are both canonically isomorphic to
the rigid-analytic space Xy g associated to X;). Then we have the following invariance
property. This does not make use of the smoothness assumption for X.

Proposition 2.3.1. The functors m, (resp. ) are exact on the category of coherent
Ox g-modules (resp. coherent Oxg-modules) and induce an equivalence of categories
between coherent Oy g-modules and coherent Ox g-modules.

Proof. Let sp (resp. sp’) be the specialization map Xg — X (resp. Xy — X'). Then
by Tate’s acyclicity theorem one knows that sp, is exact over the category of coherent
Ozx,-modules. Moreover, via specialization, the category of coherent Ox -modules over
the rigid space Xg is equivalent to the category of coherent Ox g-modules over the formal
scheme X [7, discussion after (4.1.3.1)] and similarly for X’. Let 7 be the induced map by
7 between the analytic spaces Xg and Xgq, which is an isomorphism by assumption. One
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has the following commutative diagram
, o~
lsp' LSP
X —X,
s
from which we can deduce the following

Lemma 2.3.2. With the previous notations, there is an isomorphism

O};QZTF*O%QQ .
Proof. Let us first note that R7,Ox, ~ Ox, because 7 is an isomorphism of analytic
spaces. Since Rsp,Oyx, = Ox g (and the same with X), we can compute using the
previous diagram Rm,Oy o ~ Rsp,R7,Ox, ~ Oxq. This proves the lemma. 0

Let us now prove the proposition. Let F be a coherent Oy g-module, then by [7, 4.1.3]
there exists a coherent Oy ,-module F such that 7 = sp,F. Considering again the
previous diagram, we compute

Rm.F ~ Rsp,Rm.F .

As 7 is an isomorphism, Ri7,F = 0if i > 1 and 7,F is a coherent Ox,-module. Finally,
Rsp, is reduced to sp, and the spectral sequence of the composite functors degenerates,
giving us that R'm,F = 0if i > 1 and 7, F is a coherent Ox g-module. It is moreover clear
that 7* preserves coherence. Consider the map of coherent Oy g-modules 7*m, F — F.
To prove that this is an isomorphism is local on X, which we can assume to be affine.
In this case, it is enough to prove the statement for F = Oy g, since 7, is exact. But
m*m.Ox g ~ 7 Ox g because of the lemma and thus 7*7,Ox g ~ Oy .

Let &£ be a coherent Ox g-module and consider the canonical map & — m,m*E. Again,
since 7, is exact, we are reduced to the case where X is affine and £ = Ox g to prove that
this map is an isomorphism. In this case, the isomorphism follows again from the lemma.
Since m, and 7* are quasi-inverse to each other, and 7, is an exact functor, 7* is exact as
well. This finishes the proof of the proposition. 0

In the sequel, we will give a version of the invariance property for D-modules. Recall
that we have the sheaves of differential operators @Tx’k, Dgf(gl ) ete. for k > kx, cf. previous
subsection, at our disposal (similarly for X’). In the following we fiz a congruence level
k = max{ky, kz}.

For a @;}k—module M, we let, as usual, m,M denote the push-forward of M in the sense

of abelian sheaves (and analogously in the case of @gg:g)—modules). Conversely, there is a

functor 7' in the other direction constructed as usual using the formalism of inverse images
of D-modules: first of all, by definition of the sheaves Dg];;m) and Dg’é’m), cf. (2.1.13), and
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the fact that (pr’)* = 7* o pr* we have

D™ =™

and the sheaf @g];;m) can be uniquely endowed with a structure of right ﬂ_lﬂg]g’m)—module.
Passing to the p-adic completion, we see that the sheaf @ggm) is a sheaf of right w—lf)gf’m)-

modules. Then, passing to the inductive limit over m implies that i 1, 1s aright 7T_1®Tx,k—
module. For a D;’ p-module M, we then define

(2.3.3) M = D;/yk ®7f’193;,k T,

and we make the analogous definition in the case of @gf(gl )-modules

Before stating the next theorem, we need the following lemmas. Denote by A the abelian
category of projective systems K, = (K;)jeny = (Ko «— K; < ...) of Ox-modules K,
where K; is annihilated by multiplication by @'"! for every i > 0. Put P* = D’(A).
Note that for a complex (K"),cz in P’ where each K" = (K);n, there exists J > 0
so that H"(K*) = 0 if [n| > J (n € Z). The functor lim : A — Mod(Ox) extends to
a derived functor Rlim from the derived category P’ to the bounded derived category

D*(Ox) := D*(Mod(Ox)) because Rlim has cohomological dimension 1, cf. [14} 4.1].

Lemma 2.3.4. Let N € N, and let K, be an object of A such that w™ K, = 0, then the
complex Q ®z Rlim K, is quasi-isomorphic to 0 in D*(Oxq).

Proof. In the following we consider K, as an object in P concentrated in degree zero. By
hypothesis, the map @® - : K, — K, factorizes through the zero complex

K,.—0—-K,.

After applying Rkliﬁl = Hro Rlim, for k € Z, we find that multiplication with ol
factorizes

Rlim K, — 0 — R*lim K, |,
meaning that for every k € Z, @™ RF lim K, = 0 and thus
Q®z RkLiLnK. =0.

This proves the lemma, as Q is flat over Z and as this module is the k-th cohomology
sheaf of the complex

Q®z Rlim K, .
UJ
2Since Dg?,’m) = W*Dgéc’m), the functor 7' is a version of the usual D-module pullback functor [I6],

whence our notation.
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Lemma 2.3.5. Let N € N, and let £*, F* two objects of P°, and h : £* — F* a morphism
in P° so that the mapping cone C* of h (defined up to a quasi-isomorphism) satisfies

VieZ: o -HI(C)=0.
Then the map h induces a quasi-isomorphism
Q®z Rlim(E*) ~ Q®z RIim(F*) .

Proof. First note that since £* and F* have bounded cohomology, this is also the case
of C®, so that the condition of the lemma involves only a finite number of j € Z. More
precisely, there exists J € N, such that the sheaves H7(C*®) are zero for all j satisfying the
condition |j| > J. Using the cohomological truncations functors o, as defined in [15] I,
7], and denoting o, of loc. cit. by o=,.1, we have for each n a triangle in P° ([15] I,
7.2])

H'(C") = 020(C) = 02011 (C7) =
We will prove by decreasing induction on n that Q ® Rlim o, (C*) is quasi-isomorphic

to 0. This is true if n = J + 1. Assume that this is true for n + 1, then after applying
Q® Rlim to the previous triangle, we get a triangle

+1

Q® REmH(C*) > Q® Rlmo2,(C*) — Q@ Rlim oz (€*) |
As by hypothesis @V H"(C*) = 0, we see by applying the previous lemma to the

projective system H"(C®) that Q ® R1im H"(C*) is quasi-isomorphic to 0. Therefore, we
have a quasi-isomorphism

Q®Rlimo>,(C*) ~Q® Rlimoz,41(C*) ,

and the complex Q® R lim ¢, (C*) is hence quasi-isomorphic to 0. Thus, we conclude that
for all n, Q® Rlim 0-,(C*) is quasi-isomorphic to 0. Since C* has bounded cohomology, it
is quasi-isomorphic to 0>, (C*) for n small enough and this finally proves that Q® R lim C*®
is quasi-isomorphic to 0. Now we consider the triangle in P°

£ —-F -8,
and apply Q ® Rlim. In this way we obtain a triangle
Q®RImE® - Q@ RImF* - Q@ RlimC* 5,

and since Q ® R1lim C* is quasi-isomorphic to 0, we see that the first map of the latter
triangle is a quasi-isomorphism as claimed. O

As before, we denote the associated rigid analytic space of X by Xg. From and the
lemma Rim Oy g =0 for j >0 and m,Ox ¢ = Oxg. As the map 7 is proper, the
sheaves R/, are coherent Ox-modules and there is N > 0 such that @ Rim,Ox = 0
for all 7 > 0 and such that the kernel and cokernel of the natural map Oy — 7,Ox are
killed by w” as well. For any i > 0, let as usual X; be the reduction of X mod w'*! and
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similarly for X’ and denote by m; : X] — X; the morphism induced by 7. We will need
the following

Auziliary result 2.3.6. Let ¢ > 0.

(i) Kernel and cokernel of the canonical map Oy, — m;,Ox/ are annihilated by @*".

(i) For all j > 1, one has @w*~ R/7;,Ox: = 0.
Proof. As the formal scheme X' is flat, there are exact sequences
wH—l
0—)0_*{/—)0%/—)(9)(1/—)0
Applying R'm,, we get exact sequences for any ¢ and j > 1,

that prove that @*N R/m;, Ox; = 0. Moreover we can consider the following commutative
diagram of exact sequences

wottl

0 Ox o Ox, 0

L

0 — 1.0y — 1,0y —— 7T7;*OXZ{ — RlTr*Ox/.

By the snake lemma the kernel of the canonical map Oy, — m;Ox is killed by w*". By

chasing the diagram we also see that the cokernel of this map is also killed by @?" for all
1. This proves the auxiliary result. U

Lemma 2.3.7. Let 7 : X' — X be a morphism over X between admissible formal blow-ups
of the smooth formal scheme X¢. Let k > max{kx, ky'}.

(i) Then we have: Rjﬂ*D;,,k =0 for j > 0. Moreover, W*D;/7k = D;k.

(ii) There is a canonical isomorphism DT,,k ~ W!D;k.

Proof. Since R/7, commutes with inductive limits, it suffices to prove the claim for @gﬁg)
Abbreviate Dy = @gm) (and similarly for X), and Dy, = @ggl])c / w”l@gﬁg (and similarly
for X;). We need to compute Rﬂ'*@xl. Note that by [20, Tag 0BKS] R lim, Dxr =~ lim, Dxr,
so that

Rm Dy ~ Rm,Rlim Dy ~ Rlim R Dy

K3 (2

by |26, Lemma 20.32.2]. As the sheaf Dy, is a flat Ox,-module, the projection formula
gives a canonical isomorphism

Rmix Dy ~ RmiOx: Qoy, Dx, ,
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so that the canonical map Ox, — RmxOx; induces a map of projective systems of com-
plexes h : (Dx,)i — (RmixDx:);. We consider these projective systems as objects of P°.

By applying RLiLni to h, we get the canonical map h: @x — Rw*@xl. Moreover, we have
Vj = 0Vi RimuDx ~ Rmi.Ox; oy, Dx, -

By flat base change from Oy, to Dy, the previous auxiliary result (i) implies that
the kernel and the cokernel of the map (Dx,); — (mDx;); of projective systems are
annihilated by @?". Similarly, by m (ii) the projective systems (R/mDx:); for j > 1
are annihilated by @w?". Let C* be the cone of h, then, as the functor H° is a cohomological
functor [15], definition, p.27] we have the following exact cohomology sequence of projective
systems of sheaves

0— (H7'(C*) = (Dx,)i = (mDxp)i — (H(C*)) — 0,
and Vj > 1
(R7ms(Dx,))i =~ H'(C*) .
We thus see that the cohomology of C* is annihilated by w?", so that we can apply
lemma m and obtain a quasi-isomorphism 7 ® Q : ®3€,Q S Rm@x@@. By passing to

the cohomology sheaves (and to the inductive limit over all m), this proves (i). The part

(ii) follows from the definition of the functor 7', cf. [2.3.3| O

N

We can now state the
Theorem 2.3.8. Let m : X' — X be a morphism over Xy between admissible formal
blow-ups of the smooth formal scheme Xy. Let k > max{kx, kz'}.

(i) If M is a coherent Df,yk—module, then Ri7,M = 0 for j > 0. Moreover, W*D;/yk =
Q;EJW so that m, induces an exact functor between coherent modules over @;,,k
and @;’k respectively.

(ii) The formation 7" is an exact functor from the category of coherent @;vk—modules

to the category of coherent D;, w-modules, and " and T, are quasi-inverse equiv-
alences between these categories.

The same statement holds for coherent modules over @%&7’) and @(k,g) respectively.

Proof. The first assertion of part (i) is true for D;t’,k by the previous lemma [2.3.7, Now
there is a basis of the topology of X consisting of affine opens U such that pr(0) is
contained in some affine open of Xy. For this reason, if some statement is local on X, then
we can assume that X, is affine. To prove (i) of the theorem for coherent @;,yk—modules,
we can thus assume (and we do assume) that X, is affine. Then X and X’ are admissible
blow-ups of a smooth affine formal scheme X, and we still call 7 the map X' — X. We
consider now the following assertion depending on j:

For any coherent D;,,k—module M, and for any [ > j, one has R'm,M =0 .
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We will prove this assertion for any j > 1 by decreasing induction on j. The statement
for j = 1 establishes then the first assertion of part (i) in general. Since X’ has dimension
< M + 1, the assertion is true for j = M + 2. Assume that the assertion is true for j + 1
and take a coherent D;,’k—module M. Since X is affine, we can apply [2.2.29|to find a non

negative integer r and an exact sequence of coherent D;, x-modules

0—>N—(DL,) >M—0.

Since j > 1 and since R’ W*D;, r = 0 by lemma2.3.7, the long exact sequence for m, gives
us an isomorphism

Ria M~ R 'n,N.
But the right-hand side is zero by the induction hypothesis applied to N. This establishes
the assertion for 7 and completes the induction step. This ends the proof of the first
assertion of part (i).
What remains to prove for part (i) is that m,M is coherent over DL, if M is coherent

over @;, .- To show this, we continue to assume that X, is affine. By [2.2.29| there is a
finite presentation

(D;/,k)s - (Q);re',k)r - M-0.
Applying m, and using that m, is exact, we obtain a finite presentation for m,M, which
implies that the latter is coherent.

Let us prove part (ii) in the case of coherent @; x-Inodules, the case of coherent @g&? ).

modules can be treated analogously. By definition of the functor 7', cf. [2.3.3, we have
W!‘D; = @;, x- 1o prove that 7' preserves coherence is local on X, so that we can (and

will) again assume that X, is affine. Let M be a coherent @%k-module. We can apply
proposition [2.2.29|to X and obtain a finite presentation

(P%) = (PLy) — -0
Since the tensor product is right exact, we get a finite presentation of 7'M
(D%s) = (Dhy) =M —0,
which implies that 7'M is a coherent Dgﬂ y-module. In particular, the functor 7' preserves
coherence. The map 7'M — 7'M sending = to 1 ®  induces a morphism
cany - M — mom'M |

which is natural in M. Whether cany; is an isomorphism can be decided locally on X,
and we can again assume that X, is affine. X and X’ are admissible blow-ups of X, and
by [2.2.29| there a finite presentation

(2.3.9) (D;k)s = (ng)r M0,
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and so 7'M admits a finite presentation

<®;’,k) - <®;/7k) - W'M — 0.
We apply 7, to this latter sequence and use that 7, is exact (by (i)), together with
to obtain the finite presentation

(2.3.10) (1);k)s - (@Q,k)r M 0.

The natural transformation can induces a morphism from [2.3.9| to [2.3.10, and because
cangi is an isomorphism, so is canyy.
X,k

In the reverse direction, let M’ be a coherent D;,,k—module. There is a map can) :
m'm M — M, sending P ® x to Pz, which is natural in M’. Whether this map is
bijective can be decided locally on X and we may assume that X is affine, and X’ and X
are admissible blow-ups of X;. Since 7, is exact, and using [2.2.29|over X', we are reduced
to the case where M’ = @;,’k. In this case W!W*{D;,’k ~ Dy by (i). From all of this,
we can conclude that 7' and 7, are quasi-inverse functors. As m, is exact on coherent
@;,k-modules, 7' is exact on coherent @;}k-modules. O

Corollary 2.3.11. In the situation of the preceding theorem, one has
F(%v ‘DTx,k) = F(%Oa D;o,k) = F(:{IJ 9;%) :
As an application of the invariance theorem we can extend the local theorems A and B

2.2.6) and 2.2.15| to global statements, provided that the base X, is affine[]

Theorem 2.3.12. (Global theorem A and B over an affine base) Let Xy be affine.
(i) For any coherent @gg;&z)—module M and for all ¢ > 0 one has H1(X, M) =A0.
(i) The functor I'(X,—) is an equivalence between the category of coherent @%g)—

modules and the category of coherent I'(X, @gg;&n))—modules.

The same statement holds for coherent modules over D;yk and I'(X, D;k)

Proof. Denote by m : X — X the blow-up morphism. The functor I'(X,.) equals the
composite of the two functors 7, and I'(Xo, —). Hence the theorem follows from and

its corollary [2.3.11| and [2.2.15{ 0
3. COADMISSIBLE D-MODULES ON X AND THE ZARISKI-RIEMANN SPACE

We continue to denote throughout this section by X, a smooth formal G-scheme, and we
consider an admissible formal blow-up
pr: X —X,.

3Note that this is not covered by and [2.2.15] since an admissible blow-up X of an affine Xy is in
general not affine.
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The purpose of the first subsection is to study projective systems (My)x>k, 0of coherent
modules M over @;yk, and to pass to their associated projective limits. In the second
subsection we will then let X vary in the system of all admissible formal blow-ups of X.

3.1. Coadmissible D-modules on X. We make the general convention that k always
denotes an integer which is at least as large as kx.

3.1.1. Fréchet-Stein algebras. Let B be a noetherian K-Banach algebra. We recall that

any finitely generated B-module has a canonical structure as B-Banach module and any
B-linear map between two such modules is continuous. The topology can be defined as
the quotient topology with respect to any chosen finite presentation of the module [24]
Prop. 2.1].
We recall from [24), sec. 3] that a K-Fréchet algebra A is called Fréchet-Stein if there
is a projective system (Ay, Agr1 — Ag)ren Of (left) noetherian K-Banach algebras Ay
with (right) flat transition maps Ay — Ag, and an isomorphism of topological K-
algebras A ~ lim, Ay such that each of the induced maps A — A; has dense image. For
the following definition we fix such an isomorphism. We denote by C,4 the full abelian
subcategory of the category of all (left) A-modules consisting of the coadmissible A-
modules, as introduced in [24]. For an A-module M to be coadmissible means that there
is a projective system (My, My1 — Mjy)gen, where each My is a finitely generated Ag-
module, such that

(i) the transition map My,; — My is a homomorphism of Ay, ;-modules; and the
induced map Ay ®a,,, Mi41 — M, is an isomorphism of Ai-modules, and

(ii) M is isomorphic to lim M) as an A-module.
(The projective limit is considered as an A-module via the fixed isomorphismﬁ] A ~
lim Ajy.) We sometimes call (M) an (Ag)-sequence for M. For M = lim My € Cy

we have that the image of M — M, is dense with respect to the canonical topology for
any k, and LiLnl(:) My, =0, cf. [24] first theorem in sec. 3].

3.1.2. The sheaf Dx . We denote by
(3.1.3) Do = lim D},
k

the projective limit of the system of sheaves @gk. Then Dy o, is again a sheaf of rings
and for every open subset U — X we have Dy (U) = lim @;’k(’ﬂ).

Proposition 3.1.4.

(i) The canonical morphism of sheaves @gf;g) — @;k induces an isomorphism

4However, the category C,4 is independent of the isomorphism.
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i DEY = D — D
k k

(ii) For every affine open subset B < X the isomorphism
Do (W) = lim Dy ()
k
induced from (i) gives Dx (V) the structure of a Fréchet-Stein algebra.
(111) Let 34 < X be an open affine subset which can be equipped with a system of étale

coordinates x1,...,xy and O1,...,0y the corresponding derivations. Then, for
any affine open B < prt(U) we have

(3.1.5) Dxw(V) = {Z aZQZ‘aZE Ox0(0), VR>0: ‘1|im la, | R = } :
v|—00
where || - | is any submultiplicative Banach space norm on Ox q(*0).

(iv) Let X' — Xy be another admissible formal blow-up, and let 7 : X' — X be
a morphism over Xo. Then the canonical isomorphisms W*QL,,k = 9;,1« for
k = max{ky, kx}, cf. give rise to a canonical 1somorphism

(316) W*gx’,oo = D%,oo .

Proof. Take an affine open U < X. We deduce from the proposition [2.2.22| that the pro-
jective systems of K-algebras @%k(%) and @gg gg) (¥0) are equivalent. This proves (i). For
(ii), note that the transition map @gﬂ 61’0) () — @gek(g) (V) is a flat homomorphism be-
tween noetherian Banach algebras, according to propositions [2.2.16| and [2.2.2] Moreover,
each ring Dgg) (¥U) contains the local sections over U of the ring of algebraic (finite order)
differential operators Dz g = pr*Dx, . Hence, each induced map Dx (V) — @gekQ?) (V)
has dense image, as required. To prove (iii), we assume additionally 0 < pr~'4. By part
(i), is then enough to show

LY@ - { T
k v

a, € Ox (), VR >0 |l\im HCLEHRM — 0} _

Denote by E the right-hand side of the preceding equality. Recall that
D) - {Zw’“'“by@” b, € Ox(D), [b,] — o} .

Let P = ZH a, 0% € E. Since all Banach algebra norms over Oz o(*0) are equivalent, we
can use the p-adic norm | - |, of Ox o(Y) relatively to the lattice Ox(¥). Fix k € N and
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define
bu = w_km‘au )
then, using the ramification index e of the extension L/Q,, we get that

klv| .
’bz’p = ’az‘pp e — 0 if [y] — +oo.

Thus P = Y, @w"¥lb,0% € @g&g) (%). Conversely, let P = 3}, a,0* € lim @g&g) () and
R > 0. Choose k > 0 such that

pe > R and define b, = w ", .

Since P = Zzwkwbzéz € @;’fg)(m), by |, — 0, thus
Ely|
|aypp e
proving that P € E, as required for (iii).
Let us prove (iv). Let U < X, then from part (i) of proposition we know that
@;k(ﬁl) = D;uk(w_l(%)). We deduce from this the equations

D 0(V) = Do oo (77 1(V)) = lim DY, , (771(V)) = lim DL (V) = D o(V) -
k k

— 0, and |a,|,R¥ — 0,

O

Let us remark that the sheaf Dy ., does only depend on the formal scheme X and not
on the blow-up morphism pr. Indeed, suppose that X is realized as the blow-up of two
smooth formal schemes X, and X{. We may assume that X, and X, are affine and endowed
with coordinates. To any given k, there exists k&' > k such that @* pr’ *’J'g% is contained
in wrpr*Ty,, inside the tangent sheaf Tx, of the generic fibre Xg. The two projective

systems (@gek&) k>ky (relative to the blow-up morphisms pr and pr’) are therefore cofinal
and their projective limits are therefore isomorphic.

For every affine open subset U < X we have, according to the preceding proposition,
the abelian category of coadmissible Dx ,,(U)-modules Cpy.,(w)- We give an alternative

description of these modules using the projective system of algebras @;yk(%).

Proposition 3.1.7. Let U < X be an affine open. A Dx o(B)-module M is coadmissible
if and only if there is a projective system (My, My 1 — M), where each My, is a finitely
presented @;}k(%)-module, such that

(i) the transition map My, — My, is D;,Hl(%)—linear and induces an isomorphism
T ~
Dx,k(m) ®®;7k+1(&1}) Mk+1 = Mk

of D;}k(%)—modules, and

(it) M is isomorphic to lim, My as an Dx o (V)-module.
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Proof. This follows from the discussion given in the proof of [I1, Prop. 1.2.9] and we
explain the main points. We write A; = @gfg) (V) and By = @;ﬁk(‘ﬂ). We have strictly
increasing functions ¢ and ¥ mapping N to itself such that the map A — Ay (resp.
A — By,) factors through the map A — By (resp. A — Ayx)). Indeed, we may take
¢(k) =k + ¢ and (k) = k with ¢ > -5 a fixed number, according to the proposition
[2.2.22] In particular, the systems of K-algebras Ay and By are equivalent. Now suppose
N is coadmissible with system of Banach modules Nj. For k > 1 define the finitely

presented Bi-module

My = B, ®a,,;,y Nyk) -
Since 9(k + 1) = ¢ (k), the map Nyu11) — Ny induces a map M1 — Mj, and then a
map By, ®p,,, My+1 — M;. This map is bijective as follows from the diagram presented
in the proof of [II, Prop. 1.2.9]. Moreover, the projection map M — Ny induces a
A-linear map
M — B, ®a M — By ®a,, Ny = Mg
compatible with My, — Mj. This gives an A-linear map M — Link M, and it remains
to see that it is bijective. We have the natural map Nyu) — M. On the other hand,
(o(k)) = k such that there is a map
Mowy = Botr) @ayou Moot = Ak Oy Nuowy) — Ni
using the map By — Aj. Hence the systems (M}) and (Nj) are equivalent and

Mﬁmeﬁka
k k

This shows that the system (Mj) is as required for M. Conversely, starting with a module
M and such a system (M},) the coadmissibility of M follows with the same argument. O

Definition 3.1.8. A Dy ,-module M is called coadmissible if there a projective system
(M, M1 — M) >k, , where My, is a coherent D%é)—module, such that

(i) the transition map M1 — My is @g&l’o)-linear and the induced map

(3.1.9) DY B 10 My —> My,

is an isomorphism as @gf g)—modules, and
(ii) M is isomorphic to Link My, as Dy o-module.

We denote by
Cx < Mod(Dx o)

the full subcategory of coadmissible Dx ,-modules in the category of all Dy ,,-modules.

Proposition 3.1.10. A Dy ,.-module M is coadmissible if and only if there is a projective
system (M, Myi1 — M) gk, where My, is a coherent @Tx,k—module, such that

(i) the transition map My — My, is @;’kﬂ—linea'r and the induced morphism of sheaves
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(3.1.11) DL, Ry, Mir1 — M

s an isomorphism of ng—modules, and
(it) M is isomorphic to im, My, as Dx o-module.

Proof. This follows literally as for the modules of local sections, cf. proposition [3.1.7]
taking into account that proposition [2.2.22| holds on the level of sheaves. O

The following statement is a version of the invariance theorem for coadmissible
modules.

Proposition 3.1.12. Let X' — X be another admissible formal blow-up, and let 7 : X' —
X be a morphism over Xy. Then, for every coadmissible Dxs o-module M the sheaf m,M
s a coadmissible Dx -module via the isomorphism 7Dy oo = Dx . Moreover, one has
an equivalence of categories

7y o Cyr — Cx .

Proof. Write M = lim, M}, with coherent D;,k—modules M. By |2.3.8 we know that each
sheaf 7, (M},) is a coherent D;Jﬂ-module. Moreover 7,(M) = lim . (My), and

DL, @y mMiys = mD] 7M1 = . (D Mii1) = 7M.
X,k ®D3€,k+1 #IVUE+1 * Xk ®W*®;’,k+l #IVUE+1 * X'k ®D;’,k+1 k+1 #JVLE

Note here that the exact functor m,, cf. 2.3.8, indeed commutes with the tensor product:
this may be checked over an open affine 0 € X’ where we may take a finite presentation
of the restriction of the module M, to U as @;M +1-module to reduce to the case of the

sheaf 9%,1@ 41, as in the proof of the preceding theorem. This shows m,M € Cx. Conversely,
suppose N = Link N € Cx with coherent @Tx’k—modules Nj. Then 7'N = Lglk 7' Ny lies
in Cys, since the projective system of coherent D;, ,~-modules 7'Nj, satisfies

i -1
(Das/,kﬂ ®7r*19;’k+1 T Nkﬂ)
~ Dt —1eyt -1
S T G T R )

|

~ 7' (Dl )

v (ke @y, N
~ W!Nk.

It follows from that the functor N' — 7'N is a quasi-inverse to the functor m, :
Cx» — Cx. These functors are therefore mutually inverse equivalences of categories. 0

i ! ~ D
Dy, ®®;, eer Ni+1 > Dy Qg

X/ k+1
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Theorem 3.1.13. (Theorem A for coadmissible modules on X) Let 0 < X be an affine
open subset. Then the global sections functor I'(0, —) induces an equivalence of categories

F(QI, —) . Cm i> CDx,oo(‘B) .

Proof. This is an application of proposition [2.2.15. Abbreviate D,TC = ['(3, @%’k). Let

M € Cy with coherent @;yk—modules M. Then M; = T'(0, M) is a coherent D,Z—module
and M = I'(U,M) = lim, M;. Taking global sections in the isomorphism

i =
(3.1.14) Dx ®®;’k+1 M1 My,
shows that the canonical map

D! ®pi My1 — My,

is an isomorphism, too. Indeed, this is clear in the case My, = @3;] w41 and the general

case follows from taking a finite presentation of My, as @L] wi1-module. We conclude
with proposition that M € Cp, (). Conversely, given M € Cp, () With coherent

D,Tc—modules M, the @;Lk—module M, = ’D;Lk ®pi My, is coherent and these modules

satisfy |3.1.14] Indeed, that the canonical map is an isomorphism can be checked
on global sections and follows then from the compatibility with the tensor product. This
shows that M = lim Mj lies in Cy. This provides a quasi-inverse to I'(T, —). O

Lemma 3.1.15. Let M € Cx with a projective system (My,) of coherent @gg)-modules,

as in . Let 0 < X be an open subset, which is affine or of the form pr='(4) for an
affine open h < Xo. Then the projective system (Mg (D))k=k, has the following properties:

(i) For k' = k the transition map My (8) — My(0) is uniformly continuous.

(ii) For all k = kyx there exists k' = k such that for all k" = k' the image of My (0) —
My (L) is dense in im(My (B) — M (0)).

(iii) lim'Y M (B) = 0.

Proof. (a) To begin with, we assume here that U is open affine in X. Since a con-
tinuous map between normed spaces is uniformly continuous, (i) is clear. Abbreviate
Dy, = (B, D¥Y) and My = D(U,My). By the above theorem M € Ca, , ) and, by
the general properties of Fréchet-Stein algebras which we have recalled above, it remains
to see that the modules My = My (U) form a (Dy)-sequence for M. This is an applica-
tion of proposition m First, M} is a coherent Dy-module. Applying I'(0, —) to the
isomorphism

shows that the canonical map
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is an isomorphism. Indeed, this is clear in the case where the restriction of M, to
0 equals Dgﬂv’& and the general case follows from taking a finite presentation of it as

@g;’&—module.

(b) Now let U = pr~*() be the preimage of an open affine subset U = Xy. We consider

the projective system (pr,My)x of coherent @g%—modules. By |3.1.12, this is a projective
system for the sheaf pr,M € Cx,. As we have seen in part (a), statements (i)-(iii) hold for
the open affine subset i of X, and the projective system (pr,Mjy)g, and they thus hold
also for U = pr~!() and the projective system (My)p. O

Theorem 3.1.16. (Theorem B for coadmissible modules on X) Let pr : X — X, be an
admissible blow-up. Suppose M = liLnk My is a coadmissible Dx -module with coherent

@%g)—modules M. Then R@k My = M. Moreover, given any open subset B < X which
is affine or the preimage pr—() of an open affine 4 = Xy, we have HI (B, M) = 0 for
all ¢ > 0. In particular, if Xq is affine, then H1(X, M) =0 for all ¢ > 0.

Proof. Our aim is to apply [26, Tag O0BKS]. To this end, we let B be the set of open

subsets ¥ < X which are affine or of the form pr~!(4) for some open affine {l = Xy. We
are going to show that the three hypotheses of loc. cit. are fulfilled, namely

(i) Every open subset of X has a covering whose members are elements of 5.
(ii) For every U € B, all k > 0, and all ¢ > 0 one has HI(0,M;) = 0.
(iii) For every U € B one has Liil;(gl) M() = 0.
Proof of these conditions. (i) This is true because B is a basis of the topology of X.

(ii) This is true by (iii) for U open affine, and by [2.3.12 when U is the preimage of
an open affine subset in X.

(iii) This is true by |3.1.15] O

This shows that the conclusions of [26], Tag 0BKS]| hold, namely that Rlim My = M,
and that H1(0, M) = 0 for all ¢ > 0 and every U € B. In particular, H4(X, M) = 0 for
all ¢ > 0, if X is affine. ([l

Theorem 3.1.17. The category Cx of coadmissible Dy o,-modules is abelian.

Proof. The argument is similar to [24], 3.5], adapted to our situation.

a) For the purpose of this proof denote by Coh the category of projective systems
v gory J Yy

(Mg, Myr1 — Mk)k>0, where M, is a coherent kagg)—module such that for every £ > 0

the canonical Dx 0 -linear homomorphism pr ®D(k+1 0) Mpi1 — My is an isomorphism.

Morphisms in Coh are morphisms of projective systems By the flatness result of 2.2.10]
the category Coh is abelian, where (co)kernels and (co)images in Coh coincide with the
corresponding notions in the category of all projective systems (M, M1 — My)rso0-
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(b) Consider the functor Coh — Cx, (My)x — lim, My, which is essentially surjective.
In order to show that it is also fully faithful, we prove the following statement: if M =
LiLnk M}, is a coadmissible Dy ,-module, then the canonical map Dg:g) @y M — M, is
an isomorphism for any k. If 20 < X is open affine, then

DD (V) ®os, () M(T) —> My (D)

is bijective, according to [3.1.13[ and [24, Cor. 3.1] for the Fréchet-Stein algebra Dx (J).
This shows that the morphism of presheaves

(DED () @0 MY - M(8D)

where 4 runs through all open subsets in X, sheafifies to give the desired isomorphism

D%g) ®Dy e M —~> M;,. The functor Link : Coh — Cy, being essentially surjective and
fully faithful, is therefore an equivalence of categories.

(c) It is clear that direct sums of coadmissible modules are coadmissible, and the cat-
egory Cx is hence an additive category. Moreover, any morphism between coadmissible
modules comes from a morphism in the abelian category Coh which has a (co)kernel and
a (co)image. Since the functor lim, : Coh — Mod(Dx,x) is exact, by [3.1.16] it commutes

with the formation of (co)kernels and (co)images. Thus, the category Cyx is abelian. [

3.2. Coadmissible D-modules on the Zariski-Riemann space (X;). We finally ex-
plain how to pass from the previous construction and results to the projective limit in X,
that is to say, to the Zariski-Riemann space of X.

3.2.1. Let Fx, be the set of all admissible formal blow-ups X — X, E] This set is partially
ordered by setting ¥’ > X if the blow-up morphism ¥’ — X, factors as ¥’ /> X — X,
where X — X, is the blow-up morphism. The morphism 7 : X’ — X is then uniquely
determined by the universal property of blowing up, and is itself a blow-up morphism [19]
ch. 8, 1.24], and we will denote it henceforth by 7y x. By [9, Remark 10 in sec. 8.2] the
set Fx, is directed in the sense that any two elements have a common upper bound, and
we can consider the topological space equal to the projective limitﬁ]

(Xp) = lim X.
366}'350

This is the Zariski-Riemann space associated with X,. For its basic properties we refer to
[9, 9.3].

3.2.2. Sheaves on the space (Xy). For X € Fx, we denote the canonical projection map
(Xp) — X by spy. If X' > X in Fx,, we have spy = 7y x © spyp. The isomorphism

We emphasize that the blow-up morphism X — Xj is part of the datum of X.
5In the paper [I8] this space is denoted by X..
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(2 %)+ Dxr o = Dx o from m, together with the adjunction map 7@,17% o (myx)s — id
gives rise to a canonical map

(323) Yxx - Wil%xﬂx,oo = W;/%x(ﬂ'xr’x)*@x/,@ —> ®X’,w .
These morphisms of sheaves satisfy

Pxxr = Px/xr O §//17x/ Oxx!
whenever X” > X’ > X. We then obtain an inductive system (Sp;lwxpo)xe}‘xo of sheaves
of rings on (Xy), and we put

®<xo> = h_H}Sp;lem :
X

Definition 3.2.4. A Dy,,-module M is called coadmissible if there is a family (M, w;vfx,)
of coadmissible Dy ,-modules My, for all X € Fx,, together with an isomorphism

VY 5t (T x) M — My,

of Dy -modules, whenever we have X’ > X in Fy,. This system of modules and isomor-
phisms is required to satisfy the following conditions:
(i) Whenever X" > X’ > X in Fy, the following transitivity condition holds :

wg\e{/,x © (W%’,x)*wy/,X/) = wg‘ed”,x :

) M is isomorphic to the inductive limit lim_ spz*Mx as D xv-module.
i o X (Xoy

Note that the transition morphism sp;elj\/[x — Spg,lMx/ in the inductive limit in (ii) is
defined by applying the functor Sp;,l to the morphism

W;,I,XMX = W;/%X(WX’,}:)*MX’ — Mx/ .
The latter is obtained from (w%,x)_l : My — (mwx)«Mx and the adjunction map
Tty © (T x)e — id.

We denote by
C<350> - MOd(D<3€O>)

the full subcategory of coadmissible D x,y-modules in the category of all Dy, -modules.

Proposition 3.2.5. Let X € Fx,. One has an equivalence of categories

(Sp%)* . C<3€0> i> C}; .

Moreover, the category Cix,, ts abelian.
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Proof. Let M = 11_I)n3€ Sp§1Mx and let X’ > X. There is a canonical isomorphism

(SPy)sSP Mar —> My .
Indeed, let & = X be an open and let U = 7wy (). Then

(sPx) 8P M (1) = sp/ Mo (sp3 " (41)) = Mae (D)

using that spy (spy' (&) = V. But My (V) =~ Mg(8h) via the map ¢ . In particular,
we get an isomorphism

(5Px)x (M) = lim(spy) 5P My — Mz .
xl

This shows that the functor (spy). appearing in the proposition is well-defined. In the
other direction, let M € Cx and define for X’ > X the module My as My := (7w x)'Mx,
cf. . Note that (mx/ x)«(Mz) ~ Mx. The family (My/) then satisfies the conditions
(i) and (ii) in the above definition and its inductive limit M lies therefore in C¢x,,. This
gives a quasi-inverse to the functor (spy). and shows that we have an equivalence of

categories Cix,) 5 Cy, as claimed. We now show that the latter quasi-inverse functor is
in fact an exact functor. To this end, let

0>N->M->P—-0
be an exact sequence in Cyx. The exactness of the sequence

0— h_n;lSp;le — li_r)nspa_glj\/[x — li_I)nsp;Tx — 0
x x x

can be verified after restricting the sheaves to an open subset of the form spy/ (L) for
some open 4 < X’ where X’ > X. Taking local sections in the above sequence yields the
sequence

0— lim Nev(mphp () — Ty Men(mgho (80) — Ly Pro(mgh (£)) — 0.
%”_’%l %//_)xl %//_)%/

This sequence is exact, by the exactness of filtered direct limits and the exactness of the
functors 7755/,736,, cf. [3.1.12, Since the category C(x,, is now seen to be equivalent to the
abelian category Cyx via an ezact functor, it is abelian, too. ([l

Theorem 3.2.6. (Theorem A and B for coadmissible D x,-modules) Suppose Xo is
affine.

(i) One has an equivalence of categories

F(<%0>7 _) : C<3‘:0> — ngo,w(xo) :
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(ii) For every M € Cix,y and every q > 0 one has
HY({(%Xp),M) =0

Proof. Part (i) follows from the preceding proposition together with theorem [3.1.13] By
[12], 0.3.1.19] the canonical map

lim HY(X, Mx) > HO((X0), M)
3€e]—'350

is an isomorphism. Thus, part (ii) follows from [3.1.16] O

3.3. Examples. The first example is given by the structure sheaf of the Zariski-Riemann
space tensored with Q. Let us denote

Ocxorq = limspx ' Oxg -
X

Proposition 3.3.1. The sheaf Oxyq 15 a coadmissible D x,y-module.

Proof. If X, X' € Fx, and 7 : X' — X is a morphism over X, then 7,0y g = Ox,q by[2.3.1]
By we have an equivalence of categories Cix,, — Cx, with an explicit quasi-inverse.
From these considerations we see that the claim will follow from the fact that Ox, ¢ € Cx,.
For any integer k, the sheaf Ox,q is a D;O,k—module. Let Uy < Xy an affine open of X
with coordinates 1, ...,z ), and corresponding derivations 0, ..., dy. Following [2.1.14]
we write

D] =T(t, DL, ;) = {Zwk”|a,,é[”] |a, € Ox,0(th), and 3C > 0,1 < 1]|a,| < cnvl} :

We have the following lemma, using the notation 0 = (0,...,0).

Lemma 3.3.2. Let P e D), there exist Py, ..., Py € D} and ag € Ox,o(L) such that

Proof. The proof of this lemma is essentially the proof of the Spencer lemma by Berth-
elot [6l, 3.2.1] for the case k = 0, meaning for the sheaf of arithmetic differential operators.
Let us denote 1 = (1,0,...,0) € N and by OP; the set of operators in D,Tf such that
a, =0if vy #0. Let P =3}, @M, o e DI and consider

P, = Z okl 2 plu-1] :

v
v|v1#0 1

then, as [1/m, = O(j11],) = O(|v|,) when |v|, — +o0, this operator P; belongs to D]
(here |.|, is the usual p-adic norm over the field Q). Moreover since we have the identity

VIQ[Z] =0 .Q[z—l] :
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we get that P = P07 + Q1 where Q; € OP;. We can now apply the same procedure to
(), relatively to do. Doing this, we see that there exist P, € D,L and @Yo with no terms
containing neither di, nor 0y, such that P = Py0 + P20y + Q2. We finally find the lemma
iterating M times. Note that the ay term given by the lemma is necessarily the same as
the initial ay term of P. O

This allows us to prove the

Lemma 3.3.3. There is a presentation

M (4

DLO,k @L k Ouo,@ —0
(Plu 7PM>ﬁ'Zf\i1P)zaz
P P-1

Proof. Let U, < Uy be affine, and denote by D}; = I'(%Vy, ‘D;o,k)’ we have to prove that
we have a presentation, with the same maps as in the statement

M
D} —= D} — Ox, ¢(Bp) —= 0.
Let Pe D}, P = 2 w*¥la, o such that P(1) = ag = 0. By the previous lemma, there
exist Py, ..., Py such that P = 3 Pd; so that P € im(4)). O
Let us come back now to the proof of the proposition. Using this presentation, we see
that Ox, o is a coherent D;mk-module, and that we have canonical compatibility relations
i
Dok @t ., Oxo0 = Oxo -

Finally the Dy, ,-module Oy, g is isomorphic to the constant projective system of coher-
ent D;mk-modules (Ox,.0) and is an element of Cx,. As explained at the beginning of the
proof, this implies that Oz, € Cx,y- This ends the proof of the proposition. O

For the second example, we consider a Cartier divisor 3, which is assumed to be smooth
over o, of the formal scheme X,. As above, we denote by Xy and 3¢ the rigid analytic
spaces associated with Xy and 3, respectively. Let U = X o\3¢g be the open complement,
and j : U — Xy the inclusion of rigid spaces. We have the specialization map sp :
XQQ g }:0.

Proposition 3.3.4. The sheaf sp, j«Ov is a coadmissible Dx, o-module.
Proof. We freely use the notation and terminology of [6, 4.0.1]. Let us consider
Ve = Xog \ 3l

and V,(V}) the set of strict neighborhoods of Vj. Note that Vj is well defined since 3 is a
Cartier divisor of Xy. If 2 = Spf A is an open affine subset of Xy, such that 30 = V(#;),
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then
Vi[Bg = {z € Vg ||t(2)| = |}
Note that
U= JViandU={] (J W.
& k WeVs(Vi)
We introduce also
gl = lim sp,jw.Ow ,

WeVs (Vi)
where jy : W — X g is the inclusion in X g of a strict neighborhood W of V.. We have
an inclusion Vi, < Vi1 and Vi is a strict neighborhood of Vi, so that Vy(Vii1) < Vs(Vi).
As a consequence, for any k, there is a canonical morphism S,I o 5,1. Moreover, since
sp, commutes with projective limits, we have
sP,.JxOu, = mgli :
k
The proposition will follow from the

Lemma 3.3.5. (i) The sheaf E is a coherent @;mk—module.
(ii) The canonical map S,IH — 5,1 induces a canonical isomorphism of coherent D;mk-
modules,

i f o ef
Do ®D;0YH1 Epp1 =& -

Proof. Let W be admissible open in X;. Then W is the generic fiber of some Zariski
open 00" of X’ where pr : X’ — X, is an admissible blow-up of X,. Denote by j’ the
inclusion : 20" < X’. Then j, Oy g is a @;/7k,—m0dule, for k' > ky/, so that the sheaf
sp.Jw«Ow = pr,J.On o has an action of D;O’k, as Q;Eo,k’ = pr*ﬂg,’k, by [2.3.8, In
particular, the sheaf sp,jw.Ow is a Dx,-module for any admissible open W. As a
consequence, the sheaf 5,1 has a structure of Dy, ,-module as well. Let us check locally
that this structure extends to a structure of D;mk—module. Let U = SpfA < X, be affine
open in X, such that 30 = V(t;) where ¢; is a local coordinate on . Then we have
the following description, where A, = A® L is an affinoid algebra,

Elw) = {Z a,@t7" " a, e Ap|3C > 0,0 < 1||a,| < C’n”} .

v=0

Denote by ¢; the derivation corresponding to the coordinate ¢1, and 0s, ..., dy; the other
derivations. Let us denote D,TC = 2);60 + (), then we have the following description us-

OARE
Dl = {Z a,@o | a, e Ay, and 3C > 0,7 < 1]]a,| < Cn'”'} .

To prove the lemma it is thus enough to check the
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Lemma 3.3.6. There is a presentation

pi" ! D; T &) —0
(Py, ..., Py) — Pioity + XM, Pd;
P p.L.

t1

Proof. Again, we follow the proof by Berthelot [6], 4.4.2] of the analogous statement for
arithmetic differential operators. It is clear that im(v¢) < ker(y). Observe that

ot = (e
Let h = Y a, @™t ' e 5,1(%), then P = Zy(—l)”wk”alﬁgu] belongs to D,L and P(1/t;) =
h, so that ¢ is surjective. Let now P € ker(y), then, applying repeatedly lemma m,
we see that modulo im(z)), P can be written P = ), w"”a,ﬁgy], with coefficients a, € Af,

such that 3 @™ (—1)"a,(t)™ " = 0 € £ (V). Moreover, there exist C' > 0,7 < 1 such
that |a,| < Cn” where |- | is a Banach norm on A. Denote

J
bj = Z a,,wk”tjl_" .
v=0
Let us now state the following

Auziliary result 3.3.7. There exist C" > 0,7/ < 1 such that |b;| < C"|e |5

Proof. Berthelot proved this lemma for £ = 0 in [6, 4.2.1]. Let us check that the proof
can be adapted to any k. Since U is smooth, the affinoid algebra Ay, is reduced, so that
the spectral semi-norm is a norm and defines the Banach topology on A;. All Banach
norms being equivalent, we can use this norm to prove the statement, which we keep on
denoting by |- |. Let Ugp = SpfA, be the generic fiber of U, seen as rigid analytic space.
Let ' > n, such that 7 < 1 and some power (n')" lies in the valuation group of L for
some positive integer n. We consider the following admissible cover of Uy by open V; and
V5 defined by

Vi = {o e Bo | It()] < [’} and Vo = {o & g ||’ < [u(x)] < 1} .

It is enough to bound the spectral norm of the b; on each of this affinoid open. As Ay, is
reduced, I'(V}, Ox, ), resp. I'(Va, Ox, ), is reduced as well by Corollary 10 of [8, 7.3.2], so
that the spectral norm induced a norm on these two affinoid open sets. If x € V;, then

j .
bj(2)] = | D, & at]™| < Clw|” .
v=0

B = {Z a,/wkytlf'jfl,a,, € Arlla,| — 0} ,

v=0

Consider
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which is the Banach algebra of analytic functions on the affinoid {x € g | | |* < [t1(z)] <
1}. Obviously, £/ (0) ¢ B. If z € V,, then

o a, b (@) < C (ﬁ> |

so that the series Y, @™ (—1)"a,(t1) """ converges to some element b € I'(Va, Ox, ). More-
over the image of this element b in B is zero. The support of b is a closed affinoid subset
of V4, and at each point z of this support, |t;(z)| < |=*|. By the maximum principle,
increasing 7’ if necessary, provided that n’ < 1, we can assume that the support is con-
tained in {z||t;(x)| < |@|*(27' — 1)}, so that h = 0 restricted to V,. Then we have the
following upper bound for x € V;

bj(@)| = | Y, @ a(ti(@) | < Clew|y” .
v=j+1

O

Let us come back to the proof of . We need to check that P = wk”a,,agy], such
that >, @ (—1)"a,(t;)™~! = 0 € £.(V), belongs to im(z)). Let us define
j—1
by = ()Y (1 et
v=0

Q= b,
j=0
that belongs to D,TC thanks to m Berthelot checked at the end of the proof of [6l 4.2.1],
that P = Qt;. But since this is true in D[T), this is also true in DZ and P = Qt;. By

hypothesis, by = 0, and by the lemma |3.3.2 this implies that there exists ()1 € D,TC such
that @ = Q,0;. We finally conclude that P = @101t and that P € im(v)).
This presentation proves (i) and (ii) of and completes the proof of O

We remark that results similar to have recently been obtained independently and in
slightly greater generality by Ardakov-Bode-Wadsley in their setting [2].

and

REFERENCES

[1] K. Ardakov. D-modules on rigid analytic spaces. Proceedings of the International Congress of Math-
ematicians 2014 Seoul,, 111:1-9, 2014.

2] K. Ardakov, A. Bode, and S. J. Wadsley. D-modules on rigid analytic spaces III. Preprint 2019,
http: //arziv. org/abs/ 1904 . 13280.

[3] K. Ardakov and S. Wadsley. D-modules on rigid analytic spaces II: Kashiwara’s equivalence. Journal
of Algebraic Geometry, 27:647-701, 2018.

[4] K. Ardakov and S. Wadsley. D-modules on rigid analytic spaces I. J. Reine u. Angew. Math., T47:221—
276, 2019.

[5] Konstantin Ardakov and Simon Wadsley. On irreducible representations of compact p-adic analytic
groups. Ann. of Math. (2), 178(2):453-557, 2013.


http://arxiv.org/abs/1904.13280.

(6]

[20]
[21]
22]
[23]
[24]
[25]

[26]

ARITHMETIC STRUCTURES FOR DIFFERENTIAL OPERATORS ON FORMAL SCHEMES 53

P. Berthelot. Cohomologie rigide et théorie des D-modules. In p-adic analysis (Trento, 1989), volume
1454 of Lecture Notes in Math., pages 80-124. Springer, Berlin, 1990.

P. Berthelot. D-modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. Sci. E.N.S,
29:185-272, 1996.

S. Bosch, U. Giintzer, and R. Remmert. Non-Archimedean analysis. Springer-Verlag, Berlin, 1984.

Siegfried Bosch. Lectures on Formal and Rigid Geometry. Lecture Notes in Math., Vol. 2105.
Springer-Verlag, Berlin, 2014.

Bruno Chiarellotto and Bernard Le Stum. Pentes en cohomologie rigide et F-isocristaux unipotents.
Manuscripta Math., 100(4):455-468, 1999.

M. Emerton. Locally analytic vectors in representations of locally p-adic analytic groups. Preprint.
To appear in: Memoirs of the AMS.

K. Fujiwara and F. Kato. Foundations of Rigid Geometry 1.  Preprint,
https://arxiv.org/abs/1308.4734.

A. Grothendieck. Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes
de schémas IV. Inst. Hautes Etudes Sci. Publ. Math., (32):361, 1967.

R. Hartshorne. On the De Rham cohomology of algebraic varieties. Inst. Hautes Etudes Sci. Publ.
Math., (45):5-99, 1975.

Robin Hartshorne. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck,
given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20.
Springer-Verlag, Berlin-New York, 1966.

Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and repre-
sentation theory, volume 236 of Progress in Mathematics. Birkhauser Boston Inc., Boston, MA, 2008.
Translated from the 1995 Japanese edition by Takeuchi.

C. Huyghe. Dspf-affinité de lespace projectif. Compositio Math., 108(3):277-318, 1997. With an
appendix by P. Berthelot.

C. Huyghe, D. Patel, T. Schmidt, and M. Strauch. D-affinity of formal models of flag varieties.
Mathematical Research Letters (to appear).

Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Ozford Graduate Texts in Mathe-
matics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford
Science Publications.

C. Noot-Huyghe. Finitude de la dimension homologique d’algebres d’opérateurs différentiels faible-
ment complétes et & coefficients surconvergents. J. Algebra, 307(2):499-540, 2007.

Christine Noot-Huyghe. Un théoreme de Beilinson-Bernstein pour les D-modules arithmétiques.
Bull. Soc. Math. France, 137(2):159-183, 2009.

D. Patel, T. Schmidt, and M. Strauch. Integral models of P! and analytic distribution algebras for
GL(2). Minster J. Math., 7:241-271, 2014.

D. Patel, T. Schmidt, and M. Strauch. Locally analytic representations of GL(2, L) via semistable
models of P'. Journal of the Institute of Mathematics of Jussieu, appeared online in January 2017.
P. Schneider and J. Teitelbaum. Algebras of p-adic distributions and admissible representations.
Invent. Math., 153(1):145-196, 2003.

Atsushi Shiho. Notes on generalizations of local Ogus-Vologodsky correspondence. J. Math. Sci.
Univ. Tokyo, 22(3):793-875, 2015.

The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2017.


http://stacks.math.columbia.edu

54 CHRISTINE HUYGHE, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

IRMA, UNIVERSITE DE STRASBOURG, 7 RUE RENE DESCARTES, 67084 STRASBOURG CEDEX, FRANCE
E-mail address: huyghe@math.unistra.fr

IRMAR, UNIVERSITE DE RENNES 1, CAMPUS BEAULIEU, 35042 RENNES CEDEX, FRANCE
FE-mail address: Tobias.Schmidt@univ-rennesi.fr

INDIANA UNIVERSITY, DEPARTMENT OF MATHEMATICS, RAWLES HALL, BLOOMINGTON, IN 47405,
U.S.A.
E-mail address: mstrauch@indiana.edu



	1. Introduction
	2. Arithmetic differential operators with congruence level
	2.1. The main construction
	2.2. First properties
	2.3. An invariance theorem for admissible blow-ups

	3. Coadmissible -modules on  and the Zariski-Riemann space
	3.1. Coadmissible -modules on 
	3.2. Coadmissible -modules on the Zariski-Riemann space 
	3.3. Examples

	References

