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Abstract. Let o be a complete discrete valuation ring of mixed characteristic p0, pq and
X0 a smooth formal o-scheme. Let XÑ X0 be an admissible blow-up. In the first part, we

introduce sheaves of differential operators D:X,k on X, for every sufficiently large positive
integer k, generalizing Berthelot’s arithmetic differential operators on the smooth formal
scheme X0. The coherence of these sheaves and several other basic properties are proven.

In the second part, we study the projective limit sheaf DX,8 “ lim
ÐÝk

D
:

X,k and introduce

its abelian category of coadmissible modules. The inductive limit of the sheaves DX,8,
over all admissible blow-ups X, is a sheaf DxX0y on the Zariski-Riemann space of X0,
which gives rise to an abelian category of coadmissible modules. Analogues of Theorems

A and B are shown to hold in each of these settings, i.e., for D
:

X,k, DX,8, and DxX0y.
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1. Introduction

Let o be a complete discrete valuation ring of mixed characteristic p0, pq, with uniformizer
$ and fraction field L. In [23] some of us (together with D. Patel) have introduced sheaves

of arithmetic differential operators D
:

n,k on certain semistable formal models Xn of the
rigid analytic projective line over L (for positive integers k ě n). A key result of [23] is

that Xn is D
:

n,k-affine. When n “ 0, the formal model X0 is formally smooth over Spfpoq,
1
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and the sheaf D:

0,0 equals Berthelot’s sheaf of arithmetic differential operators, as defined

in [7], and D
:

0,0-affinity was known before by a result of one of us [21].

In this paper we generalize the construction of [23] and define and study sheaves of
arithmetic differential operators on arbitrary admissible formal blow-ups of an arbitrary
given smooth formal scheme X0 over o.

At the moment, the main application of this generalization is the localization theorem of
[18]: in this context X0 is the smooth model of the flag variety of a connected split reductive
group G over L, and the main result of [18] establishes then an anti-equivalence between
the category of admissible locally analytic GpLq-representations (with trivial character)
[24] and the category of so-called coadmissible equivariant arithmetic D-modules on the
system of all formal models of the rigid analytic flag variety of G.

In the following we describe the construction and the main results of this article. Let

X0 be a smooth formal scheme over o and let D
pmq
X0

be Berthelot’s sheaf of arithmetic
differential operators of level m on X0 as defined in [7]. For any number k ě 0, we

have the subalgebra D
pk,mq
X0

consisting of those differential operators which are generated,
locally where we have coordinates x1, ..., xM and corresponding derivations B1, ..., BM , by
operators of the form

$k|ν|
B
xνypmq “ $kpν1`...`νM q

M
ź

l“1

B
xνlypmq
l , where B

xνlypmq
l “

t
νl
pm

u!

νl!
B
νl
l .

Given an admissible blow-up pr : XÑ X0, we let kX be the minimal k such that $kOX Ă I
for any coherent ideal sheaf I on X0 whose blow-up is X. Our first basic result, cf. 2.1.12,
says that

D
pk,mq
X :“ pr˚D

pk,mq
X0

“ OX bpr´1OX0
pr´1D

pk,mq
X0

is naturally a sheaf of rings on X whenever k ě kX. We define

pD
pk,mq
X “ lim

ÐÝ
i

D
pk,mq
X {$i and D

:

X,k “ lim
ÝÑ
m

pD
pk,mq
X bQ ,

and call these sheaves arithmetic differential operators of congruence level1 k on X.

The structure theory of these differential operators goes largely parallel to the classical
smooth setting (when X “ X0 and k “ 0), as developed by Berthelot [7]. In particular,

the sheaves D
pk,mq
X , pD

pk,mq
X and D

:

X,k are sheaves of coherent rings on X. We then show

that Cartan’s theorems A and B hold for the sheaf D:

X,k, when restricted to an affine open

1The terminology is motivated by the relation to congruence subgroups in reductive groups in the case
of formal models of flag varieties, cf. [18].
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subscheme U of X, cf. 2.2.15. This means that the global sections functor ΓpU,´q furnishes

an equivalence of categories between the coherent modules over D:

U,k and over ΓpU,D:

X,kq,
respectively. A key result (the ’invariance theorem’) shows that in case of a morphism

X1 Ñ X between admissible blow-ups of X0, the categories of coherent modules over D:

X1,k

and over D
:

X,k, respectively, are naturally equivalent, cf. 2.3.8. As a consequence, we
obtain global versions of theorem A and B on the whole blow-up X provided the base X0

is affine, cf. 2.3.12.

Our next objective is to pass to the projective limit

DX,8 “ lim
ÐÝ
k

D
:

X,k

and to define the category CX of coadmissible DX,8-modules. We show that it is a full
abelian subcategory of the category of all DX,8-modules. Its construction relies on the
fact that the ring of local sections ΓpV,DX,8q over an open affine V of X is a Fréchet-Stein
algebra. Our terminology (as well as the general philosophy behind these constructions)
goes back to the fundamental work of P. Schneider and J. Teitelbaum who introduced the
concept of a Fréchet-Stein algebra and defined and studied the category of coadmissible
modules over such a ring, cf. [24]. In fact, we show that the global sections functor
ΓpV,´q induces an equivalence of categories between CV and the category of coadmissible
ΓpV,DX,8q-modules, cf. 3.1.13. Moreover, any coadmissible DX,8-module has vanishing
higher cohomology on V (or on preimages of open affines in X0). These results should be
regarded as Cartan’s theorems A and B in this setting, cf. 3.1.13 and 3.1.16.

Finally we consider the Zariski-Riemann space of X0, i.e., the projective limit

xX0y “ lim
ÐÝ

X

of all admissible formal blow-ups XÑ X0, cf. [9]. One can then form the inductive limit

DxX0y “ lim
ÝÑ
X

sp´1
X DX,8 ,

where spX : xX0y Ñ X is the projection map. This is a sheaf of rings on xX0y. We define
the category of coadmissible DxX0y-modules and show that it is an abelian category. We
establish analogues of Cartan’s theorems A and B in this setting, cf. 3.2.6.

After we had developed much of the theory presented here (which began with [22, 23])
we became aware of the article [25] by A. Shiho, where he introduces sheaves of p-adic
differential operators of negative level ´m, as they are called there. These are closely
related to the sheaves considered here, where the congruence level k corresponds to Shiho’s
level ´m. We are currently investigating the implications that Shiho’s work has in our
context.

We also want to mention that K. Ardakov and S. Wadsley are developing a theory of
D-modules on general smooth rigid-analytic spaces, cf. [1, 3, 4]. In their work they
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consider deformations of crystalline differential operators (as in [5]), whereas we take
as a starting point certain deformations of Berthelot’s arithmetic differential operators.
Though we have not carried this out in the present paper, it is not too difficult to see that
the category of coadmissible DxX0y-modules as defined here, when pulled back to the site
of the rigid-analytic space of classical points of xX0y, coincides with the corresponding
category studied in [1, 3, 4].

Acknowledgments. T.S. would like to acknowledge support of the Heisenberg programme
of Deutsche Forschungsgemeinschaft (SCHM 3062/1-1). M.S. is grateful for the hos-
pitality and support of the following institutions where work on this project has been
accomplished: Institut de Recherche Mathématique Avancée (IRMA) of the University
of Strasbourg, Centre Henri Lebesgue, Institut de Recherche Mathématique de Rennes
(IRMAR).

Notations and Conventions. We denote by $ a uniformizer of the complete discrete
valuation ring o, and we let |.|p be the absolute value on L “ Fracpoq which is normalized
by |p|p “ p´1. Throughout this paper S “ Spfpoq. A formal scheme X over S such that
$OX is an ideal of definition and which is locally noetherian is called a S-formal scheme.
If the S-formal scheme X is smooth over S we denote by TX its relative tangent sheaf.
A coherent sheaf of ideals I Ă OX is called open if for any open U Ă X the restriction of
I to U contains $kOU (for some k P N depending on U). A formal scheme which arises
from blowing up an open ideal sheaf on X will be called an admissible blow-up of X. For
an integer i ě 0 we also denote Xi the scheme

Xi “ XˆS Spec
`

o{$i`1o
˘

,

where the Cartesian product is taken in the category of locally ringed spaces. Without
further mentioning, all occuring modules will be left modules. We let N “ t0, 1, 2, ...u be
the set of non-negative integers.

2. Arithmetic differential operators with congruence level

Let X0 be a smooth and separated S-formal scheme, and let

X0,i “ X0 ˆS Spec
`

o{$i`1o
˘

.

Let us write I∆ for the diagonal ideal of the closed immersion of formal schemes X0 ãÑ

X0 ˆX0 and I∆,i for the diagonal ideal : X0,i ãÑ X0,i ˆX0,i. We also introduce X0,Q, the
generic fiber of X0. It is a rigid analytic space over L. We write I∆ for the diagonal ideal
of the closed immersion of analytic spaces X0,Q ãÑ X0,Q ˆ X0,Q. We have specialization
maps X0,Q Ñ X0 and X0,QˆX0,Q Ñ X0ˆX0 which we denote by sp. There is a canonical
isomorphism sp˚pI∆q » I∆. Finally, the relative tangent sheaf TX0 is a locally free OX0-
module of finite rank equal to the relative dimension M of X0 over S.

2.1. The main construction.
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2.1.1. Definitions over X0. The sheaf of relative differential operators of X0,i over o{$i`1,
as introduced in [13, 16.8], will be denoted by DX0,i

. It naturally acts on the structure
sheaf OX0,i

. Its subsheaf Dn
X0,i

of differential operators of order ď n is defined by

(2.1.1) Dn
X0,i

“ HomOX0,i
pOX0,iˆX0,i

{In`1
∆,i ,OX0,i

q .

It is a sheaf of locally free OX0,i
-modules of finite type and we have DX0,i

“ lim
ÝÑn

Dn
X0,i

.
For fixed n, the projective limit lim

ÐÝi
Dn
X0,i

is a locally free OX0-module of finite type.
Taking the inductive limit produces a sheaf of rings

DX0 “ lim
ÝÑ
n

˜

lim
ÐÝ
i

Dn
X0,i

¸

on X0. It naturally acts on the structure sheaf OX0 and can be described in local coordi-
nates as follows. Let U0 Ď X0 be an open affine endowed with étale coordinates x1, . . . , xM
and corresponding set of derivations B1, . . . , BM . Write B

rνs
l P DU0 for the differential op-

erator defined by ν!B
rνs
l “ Bνl , and put ν “ pν1, . . . , νMq P NM , Brνs “

śM
l“1 B

rνls
l . One has

the following description, involving finite sums,

DX0pU0q “

#

ă8
ÿ

ν

aνB
rνs
| aν P OX0pU0q

+

.

Since X0 is a smooth S-formal scheme, one also has the usual sheaves of arithmetic
differential operators defined by Berthelot in [7]. In particular, for a fixed non-negative

m, D
pmq
X0

will denote the sheaf of differential operators over X0 of level m. Taking U0

to be endowed with local coordinates x1, . . . , xM as before, one introduces the following
differential operators

(2.1.2) B
xνy
l “ qν !B

rνs
l ,

where qν denotes the quotient of the euclidean division of ν by pm. For ν “ pν1, . . . , νMq P

NM , we also define Bxνy “
śM

l“1 B
xνly
l . Restricted to U0, the sheaf D

pmq
X0

is a sheaf of free

OU0-modules with basis given by the elements Bxνy. Berthelot introduces also the following
sheaves over X0

pD
pmq
X0
“ lim
ÐÝ
i

D
pmq
X0
{$i and D

:

X0
“ lim
ÝÑ
m

pD
pmq
X0
bQ .

Let k be a non-negative integer, called a congruence level. We define subsheaves D
pk,mq
X0

of subalgebras of the previous sheaves D
pmq
X0

in the following way. Take U0 endowed with

local coordinates x1, . . . , xM as before. Then the sheaf D
pk,mq
X0

is free over U0 as a sheaf of
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OU0-modules with a basis given by the elements $k|ν|B
xνy. In particular, one has

(2.1.3) D
pk,mq
X0

pU0q “

#

ă8
ÿ

ν

$k|ν|aνB
xνy
| aν P OX0pU0q

+

.

It is easy to check that these sheaves define a subsheaf of D
pmq
X0

and we call them level m
arithmetic differential operators of congruence level k on X0. We then define as before

D
pk,mq
X0,i

“ D
pk,mq
X0

{$i`1, pD
pk,mq
X0

“ lim
ÐÝ
i

D
pk,mq
X0,i

and D
:

X0,k
“ lim
ÝÑ
m

pD
pk,mq
X0

bQ .

Of course, for k “ 0 one recovers the sheaves of Berthelot D
p0,mq
X0

“ D
pmq
X0

. Note also, by

definition, the sheaf D:

X0,k
is a sheaf of Q-algebras.

We have the following description over an affine open U0 of X0 endowed with coordinates
x1, . . . , xM ,

D
:

X0,k
pU0q “

#

ÿ

ν

$k|ν|aνB
rνs
| aν P OX0,QpU0q, and DC ą 0, η ă 1 | |aν | ă Cη|ν|

+

,

where | ¨ | is any Banach norm on the affinoid algebra OX0,QpU0q.

2.1.2. Definitions over X0,Q. We refer to [10, 1.1.1] for a basic discussion of the sheaf
of algebraic differential operators over a smooth rigid analytic space such as X0,Q. It
is defined in the following way, analogously to the definition given in [13, 16.8] which
we have recalled in 2.1.1. As before, I∆ denotes the diagonal ideal of the immersion
X0,Q ãÑ X0,Q ˆ X0,Q. One puts

(2.1.4) Dn
X0,Q

“ HomOX0,Q
pOX0,QˆX0,Q{I

n`1

∆ ,OX0,Qq,

which is a sheaf of locally free OX0,Q-modules of finite type and DX0,Q “ lim
ÝÑn

Dn
X0,Q

. The
latter is a sheaf of rings acting naturally on the structure sheaf OX0,Q of the rigid analyic
space X0,Q.

Suppose now that

pr : XÑ X0

is an admissible blow-up of the formal scheme X0 defined by a coherent sheaf of open ideals
I of OX0 containing $k. We remark that the ideal I is not determined by the blow-up
pr : X Ñ X0, i.e., different open ideal sheaves can give rise to isomorphic blow-ups. (For
example, the blow-ups defined by I and by $nI are isomorphic as formal schemes over
X0. The same holds for the ideals I and Ir.) In the sequel we denote by kI the minimal
k such that $k P I and put

(2.1.5) kX “ mintkI | X is the blowing-up of I on X0u.
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Let us define now for k ě kX the OX-module

D
pk,mq
X :“ pr˚D

pk,mq
X0

.

Note that D
pk,mq
X depends not only on the formal scheme X, but also on the blow-up

morphism pr, but we suppress this dependence in the notation. We have the following
commutative diagram of ringed spaces, involving the specialization maps X0,Q Ñ X0 and

XQ Ñ X, which we denote both by sp, and the isomorphism p̃r : XQ
»
ÝÑ X0,Q induced by

the morphism pr on generic fibres:

XQ
„

p̃r
//

sp

��

X0,Q

sp

��
X pr

// X0.

Note that DXQ » p̃r˚DX0,Q for the corresponding sheaves of differential operators on XQ
respectively X0,Q, as follows from the definition of these sheaves.

Lemma 2.1.6.

(i) There is a canonical isomorphism DX0,Q » sp˚DX0 inducing an injective morphism
of sheaves of rings

DX0 ãÑ sp˚DX0,Q .

(ii) There is a canonical injective map of sheaves of abelian groups

D
pk,mq
X ãÑ sp˚DXQ ,

which becomes an isomorphism upon tensoring with Q.

Proof. We have a canonical map OX,Q Ñ sp˚OXQ , that is locally an isomorphism over the
formal scheme X (resp. X0) and is thus an isomorphism of sheaves. Let us begin by (i). We
have a canonical map DX0,Q Ñ sp˚DX0 . To check that this is an isomorphism, we can work
locally on X0 and assume that X0 is affine, endowed with local coordinates x1, . . . , xM .
Then, using notations 2.1.2 we see that both sheaves are free OX0,Q-modules with basis Bν

and Brνs respectively. The previous map takes Bν to Brνsν! and is an isomorphism of sheaves
of OX0,Q-modules. We obtain the second map of (i) by adjunction and its injectivity follows
again using local coordinates. As in [13, 16.8.9], the ring structure on both sheaves makes
use of the descriptions 2.1.1, resp. 2.1.4. That the map DX0 ãÑ sp˚DX0,Q is compatible

with ring structures comes then from the fact that sp˚pI∆q » I∆ and

sp˚pOX0 bOX0{In`1
∆ q » OX0,Q bOX0,Q{I

n`1

∆ .

Let us prove (ii). From the previous isomorphism, we get an isomorphism

sp˚pr˚DX0 » p̃r˚sp˚DX0 » p̃r˚DX0,Q » DXQ ,
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that induces a canonical map pr˚DX0 Ñ sp˚DXQ . Composing with the map D
pk,mq
X0

Ñ DX0

we get a map

pr˚D
pk,mq
X0

Ñ sp˚DXQ .

It is a local question to prove that this map is injective. Let U Ă X0 be an open affine
formal scheme of X0 such that U Ă pr´1U0, with U0 endowed with local coordinates
x1, . . . , xM . Then these local coordinates give local coordinates always denoted x1, . . . , xM
over the generic fiber UQ of U. Using notations 2.1.2, the sheaf pr˚D

pk,mq
U0

is a free OU-

module with basis the operators $k|ν|B
xνy whereas the sheaf sp˚DUQ is a free OU b Q-

module with basis Bν . The map we consider takes $k|ν|B
xνy to $k|ν|qν !{ν!Bν . Since U

is flat over o, the map OU Ñ OU b Q is injective, and this proves that the canonical

map pr˚D
pk,mq
X0

Ñ sp˚DXQ is injective as well. The same argument shows that this map
becomes an isomorphism upon tensoring with Q.

�

Following [23], given k ě kX, we will construct a p-adically complete sheaf of arithmetic

differential operators pD
pk,mq
X over the (usually non-smooth) formal scheme X.

2.1.3. Construction of the ring of differential operators of level k over X. We first observe

that the sheaf sp˚DXQ acts on sp˚OXQ » OX,Q. By 2.1.6, the sheaf D
pk,mq
X is a subsheaf

of sp˚DXQ and D
pk,mq
X,Q » sp˚DXQ . We will first check that if k ě kX, the action of sp˚DXQ

on OX,Q restricts to an action of D
pk,mq
X on OX. This can be checked locally on X. For

this, we assume that X0 “ SpfA, where A is a smooth, complete, o-algebra, endowed with
local coordinates x1, . . . , xM . Since X0 is smooth over Spfo, both rings A and A{$A are

integral domains. We also introduce the differential operators Bxνy and $k|ν|B
xνy according

to 2.1.2, of Dpmq “ ΓpX0,D
pmq
X0
q and Dpk,mq “ ΓpX0,D

pk,mq
X0

q respectively. We also denote
I “ ΓpX0, Iq where V pIq is the center of the blowing-up X.

Consider the N-graded A-algebra

B “
à

n

Bn

where the degree n-part Bn equals the n-th power In of the ideal I. In particular, I0 “ A.
This means that

X “zProjpBq ,

the formal completion of ProjpBq. The algebra B is integral, as A is integral. Let t P BD

be a homogeneous element of degree D ą 0, and let Ct “ Br1{ts0 be the algebra of
degree 0 elements in the homogeneous localization Br1{ts. Then Ct is non-zero, since B

is integral. Put D`ptq “ Spf pCt. These open sets form a basis for the Zariski topology of
X.
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Let us observe that the algebra B is a graded subalgebra of ArT s. Indeed, there is a
graded injective ring morphism

B
ϕ // ArT s

xn P Bn
// xnT

n.

By definition, ϕptq “ tTD. Since localization is flat, we get from this an injective graded
morphism Br1{ts Ñ Ar1{tsrT˘1s, where Ar1{tsrT˘1s is graded by the degree of T . Because
Ct “ Br1{ts0 is the subring of degree zero elements in Br1{ts, we get an injection

(2.1.7) Ct ãÑ Ar1{ts .

Since At1{tu “ ΓpDptq,OX0q, and because D
pk,mq
X0

acts on the structure sheaf OX0 , we get

that At1{tu is a Dpmq-module and thus a Dpk,mq-module. Moreover, as Ar1{ts is integral
and noetherian, it embeds into its p-adic completion At1{tu. This leads us to the following

Lemma 2.1.8.

(i) Ar1{ts is a Dpmq-submodule of At1{tu,
(ii) If k ě kX, then Ct is a Dpk,mq-submodule of Ar1{ts.

Proof. Before giving the proof, we need some notation. Given a fixed nonnegative integer
m and a nonnegative integer ν, one denotes as before by q the quotient of the Euclidean
division of ν by pm. Let ν ě ν 1 be two nonnegative integers and ν2 :“ ν´ ν 1; then for the
corresponding numbers q, q1 and q2, we define

(2.1.9)

"

ν

ν 1

*

“
q!

q1!q2!
,

which is an integer because q ě q1 ` q2. Let us begin with the proof of (i). It is enough
to prove that for each i ďM , for each invertible s P Ar1{ts, for each ν P N,

B
xνy
i ps

´1
q P

A

sν`1
.

We will prove this by induction on ν, the case ν “ 0 being straightforward. We have

B
xν`1y
i ps´1

q “ ´

ν
ÿ

µ“0

"

ν ` 1

µ

*

s´1
B
xν`1´µy
i psqB

xµy
i ps´1

q .

cf. [7, (iv) of 2.2.4]. By induction hypothesis the elements B
xµy
i ps´1q lie in s´pν`1qA, which

proves that B
xν`1y
i ps´1q P s´pν`2qA. By applying this to s “ t´n for n ą 0, we see that (i)

holds.
Let us prove now (ii). We begin the proof with an auxiliary assertion (it is here where we
use the assumption k ě kX).

Assertion. Let f P Ir, l P N, then $klB
xly
i pfq P I

r.



10 CHRISTINE HUYGHE, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

Proof of the assertion. The proof relies on the Leibniz formula [7, 2.3.4.1]. We proceed
by induction on r. For r “ 0 the assertion is trivial and for r “ 1, it is true if l ě 1 since
$k P I. For r “ 1, it is also true if l “ 0 since f P I. Let us assume that the result is true
for s ď r. It is enough to prove that

@g P I @h P Ir : $kl
B
xly
i phgq P I

r`1 .

Denote f “ hg, the Leibniz formula of loc. cit. states that

$kl
B
xly
i pfq “

l
ÿ

j“0

"

l

j

*

$kj
B
xjy
i phq$

kpl´jq
B
xl´jy
i pgq .

By induction hypothesis, for all j ď l, $kjB
xjy
i phq P I

r and $kpl´jqB
xl´jy
i pgq P I, which

implies that $klB
xly
i pfq P I

r`1. This establishes the assertion.

After this preliminary discussion, let d ą 0. Let us first prove by induction on ν that for
an arbitrary element s P Id which becomes invertible in Ar1{ts, one has

(2.1.10) $kν
B
xνy
i

`

s´1
˘

P
Iνd

sν`1
.

This is true for ν “ 0. Consider then the formula [7, (iv) of 2.2.4] with notation 2.1.9

$kpν`1q
B
xν`1y
i ps´1

q “ ´

ν
ÿ

µ“0

"

ν ` 1

µ

*

s´1$kpν`1´µq
B
xν`1´µy
i psq$kµ

B
xµy
i ps´1

q .

By the induction hypothesis, one knows for any integer µ ď ν,

$kµ
B
xµy
i ps´1

q P
Iµd

sµ`1

and, by our auxiliary assertion above, one knows

s´1$kpν`1´µq
B
xν`1´µy
i psq P

Id

s
.

This implies

s´1$kpν`1´µq
B
xν`1´µy
i psq$kµ

B
xµy
i ps´1

q P
Id

s

Iµd

sµ`1
“
Idpµ`1q

sµ`2
“
sν´µIdpµ`1q

sν`2
Ď
Ipν`1qd

sν`2
,

which proves our claim. Applying this claim to the element s “ td P IdD gives for µ ď pm

$kµ
B
xµy
i pt´dq P

IµdD

tdpµ`1q
.

Then, using again the Leibniz formula, we deduce from this and the auxiliary assertion,
for a given homogeneous element g P B of degree dD, i.e g

td
P Ct, the identity

$kν
B
xνy
i

´ g

td

¯

“

ν
ÿ

µ“0

"

ν

µ

*

$kpν´µq
B
xν´µy
i pgq$kµ

B
xµy
i pt´dq ,
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whose right-hand terms are contained in

IdD
IµdD

tdpµ`1q
Ă Ct .

This completes the proof of the lemma. �

From this we get the

Corollary 2.1.11. pCt is a Dpk,mq-submodule of At1{tuQ if k ě kX.

Proof. Using previous notations, we see that $k|ν|B
xνy
i acts continuously on Ct. We can

thus extend this action by continuity to get an action on pCt. By construction this action
is induced by the action of ΓpX0, sp˚DX0,Qq on At1{tuQ. �

After these local considerations, we come back now to the general situation.

Corollary 2.1.12. Let k ě kX. The sheaf D
pk,mq
X “ pr˚D

pk,mq
X0

is a subsheaf of rings of
the sheaf sp˚DXQ. Moreover it is locally free over OX.

Proof. The assertion is local on X and we can assume that X0 “ Spf A is affine, endowed

with local coordinates x1, . . . , xM . Then, the sheaf D
pk,mq
X is a free OX-module generated

by the operators $k|ν|B
xνy (using notations 2.1.2). By the formula of Berthelot [7, 2.2.4],

one has

B
xνy
¨ B
xν1y
“

B

ν ` ν 1

ν

F

B
xν`ν1y ,

where
B

ν ` ν 1

ν

F

“

ˆ

ν ` ν 1

ν

˙"

ν ` ν 1

ν

*´1

P Zp .

To check that D
pk,mq
X is a subsheaf of rings of sp˚DXQ , we thus only have to check, by

linearity, that if b is a section in OXpVq where V “ Spf {Ctr1{hs, cf. 2.1.11, for some non

zero t P A, and non zero h P Ct, and if ν P NM , then the element Bxνy ¨ b lies in D
pk,mq
X pVq.

By [7, 2.2.4], one has

$k|ν|
B
xνy
¨ b “

ÿ

ν1`ν2“ν

"

ν

ν 1

*

$k|ν1|
B
xν1y
pbq$k|ν2|

B
xν2y .

Since $k|ν1|B
xν1y
pbq P OXpVq by 2.1.11, this proves that D

pk,mq
X is a subring of DXQ . �

We finally define the following sheaves of differential operators over X and Xi

(2.1.13) D
pk,mq
Xi

“ D
pk,mq
X {$i`1, pD

pk,mq
X “ lim

ÐÝ
i

D
pk,mq
Xi

and D
:

X,k “ lim
ÝÑ
m

pD
pk,mq
X bQ.

We have the following local description over an affine open V Ď pr´1pU0q where U0 is an
affine open of X0 endowed with coordinates x1, . . . , xM and derivations B1, . . . , BM :
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(2.1.14)

D
:

X,kpVq “

#

ÿ

ν

aν$
k|ν|
B
rνs
| aν P OX,QpVq, and DC ą 0, η ă 1 s.t. |aν | ă Cη|ν| for all ν

+

,

where |.| denotes any Banach norm on OX,QpVq.

2.2. First properties. We keep here the hypotheses from the previous section. In par-
ticular, X0 denotes a smooth formal S-scheme and

pr : XÑ X0

denotes an admissible blow-up. For a given natural number k ě 0 we let

TX,k :“ $k
pprq˚pTX0q ,

where TX0 is the relative tangent sheaf of X0 over S.

Lemma 2.2.1.

(i) The sheaf TX,k is a locally free OX-module of rank equal to the relative dimension
of X0 over S.

(ii) Suppose π : X1 Ñ X is a morphism over X0 from another admissible blow-up
pr1 : X1 Ñ X0. Let k1, k ě 0. One has as subsheaves of TX1 b L

TX1,k1 “ $k1´kπ˚pTX,kq

Proof. This follows directly from the definitions. Note that ppr1q˚ “ π˚ ˝ pr˚ in (ii). �

Before stating the next proposition, let us recall that Sympmq
pTX,kq denotes the graded

level m symmetric algebra generated by the sheaf TX,k defined in [17, sec. 1]. This is a
graded OX-algebra

Sympmq
pTX,kq “

à

dě0

Sym
pmq
d pTX,kq .

Over some sufficiently small open affine set U Ď pr´1pU0q such that TU0 is free with basis

ξ1, . . . , ξM , one has the description using notation 2.1.2 (i.e. ν!ξ
xνy
l “ qν !ξ

ν
l )

Sym
pmq
d pTX,kqpUq “

à

|ν|“d

OXpUq$
kdξxνy ,

where the right hand side is a free OXpUq-module. For the rest of this subsection we fix
a number k ě kX (2.1.5).

Proposition 2.2.2.
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(i) The sheaves D
pk,mq
X are filtered by the sheaves of differential operators of order

ď d, which are OX-coherent modules, and which we denote by D
pk,mq
X,d . There is a

canonical isomorphism of sheaves of graded algebras

gr
´

D
pk,mq
X

¯

» Sympmq
pTX,kq .

Moreover the sheaves D
pk,mq
Xi

are quasi-coherent OXi-modules.
(ii) There is a basis B of the topology of X (resp. Xi), consisting of open affine subsets,

such that for any U P B (resp. Ui P B), the ring D
pk,mq
X pUq (resp. D

pk,mq
Xi

pUiq) is
two-sided noetherian.

(iii) For every formal affine open U Ď X (resp. affine open Ui Ď Xi), the ring

D
pk,mq
X pUq (resp. D

pk,mq
Xi

pUiq) is two-sided noetherian.

(iv) The sheaves of rings D
pk,mq
X (resp. D

pk,mq
Xi

) are coherent.

(v) For every formal affine open U Ă X, the ring pD
pk,mq
X pUq is two-sided noetherian.

(vi) The sheaf of rings pD
pk,mq
X is coherent.

Proof. We only do the proof of (i) to (iv) in the case of D
pk,mq
X , since the same proof works

for the sheaf D
pk,mq
Xi

. Denote by D
pk,mq
X0,d

the sheaf of differential operators of D
pk,mq
X0

of order

ď d, and D
pk,mq
X,d “ pr˚D

pk,mq
X0,d

. It is straightforward that we have an exact sequence of
OX0-modules on X0

(2.2.3) 0 ÝÑ D
pk,mq
X0,d´1 ÝÑ D

pk,mq
X0,d

ÝÑ Sym
pmq
d pTX0,kq ÝÑ 0 .

Now we apply pr˚ and get an exact sequence since Sym
pmq
d pTX0,kq is a locally free OX0-

module of finite rank. This gives (i). Let U be an affine subset of pr´1pU0q, where U0 Ă X0

has some coordinates x1, . . . , xM . One has the following description

D
pk,mq
X pUq “

#

ă8
ÿ

ν

$k|ν|aνB
xνy
| aν P OXpUq

+

.

Since U is affine and the filtration steps D
pk,mq
X,d are coherent OX-modules for all d, the

previous exact sequences gives us the following isomorphism

gr
´

D
pk,mq
X

¯

pUq » Sym
pmq
OX
pTX,kqpUq .

Since the latter level m symmetric algebra is known to be noetherian [17, Prop. 1.3.6],
this proves (ii). As B we may take the set of open affine subsets of X that are contained
in some pr´1pU0q, for some open U0 Ă X0 endowed with global coordinates. Let now

V,U P B such that V Ă U. Since the sheaf D
pk,mq
X is an inductive limit of coherent

OX-modules, one has

(2.2.4) OXpVq bOXpUq D
pk,mq
X pUq » D

pk,mq
X pVq .
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In particular D
pk,mq
X pVq is flat over D

pk,mq
X pUq. This remark and (ii) prove the coherence

of the sheaves D
pk,mq
X exactly as in the proof [7, 3.1.3].

Let us now prove (iii) for ’left noetherian’ (the proof of the right version is similar). Let

U be an affine open of X, D “ D
pk,mq
U , D “ ΓpU,Dq, A “ ΓpU,OXq and U “

Ť

Ul a finite
cover of U by open Ul P B. Since the sheaf D is an inductive limit of coherent OX-modules,
one has

(2.2.5) D “ OU bA D ,

and D is a flat D-module. Moreover, thanks to (ii), we know that DXpUlq is noetherian
for each l. Let pMiq be an increasing sequence of left ideals of D, and consider

Mi “ DbD Mi “ OU bAMi ,

which form an increasing sequence of sheaves of ideals of D by flatness of D over D. The
sequence ΓpUl,Miq is thus an increasing sequence of ideals of ΓpUl,Dq, that is stationary
since this algebra is noetherian. Since Mi is an inductive limit of finite type A-modules,
Mi is an inductive limit of coherent OX-modules, thus

@l, Mi|Ul » OUl bOXpUlq ΓpUl,Miq and ΓpU,Miq “Mi .

Finally we see that Mi|Ul is stationary for each l. Since there are finitely many affine
open Ul, we see that the sequence pMiq and thus pMiq are stationary. This proves (iii).

Since pD
pk,mq
X pUq is the p-adic completion of pD

pk,mq
X pUq, it is also left and right noetherian

[7, 3.2.3], which proves (v).

The coherence of pD
pk,mq
X follows from (iii), and the fact that D

pk,mq
Xi

is a quasi-coherent
OXi-module, literally as in [7, 3.3.3]. �

From these considerations, and under our initial condition k ě kX, we have the following

local versions of Cartan’s Theorem A and B for the restrictions of the sheaves D
pk,mq
Xi

and
pD
pk,mq
X to an open affine (formal) subscheme.

Proposition 2.2.6. (Local theorem A and B for fixed m)

(i) Let Ui Ă Xi be an open affine subscheme of Xi. The functor ΓpUi, .q estab-

lishes an equivalence of categories between coherent D
pk,mq
Ui

-modules and finite

type ΓpUi,D
pk,mq
Xi

q-modules. In particular, the functor ΓpUi, .q is exact on coherent

D
pk,mq
Ui

-modules. Moreover, for any coherent D
pk,mq
Ui

-module M and any q ą 0 one
has HqpUi,Mq “ 0.

(ii) Let U Ă X be an open affine formal subscheme of X. The functors M ÞÑ ΓpU,Mq

and M ÞÑ pD
pk,mq
U bM are quasi-inverse equivalences of categories between the cat-

egory of coherent left pD
pk,mq
U -modules and the category of left ΓpU, pD

pk,mq
U q-modules

of finite type.
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(iii) Let U be as in (ii). The functor ΓpU, .q is exact on coherent pD
pk,mq
U -modules.

Moreover, for any coherent pD
pk,mq
U -module M and any q ą 0 one has HqpU,Mq “

0.

Note that (ii) and (iii) of the proposition remains true for the sheaf pD
pk,mq
U,Q and coherent

modules over this sheaf by [7, 3.4.6].

Proof. For the convenience of the reader, we start by recalling the following result

Auxiliary result 2.2.7. (cf. [7, Prop. 3.1.3]) Let X be a scheme, D be a sheaf of rings
over X such that, for all affine open U Ă X, ΓpU,Dq is a noetherian ring. We fix an
homomorphism OX Ñ D such that the left multiplication by the sections of OX induces
a structure of OX-coherent ring over D.

(i) The sheaf D is a left coherent sheaf of rings.
(ii) A left D-module M is coherent if and only if it is a quasi-coherent OX-module

and, for all affine open U of an affine cover of X, ΓpU,Mq is a left ΓpU,Dq-module
of finite type.

(iii) Assume that X is affine and let D “ ΓpX,Dq. The functors M ÞÑ ΓpX,Mq and
M ÞÑ DbM are quasi-inverse equivalences of categories between the category of
coherent left D-modules and the category of left D-modules of finite type. �

Consider now the following situation, compare [7, 3.3.3]. Let X1 be an S-formal scheme
and let D be a sheaf of rings over X1, endowed with a homomorphism OX1 Ñ D, Di “

D{pi`1, pD “ lim
ÐÝi

Di. In addition, assume the following conditions (Berthelot’s conditions)

(1) As an OX1-module, D is the filtered inductive limit of a family of OX1-module Dλ

such that Dλ{p
iDλ are OX 1i

-quasi-coherent and Dλ » lim
ÐÝi

Dλ{p
iDλ.

(2) For every open set U Ă X1, the ring ΓpU,Dq is left noetherian.

Auxiliary result 2.2.8. With the previous hypotheses, suppose that X1 is affine, and let
pD “ ΓpX1, pDq. Then pD is left noetherian. If M is a pD-module one defines a pD-module

M∆
“ lim
ÐÝ
i

Di bOX1
i

M{pi`1M .

For a pD-module M, the following statements are equivalent

(i) For all i, the Di-module M{pi`1M is coherent and the canonical homomorphism
MÑ lim

ÐÝi
M{pi`1M is an isomorphism.

(ii) There exists an isomorphism M » lim
ÐÝi

Mi, where pMiq is a projective system
of coherent Di-modules, such that the transition morphisms factorize via isomor-
phisms Mi{p

iMi »Mi´1.

(iii) There exists a finite type pD-module M and an isomorphism M »M∆ .

(iv) M is a coherent pD-module.

Proof. The ring pD is noetherian by [7, Prop. 3.3.4] and the other results come from [7,
Prop. 3.3.9]. �
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Under the same hypotheses, Berthelot proves in addition the following.

Auxiliary result 2.2.9. (cf. [7, Prop. 3.3.10/11]) With the previous hypotheses, suppose
that X1 is affine. The functors ΓpX1, ¨q and M ÞÑ M∆ are equivalences between the

category of coherent pD-modules and the category of finite type pD-modules. If M is a

coherent pD-module, then @q ě 1, HqpX1,Mq “ 0. �

Now it is clear that part (i) of our proposition 2.2.6 follows from auxiliary result 2.2.7,

since by (iii) of 2.2.2, the rings D
pk,mq
Xi

pUiq are indeed noetherian. Again, from (iii) of 2.2.2,

we see that the rings D
pk,mq
X pUq are noetherian. Moreover the sheaf D

pk,mq
X is a filtered

inductive limit of the OX-coherent sheaves D
pk,mq
X,d defined in the proof of 2.2.2. This means

that Berthelot’s conditions (1) and (2) are satisfied for X1 “ X and D “ D
pk,mq
X . Hence,

the auxiliary results 2.2.8 and 2.2.9 can be applied in our context, proving (ii) of the
proposition. The point (iii) is a direct consequence of (ii). This ends the proof of the
proposition 2.2.6. �

Proposition 2.2.10. Let U Ă X be an open affine formal subscheme of X, and M a

coherent pD
pk,mq
U -module. Then there are integers a, b ě 0 and a short exact sequence of

coherent pD
pk,mq
U -modules:

´

pD
pk,mq
U

¯a

Ñ

´

pD
pk,mq
U

¯b

ÑMÑ 0 .

Proof. Denote pDpmq “ ΓpU, pD
pk,mq
U q which is a noetherian ring by 2.2.2 and M “ ΓpU,Mq,

which is a finite type pDpmq-module by the previous proposition 2.2.6. Since the algebra
pDpmq is noetherian, there exists a finite presentation of pDpmq-modules

´

pDpmq
¯a

Ñ

´

pDpmq
¯b

Ñ M Ñ 0 .

Tensoring this presentation by pD
pk,mq
U over the ring pDpmq and observing that

M » pD
pk,mq
U b

pDpmq M ,

again by 2.2.6, gives the result. �

Proposition 2.2.11. We have:

(i) The morphism of sheaves pD
pk,mq
X,Q Ñ pD

pk,m`1q
X,Q is left and right flat.

(ii) The sheaf of rings D
:

X,k is coherent.

(iii) For any affine open U Ă X, ΓpU, pD
pk,m`1q
X,Q q is left and right flat over ΓpU, pD

pk,mq
X,Q q.

(iv) For any affine open U Ă X, ΓpU,D:

X,kq is left and right flat over ΓpU, pD
pk,mq
X,Q q.

Proof. Let us first observe that (ii) follows from the flatness statement of (i) and the last
part of 2.2.2 thanks to [7, 3.6.1]. For (i), we follow Berthelot’s method described in [7,
3.5.3]. For the proof we can restrict ourselves to proving that if U is an affine open of X
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contained in the basis of open sets B from 2.2.2, then the map pD
pk,mq
X,Q pUq Ñ pD

pk,m`1q
X,Q pUq is

left and right flat. In this situation, we have the following explicit description, assuming
that pr˚TX0 is free restricted to U, with basis B1, . . . , BM as in 2.1.14,

D
pk,mq
X pUq “

#

ă8
ÿ

ν

$k|ν|bνB
xνy
| bν P B

+

Ă pD
pk,mq
X pUq “

#

ÿ

ν

$k|ν|bνB
xνy
| bν P B, bν Ñ 0

+

where the convergence is in the $-adic topology of B “ OXpUq. With this description,

we can copy Berthelot’s proof of [7, 3.5.3], replacing everywhere the operators Bxνy by

$k|ν|B
xνy, as follows. First of all, by inserting suitable powers of $ into the formula [7,

(2.2.5.1)] we see that the o-algebra D
pk,mq
X pUq is generated by B and the operators $kprB

rprs
l

for 1 ď r ď m and 1 ď l ďM . Now write

Dpk,mq “ D
pk,mq
X pUq, and pDpk,mq “ pD

pk,mq
X pUq ,

the latter being the $-adic completion of Dpk,mq [7, 4.3.3.2]. By the above explicit de-

scription, the two canonical maps Dpk,mq Ñ pDpk,mq Ñ pD
pk,mq
Q are injective and this is also

true for the canonical map pDpk,mq Ñ pDpk,m`1q. Indeed, the latter is induced by mapping

(2.2.12) $k|ν|
B
xνypmq ÞÑ $k|ν|

q
pmq

!

q
pm`1q

!
B
xνypm`1q

and is therefore injective by the above explicit description and the fact that o is tor-

sionfree. Let us consider the subring E of pD
pk,mq
Q generated by the subsets pDpk,mq and

Dpk,m`1q. Since D
pk,m`1q
Q “ D

pk,mq
Q , we see that

EQ “ pD
pk,mq
Q .

As in Berthelot’s proof, we have the following

Auxiliary result 2.2.13. E “ pDpk,mq `Dpk,m`1q .

Proof. Denote by E 1 “ pDpk,mq ` Dpk,m`1q. We have to prove that E 1 is a subalgebra of
pDpk,m`1q. It is enough to prove that if pP,Qq P pDpk,mq ˆ Dpk,m`1q, then P ¨ Q P E 1 and
Q ¨ P P E 1. Since the proof is the same in both cases, we only treat the product P ¨ Q.

As Q P Dpk,m`1q, there exists c ą 0 such that $cQ P Dpk,mq. As P P pDpk,mq, there exist

pP1, R1q P D
pk,mq ˆ pDpk,mq such that P “ P1 `$cR1, then PQ “ $cR1Q ` P1Q P E

1, as

$cR1Q P pDpk,mq and P1Q P D
pk,m`1q. �

Denote by pE the $-adic completion of E. We can then prove the

Auxiliary result 2.2.14. pEQ “ pD
pk,m`1q
Q .

Proof. By construction, there are maps

λi : Dpk,m`1q
{$iDpk,m`1q

Ñ E{$iE .



18 CHRISTINE HUYGHE, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

Let us prove that these maps are bijective. If R P Dpk,m`1q is such that λipRq P $
iE then

there exist pP,Qq P pDpk,mq ˆ Dpk,m`1q such that R “ $ipP ` Qq, thus $iP “ R ´ $iQ
has finite order, and P P Dpk,mq, that implies that R P Dpk,m`1q and λi is injective. Pick

now R P E, and pP,Qq P pDpk,mqˆDpk,m`1q such that R “ P `Q. The operator P can be

written P “ P1 `$
iR1, with P1 P D

pk,mq and R1 P pDpk,mq, then P “ P1 `R `$
iR1 and

λipP1 ` R mod $iDpk,m`1qq “ P mod $iE, so that λi is surjective. We finally see that
λi is bijective, which proves the auxiliary result. �

Now, the remaining thing to prove is that E is noetherian, since this result implies that
pE is flat over E, thus that pD

pk,m`1q
Q is flat over pD

pk,mq
Q . The proof that E is noetherian

proceeds by induction. By our above remark, E is generated as (left) Dpk,mq-module by the

elements $k|ν|pm`1
pB
rpm`1s

qν for ν P NM . Let 1 ď l ď M . Inserting appropriate powers of

$ into the corresponding formula in Berthelot’s proof one finds r$kpm`1
B
rpm`1s

l , bs P Dpk,mq

for any b P B and so r$kpm`1
B
rpm`1s

l , P s P pDpk,mq for any P P pDpk,mq. Using the general
commutator identity (valid in any associative ring) rQν , P s “ rQν´1, P sQ ` Qν´1rQ,P s
one deduces from this inductively

rp$kpm`1

B
rpm`1s

l q
ν , P s P

ÿ

µăν

pDpk,mqp$kpm`1

B
rpm`1s

l q
µ .

This is the analogue of the key formula [7, (3.5.3.2)]. Now let 1 ď j ďM and consider the

subring Ej of E generated by E0 “ pDpk,mq and the operators $kpm`1
B
rpm`1s

l for 1 ď l ď j.
Then E0 is noetherian by prop. 2.2.2 and, by our above discussion, EM “ E. With the
key formula at hand, one may now follow Berthelot’s proof word for word to obtain that
Ej´1 noetherian implies Ej noetherian. This proves (i).

Let us now prove (iii). Denote pD
pmq
k,Q “ ΓpU, pD

pk,mq
U,Q q and consider α an injective map of

coherent pD
pmq
k,Q -modules α : M ãÑ N . As a consequence of (ii) and (iii) of 2.2.6, we know

that the sheaf pD
pk,mq
U,Q is a flat pD

pmq
k,Q -module. In particular, the map α provides an injection

of coherent pD
pk,mq
U,Q -modules

pD
pk,mq
U,Q b

pD
pmq
k,Q

M ãÑ pD
pk,mq
U,Q b

pD
pmq
k,Q

N .

Using the flatness result (i) we also have an injection of coherent pD
pk,m`1q
U,Q -modules

pD
pk,m`1q
U,Q b

pD
pmq
k,Q

M ãÑ pD
pk,m`1q
U,Q b

pD
pmq
k,Q

N .

Then we identify (resp. for N)

pD
pk,m`1q
U,Q b

pD
pmq
k,Q

M » pD
pk,m`1q
U,Q b

pD
pm`1q
k,Q

pD
pm`1q
k,Q b

pD
pmq
k,Q

M .
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Finally taking global sections of the previous injection and using again 2.2.6, we get an

injection of coherent pD
pm`1q
k,Q -modules

pD
pm`1q
k,Q b

pD
pmq
k,Q

M ãÑ pD
pm`1q
k,Q b

pD
pmq
k,Q

N ,

that proves (iii). Assertion (iv) follows from the previous one, since, as U is quasi-compact,

ΓpU,D:

X,kq “ lim
ÝÑ
m

ΓpU, pD
pk,mq
X,Q q ,

and we deduce from (iii) that, for all integer m1 ě m, the module ΓpU, pD
pk,m1q
X,Q q is left and

right flat over ΓpU, pD
pk,mq
X,Q q. We obtain thus (iv) by passing to the inductive limit over m.

This ends the proof of the proposition 2.2.11. �

We deduce from this the corresponding version of proposition 2.2.6 for the sheaf D:

X,k.

Corollary 2.2.15. (Local theorem A and B for varying m) Let U Ă X be an open affine
formal subscheme of X. Then :

(i) The algebra D:k “ ΓpU,D:

X,kq is coherent.

(ii) For any open affine subset U Ă X, any coherent D
:

U,k-module M, and any q ą 0
one has HqpU,Mq “ 0.

(iii) The functor ΓpU, .q establishes an equivalence of categories between coherent D:

U,k-

modules and coherent D:k-modules. In particular, the functor ΓpU, .q is exact on

coherent D:

U,k-modules.

Proof. Denote pD
pmq
k,Q “ ΓpU, pD

pk,mq
U,Q q. Since the scheme U is quasi-compact, the functors

HqpU, .q commute with inductive limits and we have

D:k “ lim
ÝÑ
m

pD
pmq
k,Q .

By (iii) of 2.2.11, the maps pD
pmq
k,Q Ñ

pD
pm`1q
k,Q are flat, and by 2.2.2 these algebras pD

pmq
k,Q are

noetherian. This showes that the algebra D:k is coherent [7, 3.6.1].

Let M be a coherent D:

U,k-module. The proof of [7, 3.6.2] literally applies in our situation

and shows that there is a non-negative integer m0 and a coherent pD
pk,m0q

U,Q -module N such
that

M » D
:

U,k bpD
pk,m0q
U,Q

N .

Denote M “ ΓpU,Mq and for m ě m0

Mpmq
“ pD

pk,mq
U,Q b

pD
pk,m0q
U,Q

N ,

so that M » lim
ÝÑm

Mpmq. Then, @m ě m0, HqpU,Mpmqq “ 0 by 2.2.6, and by passing to

the inductive limit we see that HqpU,Mq “ 0, which proves (ii).
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The rest of the proof follows 2.3.7, 2.4.1, 2.4.2 of [21]. For the convenience of the reader,

let us summmarize the arguments here. From 2.2.10, the pD
pk,m0q

U,Q -coherent module N

admits a resolution
´

pD
pk,m0q

U

¯a

Ñ

´

pD
pk,m0q

U

¯b

Ñ NÑ 0 .

Tensoring this resolution with the sheaf D
:

U,k gives us a resolution of coherent D
:

U,k-

modules. Since the global section functor is exact on the category of coherent D
:

U,k-

modules because of (ii), we get an exact sequence of coherent D:k-modules
´

D:k

¯a

Ñ

´

D:k

¯b

ÑM Ñ 0 .

To see that D
:

k bD:k
M » M, we are thus reduced to the case M “ D

:

U,k, for which it is

obvious. We prove similarly that if M is a D:k-coherent module, then

M » ΓpU,D:

U,k bD:k
Mq ,

by reducing to the case where M “ D:k. This proves the proposition. �

We now give a flatness result when the congruence level k varies.

Proposition 2.2.16. Let k, k1 be nonnegative integers such that k1 ě k ě kX, then the

morphism of sheaves of rings pD
pk1,mq
X,Q ãÑ pD

pk,mq
X,Q is left and right flat.

Proof. By induction, it is enough to prove that the morphism pD
pk`1,mq
X,Q ãÑ pD

pk,mq
X,Q is left

and right flat. It is also enough to prove the following statement : if U is an affine open

of the basis of open sets B from 2.2.2, then the map pD
pk`1,mq
X,Q pUq ãÑ pD

pk,mq
X,Q pUq is left

and right flat. Denote Dk “ ΓpU,D
pk,mq
X q and pDk “ ΓpU, pD

pk,mq
X q (resp. with k ` 1).

In our situation, we have the following explicit description (resp. with k ` 1), where
B “ ΓpU,OXq, assuming that pr˚TX0 is free restricted to U, with basis B1, . . . , BM as
in 2.1.14,

Dk “

#

ă8
ÿ

ν

$k|ν|bνB
xνy
| bν P B

+

and pDk “

#

ÿ

ν

$k|ν|bνB
xνy
| bν P B, bν Ñ 0

+

.

Here, convergence is with respect to the p-adic topology on B. Moreover we have the

inclusion Dk Ă pDk. As in the proof of the proposition 2.2.11 above, we will use Berthelot’s
method [7, 3.5.3], and introduce

E “ pDk`1 `Dk .

Then, since Dk,Q “ Dk`1,Q, it is clear that EQ “ pDk`1,Q. Moreover, we have the following

Auxiliary result 2.2.17. The B-module E is a B-algebra and its p-adic completion pE is

canonically isomorphic to pDk.
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Proof. Let us first prove that E is a ring. Any element P of E can be written as

P “ Q`R, with Q P pDk`1 and R P Dk .

To prove that E is a ring, it is enough to prove that

@ν, $k|ν|
B
xνy
¨ pDk`1 Ă E, and pDk`1 ¨$

k|ν|
B
xνy
Ă E .

Fix ν, and take Q P pDk`1. We can then write Q “ Q1 ` $|ν|Q2, with Q1 P Dk`1 and

Q2 P pDk`1. Since $k|ν|B
xνy
¨ Q1 P Dk, and Q1 ¨ $

k|ν|B
xνy
P Dk, it remains to prove that

$k|ν|B
xνy
¨$|ν|Q2 P E (resp. $|ν|Q2 ¨$

k|ν|B
xνy
P E). Let us write

Q2 “
ÿ

ν1

$pk`1q|ν1|bν1B
xν1y ,

with coefficients bν1 P B tending p-adically to zero in B. Besides the coefficients appearing
in 2.1.9, we need other modified binomial coefficients [7, (1.1.2.2)]

B

ν

ν 1

F

“

ˆ

ν

ν 1

˙"

ν

ν 1

*´1

P Zp .

Then, following [7, (2.2.4)] we have the following formulas

$k|ν|B
xνy
¨$ppk`1q|ν1|`|ν|qbν1B

xν1y

“ $pk`1qp|ν|`|ν1|q
ř

µďν

 

ν
µ

(@

ν`ν1´µ

ν1

D

B
xµy
pbν1qB

xν`ν1´µy
P pDk`1 .

Passing to the limit in the complete ring pDk`1 we see that $k|ν|B
xνy
¨ $|ν|Q2 P pDk`1.

Similarly, we have

$ppk`1q|ν1|`|ν|qbν1B
xν1y
¨$k|ν|

B
xνy
“ bν1$

ppk`1qp|ν1|`|ν|q

B

ν ` ν 1

ν

F

B
xν`ν1y ,

which proves that $|ν|Q2 ¨$
k|ν|B

xνy
P E and that E is a ring.

Let i ě 0 be an integer and consider now the canonical map

λ : Dk{$
iDk Ñ E{$iE .

Let P P E, and Q P pDk`1, R P Dk such that P “ Q ` R. There exist Q1 P Dk`1 and

Q2 P pDk`1 such that Q “ Q1 `$
iQ2. Then

P “ λpQ1 `Rqmod$iE ,

where Q1 and R are the class of Q1 and R in the quotient Dk{$
iDk. This proves that

the map λ is surjective. Suppose now that λpP q “ 0 for some P P Dk, then there exist

Q P pDk`1 and R P Dk such that P “ $ipQ`Rq. As

$iQ “ P ´$iR P Dk ,
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we see from the explicit description of Dk`1 above that Q P Dk`1 and finally that P P

$iDk, which proves that λ is injective and thus an isomorphism. This completes the
proof of the auxiliary result. �

Now, to prove the proposition, it is enough to prove that E is noetherian. If this is the

case, then pE is flat over E, thus pEQ is flat over EQ and pDk,Q is flat over pDk`1,Q.
Recall [7, (2.2.5)] that the ring Dk is generated by the algebra B and the elements

$kpaB
xpay
i “ $kpaB

rpas
i with 1 ď i ď M , 1 ď a ď m. Let us define the following alge-

bras: let E0 “ pDk`1, and for j ě 1 Ej be the B-algebra of E generated by pDk`1 and

the $kνiB
xνiy
i with 1 ď i ď j and νi P N. We also introduce for each j and s an integer

satisfying 1 ď s ď m the subalgebra Ej,s of Ej generated by Ej´1 and the $kpaB
rpas
j with

1 ď a ď s. We define Ej,0 “ Ej´1 for j ě 1. By definition, we have Ej,m “ Ej. Now we
use the

Auxiliary result 2.2.18. For each j ďM , s ď m, the algebra Ej,s is two-sided noetherian.
The algebra E is two-sided noetherian.

Proof. We will prove the result by induction on both j and s. Note that E0 “ pDk`1 is
noetherian by 2.2.2. By definition, E0,0 “ E0 and is thus noetherian.
Next, let us prove that if Ej,s´1 is noetherian, then Ej,s is noetherian if 1 ď s ď m and
1 ď j ďM . For this, note that, if b P B, we have as in [7, 3.5.3.2],

r$kps
B
rpss
j , bs “

ÿ

iăps

ˆ

ps

i

˙

B
rps´is
j pbq$kps

B
ris
j ,

thus noticing that if i ă ps, $kiB
ris
j P Ej,s´1, we have

r$kps
B
rpss
j , bs P

ÿ

iăps

pDpk`1q$kpi
B
ris
j Ă Ej,s´1 .

Consider the finite type pDpk`1q-module F :“
ř

iăps
pDpk`1q$kpiB

ris
j . Then for each finite

sum P “
ř

ν bν$
pk`1q|ν|B

xνy, we observe that r$kpsB
rpss
j , P s P F . Since F is a finite type

pDpk`1q-module, it is p-adically complete, and thus also for each infinite sum P P pDpk`1q,

we have r$kpsB
rpss
j , P s P F Ă Ej,s´1. Moreover, r$kpsB

rpss
j , $kpaB

rpas
j s “ 0 for a ď s´ 1. As

Ej,s´1 is an algebra and as we have the formula for P,Q P Ej

r$kps
B
rpss
j , PQs “ r$kps

B
rpss
j , P sQ` P r$kps

B
rpss
j , Qs ,

we see that @P P Ej,s´1

r$kps
B
rpss
j , P s P Ej,s´1 .

Then, by induction on l, we deduce that

(2.2.19) @l ě 1, @P P Ej,s´1, rp$
kps
B
rpss
j q

l, P s P
ÿ

iďl´1

Ej,s´1p$
kps
B
rpss
j q

i.
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Define ∆ :“ $kpsB
rpss
j for the rest of the proof. We follow now Berthelot’s argument in

the proof of [7, 3.5.3]. We do the proof for ’left noetherian’ (the right version is similar).
Let I be a left ideal of Ej,s and J be the set of elements R of Ej,s´1 such that there exists
P P I that can be written

P “ R∆l
`

ÿ

iďl´1

Ri∆
i ,

with Ri P Ej,s´1. If R1 and R2 are in J , write

P1 “ R1∆l1 `
ÿ

iďl1´1

Ri∆
i, and P2 “ R2∆l2 `

ÿ

iďl2´1

R1i∆
i ,

with Ri and R1i elements of Ej,s´1. Assume l1 ě l2, then, using (2.2.19), we can write

P1 `∆l1´l2P2 “ pR1 `R2q∆
l1 `

ÿ

iďl1´1

R2i∆
i
P I ,

with elements R2i P Ej,s´1. In particular, we deduce from this that J is a left ideal of
Ej,s´1 generated by a finite set of elements R1, . . . , Ra. Moreover I

Ş

Ej,s´1 is a left ideal
of Ej,s´1 generated by a finite set of elements Q1, . . . , Qb. We see easily then that I is
generated by the elements R1, . . . , Ra, Q1, . . . , Qb. This proves that Ej,s is noetherian and
ends the proof of the auxiliary result. �

As we have remarked above, the proof of the proposition 2.2.16 is now complete. �

Corollary 2.2.20. Let U Ă X be an open affine formal subscheme of X. If k1 ě k ě kX,

then ΓpU, pD
pk,mq
X,Q q is left and right flat over ΓpU, pD

pk1,mq
X,Q q.

Proof. Denote pDk,Q “ ΓpU, pD
pk,mq
X,Q q and similarly for k1. Let M ãÑ N be an injection of

finite type pDk1,Q-modules and put

M “ pD
pk1,mq
U,Q b

pDk1,Q
M, resp. N “ pD

pk1,mq
U,Q b

pDk1,Q
N .

Using the equivalence of categories and the exactness in 2.2.6, we have an injection of

coherent pD
pk1,mq
U,Q -modules M ãÑ N. Using the previous flatness result 2.2.16, we have an

injection of coherent pD
pk,mq
U,Q -modules

(2.2.21) pD
pk,mq
U,Q b

pD
pk1,mq
U,Q

M ãÑ pD
pk,mq
U,Q b

pD
pk1,mq
U,Q

N .

Taking global sections and using again 2.2.6, we observe that

ΓpU, pD
pk,mq
U,Q b

pD
pk1,mq
U,Q

Mq » ΓpU, pD
pk,mq
U,Q b

pDk1
Mq

» ΓpU, pD
pk,mq
U,Q b

pDk
pDk b pDk1

Mq

» pDk,Q b pDk1,Q
M
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and similarly for N. Finally, with formula (2.2.21) we arrive at an injection

pDk,Q b pDk1,Q
M ãÑ pDk,Q b pDk1,Q

N ,

which proves the corollary. �

We compare now rings with different levels k. Let e “ epL{Qpq be the ramification index
of the extension Qp Ď L.

Proposition 2.2.22. Let e1 P N such that e1 ě e
p´1

.

(i) If k ě kX, and k1 ě k ` e1, then we have the following inclusions of sheaves of
rings

D
:

X,k1 ãÑ D
:

X,k`e1 ãÑ pD
pk,0q
X,Q ãÑ pD

pk,mq
X,Q ãÑ D

:

X,k .

(ii) Suppose e ď p´1. If k ě kX, and k1 ě k`1, then we have the following inclusions
of sheaves of rings

D
:

X,k1 ãÑ D
:

X,k`1 ãÑ pD
pk,0q
X,Q ãÑ pD

pk,mq
X,Q ãÑ D

:

X,k .

Proof. It is enough to prove (i). The only non trivial inclusion is

D
:

X,k`e1 ãÑ pD
pk,0q
X,Q ,

which we may prove locally over some affine open U Ă X of the basis of open sets B from
2.2.2. We use the following notations

B “ ΓpU,OXq, pDk “ ΓpU, pD
pk,0q
X q, D:k “ ΓpU,D:

X,kq .

As before (2.1.14), we have then the following descriptions, assuming that pr˚TX0 is free
restricted to U, with basis B1, . . . , BM ,

pDk “

#

ÿ

ν

$k|ν|bνB
ν
| bν P B, bν Ñ 0

+

,

D:k “

#

ÿ

ν

$k|ν|bνB
rνs
| bν P BQ and DC ą 0, η ă 1 | }bν} ă Cη|ν|

+

,

where } ¨ } is any Banach algebra norm on BQ. For the rest of the proof we endow BQ
with the gauge norm } ¨ } associated with the lattice B Ă BQ. We need the following

Auxiliary result 2.2.23. Let ν “ pν1, . . . , νMq, then we have

|ν|

p´ 1
´M logpp|ν| ` 1q ´M ď vppν!q ď

|ν|

p´ 1
.

Proof. [20, 1.1.2]. �

Let P “
ř

ν $
pk`e1q|ν|bνB

rνs
P D:k`e1 , then there exist R ą 0 and S ą 0 such that

logp }bν} ą R|ν| ´ S .
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We can write

P “
ÿ

ν

$k|ν|cνB
ν with cν “

$e1|ν|

ν!
bν .

Then the following inequality holds

logp }cν} ą

ˆ

e1

e
´

1

p´ 1
`R

˙

|ν| ´ S .

Under the conditions of the statement, logp }cν} Ñ `8 if |ν| Ñ `8, which proves that

P P pDk,Q. This ends the proof of the proposition 2.2.22. �

We now complete these results by additional flatness results when k varies.

Proposition 2.2.24. Let k1 ě k ě kX.

(i) The morphism of sheaves of rings D
:

X,k1 ãÑ D
:

X,k is left and right flat.

(ii) Let U Ă X be an open affine. Then ΓpU,D:

X,kq is left and right flat over ΓpU,D:

X,k1q.

Proof. It is enough to prove (ii). Denote D:k “ ΓpU,D:

X,kq (resp. for k1), and for any

integer m ě 0, pD
pmq
k,Q “ ΓpU,D

pk,mq
X,Q q (resp. for k1). Since U is quasi-compact, we know

that

D:k “ lim
ÝÑ
m

pD
pmq
k,Q .

Let u : M ãÑ N be an injection of coherent D:k1-modules, then we have the

Auxiliary result 2.2.25. There exist an integer m ě 0 and an injection upmq of coherent
pD
pmq
k1,Q-modules upmq : M pmq ãÑ N pmq such that following properties are satisfied.

(i) There are canonical isomorphisms

α : D:k1 b pD
pmq

k1,Q
M pmq »

ÝÑM , and β : D:k1 b pD
pmq

k1,Q
N pmq »

ÝÑ N .

(ii) There is a commutative diagram of coherent D:k1-modules

D:k1 b pD
pmq

k1,Q
M pmq

α

��

� �1bu
pmq
// D:k1 b pD

pmq

k1,Q
N pmq

β

��
M �
� u // N

Proof. In order to prove the auxiliary result, we first remark that the morphism u can
be extended to any finite presentation of M and N as D:k1-modules. Thus, there exists a
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diagram of presentations of D:k1-modules

pD:k1q
a A //

��

pD:k1q
b

��

// M //

u

��

0

pD:k1q
c B // pD:k1q

d // N // 0

Furthermore, there exists m such that the matrices of the maps A and B (and of the two

vertical arrows completing the square) have coefficients in pD
pmq
k1,Q. These then define maps

A : p pD
pmq
k1,Qq

a
Ñ p pD

pmq
k1,Qq

b (resp. for B) ,

whose cokernel is a coherent pD
pmq
k1,Q-module denoted by M pmq (resp. N pmq is the cokernel

of B). We finally get from this the following commutative diagram of exact sequences

p pD
pmq
k1,Qq

a A //

��

p pD
pmq
k1,Qq

b

B
��

// M pmq //

upmq

��

0

p pD
pmq
k1,Qq

c B // p pD
pmq
k1,Qq

d // N pmq // 0

where by definition upmq is the induced map by u between M pmq and N pmq. By construction
there are canonical isomorphism

D:k1 b pD
pmq

k1,Q
M pmq

»M (resp. for N) .

Define now K to be the kernel of the map upmq : M pmq Ñ N pmq, then as D:k1 is flat over
pD
pmq
k1,Q by 2.2.11, we have an exact sequence of D:k1-modules

0 Ñ D:k1 b pD
pmq

k1,Q
K ÑM Ñ N ,

showing that

D:k1 b pD
pmq

k1,Q
K “ 0 ,

and again, as D:k1 is flat over pD
pmq
k1,Q, that

D:k1 b pD
pmq

k1,Q

`

M pmq
{K

˘

» D:k1 b pD
pmq

k1,Q
M pmq

»M .

Finally, the pD
pmq
k1,Q-coherent modules M pmq{K and N pmq satisfy the required properties.

This ends the proof of the auxiliary result. �

Take M pmq, N pmq and upmq : M pmq ãÑ N pmq as given by the auxiliary result. As pD
pmq
k,Q is

flat over pD
pmq
k1,Q by 2.2.20, we have an injection of coherent pD

pmq
k,Q -modules

pD
pmq
k,Q b pD

pmq

k1,Q
M pmq ãÑ pD

pmq
k,Q b pD

pmq

k1,Q
N pmq .
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We can tensor this map by D:k which is a flat pD
pmq
k,Q -module 2.2.11, and use the properties

of M pmq and N pmq to get an injection

D:k bD:
k1
M ãÑ D:k bD:

k1
N ,

and this proves the proposition. �

We end this part by some global properties of coherent sheaves over X (resp. coherent

D:k-modules) when the base X0 is affine. In general, the formal scheme X is projective
over X0 and we can consider the Serre twist OXp1q. It is a locally free sheaf of rank 1 over
X. If U0 is an open affine formal subscheme of X0, and if t P IpU0q, then the restriction
of the sheaf OXp1q to the open subset D`ptq is generated by t. As usual, I denotes the
ideal sheaf on X0 which gives rise to the blow-up X.
If M is a sheaf of OX-modules over X and if r P Z, then we let Mprq denote the twisted
sheaf

Mprq “MbX Xprq .

Lemma 2.2.26. Let X0 be a noetherian affine formal scheme. For all integers r, there
is an isomorphism OX,Qp´rq » OX,Qp´1q.

Proof. We can assume as in 2.1.3, that X0 “ SpfpAq, and that the ideal I is generated by
the elements p$kX , f1, . . . , frq. The formal scheme X is then covered by the open formal
subschemes

D`pfiq “ SpfA

"

fj
fi

*

,

and

OXp´1qpD`pfiqq » A

"

fj
fi

*

¨
1

ui
,

where ui is a generator of OXp1q|D`pfiq. By definition, we have a section

α “
$kX

u0

P OXp´1qpD`p$
kXqq .

Moreover the following equations hold

$kX

u0

“
fi
ui
P OXp´1qpD`pfiqq ,

$kX

ui
“
$kX

fi
¨
$kX

u0

P OXpD`pfiqq ¨
$kX

u0

.

This proves that OX,Qp´1q is free with basis α “ $kX{u0. If r ě 0, OX,Qp´rq »
OX,Qp´1qbr is thus a free OX,Q-module of rank one as well. Since OX,Qprq is the dual
of OX,Qp´rq, it is then also a free OX,Q-module of rank one. �
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We assume from now on until the rest of this subsection 2.2 that the formal scheme X0 is
affine. Let k ě kX. To simplify the notation, we write D :“ D

pk,mq
X and we denote by pD

the p-adic completion of this sheaf. We also let D: “ lim
ÝÑm

pD
pk,mq
X,Q .

Let us first consider the reduction Di “
pD{$i`1

pD. This is a coherent sheaf thanks to 2.2.7
and a quasi-coherent sheaf of OXi-modules. Let M be a coherent Di-module.

Lemma 2.2.27. There exist a, r P N such that there is a surjection of coherent Di-modules

pDip´aqq
r � M .

Proof. As the sheaf M is quasi-coherent over the noetherian scheme Xi, it is an inductive
limit of its OXi-coherent subsheaves. Moreover Di is an inductive limit of the coherent
sheaves Di,n of differential operators of order less than n. We can thus write

M “ lim
ÝÑ
nPN

Mpnq ,

where Mpnq is a coherent OXi-module. Take an open affine subscheme U Ă Xi. Then
DipUq is noetherian and MpUq is a DipUq-module of finite type. Hence, there exists
N ą 0 such that

lim
ÝÑ
n

DipUq ¨Mpnq
pUq “ DipUq ¨MpNq

pUq ĂMpUq .

Since

MpUq “ lim
ÝÑ
n

DipUq ¨Mpnq
pUq ,

we see that DipUq ¨ MpNqpUq “ MpUq and using (iii) of 2.2.7, we find a surjection

DU bMpNq
|U � M|U . As Xi is quasi-compact, Xi can be covered by a finite number of

affine open subsets. There exists therefore N 1 and a surjection DibMpN 1q � M. As MpN 1q

is a coherent OXi-module, there exist r P N, a P N and a surjection pOXip´aqq
r � MpN 1q

and this proves the lemma. �

Lemma 2.2.28. (i) There exists a ě 0 such that

@b ě a, @l ą 0, H l
pXi,Dipbqq “ 0 .

(ii) Let M be a coherent Di-module, then there exists a ě 0 such that

@b ě a, @l ą 0, H l
pXi,Mpbqq “ 0 .

Proof. We have RΓpXi,Dipbqq “ RΓpX0,i, ¨q ˝ Rpr˚Dipbq. As X0,i is affine, it is enough
to prove that Rlpr˚Dipbq “ 0 for l ě 1 and for b ě a. Take U0 Ă X0 affine, endowed
with coordinates x1, . . . , xM and let U “ pr´1pU0q and U “ U ˆ Specpo{$i`1oq. Denote
by OUp1q the restriction to U of the Serre twist over X. Then Di|U is a free OU -module,
so that there exists c such that

@b ě c, @l ą 0, H l
pU,Dipbqq “ 0 .
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By taking the maximum a of the constants c for each affine open U0 of a finite cover of
X0 by such affine subschemes U0, we get that Rlpr˚Dipbq “ 0 for l ą 0 and b ě a and
this proves part (i) of the lemma. For the second assertion, we will prove the following
statement by decreasing induction on K :

For all coherent Di-modules N , there exists a ě 0, such that

@L ě K, @b ě a,HL
pXi,N pbqq “ 0 .

If K ě M ` 1, the result is clear, since N is a quasi-coherent sheaf on a scheme of
dimension M . Suppose now that the result is true for a given K ě 2, and consider a
coherent Di-module N . By the previous lemma, there exist a and r and a exact sequence
of coherent Di-modules

0 ÑMÑ Dr
i Ñ N paq Ñ 0 .

Tensoring this sequence by OXipc1`c2q where c1, c2 are non negative integers and looking
at the cohomology long exact sequence, we get exact sequences for all L

HL
pXi,D

r
i pc1 ` c2qq Ñ HL

pXi,N pa` c1 ` c2qq Ñ HL`1
pXi,Mpc1 ` c2qq .

By the induction hypothesis, there exists c1 such that @L ě K, @d ě c1, H
LpXi,Mpdqq “

0, and by (i), there exists c2 such that @L ě 1, @d ě c2, H
LpXi,Dipdqq “ 0. Finally, if

d ě a` c1 ` c2, for every L ě K ´ 1 ě 1, we get that HLpXi,N pdqq “ 0. This proves (ii)
by induction as claimed. �

Proposition 2.2.29. (i) For any coherent pD-module M, there exist a, r P N and a

surjection of coherent pD-modules
´

pDp´aq
¯r

� M .

(ii) For any coherent pDQ-module M, there exist r P N and a surjection of coherent
pDQ-modules

´

pDQ

¯r

� M .

(iii) For any coherent D:-module M, there exist r P N and a surjection of coherent
D:-modules

`

D:
˘r

� M .

Proof. Let M be a coherent pD-module. For part (i), we need to show that there exists a
non negative integer a such that the twist Mpaq is generated by a finite number of global
sections. Let Mt be the torsion part of M, which is a coherent submodule of M, since
pDpUq is noetherian for every affine open U. Over an affine open U of X, the module MtpUq

is a finite type module over pDpUq and there exists a constant c such that $cMtpUq “ 0.
Since X can be covered by a finite number of open affine formal subschemes, there exists
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L such that $LMt “ 0. Then for i ě L, and denoting G0 “ M{ p$M`Mtq we have
exact sequences

0 Ñ G0
$i
ÑM{$i`1MÑM{$iMÑ 0 .

Since G0 is a coherent D0-module, there exists a1 ě 0 so that H1pX0,G0pbqq “ 0 for every
b ě a1. As a consequence, if b ě a1, for all i ě L we have surjections

ΓpX,M{$i`1Mpbqq� ΓpX,M{$iMpbqq .

Since M{$LM is a coherent DL´1-module, there exists a ě a1 and a surjection s :
Dr
L´1 � M{$LMpaq defined by global sections e1, . . . , er P ΓpXL´1,M{$LMpaqq. Fi-

nally we see by induction on i that these sections e1, . . . , er can be lifted to global sections
of ΓpX,M{$iMpaqq for every i, and thus to global sections of ΓpX,Mpaqq. These sec-

tions define a map pDr ÑMpaq that is surjective since it is surjective mod $. This proves
the part (i).
Assertion (ii) follows from (i) and lemma 2.2.26. For (iii), we remark that, if M is a

coherent D:-module, there exists a coherent pD-module N such that

M » D:
b

pD
N .

We can then apply (ii) to N and this proves (iii). �

2.3. An invariance theorem for admissible blow-ups. We keep here the hypotheses
from the previous section. In particular, X0 denotes a smooth formal S-scheme and

pr : XÑ X0

denotes an admissible blow-up. Let pr1 : X1 Ñ X0 be another admissible formal blow-
up and let π : X1 Ñ X be a morphism over X0, inducing an isomorphism between the
associated rigid-analytic spaces XQ and X1Q (which are both canonically isomorphic to
the rigid-analytic space X0,Q associated to X0). Then we have the following invariance
property. This does not make use of the smoothness assumption for X0.

Proposition 2.3.1. The functors π˚ (resp. π˚) are exact on the category of coherent
OX1,Q-modules (resp. coherent OX,Q-modules) and induce an equivalence of categories
between coherent OX1,Q-modules and coherent OX,Q-modules.

Proof. Let sp (resp. sp1) be the specialization map XQ Ñ X (resp. X1Q Ñ X1). Then
by Tate’s acyclicity theorem one knows that sp˚ is exact over the category of coherent
OXQ-modules. Moreover, via specialization, the category of coherent OXQ-modules over
the rigid space XQ is equivalent to the category of coherent OX,Q-modules over the formal
scheme X [7, discussion after (4.1.3.1)] and similarly for X1. Let π̃ be the induced map by
π between the analytic spaces X1Q and XQ, which is an isomorphism by assumption. One
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has the following commutative diagram

X1Q
„

π̃
//

sp1

��

XQ

sp

��
X1 π

// X,

from which we can deduce the following

Lemma 2.3.2. With the previous notations, there is an isomorphism

OX,Q»π˚OX1,Q .

Proof. Let us first note that Rπ̃˚OX1Q » OXQ because π̃ is an isomorphism of analytic
spaces. Since Rsp1˚OX1Q “ OX1,Q (and the same with X), we can compute using the
previous diagram Rπ˚OX1,Q » Rsp˚Rπ̃˚OX1Q » OX,Q. This proves the lemma. �

Let us now prove the proposition. Let F be a coherent OX1,Q-module, then by [7, 4.1.3]

there exists a coherent OX1Q-module F̃ such that F “ sp1˚F̃ . Considering again the
previous diagram, we compute

Rπ˚F » Rsp˚Rπ̃˚F̃ .

As π̃ is an isomorphism, Riπ̃˚F̃ “ 0 if i ě 1 and π̃˚F̃ is a coherent OXQ-module. Finally,
Rsp˚ is reduced to sp˚ and the spectral sequence of the composite functors degenerates,
giving us that Riπ˚F “ 0 if i ě 1 and π˚F is a coherent OX,Q-module. It is moreover clear
that π˚ preserves coherence. Consider the map of coherent OX1,Q-modules π˚π˚F Ñ F .
To prove that this is an isomorphism is local on X, which we can assume to be affine.
In this case, it is enough to prove the statement for F “ OX1,Q, since π˚ is exact. But
π˚π˚OX1,Q » π˚OX,Q because of the lemma and thus π˚π˚OX1,Q » OX1,Q.
Let E be a coherent OX,Q-module and consider the canonical map E Ñ π˚π

˚E . Again,
since π˚ is exact, we are reduced to the case where X is affine and E “ OX,Q to prove that
this map is an isomorphism. In this case, the isomorphism follows again from the lemma.
Since π˚ and π˚ are quasi-inverse to each other, and π˚ is an exact functor, π˚ is exact as
well. This finishes the proof of the proposition. �

In the sequel, we will give a version of the invariance property 2.3.1 for D-modules. Recall

that we have the sheaves of differential operators D:

X,k,
pD
pk,mq
X,Q etc. for k ě kX, cf. previous

subsection, at our disposal (similarly for X1). In the following we fix a congruence level
k ě maxtkX, kX1u.

For a D
:

X1,k-module M, we let, as usual, π˚M denote the push-forward of M in the sense

of abelian sheaves (and analogously in the case of pD
pk,mq
X1,Q -modules). Conversely, there is a

functor π! in the other direction constructed as usual using the formalism of inverse images

of D-modules: first of all, by definition of the sheaves D
pk,mq

X 1i
and D

pk,mq
Xi

, cf. (2.1.13), and



32 CHRISTINE HUYGHE, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

the fact that ppr1q˚ “ π˚ ˝ pr˚ we have

D
pk,mq

X 1i
» π˚iD

pk,mq
Xi

,

and the sheaf D
pk,mq

X 1i
can be uniquely endowed with a structure of right π´1D

pk,mq
Xi

-module.

Passing to the p-adic completion, we see that the sheaf pD
pk,mq
X1 is a sheaf of right π´1

pD
pk,mq
X -

modules. Then, passing to the inductive limit over m implies that D:

X1,k is a right π´1D
:

X,k-

module. For a D
:

X,k-module M, we then define

(2.3.3) π!M :“ D
:

X1,k bπ´1D
:

X,k
π´1M ,

and we make the analogous definition in the case of pD
pk,mq
X,Q -modules.2

Before stating the next theorem, we need the following lemmas. Denote by A the abelian
category of projective systems K‚ “ pKiqiPN “ pK0 Ð K1 Ð . . .q of OX-modules Ki,
where Ki is annihilated by multiplication by $i`1 for every i ě 0. Put Pb “ DbpAq.
Note that for a complex pKnqnPZ in Pb, where each Kn “ pKn

i qiPN, there exists J ą 0
so that HnpK‚q “ 0 if |n| ą J (n P Z). The functor lim

ÐÝ
: A Ñ ModpOXq extends to

a derived functor R lim
ÐÝ

from the derived category Pb to the bounded derived category

DbpOXq :“ DbpModpOXqq because R lim
ÐÝ

has cohomological dimension 1, cf. [14, 4.1].

Lemma 2.3.4. Let N P N, and let K‚ be an object of A such that $NK‚ “ 0, then the
complex QbZ R lim

ÐÝ
K‚ is quasi-isomorphic to 0 in DbpOX,Qq.

Proof. In the following we consider K‚ as an object in Pb concentrated in degree zero. By
hypothesis, the map $N ¨ : K‚ Ñ K‚ factorizes through the zero complex

K‚ Ñ 0 Ñ K‚ .

After applying Rk lim
ÐÝ

“ Hk ˝ R lim
ÐÝ

, for k P Z, we find that multiplication with $N

factorizes

Rk lim
ÐÝ

K‚ Ñ 0 Ñ Rk lim
ÐÝ

K‚ ,

meaning that for every k P Z, $NRk lim
ÐÝ

K‚ “ 0 and thus

QbZ R
k lim
ÐÝ

K‚ “ 0 .

This proves the lemma, as Q is flat over Z and as this module is the k-th cohomology
sheaf of the complex

QbZ R lim
ÐÝ

K‚ .

�

2Since D
pk,mq
X1 “ π˚D

pk,mq
X , the functor π! is a version of the usual D-module pullback functor [16],

whence our notation.
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Lemma 2.3.5. Let N P N, and let E‚, F‚ two objects of Pb, and h : E‚ Ñ F‚ a morphism
in Pb so that the mapping cone C‚ of h (defined up to a quasi-isomorphism) satisfies

@j P Z : $N
¨Hj

pC‚q “ 0 .

Then the map h induces a quasi-isomorphism

QbZ R lim
ÐÝ
pE‚q » QbZ R lim

ÐÝ
pF‚

q .

Proof. First note that since E‚ and F‚ have bounded cohomology, this is also the case
of C‚, so that the condition of the lemma involves only a finite number of j P Z. More
precisely, there exists J P N, such that the sheaves HjpC‚q are zero for all j satisfying the
condition |j| ą J . Using the cohomological truncations functors σěn as defined in [15, I,
7], and denoting σąn of loc. cit. by σěn`1, we have for each n a triangle in Pb ([15, I,
7.2])

Hn
pC‚q Ñ σěnpC‚q Ñ σěn`1pC‚q

`1
ÝÑ .

We will prove by decreasing induction on n that Q b R lim
ÐÝ

σěnpC‚q is quasi-isomorphic
to 0. This is true if n “ J ` 1. Assume that this is true for n ` 1, then after applying
QbR lim

ÐÝ
to the previous triangle, we get a triangle

QbR lim
ÐÝ

Hn
pC‚q Ñ QbR lim

ÐÝ
σěnpC‚q Ñ QbR lim

ÐÝ
σěn`1pC‚q

`1
ÝÑ .

As by hypothesis $NHnpC‚q “ 0, we see by applying the previous lemma 2.3.4 to the
projective system HnpC‚q that Qb R lim

ÐÝ
HnpC‚q is quasi-isomorphic to 0. Therefore, we

have a quasi-isomorphism

QbR lim
ÐÝ

σěnpC‚q » QbR lim
ÐÝ

σěn`1pC‚q ,

and the complex QbR lim
ÐÝ

σěnpC‚q is hence quasi-isomorphic to 0. Thus, we conclude that
for all n, QbR lim

ÐÝ
σěnpC‚q is quasi-isomorphic to 0. Since C‚ has bounded cohomology, it

is quasi-isomorphic to σěnpC‚q for n small enough and this finally proves that QbR lim
ÐÝ

C‚
is quasi-isomorphic to 0. Now we consider the triangle in Pb

E‚ Ñ F‚
Ñ C‚ `1

Ñ ,

and apply QbR lim
ÐÝ

. In this way we obtain a triangle

QbR lim
ÐÝ

E‚ Ñ QbR lim
ÐÝ

F‚
Ñ QbR lim

ÐÝ
C‚ `1
Ñ ,

and since Q b R lim
ÐÝ

C‚ is quasi-isomorphic to 0, we see that the first map of the latter
triangle is a quasi-isomorphism as claimed. �

As before, we denote the associated rigid analytic space of X by XQ. From 2.3.1 and the
lemma 2.3.2 Rjπ˚OX1,Q “ 0 for j ą 0 and π˚OX1,Q “ OX,Q. As the map π is proper, the
sheaves Rjπ˚OX1 are coherent OX-modules and there is N ě 0 such that $NRjπ˚OX1 “ 0
for all j ą 0 and such that the kernel and cokernel of the natural map OX Ñ π˚OX1 are
killed by $N as well. For any i ě 0, let as usual Xi be the reduction of X mod $i`1 and
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similarly for X1 and denote by πi : X 1
i Ñ Xi the morphism induced by π. We will need

the following

Auxiliary result 2.3.6. Let i ě 0.

(i) Kernel and cokernel of the canonical map OXi Ñ πi˚OX 1i
are annihilated by $2N .

(ii) For all j ě 1, one has $2NRjπi˚OX 1i
“ 0.

Proof. As the formal scheme X1 is flat, there are exact sequences

0 ÝÑ OX1
$i`1

ÝÑ OX1 ÝÑ OX 1i
ÝÑ 0 .

Applying Rjπ˚, we get exact sequences for any i and j ě 1,

Rjπ˚OX1 Ñ Rjπi˚OX 1i
Ñ Rj`1π˚OX1 ,

that prove that $2NRjπi˚OX 1i
“ 0. Moreover we can consider the following commutative

diagram of exact sequences

0 // OX

��

$i`1
// OX

//

��

OXi

��

// 0

0 // π˚OX1
$i`1

// π˚OX1
// πi˚OX 1i

// R1π˚OX1 .

By the snake lemma the kernel of the canonical map OXi Ñ πi˚OX 1i
is killed by $2N . By

chasing the diagram we also see that the cokernel of this map is also killed by $2N for all
i. This proves the auxiliary result. �

Lemma 2.3.7. Let π : X1 Ñ X be a morphism over X0 between admissible formal blow-ups
of the smooth formal scheme X0. Let k ě maxtkX, kX1u.

(i) Then we have: Rjπ˚D
:

X1,k “ 0 for j ą 0. Moreover, π˚D
:

X1,k “ D
:

X,k.

(ii) There is a canonical isomorphism D
:

X1,k » π!D
:

X,k.

Proof. Since Rjπ˚ commutes with inductive limits, it suffices to prove the claim for pD
pk,mq
X1,Q .

Abbreviate pDX1 “
pD
pk,mq
X1 (and similarly for X), and DX 1i

“ pD
pmq
X1,k{$

i`1
pD
pmq
X1,k (and similarly

forXi). We need to computeRπ˚ pDX1 . Note that by [26, Tag 0BKS]R lim
ÐÝi

DX 1i
» lim
ÐÝi

DX 1i
,

so that

Rπ˚ pDX1 » Rπ˚R lim
ÐÝ
i

DX 1i
» R lim

ÐÝ
i

Rπi˚DX 1i
,

by [26, Lemma 20.32.2]. As the sheaf DXi is a flat OXi-module, the projection formula
gives a canonical isomorphism

Rπi˚DX 1i
» Rπi˚OX 1i

bOXi DXi ,
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so that the canonical map OXi Ñ Rπi˚OX 1i
induces a map of projective systems of com-

plexes h : pDXiqi Ñ pRπi˚DX 1i
qi. We consider these projective systems as objects of Pb.

By applying R lim
ÐÝi

to h, we get the canonical map ph : pDX Ñ Rπ˚ pDX1 . Moreover, we have

@j ě 0 @i Rjπi˚DX 1i
» Rjπi˚OX 1i

bOXi DXi .

By flat base change from OXi to DXi , the previous auxiliary result 2.3.6 (i) implies that
the kernel and the cokernel of the map pDXiqi Ñ pπi˚DX 1i

qi of projective systems are

annihilated by $2N . Similarly, by 2.3.6 (ii) the projective systems pRjπi˚DX 1i
qi for j ě 1

are annihilated by $2N . Let C‚ be the cone of h, then, as the functor H0 is a cohomological
functor [15, definition, p.27] we have the following exact cohomology sequence of projective
systems of sheaves

0 Ñ pH´1
pC‚qq Ñ pDXiqi Ñ pπi˚DX 1i

qi Ñ pH0
pC‚qq Ñ 0,

and @j ě 1
pRjπi˚pDXiqqi » Hj

pC‚q .
We thus see that the cohomology of C‚ is annihilated by $2N , so that we can apply

lemma 2.3.5 and obtain a quasi-isomorphism ph bQ : pDX,Q
»
ÝÑ Rπ˚ pDX1,Q. By passing to

the cohomology sheaves (and to the inductive limit over all m), this proves (i). The part
(ii) follows from the definition of the functor π!, cf. 2.3.3. �

We can now state the

Theorem 2.3.8. Let π : X1 Ñ X be a morphism over X0 between admissible formal
blow-ups of the smooth formal scheme X0. Let k ě maxtkX, kX1u.

(i) If M is a coherent D:

X1,k-module, then Rjπ˚M “ 0 for j ą 0. Moreover, π˚D
:

X1,k “

D
:

X,k, so that π˚ induces an exact functor between coherent modules over D
:

X1,k

and D
:

X,k respectively.

(ii) The formation π! is an exact functor from the category of coherent D:

X,k-modules

to the category of coherent D:

X1,k-modules, and π! and π˚ are quasi-inverse equiv-
alences between these categories.

The same statement holds for coherent modules over pD
pk,mq
X,Q and pD

pk,mq
X1,Q respectively.

Proof. The first assertion of part (i) is true for D
:

X1,k by the previous lemma 2.3.7. Now
there is a basis of the topology of X consisting of affine opens V such that prpVq is
contained in some affine open of X0. For this reason, if some statement is local on X, then
we can assume that X0 is affine. To prove (i) of the theorem for coherent D

:

X1,k-modules,
we can thus assume (and we do assume) that X0 is affine. Then X and X1 are admissible
blow-ups of a smooth affine formal scheme X0 and we still call π the map X1 Ñ X. We
consider now the following assertion depending on j:

For any coherent D
:

X1,k-module M, and for any l ě j, one has Rlπ˚M “ 0 .
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We will prove this assertion for any j ě 1 by decreasing induction on j. The statement
for j “ 1 establishes then the first assertion of part (i) in general. Since X1 has dimension
ďM ` 1, the assertion is true for j “M ` 2. Assume that the assertion is true for j ` 1
and take a coherent D:

X1,k-module M. Since X0 is affine, we can apply 2.2.29 to find a non

negative integer r and an exact sequence of coherent D
:

X1,k-modules

0 Ñ NÑ pD
:

X1,kq
r
ÑMÑ 0 .

Since j ě 1 and since Rjπ˚D
:

X1,k “ 0 by lemma 2.3.7, the long exact sequence for π˚ gives
us an isomorphism

Rjπ˚M » Rj`1π˚N .

But the right-hand side is zero by the induction hypothesis applied to N. This establishes
the assertion for j and completes the induction step. This ends the proof of the first
assertion of part (i).

What remains to prove for part (i) is that π˚M is coherent over D
:

X,k if M is coherent

over D
:

X1,k. To show this, we continue to assume that X0 is affine. By 2.2.29, there is a
finite presentation

pD
:

X1,kq
s
Ñ pD

:

X1,kq
r
ÑMÑ 0 .

Applying π˚ and using that π˚ is exact, we obtain a finite presentation for π˚M, which
implies that the latter is coherent.

Let us prove part (ii) in the case of coherent D
:

X,k-modules, the case of coherent pD
pk,mq
X,Q -

modules can be treated analogously. By definition of the functor π!, cf. 2.3.3, we have
π!D

:

X,k “ D
:

X1,k. To prove that π! preserves coherence is local on X, so that we can (and

will) again assume that X0 is affine. Let M be a coherent D
:

X,k-module. We can apply
proposition 2.2.29 to X and obtain a finite presentation

´

D
:

X,k

¯s

Ñ

´

D
:

X,k

¯r

ÑMÑ 0 .

Since the tensor product is right exact, we get a finite presentation of π!M
´

D
:

X1,k

¯s

Ñ

´

D
:

X1,k

¯r

Ñ π!MÑ 0 ,

which implies that π!M is a coherent D:

X1,k-module. In particular, the functor π! preserves

coherence. The map π´1MÑ π!M sending x to 1b x induces a morphism

canM : MÑ π˚π
!M ,

which is natural in M. Whether canM is an isomorphism can be decided locally on X,
and we can again assume that X0 is affine. X and X1 are admissible blow-ups of X0, and
by 2.2.29 there a finite presentation

(2.3.9)
´

D
:

X,k

¯s

Ñ

´

D
:

X,k

¯r

ÑMÑ 0 ,
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and so π!M admits a finite presentation
´

D
:

X1,k

¯s

Ñ

´

D
:

X1,k

¯r

Ñ π!MÑ 0 .

We apply π˚ to this latter sequence and use that π˚ is exact (by (i)), together with 2.3.7
to obtain the finite presentation

(2.3.10)
´

D
:

X,k

¯s

Ñ

´

D
:

X,k

¯r

Ñ π˚π
!MÑ 0 .

The natural transformation can induces a morphism from 2.3.9 to 2.3.10, and because
can

D
:

X,k
is an isomorphism, so is canM.

In the reverse direction, let M1 be a coherent D
:

X1,k-module. There is a map can1M1 :

π!π˚M
1 Ñ M1, sending P b x to Px, which is natural in M1. Whether this map is

bijective can be decided locally on X and we may assume that X0 is affine, and X1 and X
are admissible blow-ups of X0. Since π˚ is exact, and using 2.2.29 over X1, we are reduced
to the case where M1 “ D

:

X1,k. In this case π!π˚D
:

X1,k » D
:

X1,k by (i). From all of this,

we can conclude that π! and π˚ are quasi-inverse functors. As π˚ is exact on coherent
D
:

X1,k-modules, π! is exact on coherent D
:

X,k-modules. �

Corollary 2.3.11. In the situation of the preceding theorem, one has

ΓpX,D:

X,kq “ ΓpX0,D
:

X0,k
q “ ΓpX1,D:

X1,kq .

As an application of the invariance theorem we can extend the local theorems A and B
2.2.6 and 2.2.15 to global statements, provided that the base X0 is affine.3.

Theorem 2.3.12. (Global theorem A and B over an affine base) Let X0 be affine.

(i) For any coherent pD
pk,mq
X,Q -module M and for all q ą 0 one has HqpX,Mq “ 0.

(ii) The functor ΓpX,´q is an equivalence between the category of coherent pD
pk,mq
X,Q -

modules and the category of coherent ΓpX, pD
pk,mq
X,Q q-modules.

The same statement holds for coherent modules over D
:

X,k and ΓpX,D:

X,kq.

Proof. Denote by π : X Ñ X0 the blow-up morphism. The functor ΓpX, .q equals the
composite of the two functors π˚ and ΓpX0,´q. Hence the theorem follows from 2.3.8 and
its corollary 2.3.11 and 2.2.15. �

3. Coadmissible D-modules on X and the Zariski-Riemann space

We continue to denote throughout this section by X0 a smooth formal S-scheme, and we
consider an admissible formal blow-up

pr : XÑ X0 .

3Note that this is not covered by 2.2.6 and 2.2.15, since an admissible blow-up X of an affine X0 is in
general not affine.
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The purpose of the first subsection is to study projective systems pMkqkěkX of coherent

modules Mk over D
:

X,k, and to pass to their associated projective limits. In the second
subsection we will then let X vary in the system of all admissible formal blow-ups of X0.

3.1. Coadmissible D-modules on X. We make the general convention that k always
denotes an integer which is at least as large as kX.

3.1.1. Fréchet-Stein algebras. Let B be a noetherian K-Banach algebra. We recall that
any finitely generated B-module has a canonical structure as B-Banach module and any
B-linear map between two such modules is continuous. The topology can be defined as
the quotient topology with respect to any chosen finite presentation of the module [24,
Prop. 2.1].
We recall from [24, sec. 3] that a K-Fréchet algebra A is called Fréchet-Stein if there
is a projective system pAk, Ak`1 Ñ AkqkPN of (left) noetherian K-Banach algebras Ak
with (right) flat transition maps Ak`1 Ñ Ak, and an isomorphism of topological K-
algebras A » lim

ÐÝk
Ak such that each of the induced maps A Ñ Ak has dense image. For

the following definition we fix such an isomorphism. We denote by CA the full abelian
subcategory of the category of all (left) A-modules consisting of the coadmissible A-
modules, as introduced in [24]. For an A-module M to be coadmissible means that there
is a projective system pMk,Mk`1 Ñ MkqkPN, where each Mk is a finitely generated Ak-
module, such that

(i) the transition map Mk`1 Ñ Mk is a homomorphism of Ak`1-modules, and the
induced map Ak bAk`1

Mk`1 ÑMk is an isomorphism of Ak-modules, and

(ii) M is isomorphic to lim
ÐÝk

Mk as an A-module.

(The projective limit is considered as an A-module via the fixed isomorphism4 A »

lim
ÐÝk

Ak.) We sometimes call pMkq an pAkq-sequence for M . For M “ lim
ÐÝk

Mk P CA
we have that the image of M Ñ Mk is dense with respect to the canonical topology for
any k, and lim

ÐÝ
p1q

k
Mk “ 0, cf. [24, first theorem in sec. 3].

3.1.2. The sheaf DX,8. We denote by

(3.1.3) DX,8 “ lim
ÐÝ
k

D
:

X,k

the projective limit of the system of sheaves D
:

X,k. Then DX,8 is again a sheaf of rings

and for every open subset V Ă X we have DX,8pVq “ lim
ÐÝk

D
:

X,kpVq.

Proposition 3.1.4.

(i) The canonical morphism of sheaves pD
pk,0q
X,Q Ñ D

:

X,k induces an isomorphism

4However, the category CA is independent of the isomorphism.
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lim
ÐÝ
k

pD
pk,0q
X,Q

»
ÝÑ lim

ÐÝ
k

D
:

X,k “ DX,8 .

(ii) For every affine open subset V Ă X the isomorphism

DX,8pVq “ lim
ÐÝ
k

pD
pk,0q
X,Q pVq

induced from (i) gives DX,8pVq the structure of a Fréchet-Stein algebra.

(iii) Let U Ă X0 be an open affine subset which can be equipped with a system of étale
coordinates x1, . . . , xM and B1, . . . , BM the corresponding derivations. Then, for
any affine open V Ă pr´1pUq we have

(3.1.5) DX,8pVq “

#

ÿ

ν

aνB
ν
ˇ

ˇ

ˇ
aν P OX,QpVq , @R ą 0 : lim

|ν|Ñ8
}aν}R

|ν|
“ 0

+

,

where } ¨ } is any submultiplicative Banach space norm on OX,QpVq.

(iv) Let X1 Ñ X0 be another admissible formal blow-up, and let π : X1 Ñ X be

a morphism over X0. Then the canonical isomorphisms π˚D
:

X1,k “ D
:

X,k, for
k ě maxtkX1 , kXu, cf. 2.3.8, give rise to a canonical isomorphism

(3.1.6) π˚DX1,8 “ DX,8 .

Proof. Take an affine open V Ă X. We deduce from the proposition 2.2.22 that the pro-

jective systems of K-algebras D
:

X,kpVq and pD
pk,0q
X,Q pVq are equivalent. This proves (i). For

(ii), note that the transition map pD
pk`1,0q
X,Q pVq Ñ pD

pk,0q
X,Q pVq is a flat homomorphism be-

tween noetherian Banach algebras, according to propositions 2.2.16 and 2.2.2. Moreover,

each ring pD
pk,0q
X,Q pVq contains the local sections over V of the ring of algebraic (finite order)

differential operators DX,Q “ pr˚DX0,Q. Hence, each induced map DX,8pVq Ñ pD
pk,0q
X,Q pVq

has dense image, as required. To prove (iii), we assume additionally V Ă pr´1U. By part
(i), is then enough to show

lim
ÐÝ
k

pD
pk,0q
X,Q pVq “

#

ÿ

ν

aνB
ν
ˇ

ˇ

ˇ
aν P OX,QpVq , @R ą 0 : lim

|ν|Ñ8
}aν}R

|ν|
“ 0

+

.

Denote by E the right-hand side of the preceding equality. Recall that

pD
pk,0q
X,Q pVq “

#

ÿ

ν

$k|ν|bνB
ν
| bν P OX,QpVq, }bν} Ñ 0

+

.

Let P “
ř

ν aνB
ν
P E. Since all Banach algebra norms over OX,QpVq are equivalent, we

can use the p-adic norm | ¨ |p of OX,QpVq relatively to the lattice OXpVq. Fix k P N and
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define

bν “ $´k|ν|aν ,

then, using the ramification index e of the extension L{Qp, we get that

|bν |p “ |aν |pp
k|ν|
e Ñ 0 if |ν| Ñ `8.

Thus P “
ř

ν $
k|ν|bνB

ν
P pD

pk,0q
X,Q pVq. Conversely, let P “

ř

ν aνB
ν
P lim
ÐÝk

pD
pk,0q
X,Q pVq and

R ą 0. Choose k ą 0 such that

p
k
e ą R and define bν “ $´k|ν|aν .

Since P “
ř

ν $
k|ν|bνB

ν
P pD

pk,0q
X,Q pVq, |bν |p Ñ 0, thus

|aν |pp
k|ν|
e Ñ 0, and |aν |pR

|ν|
Ñ 0 ,

proving that P P E, as required for (iii).
Let us prove (iv). Let V Ă X, then from part (i) of proposition 2.3.8, we know that

D
:

X,kpVq “ D
:

X1,kpπ
´1pVqq. We deduce from this the equations

π˚DX1,8pVq “ DX1,8pπ
´1
pVqq “ lim

ÐÝ
k

D
:

X1,kpπ
´1
pVqq “ lim

ÐÝ
k

D
:

X,kpVq “ DX,8pVq .

�

Let us remark that the sheaf DX,8 does only depend on the formal scheme X and not
on the blow-up morphism pr. Indeed, suppose that X is realized as the blow-up of two
smooth formal schemes X0 and X10. We may assume that X0 and X10 are affine and endowed
with coordinates. To any given k, there exists k1 ě k such that $k1pr1˚TX10

is contained

in $kpr˚TX0 , inside the tangent sheaf TXQ of the generic fibre XQ. The two projective

systems ppD
pk,0q
X,Q qkěkX (relative to the blow-up morphisms pr and pr1) are therefore cofinal

and their projective limits are therefore isomorphic.

For every affine open subset V Ă X we have, according to the preceding proposition,
the abelian category of coadmissible DX,8pVq-modules CDX,8pVq. We give an alternative

description of these modules using the projective system of algebras D
:

X,kpVq.

Proposition 3.1.7. Let V Ă X be an affine open. A DX,8pVq-module M is coadmissible
if and only if there is a projective system pMk,Mk`1 Ñ Mkq, where each Mk is a finitely

presented D
:

X,kpVq-module, such that

(i) the transition map Mk`1 ÑMk is D
:

X,k`1pVq-linear and induces an isomorphism

D
:

X,kpVq bD
:

X,k`1pVq
Mk`1 »Mk

of D:

X,kpVq-modules, and

(ii) M is isomorphic to lim
ÐÝk

Mk as an DX,8pVq-module.
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Proof. This follows from the discussion given in the proof of [11, Prop. 1.2.9] and we

explain the main points. We write Ak “ pD
pk,0q
X,Q pVq and Bk “ D

:

X,kpVq. We have strictly
increasing functions φ and ψ mapping N to itself such that the map A Ñ Ak (resp.
A Ñ Bk) factors through the map A Ñ Bφpkq (resp. A Ñ Aψpkq). Indeed, we may take
φpkq “ k ` e1 and ψpkq “ k with e1 ě e

p´1
a fixed number, according to the proposition

2.2.22. In particular, the systems of K-algebras Ak and Bk are equivalent. Now suppose
N is coadmissible with system of Banach modules Nk. For k ě 1 define the finitely
presented Bk-module

Mk “ Bk bAψpkq Nψpkq .

Since ψpk ` 1q ě ψpkq, the map Nψpk`1q Ñ Nψpkq induces a map Mk`1 ÑMk and then a
map Bk bBk`1

Mk`1 Ñ Mk. This map is bijective as follows from the diagram presented
in the proof of [11, Prop. 1.2.9]. Moreover, the projection map M Ñ Nψpkq induces a
A-linear map

M Ñ Bk bAM Ñ Bk bAψpkq Nψpkq “Mk

compatible with Mk`1 Ñ Mk. This gives an A-linear map M Ñ lim
ÐÝk

Mk and it remains
to see that it is bijective. We have the natural map Nψpkq Ñ Mk. On the other hand,
ψpφpkqq ě k such that there is a map

Mφpkq “ Bφpkq bAψpφpkqq Nψpφpkqq Ñ Ak bAψpφpkqq Nψpφpkqq Ñ Nk

using the map Bφpkq Ñ Ak. Hence the systems pMkq and pNkq are equivalent and

M » lim
ÐÝ
k

Nk » lim
ÐÝ
k

Mk .

This shows that the system pMkq is as required for M . Conversely, starting with a module
M and such a system pMkq the coadmissibility of M follows with the same argument. �

Definition 3.1.8. A DX,8-module M is called coadmissible if there a projective system

pMk,Mk`1 ÑMkqkěkX , where Mk is a coherent pD
pk,0q
X,Q -module, such that

(i) the transition map Mk`1 ÑMk is pD
pk`1,0q
X,Q -linear and the induced map

(3.1.9) pD
pk,0q
X,Q b

pD
pk`1,0q
X,Q

Mk`1 ÝÑMk

is an isomorphism as pD
pk,0q
X,Q -modules, and

(ii) M is isomorphic to lim
ÐÝk

Mk as DX,8-module.

We denote by
CX Ď ModpDX,8q

the full subcategory of coadmissible DX,8-modules in the category of all DX,8-modules.

Proposition 3.1.10. A DX,8-module M is coadmissible if and only if there is a projective

system pMk,Mk`1 ÑMkqkěkX, where Mk is a coherent D:

X,k-module, such that

(i) the transition map Mk`1 ÑMk is D:

X,k`1-linear and the induced morphism of sheaves
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(3.1.11) D
:

X,k bD
:

X,k`1
Mk`1 ÝÑMk

is an isomorphism of D:

X,k-modules, and

(ii) M is isomorphic to lim
ÐÝk

Mk as DX,8-module.

Proof. This follows literally as for the modules of local sections, cf. proposition 3.1.7,
taking into account that proposition 2.2.22 holds on the level of sheaves. �

The following statement is a version of the invariance theorem 2.3.8 for coadmissible
modules.

Proposition 3.1.12. Let X1 Ñ X0 be another admissible formal blow-up, and let π : X1 Ñ
X be a morphism over X0. Then, for every coadmissible DX1,8-module M the sheaf π˚M
is a coadmissible DX,8-module via the isomorphism π˚DX1,8 “ DX,8. Moreover, one has
an equivalence of categories

π˚ : CX1
»
ÝÑ CX .

Proof. Write M “ lim
ÐÝk

Mk with coherent D:

X1,k-modules Mk. By 2.3.8 we know that each

sheaf π˚pMkq is a coherent D
:

X,k-module. Moreover π˚pMq “ lim
ÐÝk

π˚pMkq, and

D
:

X,k bD
:

X,k`1
π˚Mk`1 “ π˚D

:

X1,k bπ˚D
:

X1,k`1

π˚Mk`1 » π˚

´

D
:

X1,k bD
:

X1,k`1

Mk`1

¯

» π˚Mk .

Note here that the exact functor π˚, cf. 2.3.8, indeed commutes with the tensor product:
this may be checked over an open affine V Ď X1 where we may take a finite presentation
of the restriction of the module Mk`1 to V as D:

V,k`1-module to reduce to the case of the

sheaf D:

V,k`1, as in the proof of the preceding theorem. This shows π˚M P CX. Conversely,

suppose N “ lim
ÐÝk

Nk P CX with coherent D
:

X,k-modules Nk. Then π!N :“ lim
ÐÝk

π!Nk lies

in CX1 , since the projective system of coherent D
:

X1,k-modules π!Nk satisfies

D
:

X1,k bD
:

X1,k`1

π!Nk`1 » D
:

X1,k bD
:

X1,k`1

´

D
:

X1,k`1 bπ´1D
:

X,k`1
π´1Nk`1

¯

» D
:

X1,k bπ´1D
:

X,k

´

π´1D
:

X,k bπ´1D
:

X,k`1
π´1Nk`1

¯

» π!
´

D
:

X,k bD
:

X,k`1
Nk`1

¯

» π!Nk.

It follows from 2.3.8 that the functor N ÞÑ π!N is a quasi-inverse to the functor π˚ :
CX1 Ñ CX. These functors are therefore mutually inverse equivalences of categories. �
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Theorem 3.1.13. (Theorem A for coadmissible modules on X) Let V Ă X be an affine
open subset. Then the global sections functor ΓpV,´q induces an equivalence of categories

ΓpV,´q : CV
»
ÝÑ CDX,8pVq .

Proof. This is an application of proposition 2.2.15. Abbreviate D:k “ ΓpV,D:

V,kq. Let

M P CV with coherent D
:

X,k-modules Mk. Then Mk “ ΓpV,Mkq is a coherent D:k-module
and M “ ΓpV,Mq “ lim

ÐÝk
Mk. Taking global sections in the isomorphism

(3.1.14) D
:

X,k bD
:

X,k`1
Mk`1

»
ÝÑMk

shows that the canonical map

D:k bD:k`1
Mk`1

»
ÝÑMk

is an isomorphism, too. Indeed, this is clear in the case Mk`1 “ D
:

V,k`1 and the general

case follows from taking a finite presentation of Mk`1 as D
:

V,k`1-module. We conclude
with proposition 3.1.7 that M P CDX,8pVq. Conversely, given M P CDX,8pVq with coherent

D:k-modules Mk the D
:

V,k-module Mk “ D
:

V,k bD:k
Mk is coherent and these modules

satisfy 3.1.14. Indeed, that the canonical map 3.1.14 is an isomorphism can be checked
on global sections and follows then from the compatibility with the tensor product. This
shows that M “ lim

ÐÝk
Mk lies in CV. This provides a quasi-inverse to ΓpV,´q. �

Lemma 3.1.15. Let M P CX with a projective system pMkq of coherent pD
pk,0q
X,Q -modules,

as in 3.1.8. Let V Ă X be an open subset, which is affine or of the form pr´1pUq for an
affine open U Ă X0. Then the projective system pMkpVqqkěkX has the following properties:

(i) For k1 ě k the transition map Mk1pVq ÑMkpVq is uniformly continuous.

(ii) For all k ě kX there exists k1 ě k such that for all k2 ě k1 the image of Mk2pVq Ñ
MkpUq is dense in impMk1pVq ÑMkpVqq.

(iii) lim
ÐÝ

p1q

k
MkpVq “ 0.

Proof. (a) To begin with, we assume here that V is open affine in X. Since a con-
tinuous map between normed spaces is uniformly continuous, (i) is clear. Abbreviate

Dk “ ΓpV, pD
pk,0q
X,Q q and Mk “ ΓpV,Mkq. By the above theorem M P CDX,8pVq and, by

the general properties of Fréchet-Stein algebras which we have recalled above, it remains
to see that the modules Mk “ MkpVq form a pDkq-sequence for M . This is an applica-
tion of proposition 2.2.6: First, Mk is a coherent Dk-module. Applying ΓpV,´q to the
isomorphism

pD
pk,0q
X,Q b

pD
pk`1,0q
X,Q

Mk`1
»
ÝÑMk

shows that the canonical map

Dk bDk`1
Mk`1

»
ÝÑMk
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is an isomorphism. Indeed, this is clear in the case where the restriction of Mk`1 to

V equals pD
pk,0q
V,Q and the general case follows from taking a finite presentation of it as

pD
pk,0q
V,Q -module.

(b) Now let V “ pr´1pUq be the preimage of an open affine subset U Ă X0. We consider

the projective system ppr˚Mkqk of coherent pD
pk,0q
X0,Q-modules. By 3.1.12, this is a projective

system for the sheaf pr˚M P CX0 . As we have seen in part (a), statements (i)-(iii) hold for
the open affine subset U of X0 and the projective system ppr˚Mkqk, and they thus hold
also for V “ pr´1pUq and the projective system pMkqk. �

Theorem 3.1.16. (Theorem B for coadmissible modules on X) Let pr : X Ñ X0 be an
admissible blow-up. Suppose M “ lim

ÐÝk
Mk is a coadmissible DX,8-module with coherent

pD
pk,0q
X,Q -modules Mk. Then R lim

ÐÝk
Mk “M. Moreover, given any open subset V Ă X which

is affine or the preimage pr´1pUq of an open affine U Ă X0, we have HqpV,Mq “ 0 for
all q ą 0. In particular, if X0 is affine, then HqpX,Mq “ 0 for all q ą 0.

Proof. Our aim is to apply [26, Tag 0BKS]. To this end, we let B be the set of open
subsets V Ă X which are affine or of the form pr´1pUq for some open affine U Ă X0. We
are going to show that the three hypotheses of loc. cit. are fulfilled, namely

(i) Every open subset of X has a covering whose members are elements of B.
(ii) For every V P B, all k ě 0, and all q ą 0 one has HqpV,Mkq “ 0.

(iii) For every V P B one has lim
ÐÝ

p1q

k
MkpVq “ 0.

Proof of these conditions. (i) This is true because B is a basis of the topology of X.

(ii) This is true by 2.2.6 (iii) for V open affine, and by 2.3.12 when V is the preimage of
an open affine subset in X0.

(iii) This is true by 3.1.15. �

This shows that the conclusions of [26, Tag 0BKS] hold, namely that R lim
ÐÝk

Mk “ M,

and that HqpV,Mq “ 0 for all q ą 0 and every V P B. In particular, HqpX,Mq “ 0 for
all q ą 0, if X0 is affine. �

Theorem 3.1.17. The category CX of coadmissible DX,8-modules is abelian.

Proof. The argument is similar to [24, 3.5], adapted to our situation.

(a) For the purpose of this proof denote by Coh the category of projective systems

pMk,Mk`1 Ñ Mkqkě0, where Mk is a coherent pD
pk,0q
X,Q -module, such that for every k ě 0

the canonical pD
pk,0q
X,Q -linear homomorphism pD

pk,0q
X,Q bpD

pk`1,0q
X,Q

Mk`1 ÑMk is an isomorphism.

Morphisms in Coh are morphisms of projective systems. By the flatness result of 2.2.16
the category Coh is abelian, where (co)kernels and (co)images in Coh coincide with the
corresponding notions in the category of all projective systems pMk,Mk`1 ÑMkqkě0.
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(b) Consider the functor Coh Ñ CX, pMkqk ÞÑ lim
ÐÝk

Mk, which is essentially surjective.
In order to show that it is also fully faithful, we prove the following statement: if M “

lim
ÐÝk

Mk is a coadmissible DX,8-module, then the canonical map pD
pk,0q
X,Q bDX,8

MÑMk is
an isomorphism for any k. If V Ď X is open affine, then

pD
pk,0q
X,Q pVq bDX,8pVq MpVq

»
ÝÑMkpVq

is bijective, according to 3.1.13 and [24, Cor. 3.1] for the Fréchet-Stein algebra DX,8pVq.
This shows that the morphism of presheaves

´

pD
pk,0q
X,Q pUq bDX,8pUq MpUq ÑMkpUq

¯

U
,

where U runs through all open subsets in X, sheafifies to give the desired isomorphism
pD
pk,0q
X,Q bDX,8

M
»
ÝÑ Mk. The functor lim

ÐÝk
: Coh Ñ CX, being essentially surjective and

fully faithful, is therefore an equivalence of categories.

(c) It is clear that direct sums of coadmissible modules are coadmissible, and the cat-
egory CX is hence an additive category. Moreover, any morphism between coadmissible
modules comes from a morphism in the abelian category Coh which has a (co)kernel and
a (co)image. Since the functor lim

ÐÝk
: CohÑ ModpDX,8q is exact, by 3.1.16, it commutes

with the formation of (co)kernels and (co)images. Thus, the category CX is abelian. �

3.2. Coadmissible D-modules on the Zariski-Riemann space xX0y. We finally ex-
plain how to pass from the previous construction and results to the projective limit in X,
that is to say, to the Zariski-Riemann space of X0.

3.2.1. Let FX0 be the set of all admissible formal blow-ups XÑ X0.5 This set is partially

ordered by setting X1 ľ X if the blow-up morphism X1 Ñ X0 factors as X1
π
ÝÑ X Ñ X0,

where X Ñ X0 is the blow-up morphism. The morphism π : X1 Ñ X is then uniquely
determined by the universal property of blowing up, and is itself a blow-up morphism [19,
ch. 8, 1.24], and we will denote it henceforth by πX1,X. By [9, Remark 10 in sec. 8.2] the
set FX0 is directed in the sense that any two elements have a common upper bound, and
we can consider the topological space equal to the projective limit 6

xX0y “ lim
ÐÝ

XPFX0

X.

This is the Zariski-Riemann space associated with X0. For its basic properties we refer to
[9, 9.3].

3.2.2. Sheaves on the space xX0y. For X P FX0 we denote the canonical projection map
xX0y Ñ X by spX. If X1 ľ X in FX0 , we have spX “ πX1,X ˝ spX1 . The isomorphism

5We emphasize that the blow-up morphism XÑ X0 is part of the datum of X.
6In the paper [18] this space is denoted by X8.
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pπX1,Xq˚DX1,8 “ DX,8 from 3.1.6, together with the adjunction map π´1
X1,X ˝ pπX1,Xq˚ Ñ id

gives rise to a canonical map

(3.2.3) ϕX,X1 : π´1
X1,XDX,8 “ π´1

X1,XpπX1,Xq˚DX1,8 ÝÑ DX1,8 .

These morphisms of sheaves satisfy

ϕX,X2 “ ϕX1,X2 ˝ π
´1
X2,X1ϕX,X1

whenever X2 ľ X1 ľ X. We then obtain an inductive system psp´1
X DX,8qXPFX0

of sheaves
of rings on xX0y, and we put

DxX0y “ lim
ÝÑ
X

sp´1
X DX,8 .

Definition 3.2.4. A DxX0y-module M is called coadmissible if there is a family pMX, ψ
M
X,X1q

of coadmissible DX,8-modules MX, for all X P FX0 , together with an isomorphism

ψM
X1,X : pπX1,Xq˚MX1

»
ÝÑMX ,

of DX,8-modules, whenever we have X1 ľ X in FX0 . This system of modules and isomor-
phisms is required to satisfy the following conditions:

(i) Whenever X2 ľ X1 ľ X in FX0 the following transitivity condition holds :

ψM
X1,X ˝ pπX1,Xq˚pψ

M
X2,X1q “ ψM

X2,X .

(ii) M is isomorphic to the inductive limit lim
ÝÑX

sp´1
X MX as DxX0y-module.

Note that the transition morphism sp´1
X MX Ñ sp´1

X1 MX1 in the inductive limit in (ii) is
defined by applying the functor sp´1

X1 to the morphism

π´1
X1,XMX » π´1

X1,XpπX1,Xq˚MX1 ÑMX1 .

The latter is obtained from pψM
X1,Xq

´1 : MX
»
ÝÑ pπX1,Xq˚MX1 and the adjunction map

π´1
X1,X ˝ pπX1,Xq˚ Ñ id.

We denote by
CxX0y Ď ModpDxX0yq

the full subcategory of coadmissible DxX0y-modules in the category of all DxX0y-modules.

Proposition 3.2.5. Let X P FX0. One has an equivalence of categories

pspXq˚ : CxX0y
»
ÝÑ CX .

Moreover, the category CxX0y is abelian.
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Proof. Let M “ lim
ÝÑX

sp´1
X MX and let X1 ľ X. There is a canonical isomorphism

pspXq˚sp
´1
X1 MX1

»
ÝÑMX .

Indeed, let U Ď X be an open and let V “ π´1
X1,XpUq. Then

pspXq˚sp
´1
X1 MX1pUq “ sp´1

X1 MX1psp
´1
X pUqq “MX1pVq

using that spX1psp
´1
X pUqq “ V. But MX1pVq » MXpUq via the map ψM

X1,X. In particular,
we get an isomorphism

pspXq˚pMq “ lim
ÝÑ
X1

pspXq˚sp
´1
X1 MX1

»
ÝÑMX .

This shows that the functor pspXq˚ appearing in the proposition is well-defined. In the
other direction, let M P CX and define for X1 ľ X the module MX1 as MX1 :“ pπX1,Xq

!MX,
cf. 3.1.12. Note that pπX1,Xq˚pMX1q »MX. The family pMX1q then satisfies the conditions
(i) and (ii) in the above definition and its inductive limit M lies therefore in CxX0y. This
gives a quasi-inverse to the functor pspXq˚ and shows that we have an equivalence of

categories CxX0y
»
Ñ CX, as claimed. We now show that the latter quasi-inverse functor is

in fact an exact functor. To this end, let

0 Ñ NÑMÑ PÑ 0

be an exact sequence in CX. The exactness of the sequence

0 Ñ lim
ÝÑ
X

sp´1
X NX Ñ lim

ÝÑ
X

sp´1
X MX Ñ lim

ÝÑ
X

sp´1
X PX Ñ 0

can be verified after restricting the sheaves to an open subset of the form sp´1
X1 pUq for

some open U Ă X1 where X1 ľ X. Taking local sections in the above sequence yields the
sequence

0 Ñ lim
ÝÑ

X2ÑX1

NX2pπ
´1
X2,X1pUqq Ñ lim

ÝÑ
X2ÑX1

MX2pπ
´1
X2,X1pUqq Ñ lim

ÝÑ
X2ÑX1

PX2pπ
´1
X2,X1pUqq Ñ 0.

This sequence is exact, by the exactness of filtered direct limits and the exactness of the
functors π!

X2,X1 , cf. 3.1.12. Since the category CxX0y is now seen to be equivalent to the
abelian category CX via an exact functor, it is abelian, too. �

Theorem 3.2.6. (Theorem A and B for coadmissible DxX0y-modules) Suppose X0 is
affine.

(i) One has an equivalence of categories

ΓpxX0y,´q : CxX0y
»
ÝÑ CDX0,8

pX0q .
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(ii) For every M P CxX0y and every q ą 0 one has

Hq
pxX0y,Mq “ 0 .

Proof. Part (i) follows from the preceding proposition together with theorem 3.1.13. By
[12, 0.3.1.19] the canonical map

lim
ÝÑ

XPFX0

Hq
pX,MXq

»
ÝÑ Hq

pxX0y,Mq

is an isomorphism. Thus, part (ii) follows from 3.1.16. �

3.3. Examples. The first example is given by the structure sheaf of the Zariski-Riemann
space tensored with Q. Let us denote

OxX0y,Q “ lim
ÝÑ
X

sp´1
X OX,Q .

Proposition 3.3.1. The sheaf OxX0y,Q is a coadmissible DxX0y-module.

Proof. If X,X1 P FX0 and π : X1 Ñ X is a morphism over X0, then π˚OX1,Q “ OX,Q by 2.3.1.
By 3.2.5 we have an equivalence of categories CxX0y Ñ CX0 with an explicit quasi-inverse.
From these considerations we see that the claim will follow from the fact that OX0,Q P CX0 .

For any integer k, the sheaf OX0,Q is a D
:

X0,k
-module. Let U0 Ă X0 an affine open of X0

with coordinates x1, . . . , xM , and corresponding derivations B1, . . . , BM . Following 2.1.14,
we write

D:k “ ΓpU0,D
:

X0,k
q “

#

ÿ

ν

$k|ν|aνB
rνs
| aν P OX0,QpU0q, and DC ą 0, η ă 1 | |aν | ă Cη|ν|

+

.

We have the following lemma, using the notation 0 “ p0, . . . , 0q.

Lemma 3.3.2. Let P P D:k, there exist P1, . . . , PM P D:k and a0 P OX0,QpU0q such that

P “ a0 `

M
ÿ

i“1

Pi ¨ Bi .

Proof. The proof of this lemma is essentially the proof of the Spencer lemma by Berth-
elot [6, 3.2.1] for the case k “ 0, meaning for the sheaf of arithmetic differential operators.

Let us denote 1 “ p1, 0, . . . , 0q P NM and by OP1 the set of operators in D:k such that

aν “ 0 if ν1 ‰ 0. Let P “
ř

ν $
k|ν|aνB

rνs
P D:k, and consider

P1 “
ÿ

ν | ν1‰0

$k|ν|aν
ν1

B
rν´1s ,

then, as |1{ν1|p “ Op|ν1|pq “ Op|ν|pq when |ν|p Ñ `8, this operator P1 belongs to D:k
(here |.|p is the usual p-adic norm over the field Q). Moreover since we have the identity

ν1B
rνs
“ B1 ¨ B

rν´1s ,
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we get that P “ P1B1 ` Q1 where Q1 P OP1. We can now apply the same procedure to
Q1 relatively to B2. Doing this, we see that there exist P2 P D

:

k and Q2 with no terms
containing neither B1, nor B2, such that P “ P1B1`P2B2`Q2. We finally find the lemma
iterating M times. Note that the a0 term given by the lemma is necessarily the same as
the initial a0 term of P . �

This allows us to prove the

Lemma 3.3.3. There is a presentation

D
:

U0,k

M ψ // D
:

U0,k
// OU0,Q

// 0

pP1, . . . , PMq //
řM
i“1 PiBi.

P // P ¨ 1 .

Proof. Let V0 Ă U0 be affine, and denote by D:k “ ΓpV0,D
:

X0,k
q, we have to prove that

we have a presentation, with the same maps as in the statement

D:k
M // D:k

// OX0,QpV0q // 0.

Let P P D:k, P “
ř

ν $
k|ν|aνB

rνs, such that P p1q “ a0 “ 0. By the previous lemma, there

exist P1, . . . , PM such that P “
řM
i“1 PiBi so that P P impψq. �

Let us come back now to the proof of the proposition. Using this presentation, we see
that OX0,Q is a coherent D:

X0,k
-module, and that we have canonical compatibility relations

D
:

X0,k
b

D
:

X0,k`1
OX0,Q » OX0,Q .

Finally the DX0,8-module OX0,Q is isomorphic to the constant projective system of coher-

ent D:

X0,k
-modules pOX0,Qq and is an element of CX0 . As explained at the beginning of the

proof, this implies that OxX0y,Q P CxX0y. This ends the proof of the proposition. �

For the second example, we consider a Cartier divisor Z, which is assumed to be smooth
over o, of the formal scheme X0. As above, we denote by X0,Q and ZQ the rigid analytic
spaces associated with X0 and Z, respectively. Let U “ X0,QzZQ be the open complement,
and j : U Ñ X0,Q the inclusion of rigid spaces. We have the specialization map sp :
X0,Q Ñ X0.

Proposition 3.3.4. The sheaf sp˚j˚OU is a coadmissible DX0,8-module.

Proof. We freely use the notation and terminology of [6, 4.0.1]. Let us consider

Vk “ X0,Q z sZr|$|k

and VspVkq the set of strict neighborhoods of Vk. Note that Vk is well defined since Z is a
Cartier divisor of X0. If V “ SpfA is an open affine subset of X0, such that Z

Ş

V “ V pt1q,
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then
Vk

č

VQ “
 

x P VQ | |t1pxq| ě |$|
k
(

.

Note that
U “

ď

k

Vk and U “
ď

k

ď

WPVspVkq

W .

We introduce also
E:k “ lim

ÝÑ
WPVspVkq

sp˚jW˚OW ,

where jW : W Ñ X0,Q is the inclusion in X0,Q of a strict neighborhood W of Vk. We have
an inclusion Vk Ă Vk`1 and Vk`1 is a strict neighborhood of Vk, so that VspVk`1q Ă VspVkq.
As a consequence, for any k, there is a canonical morphism E:k`1 Ñ E:k. Moreover, since
sp˚ commutes with projective limits, we have

sp˚j˚OUL “ lim
ÐÝ
k

E:k .

The proposition will follow from the

Lemma 3.3.5. (i) The sheaf E:k is a coherent D:

X0,k
-module.

(ii) The canonical map E:k`1 Ñ E:k induces a canonical isomorphism of coherent D:

X0,k
-

modules,

D
:

X0,k
b

D
:

X0,k`1
E:k`1 » E:k .

Proof. Let W be admissible open in XL. Then W is the generic fiber of some Zariski
open W1 of X1 where pr : X1 Ñ X0 is an admissible blow-up of X0. Denote by j1 the
inclusion : W1 ãÑ X1. Then j1˚OW1,Q is a D

:

X1,k1-module, for k1 ě kX1 , so that the sheaf

sp˚jW˚OW “ pr˚j
1
˚OW1,Q has an action of D

:

X0,k1
as D

:

X0,k1
“ pr˚D

:

X1,k1 by 2.3.8. In
particular, the sheaf sp˚jW˚OW is a DX0,8-module for any admissible open W . As a

consequence, the sheaf E:k has a structure of DX0,8-module as well. Let us check locally

that this structure extends to a structure of D:

X0,k
-module. Let V “ SpfA Ă X0 be affine

open in X0 such that Z
Ş

V “ V pt1q where t1 is a local coordinate on V. Then we have
the following description, where AL “ Ab L is an affinoid algebra,

E:kpVq “

#

ÿ

νě0

aν$
kνt´ν´1

1 , aν P AL | DC ą 0, η ă 1 | |aν | ă Cην

+

.

Denote by B1 the derivation corresponding to the coordinate t1, and B2, . . . , BM the other
derivations. Let us denote D:k “ D

:

X0,k
pVq, then we have the following description us-

ing 2.1.14

D:k “

#

ÿ

ν

aν$
k|ν|
B
rνs
| aν P AL, and DC ą 0, η ă 1 | |aν | ă Cη|ν|

+

.

To prove the lemma it is thus enough to check the
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Lemma 3.3.6. There is a presentation

D:k
M ψ // D:k

ϕ // E:kpVq // 0

pP1, . . . , PMq // P1B1t1 `
řM
i“2 PiBi

P // P ¨ 1
t1
.

Proof. Again, we follow the proof by Berthelot [6, 4.4.2] of the analogous statement for
arithmetic differential operators. It is clear that impψq Ă kerpϕq. Observe that

B
rν1s
1 ¨ t´1

1 “ p´1qν1t´ν1´1
1 .

Let h “
ř

aν$
kνt´ν´1

1 P E:kpVq, then P “
ř

νp´1qν$kνaνB
rνs
1 belongs to D:k and P p1{t1q “

h, so that ϕ is surjective. Let now P P kerpϕq, then, applying repeatedly lemma 3.3.2,

we see that modulo impψq, P can be written P “
ř

ν $
kνaνB

rνs
1 , with coefficients aν P AL

such that
ř

ν $
kνp´1qνaνpt1q

´ν´1 “ 0 P E:kpVq. Moreover, there exist C ą 0, η ă 1 such
that |aν | ă Cην where | ¨ | is a Banach norm on AL. Denote

bj “
j
ÿ

ν“0

aν$
kνtj´ν1 .

Let us now state the following

Auxiliary result 3.3.7. There exist C 1 ą 0, η1 ă 1 such that |bj| ă C 1|$|kjη1j.

Proof. Berthelot proved this lemma for k “ 0 in [6, 4.2.1]. Let us check that the proof
can be adapted to any k. Since V is smooth, the affinoid algebra AL is reduced, so that
the spectral semi-norm is a norm and defines the Banach topology on AL. All Banach
norms being equivalent, we can use this norm to prove the statement, which we keep on
denoting by | ¨ |. Let VQ “ SpfAL be the generic fiber of V, seen as rigid analytic space.
Let η1 ą η, such that η1 ă 1 and some power pη1qn lies in the valuation group of L for
some positive integer n. We consider the following admissible cover of VQ by open V1 and
V2 defined by

V1 “
 

x P VQ | |t1pxq| ď |$|
kη1

(

and V2 “
 

x P VQ | |$|
kη1 ď |t1pxq| ď 1

(

.

It is enough to bound the spectral norm of the bj on each of this affinoid open. As AL is
reduced, ΓpV1,OXLq, resp. ΓpV2,OXLq, is reduced as well by Corollary 10 of [8, 7.3.2], so
that the spectral norm induced a norm on these two affinoid open sets. If x P V1, then

|bjpxq| “ |
j
ÿ

ν“0

$kνaνt
j´ν
1 | ď C|$|kjη1

j
.

Consider

B “

#

ÿ

νě0

aν$
kνt´ν´1

1 , aν P AL | |aν | Ñ 0

+

,
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which is the Banach algebra of analytic functions on the affinoid tx P VQ | |$|
k ď |t1pxq| ď

1u. Obviously, E:kpVq Ă B. If x P V2, then

|$kνaνt
´ν
1 pxq| ď C

ˆ

η

η1

˙ν

,

so that the series
ř

ν $
kνp´1qνaνpt1q

´ν´1 converges to some element b P ΓpV2,OXLq. More-
over the image of this element b in B is zero. The support of b is a closed affinoid subset
of V2, and at each point x of this support, |t1pxq| ă |$k|. By the maximum principle,
increasing η1 if necessary, provided that η1 ă 1, we can assume that the support is con-
tained in tx | |t1pxq| ď |$|kp2η1 ´ 1qu, so that h “ 0 restricted to V2. Then we have the
following upper bound for x P V2

|bjpxq| “ |
ÿ

νěj`1

$kνaνpt1pxqq
j´ν
| ď C|$|kjη1

j
.

�

Let us come back to the proof of 3.3.6. We need to check that P “
ř

ν $
kνaνB

rνs
1 , such

that
ř

ν $
kνp´1qνaνpt1q

´ν´1 “ 0 P E:kpVq, belongs to impψq. Let us define

bj “ p´1qj`1
j´1
ÿ

ν“0

p´1qνaν$
kνtj´ν´1

1 ,

and
Q “

ÿ

jě0

bjB
rjs
1 ,

that belongs to D:k thanks to 3.3.7. Berthelot checked at the end of the proof of [6, 4.2.1],

that P “ Qt1. But since this is true in D:0, this is also true in D:k and P “ Qt1. By

hypothesis, b0 “ 0, and by the lemma 3.3.2, this implies that there exists Q1 P D
:

k such
that Q “ Q1B1. We finally conclude that P “ Q1B1t1 and that P P impψq.
This presentation proves (i) and (ii) of 3.3.5 and completes the proof of 3.3.4. �

We remark that results similar to 3.3.4 have recently been obtained independently and in
slightly greater generality by Ardakov-Bode-Wadsley in their setting [2].
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Translated from the 1995 Japanese edition by Takeuchi.
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