ARITHMETIC DIFFERENTIAL OPERATORS ON A SEMISTABLE
MODEL OF P!

DEEPAM PATEL, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

ABSTRACT. In this paper we study sheaves of logarithmic arithmetic differential opera-
tors on a particular semistable model of the projective line. The main result here is that
the first cohomology group of these sheaves contains a non-torsion element. This shows
that the model is not D-affine for such differential operators.
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1. INTRODUCTION

A fundamental result in the theory of classical complex D-modules is the D-affinity prop-
erty of complex flag varieties, established by Beilinson-Bernstein [1]. It means that flag
varieties behave for D-modules, as affine schemes do for quasi-coherent sheaves: objects
are generated by global sections and the higher cohomology vanishes. The counterpart
of complex D-modules in the setting of a p-adic field, is Berthelot’s theory of arithmetic
Z-modules [2, 3, 4]. In the pioneering papers [7, 10] Huyghe establishes the D-affinity

M. S. would like to acknowledge the support of the National Science Foundation (award DMS-
1202303). T. S. would like to acknowledge support of the Heisenberg programme of Deutsche
Forschungsgemeinschaft.

1



2 DEEPAM PATEL, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

property for arithmetic Z-modules over the formal projective line and over general formal
flag varieties, respectively.

On the other hand, we have started in [11, 12] to systematically investigate the relationship
between equivariant arithmetic Z-modules on flag varieties and the theory of admissible
representations of p-adic Lie groups [13, 14]. In this approach, a key point is to extend
the Z-affinity property from the formal level to the level of rigid-analytic spaces. Since
the latter are approximated by formal models through Raynaud’s theory, it becomes a
pressing question whether Huyghe’s result extends from the smooth model to more general
(semistable) models of the flag variety.

In this paper we approach this question in the simplest case of the group GLq over Z,.
The corresponding flag variety is the projective line X = X, = ]P’%p. We study sheaves
of logarithmic arithmetic differential operators on the simplest, so to speak, semistable
(nonsmooth) model X; of IP%P. This model is obtained by blowing up the reduced closed
subscheme given by the set of F-valued points of X. We denote the corresponding formal
schemes, the completions along the special fiber, by X and X;, respectively. The sheaf
of logarithmic differential operators of level m, as defined in [12, sec. 5|, will be denoted
by Dgg?), and its p-adic completion by @g). The formal scheme X; is the first member
of a family of formal semistable models X,, which we studied in [12]. In that paper, we
obtained some results abg)ut the global sections of the sheaf of logarithmic arithmetic

differential operators Dg: .

was the relation between H°(X,,, Dg:)) and H°(X,, .@g:)). More precisely, one may ask if
the natural inclusion

One fundamental question that had not been treated there

H°(%,, DY) — HO(%,,, 2{")

is an isomorphism. On the left hand side H(%,, Dgnn)) denotes the p-adic completion of

H(%X,, Dg:)). It is straightforward to see that there is a canonical exact sequence
0— H°(%,, D) — HO(X,, 24) = T, (H'(%,, D)) =0,
where the group on the right is the p-adic Tate module

T, (H'(2,, DEY)) = lim H' (X, D) ]
k

of H' (%, Dg:)). In this paper we only consider the case when n = 1, and the main results
are summarized in the following theorem.

Theorem. (i) T, (Hl(f{hDg))) =0, and the map

(2, DY) — HO(%y, 247
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1s therefore an isomorphism.

(i) There is a canonical surjective homomorphism
H' (%, 75)") — H'(%, DY),

and cohomology group on the right contains non-torsion elements. In particular,
H(X,, 93(67??@) does not vanish.

(iii) The cohomology group H(X;, @;21,@) does not vanish.
The sheaf 2y (o 1n (iii) is the inductive limit of the sheaves 93(57?()@

By considering a refinement of the order filtration on the sheaf Dg?) and computing the

associated graded ring, one can show that H(X, Dgg”)) and H°(X, @3(67?)) are noetherian
rings. Details of this calculation will appear elsewhere.

As explained above, the investigations here and in [12] were motivated by the ques-
tion if the formal models X,, mentioned above are .@;n’@—afﬁne, and the non-vanishing of

H' (%4, 9;1@) gives therefore a negative answer when n = 1. This has led us to consider
in [11] a different family of sheaves @én;)(@ of p-adically complete differential operators on

X,, and as it is shown there, X,, turns out to be @iyz)Q—afﬁne.

Although this paper is concerned with a very specific semistable model of the projective
line P%p, we believe that our methods and results generalize to more general semistable
situations. To our knowledge, the attempt to calculate the cohomology of logarithmic
arithmetic differential operators on semistable formal schemes has not yet been undertaken
in the literature.

2. GLOBAL SECTIONS AND COHOMOLOGY OF 29 oN X,

Let X; be the blow-up of the projective line X = Xy = ]P’%p in the reduced closed subscheme
given by the set of IF,-valued points. For convenience of the reader, we recall some of the
geometry of X; from [12, sec. 4]. First of all, the irreducible components of the special fiber
of Xy are projective lines over [F,: besides the strict transform of Xor , there is for any IF,-
rational point a of Xy the corresponding component E, ~ Plle of the exceptional divisor.
Two different components of type £, have empty intersection and any E, intersects Xo,
in the point corresponding to a.

We will work with the following open affine covering of X; [12, 4.3.3]. Let R < Z, be
any system of representatives for Z,/pZ, and view Ry, = R U {oo} as the set of F,-valued
points on Xy. Let X§ = Xo\Rs and view this as an open subscheme of X;. Let x, be a
local coordinate at ¢ € Ry and form
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1
RO = 2lnl |-
b

beR,b;ﬁa].

Then X is obtained by blowing up the ideals (p, z,) < RY for all a € Roy. We introduce
new indeterminates z, and mgl) with

ToZq =p and :B((ll)za =1.

Set also x((ll()ll = x((ll) — ay for a; € R. Then define

ay ER] /(%Za—p) ,

and put x® = Spec(Rgl)). This is an open affine neighbourhood in X; of the singular
point corresponding to a. Finally, set

1
(1)

La,aq

R - e |

1
RL _ R(O)[x(l,) ] [_ ‘ beR\{al}] )
T
and define

DSBL = Spec (R(l) ).

1 a,al

The special fiber of each Dg()h is isomorphic to an affine line over [, all of whose [F,-
rational points have been removed, except the one given by x((ll,)ll = 0. Let X} be the

union of the schemes Xgl), a € Re, and X§. Then X is covered by X7 together with the

'residual disc schemes’ ]D((f()11 for (a,a1) € Ry x R. Note that the singular points of X; are

contained in X3.

We denote the formal schemes corresponding to X and Xy, i.e. their completions along
the special fiber {p = 0}, by X and X;, respectively. The affine covering of X; gives then
rise, by completion, to an open affine covering of X;. One has the simple descriptions [12,
4.41]

R0 = 801 (Zytow20) | oyt i | /et -

and

~ 1
B, = Spt { 2,a)) | —— | ] -
;a1 P< ) 1> (3721,211)7’_1 1
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2.1. Cohomology groups and their completions. We view X; as a semistable scheme
with log structure defined by its normal crossings divisor {p = 0}. Generalities on loga-
rithmic arithmetic differential operators can be found in [9]. However, here we will make
everything explicit and work with an elementary description as in [12]. Denote by

pr:X; — X=X
the blow-up morphism. The logarithmic tangent sheaf 7x, coincides with the usual tan-
gent sheaf on the smooth part of X; and is locally on an open neighbourhood X of a
singularity a € R generated by z,0,,. One has the relation z,0,, = —2,0.,. The sheaf
D
a subalgebra of pr*(Dx) by Tx, and the structure sheaf. On an open neighbourhood e
it is therefore given as the module of all finite sums

D = Z fd(maaza)d

d=0

L = 93(;? of logarithmic differential operators on X; (of level zero) is then generated as

with local sections fy4 in Oy). We write Tx, and Dy, for the Ox,-modules generated
by the restrictions of 7x, and Dx, to X; respectively. We finally let Z%, be the p-adic
completion of Dg,. On the formal completion X4 the sheaf D%, is given as the module

of all p-adically convergent sums

jee]
D = Z fa(a0s,)", Oz 3 fa P 0 for d — 0.

d=0

The submodule of all finite sums is equal to Dy, |§§(1).

Lemma 2.1.1. The canonical homomorphism

H'(%X1, Zx,) — lim H'(X,, Dz, /p*Dx,)
k

1s an isomorphism when © = 0 and surjective if i = 1. For i > 1 source and target of this
map vanish.

Proof. For an inverse system of sheaves (Fy)x, the presheaf U — lim Fy(U) is actually
a sheaf. This gives the statement for ¢ = 0. For i > 1 the source and target of the map
vanish because X; is a noetherian topological space of dimension one. In order to treat
the case i = 1 we are going to use [5, ch. 0, Prop. 13.3.1]. The third condition of this
proposition is fulfilled because the transition maps on the system of sheaves are obviously
surjective. Let U be an affine open subset of X;. Denote by X;; the reduction of X;
modulo p*, and let Uy, = U xx, X1 be the open affine subset of X, ;. Then we have for
alli >0

HZ(Uv Dxl/kaxl) = Hi(Uk>Dxl/kax1) =0,
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because Dy, / pF Dy, is a quasi-coherent sheaf on X1 . This shows that the second condition
of loc.cit. is satisfied, and, for ¢ > 0, also the first condition. Consider the exact sequence
of quasi-coherent sheaves on X 1

0— pkpxl/karlD%l - ’Dxl/pk+lp3€1 - Dxl/kaxl — 0.

Because p*Dy, /p*' 1Dy, has vanishing first cohomology on Uy, this sequence stays exact
after applying H°(Ug, —), and this shows that the first condition of loc.cit. is fulfilled in
the case 1 = 0. Hence we can conclude that the map in question is surjective for ¢ = 1. [

Next we consider the tautological exact sequence of sheaves on X;

p* k
O—>Dxl —>Dx1 —>'D3€1/p Dxl — 0.

The associated long exact cohomology sequence gives the exact sequence
HZ(%M Dxl) - HZ(%l, Dfﬂ) - Hz(xlv 'Dxl/pk’Dxl) - HZ—H(:{lu Dx1) - HZ—H(%h Dxl) :

We thus get an exact sequence

(2.1.2)
O - HZ(%17’D:{1)/pkHl(%lale1) - HZ(%DD}:l/kaxl) I Hi+1(%17,DX1) [pk] - 0 )

where H™ (X, Dx,) [p*] denotes the subgroup of elements annihilated by multiplication
by p*. Put

(%), Ds,) = lim (H'(X,, D) /9 H(%,, D))

&
and
T, (H'(%1,Dx,)) = lim H'(Xy, Dx,)[p"] ,

where the transition map H'(X1, Dx,)[p¥] — H(X1, Dx,)[p*"'] is the multiplication by
p. We then have the

Proposition 2.1.3. (a) For all i = 0 there is a natural exact sequence
(2.1.4) 0 — H'(X),Dx,) — lim H'(X,, D, /p"Dx,) — T, (H (X, Dx,)) — 0.
k

(b) For i =0 the exact sequence in (a) becomes
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(2.1.5) 0 — H(Xy,Dx,) — H"(X1, Zx,) — T, (H'(X1,Dx,)) > 0.

(¢c) The cohomology group H?(X1, Dx,) vanishes and the exact sequence in (a) gives there-
fore a canonical isomorphism

P a—

(216) ﬁ[l(%l,pxl) = hmHl(xl,Dxl/kaxl) .
k

Proof. (a) For varying k the projective system
Hi(%b D%1)/pkHl(xla D%l)

has obviously surjective transition maps (hence satisfies the Mittag-Leffler condition). We
can thus pass to the limit over k and using 2.1.1 we obtain the exact sequence 2.1.4.

(b) We use (a) in the case i = 0 and 2.1.1.

(c) H*(X1, Dx,) vanishes because X is a noetherian space of dimension one. The stated
isomorphism follows then directly from (a). O

2.2. Vanishing of Rlpr,(Dx,). We use the Leray spectral sequence for the blow-up
morphism

pr: X1 —X=X,.

Applied to the sheaf Dy, we get an exact sequence
(2.2.1) 0— H'(X,pr«(Dx,)) = H'(X1,Dx,) > H*(X,R'pr.(Dx,)) = 0.

Denote by Dx 4 and Dx, 4 the sheaves of differential operators of degree less or equal to d.

Lemma 2.2.2. (a) For all d = 0 one has R'pr.(Dx, 4) = 0.

(b) Rlpr.(Dx,) = 0.

(C) Hl(%vpr*(lpxl)) = Hl(:{lv Dxl)'

Proof. (a) Reduction: passage to the graded sheaves. We have
7’§d = Dxl,d/Dxl,d—l )

and we consider the tautological exact sequence
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(2.2.3) 0 — Dy, a1 —> Dxja — T — 0.

For d = 0 we have Dx, o = 7;@30 = QOy,. Therefore, if we show

Rlpr,( =) =0

for all d > 0, then we can argue by induction and get R'pr,(Dx, 4) = 0 for all d. Using
that taking higher direct images commutes with inductive limits we get

Rlpr,(Dy,) = 0.
Working with local coordinates. Over the complement of pr~!(X(F,)) the blow-up mor-
phism is an isomorphism, and the stalk of the sheaf R'pr,(Dx,) vanishes thus outside

X(F,). Consider a point P € X(F,). Choosing a local coordinate at P we may assume
that P corresponds to the point given by the ideal (z,p) of the ring

R=7,(z) [ﬁ] |

Then Spf(R) is an open neighborhood of P in X. Put

1 1
R =7z, 2) [a:pl L= 1] /(xz -p),

and R" = Z,(t), and identify the open subsets Spf(R') [1] < Spf(R') and Spf(R")[1]
Spf(R") via the relation zt = 1. Then

pr~'(Spf(R)) = Spf(R') L Spf(R")

is an open neighborhood of the fiber pr=(P). To show that the stalk of R'pr.(7?) at
P vanishes it suffices to show that

Hl(pr_l(U),'ng) =0

1

for all affine open subsets U < Spf(R) < X containing P. Identify Spf(R) with a closed
subset of Spf(R'). Then we have pr—'(U) = U U Spf(R"). Hence it suffices to show that

H'(V U Spf(R"), TEY) =0

for all affine open subsets V' < Spf(R’) = X; containing P (which we also consider as a
point of X;).
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Using Cech cohomology. For such a V the open subset V U Spf(R”) always contains
Spf(R') [1] = Spf(R") [1] and we may thus assume Spf(R') [1] = V. Then we have

t

V ~ SpE(R") = Spf(R)) H _ Spi(R) H |

Then H'(V U Spf(R"), TE%) is equal to the cokernel of the map
1
O (VT @ P (o), T) — 1 (sor) ] 72)

which sends (s1, s2) to the difference of these sections when restricted to Spf(R”) [1]. Any

element in
0 ] 1 d
H (Spf(R)l;], )

has the form (Y., a;t’) 0%, The sum (3., a;t’) 3¢ clearly extends to a section over
Spf(R"). Note that we have in 732

5?9(1 _ (—225Z)®d _ (_1)dz2da§d
and therefore
<Z aiti> ag@d _ (_1)d (Z aiz_i+d> Zdé‘?d 7
1<0 <0
and this extends to a section over V.

(b) This follows from (a) and the fact that the higher direct image functor commutes with
inductive limits.

(c) This is an immediate consequence of (b) and 2.2.1. O

2.3. The cohomology group H'(X,pr.(Dx,)). Consider the exact sequence 2.2.3 and
the corresponding sequence of direct images on X

(231) 0— DTy thd—l —> PTy D.’{l,d —> Py x d I Rlpr* D.’{l,d—l =0 s
1
where we have used 2.2.2 (a) We have

Hl(%apr*(Dxl)) = lim Hl(%,pT*(thd)) .

—
d
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Because Dx, 4 is coherent and pr is projective, the sheaf pr,(Dx,q) is coherent and
HY(X,pri(Dx, ) is thus a finitely generated Z,-module. Since the corresponding co-
homology group on the generic fiber (in the sense of rigid geometry) vanishes (by GAGA
and [1]), we see that H'(X,pr.(Dx, 4)) is annihilated by a finite power of p. (We will
give below a more precise description of H'(X, pr,(Dx,.4)) which shows directly that it
is annihilated by a finite power of p.) In the proof of theorem 2.3.4 we will need the
following elementary

Lemma 2.3.2. Let x, y be the standard coordinates on P satisfying vy = 1. Then we
have 0, = —x20, and, more generally, for any s € Zx,

05 = (—1)°" Y aga* ol
t=1

where for all s > 1 and 1 <t < s

— 1)
(2.3.3) asy = (j) ((i — 1; ., in particular, as; =s! and ass=1.

Proof. We prove this by induction on s. The formula holds obviously in the case s = 1.
Assuming the formula to be correct for a given s, we have
oy = (=220:)(—1)° (X asex™t'0y)
= (=) X (as2®(@*0p + (s + )27 71) 7))
= (1) (a a0 - ag (s + Bzt
= (=1)*"(as1(s + )20,

+ [2;;2 (as,tfl + as,t(s + t)) xs—i—l—i—tai—i—l] + as7sx23+26§+1)

Using 2.3.3 we then get for 2 <t < s that
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s s—1)! s\ (s—1)!
Usp1 + ase(s +1) = () ((t—2))! (7) Et—l))! (s +1)
. s! (s—1)! + sl (s=D)!(s+t)
T (s—t+D)IE-1)! (t-2)! (s—t)it!  (t—1)!
_osl(s—=1)!

1 s+t
= [(th)!(sftJrl) + (s:;)!t!]

o sl(s=1)! [(t—l)t+(s—t+1)(s+t) ]
(t—1)! t(s—t+1)!

sls—1)!' s(s+1) _ (s+1\ sl
D! t(s+1-t)! — ( t )(tfl)! = Qs+t

And finally one has as (s +1) = sl(s+ 1) = (s + 1)! = as11,1. O
Theorem 2.3.4. For all d = 1 the canonical map

(2.3.5) HY(X, prv(Dx,,a-1)) = H' (X, pre(Dz,.0))

coming from the long exact cohomology sequence associated to 2.3.1 is injective and embeds
HY(X,pri(Dx,a-1)) as a direct summand of H'(X,pr.(Dx,q)). Therefore, there is a
splitting:

(2.3.6) HY(X,pre(Dx,a) = HY(X, pre(Dx,a1)) @ H' (X, pra( xld)) .

Proof. (i) We start with some preliminary considerations. The sheaf pr,(Dx, 4) (resp.
pr.(T24)) is naturally a subsheaf of Dx 4 (resp. T?), cf. [12, 5.2], and we denote by Q<4
(resp. (Qq) the quotient sheaf. Consider the commutative diagram:

0 — pri(Px,a-1) — Dxa—1 — Qi1 — 0

! ! !
0 - pri(Px,0) — Dxg — Q<a — O
! ! !

0 — pr (7—§d) - 7;{®d - Qd — 0

where the horizontal sequences are the tautological exact sequences. The corresponding
long exact sequences give rise to the commutative diagram
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(2.3.7)

H(%,pri(Dx,a-1)) — H°X,Dxa-1) — H°(X,Q<s—1) — HYX,pri(Dx,a-1))
! ! ! !
Ho(xvpr*(pxl,d)) — HO(%) Dx,d) - Ho(xv Qéd) - Hl(%7 Py (DXLd))

l ! ! !

H X pro(TEY) = H'XTP) — HXQa) — H'(Xpr(TEY).

Note that the horizontal arrows on the right are surjections, since Tx = O(2) and hence
HY(%X,T2%) = 0 and then H'(X,Dx4) = 0 by induction on d. The sheaves Q<4 1, Q<d
and Qg are skyscraper sheaves with support in X(IF,). Let x, be a local coordinate at

a € X(F,). Then, cf. [12, 5.2 (c)],

d k-1
(2.3.8) DD (z/p*) - xidk,
a€X(Fp) k=1 i=0
d—1 k-1
(2.3.9) Q< 1 = (Z/p*) - aiey,
aeX(Fp) k=1 i=0
and
d—1
(2.3.10) (Z/p™") - 2hol .
aeX(Fp) i=0
Hence there is a splitting
(2.3.11) Qi = Q<a-1®Qa .

We introduce the following notation and terminology. For a global section 6 € H°(X, Dx 4)
we denote its image in Q<4 by Q<4(d). The component of this element in @4, accord-
ing to the splitting 2.3.11, will be denoted by Q4(d), and we denote the components in
(—B (Z/p )-2%0¢ corresponding to a € X(F,) by Quq(8). We call Qq(6) (resp. Q<a(6))
the local data in degree d (resp. in degree less or equal to d) of . Similarly we call Q44(9)
the local data in degree d at a of 0.

(ii) Now we prove the injectivity of the map 2.3.5. The injectivity of this map is equivalent,
by the long exact cohomology sequence attached to 2.3.1, to the surjectivity of the map
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(2.3.12) H°(X,prv(Dx, ) — H°(X, pro(TEY)

which appears on the right hand side of 2.3.7. We are going to prove that 2.3.12 is
surjective as follows: consider &; € HO(X, pr.(T£?)) and let § € HO(X, T2) be its image.

Then Qq4(6) = 0. The crucial step is to lift § to an element 6 € HO(X, Dz 4) in such a
way that Q<4(d) = 0. This implies that ¢ does in fact come from an element (necessarily
unique) 6; € HY(X, pry(Dx, 4)) which is a preimage of ; under the map 2.3.12.

We let 7 = 2y and y = 7. Then § € H(X, T2%) can be written as

d—1 d
§=> Ayd® + > Bya*o® e H'(X, T
s=0 s'=0

with coefficients A;, By € Z,. Let us consider in detail what it means that Q4(6) = 0.
For instance, if we write J in terms of d,, we have to use the transformation formula (in
HOX, TE): o 08! = xy*0, and

d—1 d
0= Y Agd® + > (£ By
5=0 s'=0

Since s’ < d we have 2d — s’ > d, we see that the vanishing of the local data of § in degree
d at oo imposes the condition that p? *|A, for 0 < s < d — 1. Similarly we find p® | By
for 0 < ¢ < d.

We are looking for a preimage 6 € HO(X, Dy 4) of § whose image in H(X, Q) vanishes.

We start by taking as a candidate the element 5~d which is given by the same formula as
9, but now the summands are considered to be global sections of Dy 4, i.e.,

d—1 d
da= Y Ayl + > Boa¥ole H(X, Dxy) .
s=0 s'=0

(We write 024 when we consider it as a section of T2, and we write ¢ when we consider
it as a section of Dy 4.) By 2.3.2 this is indeed a global section of Dy 4.

The problem that we are facing now is this: while the local data of gd in degree d vanish
(by assumption), it will in general not be the case that the local data of 5d in degree < d
vanish as well. Our aim is to modify fy by adding a global section of Dx 4_1 to it, such
that the difference has vanishing local data in all degrees, hence comes from an element
in pr.Dx, a-
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In order to do so, we determine the local data of gd at infinity in all degrees. Using 2.3.2
we write

~

04 = Zd ) Asys@ff + Zjeo BS’Z‘S,ag
— S Ao+ g Bo(= 1) (S aaey™e )

= N A+ (<1 e (S Boyt)

Because d + e — s’ > e the term yd“*s’&; does not contribute to local data at infinity. So,

in fact, 3d has vanishing local data at infinity in all degrees less or equal to d.

Now we analyze the local data at points a € X(F,)\{oo} = F,. Let &, € Z, be a lift of a.
We use 2.3.2 again and write

d—1
5d—ZAsy58d+ ZBr:p o

s'=0

d d—1 d
= > Boa” ol + ) A(-1) (Z ad,exd+€_55§>
s'=0 s=0

e=1

d d d—1
= Z Bs,xsla;l + (_1)d2 (e <Z Asderes) agec
s'=0 e=1 s=0
d—1 d—1
- (Z Bya® + Z As* > P (D) ) e (Z Asxd+e—8> o

e=1 s=0

d d—1
frd (Z BS/xSI + <_1)d Z ASxQd_S> ag.
s'=0 s=0

e=1 s=0

d—1 d—1
+ (_1)d Z Ad,e (Z Ag(zq + ga)d+es) a;a
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d d—1
- (Z Byz® + (-1)* > Asx2d3> ot

s'=0 s=0

d—1 d—1d+e—s
d
+ (_1)d (e < ( +Z )ka Id-ﬁ-e 5— k&e > )

The term (dﬂif‘s) gk Agxdres7kg¢ gives a non-zero contribution to the local data at a in
degree e only if d+e—s—k < e, i.e., d < s+k, and in this case the contribution is modulo
pe{drems=h) — psth=d Qince s+ k —d < s+ (d+ e — s) — d = e and because p?~*| A, we
find that the contribution of (d+zf‘9)§§AS$Z+e*5*k6§a vanishes if d — s > e. So we only
need to pay attention to those terms for which d — s < e or, equivalently, d — e < s.

Noting that Y, _, _, Asy*~'07~" is a global section of Dx 41 we now consider

N def ¥ _ _
Od,d—1 = 0q + ga-1 ( Z Asy® 1) 63 b
l<s<d

Because d—1—(s—1) = d—s and because p? *| A, this differential operator has vanishing
local data at infinity in degree d —1 (and in degree d). We write d44-1 in terms of powers
of 0, (using equation (*) above for d, ) and find:

d—1 d—e
d - s’ d Qd.e s T
Oudor = (ZBx +( ZAa; ) + (=1 (ZA d+e—8>ae

0 e=1 s=0

d—1
1)d Z (e < Z Asxd-‘re—s) a;
e=1

d—e<s<d

+ (=) ag g Z Ag (Z ad—l,exd_1+e_(s_l)5§>~

1<s<d

As mentioned above, the terms in Ze 1 Qde (Zd o Agz®es) 6¢ do not contribute to the

local data in degrees less than d. We continue our calculation and find:
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d d—1 a1 d—e
S = (Z Byr' + (-1)" ) A) 0+ (=1) 3] aae (Z A) 2
e=1 s=0

s'=0 s=0

+ (_1)d2ade ( Z A $d+e s> ae ( )dadd ) < Z Asl'Qd_l_s) az—l

d—e<s<d l<s<d

-1
+ (1) 'agaa Z As (Z ad—l,e$d+6_$5§>

l<s<d e=1

d—1 d—e
(Z Boz® + ( Z A ) 0%+ (1" age (Z Asxd+es> o
e=1 s=0

d—2
_1)d2ad,e ( Z A xd-&-e s) ae ( )dadd ) ( Z Asx2d—1—s> 5365_1
e=1

d—e<s<d l<s<d

+ ()" tagy Z Ay (Z ag 1.2 38€>

l<s<d e=1

d—1 2d—1—s Ad—1
+ (-1 aga-1 Z Agag_14-17 0y

l<s<d

d—1 d—e
(Z Byx® + ( Z A ) o0+ (-1 aae (2 Asxd+“> o
e=1 s=0

s'=0

d—2
_1)d Z d.e ( Z A5$d+6_5> a;
e=1 d—e<s<d

d—2
+ (—1)d’1ad,d,1 Z Ad—1,e ( Z Asl’dJreS) 6;”; .
e=1 l<s<d
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We therefore see that gd,d—l has vanishing local data in degrees d and d — 1. As above,
in the last sum Y2 ag 1, (Do Asz™e7=) 02 all those terms with d — s > e do not

contribute local data, so we write d44-1 as the sum of

(ZBrl‘ + ( ZA:L‘ )

and

Zade (ZAdere s) ae add 1Zad Le (ZAdere s) ae

and

—_
N
QU
® U
gk
= no

d+e—s e
(ad,e - ad,dfladfl,e) ( E Agz > dy
d—e<s<d

Now we define

gd,d—l,d—Q = gd,d—l — (=D aga—2 — Gga—104-1.4—2) ( Z Asys_2> 55_2 -

2<s<d

Continuing in this manner shows that we eventually find o X gd,...,l € H(X, Dx 4) which
has vanishing local data in all degrees less or equal to d, and its projection to HY(X, 7;®d)
is equal to . This finishes the proof of the injectivity of the map 2.3.5.

(iii) Now we prove the splitting 2.3.6. We start by making the following general remark:
if H, is a subgroup of a finite abelian p-group H, then H; is a direct summand of H if
(and only if) pH n Hy; = pH;.

Now let ceqg € H°(X,Q<4) be any element and let [c<q] € H' (X, proDxq) be its image.
Suppose p[ceq] = [pe<d] lies in HY (X, priDx.4-1), and write [pceg] = [c<q1] for some
element c<y—1 € H°(X,Q<q—1). Then there is d<q € H*(X, Dx4) such that Q<y(d<q) =
PC<q — C<q—1- This is implies that

Qudea) e H'X.Q)) = @ @ (z/p*) - aidt,

aeX(F,) =0

d—1

is such that all its local data in the various groups Z/p
6<d = 5d + 6<d_1 with

are divisible by p. Write
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d—1 d
ba =Y Ayl + > Bya'ol
s=0 s'=0

and with d<4 1 € H°(X, Dx.4_1). The local data in degree d of <4 (or, equivalently, d;) at
a = o and a = 0 can be read off immediately from this expression for ¢4 and it follows that
all coefficients A,, 0 < s <d—1, and By, 0 < ¢ < d, are divisible by p. So we can write
dq = pdly, and hence 6<q = pd);+9d<4-1. We then have Q<4(0<a) = PQ<a(0})+Q<a—1(d<a—1).
From Q<q(0<q) = pc<ca — c<q4—1 We thus get

P(Qsal0) = C2a) = ~Qa-1(0sa-1) = Cea
Write Q<q(d))) — c<a = ca + ¢y With ¢y € Qq and ¢_,; | € Q<q—1 and we find:

/
PCcq—

—Q<i-1(0<a-1) — c<a—1,

and thus [c<q1] = p[cey_q]- O

In order to estimate the exponent of H'(X, pr.(Dx,.4)) we need the following elementary
lemma.

Lemma 2.3.13. Let A = Z/p™ @ --- @ Z/p™ be an abelian torsion group with 0 <
ny < ng < ... <n.. Let a € A be an arbitrary element. Then A/{a) surjects onto
Z/pm C_D - @Z/pnrfl.

Proof. Write a = (ay,...,a,), and choose i € {1,...,r} such that
ord(a;) = max{ord(a;) | j=1,...,7r}.

If now b = (by,...,b,) € (@) is such that b; = 0, then b = 0. Therefore, the map

Z/p" @@L L @LY — LpM D - DL/p" = A — Afa)

is injective. Because finite-abelian groups are self-dual (non-canonically), we see that
there is a surjection

Aflay » Z/p" @ ---@L/p" @L/p" @L/p™ .
But the group on the right clearly surjects onto Z/p™ @ --- @ Z/p" . ([l

Proposition 2.3.14. For any d > 1 the cohomology group Hl(%,pr*(ﬁgd)) contains

elements of order p® where e = [fﬁ(d + 1)|. In particular, as d tends to infinity, the

exponents of H' (X, pr.(TE%)) and of H'(X,pr.(Dx,,q)) tend to infinity.
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Proof. By 2.3.6 we have

HY(X,prs(Dx,.a)) = H' (X, pry(Dxya-1)) © H' (X, pro(T5")) -

1

Furthermore, H'(X, pr.(T£%)) is the quotient of

&

= ®(p+1)
(z/p™ z)) ,

cf. 2.3.10, by the image of H*(X, T®?) which is a free Z, module of rank 2d + 1. Write

2d+1=Fk(p+1)+r with 0 <r < p, so that k = 2pdjll —7- Then, by applying 2.3.13

repeatedly we see that H*(X, pr, (E(?d)) must be of exponent at least p¢ where

p—1 r—1 p-1 p—r p—1
=d—k= d+ = d+1)— = d+1)| .
‘ p+1 p+1 p—i—l( ) p+1 { ( )J

@ D) e ~ (

aeX(Fp) =0

I
=}

7

Remark 2.3.15. With some more work it should also be possible to explicitly determine
the structure of H*(X, pr«(Dx,.q))-

2.4. H(%,,Dx,) = H*(%1, Z,) and H'(X, Z%,) is non-torsion.
Theorem 2.4.1. (a) T,H'(X,pr.(Dx,)) = 0.

(b) T,H' (%), Dx,) = 0.

(c) HO(%,,Dy,) = HO(X1, Zx,).

(d) H'(X1,Dx,) contains a non-torsion element.

(e) H' (X1, Z%x,) contains a non-torsion element.

Proof. (a) We have H'(X, pr.(Dx,)) = lim  H'(X, pra(Dx,.q)). Using 2.3.6 we see that

o0
(2.4.2) H'(X,pr(Dx,)) ~ @ H' (X, pro(TEY) .
d=1

Because each group H(X, pr. (E?d)) is a finite p-group, the p-adic Tate module

Tle (%7 pr (,Dxl ))
must vanish.

(b) This follows from (a) and 2.2.2.
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(c) This follows from (b) and 2.1.5.

(d) For d = 1 put ¢4 = [gﬁ(d +1)]. Let cg € H'(X, pr+(TEY)) be an element of order eg,
cf. 2.3.14. Tt follows from 2.4.2 that H' (X, Dx,) = H'(X, pr.(Dx,)) contains a subgroup
isomorphic to @, ,{cs). Let (n4)a=1 be an increasing sequence of non-negative integers
ng < eq such that limg ., ng = 00 and limg,(eg — na) = 00. Then ¢ = >, p™icq

converges in the p-adic completion H'(X1, Dx,) of H'(X1,Dx,). Moreover, ¢ is clearly
not a torsion element.

(e) This follows from the fact that the map

Hl(%b@ﬁ) - Lil_nHl(%h,D}h/kaxJ = ]/—_\fl(:{thl) )
k

cf. 2.1.1, is surjective. (The equality sign on the right is 2.1.6.) O

3. GLOBAL SECTIONS AND COHOMOLOGY OF 2("™ oON X

In this section we consider the sheaves of differential operators .@gln) on X; of level m > 0.
The discussion is along the same lines as in section 2, with a few modifications which we
are going to point out as we proceed.

3.1. Comparing the cohomology of D™ and 2("™. Let Dg) = Dgﬁog be the sheaf
of logarithmic differential operators on X; of level m [12, 5.6]. For a local description let
(a,a1) € Rop x R. For m,d = 0 we let qgm) be defined as usual by d = qgm)pm + r with
0 <r < p™. On an open neighbourhood Xgl) < X of the singularity corresponding to a,

the Ox,-module Dg:) is generated by operators of the form

where D = x,0,, = —z,0,, is a local section of Tx,. On the 'residual disc scheme’ Dggl

with coordinate function xl(l{()h, the module Dgf) is generated by the usual divided powers

qc(lm)! d

We write Dggb) for the Ox,-module generated by the restriction of Dggf) to X;. Let .@gf)
be the p-adic completion Dg’l@). The first lemma is exactly as 2.1.1.

Lemma 3.1.1. The canonical homomorphism

Hi(%,, 2¢7) — lim H'(%,, DY /pF DY)
k
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1s an isomorphism for i = 0 and is surjective for i = 1. For i > 1 source and target of
this map vanish.

And also the next result goes over without any changes.

Proposition 3.1.2. (a) For all i = 0 there is a canonical exact sequence

(313) 00— H(%, D) - lim B (%, D{"/DY) - T, (H”l(ael, pg:;>)) 0.
k

(b) Fori =0 the exact sequence in (a) is

(3.1.4) 0 — A%, DY) — HO(%), 20) — T, (Hl(ael,pgg@)) 0.

(c) The cohomology group H? (%1,2);7?)) vanishes and the exact sequence in (a) gives

therefore a canonical isomorphism

(3.1.5) H'(%1, DY) ~ lim H' (%, DY /DY)
k

P —

O

3.2. Vanishing of Rlpr, (Dg?)) As above we use the Leray spectral sequence for the
blow-up morphism

pr:Xi —X=X,.
Applied to the sheaf Dggj) we get an exact sequence

(3.2.1) 0 — H'(X,pr (DY) — HY (X1, DY) — HO(X,R'pr. (DY) — 0.,

Denote by Dggg and D;T’)d the sheaves of differential operators of degree less or equal to
d. Note also that

(m)|
m q °
(3.2.2) ( xld)( ) = _dd| %ld = xld ®z, Qp ,

cf. [12, 3.2]. Then, similar to 2.2.3, we have an exact sequence

(3.2.3) 0— DY, — DI, — (TEH™ — 0.



22 DEEPAM PATEL, TOBIAS SCHMIDT, AND MATTHIAS STRAUCH

Lemma 3.2.4. (a) For all d = 0 one has Rlpr*(Dgi)d) = 0.

(b) R'pra(D5Y) = 0.

(c) H'(X, pro(DY)) = H' (X1, D).

Proof. (a) This follows as in 2.2.2 (a) using 3.2.2 in the Cech cohomology argument.

(b) Follows from (a) by passing to the limit.
(c) Follows from (b) and 3.2.1. O

3.3. The cohomology group H'(X, pr, (Dggln))) Consider the exact sequence 3.2.3 and
the corresponding sequence of direct images on X

(3.3.1) 00— pry (Dgl,)d—l) — Pry (’Dggl)d) — pr*( xld) — Rlpr* (D;T)d_l) =0,
where we have used 3.2.4 (a). We have

HY(X, pro (DY) = lim HY (X, pr. (D) .

—
d

(m)
We put oD — da!!ag, and similarly for 0} (and also for ¢¢ ). With this notation we
deduce from 2.3.2 the following

Lemma 3.3.2. Let x, y be the standard coordinates on P! satisfying xy = 1. Then we
have for any s € Z>,

aésxm) _ (—1)‘92@2?)338”69””) :
t—1

where for alls =1 and 1 <t < s

-1

(3.3.3) ) _ () (5= D™ ™) 5= 1) g™
. . a — _ '
st t (t—l)' s! t! t—1 qgm)'

These numbers are always integers, and we have, in particular,

as1 = qgm)! and ass=1.
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Theorem 3.3.4. For all d > 1 the canonical map
(3.3.5) HY (X, pro(DYY, 1)) — HY(X, pro (DY)

coming from the long exact cohomology sequence associated to 3.5.1 is injective and embeds
HY (X, pr. (Dggb,)dq)) as a direct summand of H' (X, pr. (Dgl)d)) Therefore, there is a
splitting:

(336)  H'(Xpr(DE)) = B (Xpr.(DL)) @ H' (3,1, (TE)™))
0

Proof. The proof proceeds along the lines of 2.3.4 taking into account the following points.

(i) The skyscraper sheaf lem)) (resp. QZZ[)) is defined, similar as before, as the quotient
of (7;®d)(m) (resp. Dgg?) by pr.(( xld)(m)) (resp. pr*(Dgf’)d)). By 3.2.2, the sheaf Qg)
(resp. ng)) is actually isomorphic to the sheaf Q<4 (resp. Qq).

(ii) The subtle part is the proof of the injectivity. As in the proof of 2.3.4 consider an
element § of H° (X, (7??)™) whose image in the group H°(X, Q&m)) vanishes. Then we

want to lift it to an element 6 € H® (%, Dgﬁ?) such that the image of 5 in HO(X, ng))

vanishes. The discussion now proceeds along exactly the same lines as before. The
difference is that one has to use the transformation formula in 3.3.2. This does not affect
the arguments because the coefficients ag? are integral. 0

Proposition 3.3.7. For any d = 1 the cohomology group H' (X, pr.((TE%)™)) contains

elements of order p® where e = [%(d + 1)|. In particular, as d tends to infinity, the

ezponents of H' (X, pr.((TEH) ™)) and of H' (%,p'r’* (Dg?)d)) tend to infinity.

Proof. The proof of 2.3.14 carries over to the case m > 0. 0J
Theorem 3.3.8. (a) Tle(.‘{,pr*(Dg))) =0.

(b) T,H' (%, D) = 0.

(c) HOX1, DY) = HO(Xy, 24,

(d) H' (X4, .@g?)) contains non-torsion elements.

Proof. The proof of 2.4.1 carries over to the case when m > 0. 0J
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3.4. HY (X, @L@) does not vanish for p > 2.
Theorem 3.4.1. (i) The inductive limit

lim H'(%;, DY) @2 Q

does not vanish when p > 2.
(1i) H' (%4, _@;1@) does not vanish when p > 2.

Proof. (i) Let us consider the transition map
(3.4.2) H' (%, DY) — H'(%,,D) .

Using 2.4.2 and its analogues in level m, together with 3.2.4 and 3.1.5, we rewrite 3.4.2
as

A

H' (X, pra(( x1d>(m>>)] :

0

d= d=—

(3.4.3) [ D H (%, pr xld»] . [

where [—]" denotes the p-adic completion of [—]. Because of 3.2.2 we can formally write
the right hand side of 3.4.3 as

A
m

o qc(l ) 1 d
[@ dl H (:{7177"*( X ))]

By definition of the topology, the latter p-adic completion is, as topological Z,-module,
canonically isomorphic to

S )|

(m)
via mapping, in the d-th component, da!! — 1. With this identification, the map in 3.4.3
assumes the following explicit form

d! i i
(Cd)d>1 — ((T), : Cd) € [(‘B H' (%,pr*( xld))] )
9q d=1

d=1

where ¢; € H' (%,pr*(ﬁgd)). Now let ¢4 be a cohomology class of order p® where

eq = [;ﬁ(d + 1), cf. 3.3.7. Denote by v, the (logarithmic) normalized p-adic valuation.

Then we have
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d! d |-% | d d d
< —| -1 — 1] < — log,(d) + 1.
v <q§m)!> p—1 (P—l o (LWJ)) p=1 ponp BT

Let ng be a non-negative integer, and denote by ord the order of an element. Then

Uy (ord (ﬁ”{)! -pndCd>) = %(d—i— 1)—1—n4— (p%l — m +log,(d) + 1)

_ (E—L—i—;)d—nd—logp(d)—Z

p+l  p-1 (p—1)p™

_ (;;2—_35 N <p_i)pm) d—ny —log,(d) — 2.
If p > 3 and if we put, for instance, ng = |\/d|, d > 1, then we have, for any m,

2
. p~—3p 1 _
f}%[(ﬁ—l i (p—l)pm)d_nd_logp(d)_Q] -

This means that the sequence of elements (p™c,) defines an element ¢ of H (X4, D;Ol )), and

this element ¢ has the property that its image in any group it (%4, Dgf)) is non-torsion.
The image of ¢ in
lim A (%, DY)

—
m

will also not be a torsion element.

(ii) Because the maps

H'(%1, 2") — lim H' (X1, DY /p" DY) = H'(%1, DY)
k
are surjective, cf. 3.1.1, the same is true after tensoring with Q and taking the limit for
m — 0. 0
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