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Abstract. In this paper we study sheaves of logarithmic arithmetic differential opera-
tors on a particular semistable model of the projective line. The main result here is that
the first cohomology group of these sheaves contains a non-torsion element. This shows
that the model is not D-affine for such differential operators.
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1. Introduction

A fundamental result in the theory of classical complex D-modules is the D-affinity prop-
erty of complex flag varieties, established by Beilinson-Bernstein [1]. It means that flag
varieties behave for D-modules, as affine schemes do for quasi-coherent sheaves: objects
are generated by global sections and the higher cohomology vanishes. The counterpart
of complex D-modules in the setting of a p-adic field, is Berthelot’s theory of arithmetic
D-modules [2, 3, 4]. In the pioneering papers [7, 10] Huyghe establishes the D-affinity
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property for arithmetic D-modules over the formal projective line and over general formal
flag varieties, respectively.
On the other hand, we have started in [11, 12] to systematically investigate the relationship
between equivariant arithmetic D-modules on flag varieties and the theory of admissible
representations of p-adic Lie groups [13, 14]. In this approach, a key point is to extend
the D-affinity property from the formal level to the level of rigid-analytic spaces. Since
the latter are approximated by formal models through Raynaud’s theory, it becomes a
pressing question whether Huyghe’s result extends from the smooth model to more general
(semistable) models of the flag variety.
In this paper we approach this question in the simplest case of the group GL2 over Zp.
The corresponding flag variety is the projective line X � X0 � P1

Zp
. We study sheaves

of logarithmic arithmetic differential operators on the simplest, so to speak, semistable
(nonsmooth) model X1 of P1

Zp
. This model is obtained by blowing up the reduced closed

subscheme given by the set of Fp-valued points of X. We denote the corresponding formal
schemes, the completions along the special fiber, by X and X1, respectively. The sheaf
of logarithmic differential operators of level m, as defined in [12, sec. 5], will be denoted

by Dpmq
X1

, and its p-adic completion by D pmq
X1

. The formal scheme X1 is the first member
of a family of formal semistable models Xn which we studied in [12]. In that paper, we
obtained some results about the global sections of the sheaf of logarithmic arithmetic

differential operators Dpmq
Xn

. One fundamental question that had not been treated there

was the relation between H0pXn,Dpmq
Xn
q and H0pXn,D

pmq
Xn

q. More precisely, one may ask if
the natural inclusion

pH0pXn,Dpmq
Xn
q ÝÑ H0pXn,D

pmq
Xn

q

is an isomorphism. On the left hand side pH0pXn,Dpmq
Xn
q denotes the p-adic completion of

H0pXn,Dpmq
Xn
q. It is straightforward to see that there is a canonical exact sequence

0 Ñ pH0pXn,Dpmq
Xn
q Ñ H0pXn,D

pmq
Xn

q Ñ Tp

�
H1pXn,Dpmq

Xn
q
	
Ñ 0 ,

where the group on the right is the p-adic Tate module

Tp

�
H1pXn,Dpmq

Xn
q
	
� limÐÝ

k

H1pXn,Dpmq
Xn
qrpks ,

of H1pXn,Dpmq
Xn
q. In this paper we only consider the case when n � 1, and the main results

are summarized in the following theorem.

Theorem. (i) Tp

�
H1pX1,Dpmq

X1
q
	
� 0, and the map

pH0pX1,Dpmq
X1
q ÝÑ H0pX1,D

pmq
X1

q
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is therefore an isomorphism.

(ii) There is a canonical surjective homomorphism

H1pX1,D
pmq
X1

q ÝÑ pH1pX1,Dpmq
X1
q ,

and cohomology group on the right contains non-torsion elements. In particular,

H1pX1,D
pmq
X1,Qq does not vanish.

(iii) The cohomology group H1pX1,D
:
X1,Qq does not vanish.

The sheaf D:
X1,Q in (iii) is the inductive limit of the sheaves D pmq

X1,Q.

By considering a refinement of the order filtration on the sheaf Dpmq
X1

and computing the

associated graded ring, one can show that pH0pX1,Dpmq
X1
q and H0pX1,D

pmq
X1

q are noetherian
rings. Details of this calculation will appear elsewhere.

As explained above, the investigations here and in [12] were motivated by the ques-

tion if the formal models Xn mentioned above are D:
Xn,Q-affine, and the non-vanishing of

H1pX1,D
:
X1,Qq gives therefore a negative answer when n � 1. This has led us to consider

in [11] a different family of sheaves rD pmq
n,k,Q of p-adically complete differential operators on

Xn, and as it is shown there, Xn turns out to be rD pmq
n,k,Q-affine.

Although this paper is concerned with a very specific semistable model of the projective
line P1

Zp
, we believe that our methods and results generalize to more general semistable

situations. To our knowledge, the attempt to calculate the cohomology of logarithmic
arithmetic differential operators on semistable formal schemes has not yet been undertaken
in the literature.

2. Global sections and cohomology of D p0q on X1

Let X1 be the blow-up of the projective line X � X0 � P1
Zp

in the reduced closed subscheme
given by the set of Fp-valued points. For convenience of the reader, we recall some of the
geometry of X1 from [12, sec. 4]. First of all, the irreducible components of the special fiber
of X1 are projective lines over Fp: besides the strict transform of X0,Fp , there is for any Fp-
rational point a of X0 the corresponding component Ea � P1

Fp
of the exceptional divisor.

Two different components of type Ea have empty intersection and any Ea intersects X0,Fp

in the point corresponding to a.
We will work with the following open affine covering of X1 [12, 4.3.3]. Let R � Zp be
any system of representatives for Zp{pZp and view R8 � RYt8u as the set of Fp-valued
points on X0. Let X�

0 � X0zR8 and view this as an open subscheme of X1. Let xa be a
local coordinate at a P R8 and form
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Rp0q
a � Zprxas

�
1

xb

���� b P R, b � a

�
.

Then X1 is obtained by blowing up the ideals pp, xaq � R
p0q
a for all a P R8. We introduce

new indeterminates za and x
p1q
a with

xaza � p and xp1qa za � 1 .

Set also x
p1q
a,a1 � x

p1q
a � a1 for a1 P R. Then define

Rp1q
a � Rp0q

a rzas
�

1

x
p1q
a,a1

���� a1 P R

�N
pxaza � pq ,

and put Xp1q
a � SpecpRp1q

a q. This is an open affine neighbourhood in X1 of the singular
point corresponding to a. Finally, set

Rp1q
a,a1

� Rp0q
a rxp1qa,a1

s
�

1

x
p1q
a,b

���� b P Rzta1u
�
,

and define

Dp1q
a,a1

� Spec
�
Rp1q

a,a1

�
.

The special fiber of each Dp1q
a,a1 is isomorphic to an affine line over Fp all of whose Fp-

rational points have been removed, except the one given by x
p1q
a,a1 � 0. Let X�

1 be the

union of the schemes Xp1q
a , a P R8, and X�

0. Then X1 is covered by X�
1 together with the

’residual disc schemes’ Dp1q
a,a1 for pa, a1q P R8�R. Note that the singular points of X1 are

contained in X�
1.

We denote the formal schemes corresponding to X and X1, i.e. their completions along
the special fiber tp � 0u, by X and X1, respectively. The affine covering of X1 gives then
rise, by completion, to an open affine covering of X1. One has the simple descriptions [12,
4.4.1]

pXp1q
a � Spf

�
Zpxxa, zay

�
1

pxaqp�1 � 1
,

1

pzaqp�1 � 1

�M
pxaza � pq



.

and

pDp1q
a,a1

� Spf

�
Zpxxp1qa,a1

y
�

1

pxp1qa,a1qp�1 � 1

��
.
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2.1. Cohomology groups and their completions. We view X1 as a semistable scheme
with log structure defined by its normal crossings divisor tp � 0u. Generalities on loga-
rithmic arithmetic differential operators can be found in [9]. However, here we will make
everything explicit and work with an elementary description as in [12]. Denote by

pr : X1 ÝÑ X0 � X
the blow-up morphism. The logarithmic tangent sheaf TX1 coincides with the usual tan-

gent sheaf on the smooth part of X1 and is locally on an open neighbourhood Xp1q
a of a

singularity a P R8 generated by xaBxa . One has the relation xaBxa � �zaBza . The sheaf

DX1 � D p0q
X1

of logarithmic differential operators on X1 (of level zero) is then generated as

a subalgebra of pr�pDXq by TX1 and the structure sheaf. On an open neighbourhood Xp1q
a

it is therefore given as the module of all finite sums

D �
 8̧

d¥0

fdpxaBxaqd

with local sections fd in OXp1q
a

. We write TX1 and DX1 for the OX1-modules generated

by the restrictions of TX1 and DX1 to X1 respectively. We finally let DX1 be the p-adic

completion of DX1 . On the formal completion pXp1q
a the sheaf DX1 is given as the module

of all p-adically convergent sums

D �
8̧

d¥0

fdpxaBxaqd, O
pXp1q
a
Q fd p-adicallyÝÑ 0 for dÑ 8.

The submodule of all finite sums is equal to DX1 |pXp1q
a
.

Lemma 2.1.1. The canonical homomorphism

H ipX1,DX1q ÝÑ limÐÝ
k

H ipX1,DX1{pkDX1q

is an isomorphism when i � 0 and surjective if i � 1. For i ¡ 1 source and target of this
map vanish.

Proof. For an inverse system of sheaves pFkqk, the presheaf U ÞÑ limÐÝk
FkpUq is actually

a sheaf. This gives the statement for i � 0. For i ¡ 1 the source and target of the map
vanish because X1 is a noetherian topological space of dimension one. In order to treat
the case i � 1 we are going to use [5, ch. 0, Prop. 13.3.1]. The third condition of this
proposition is fulfilled because the transition maps on the system of sheaves are obviously
surjective. Let U be an affine open subset of X1. Denote by X1,k the reduction of X1

modulo pk, and let Uk � U �X1 X1,k be the open affine subset of X1,k. Then we have for
all i ¡ 0

H ipU,DX1{pkDX1q � H ipUk,DX1{pkDX1q � 0 ,
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because DX1{pkDX1 is a quasi-coherent sheaf on X1,k. This shows that the second condition
of loc.cit. is satisfied, and, for i ¡ 0, also the first condition. Consider the exact sequence
of quasi-coherent sheaves on X1,k�1

0 ÝÑ pkDX1{pk�1DX1 ÝÑ DX1{pk�1DX1 ÝÑ DX1{pkDX1 ÝÑ 0 .

Because pkDX1{pk�1DX1 has vanishing first cohomology on Uk, this sequence stays exact
after applying H0pUk,�q, and this shows that the first condition of loc.cit. is fulfilled in
the case i � 0. Hence we can conclude that the map in question is surjective for i � 1. �

Next we consider the tautological exact sequence of sheaves on X1

0 Ñ DX1

pkÝÑ DX1 Ñ DX1{pkDX1 Ñ 0 .

The associated long exact cohomology sequence gives the exact sequence

H ipX1,DX1q pkÝÑ H ipX1,DX1q Ñ H ipX1,DX1{pkDX1q Ñ H i�1pX1,DX1q pkÝÑ H i�1pX1,DX1q .

We thus get an exact sequence

(2.1.2)

0 Ñ H ipX1,DX1q
M
pkH ipX1,DX1q Ñ H ipX1,DX1{pkDX1q Ñ H i�1pX1,DX1q

�
pk
�Ñ 0 ,

where H i�1pX1,DX1q
�
pk
�

denotes the subgroup of elements annihilated by multiplication

by pk. Put

pH ipX1,DX1q � limÐÝ
k

�
H ipX1,DX1q

M
pkH ipX1,DX1q

	
,

and

Tp
�
H ipX1,DX1q

� � limÐÝ
k

H ipX1,DX1qrpks ,

where the transition map H ipX1,DX1qrpks Ñ H ipX1,DX1qrpk�1s is the multiplication by
p. We then have the

Proposition 2.1.3. (a) For all i ¥ 0 there is a natural exact sequence

(2.1.4) 0 Ñ pH ipX1,DX1q Ñ limÐÝ
k

H ipX1,DX1{pkDX1q Ñ Tp
�
H i�1pX1,DX1q

�Ñ 0 .

(b) For i � 0 the exact sequence in (a) becomes
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(2.1.5) 0 Ñ pH0pX1,DX1q Ñ H0pX1,DX1q Ñ Tp
�
H1pX1,DX1q

�Ñ 0 .

(c) The cohomology group H2pX1,DX1q vanishes and the exact sequence in (a) gives there-
fore a canonical isomorphism

(2.1.6) pH1pX1,DX1q � limÐÝ
k

H1pX1,DX1{pkDX1q .

Proof. (a) For varying k the projective system

H ipX1,DX1q
M
pkH ipX1,DX1q

has obviously surjective transition maps (hence satisfies the Mittag-Leffler condition). We
can thus pass to the limit over k and using 2.1.1 we obtain the exact sequence 2.1.4.

(b) We use (a) in the case i � 0 and 2.1.1.

(c) H2pX1,DX1q vanishes because X1 is a noetherian space of dimension one. The stated
isomorphism follows then directly from (a). �

2.2. Vanishing of R1pr�pDX1q. We use the Leray spectral sequence for the blow-up
morphism

pr : X1 ÝÑ X � X0 .

Applied to the sheaf DX1 we get an exact sequence

(2.2.1) 0 Ñ H1pX, pr�pDX1qq Ñ H1pX1,DX1q Ñ H0pX,R1pr�pDX1qq Ñ 0 .

Denote by DX,d and DX1,d the sheaves of differential operators of degree less or equal to d.

Lemma 2.2.2. (a) For all d ¥ 0 one has R1pr�pDX1,dq � 0.

(b) R1pr�pDX1q � 0.

(c) H1pX, pr�pDX1qq � H1pX1,DX1q.
Proof. (a) Reduction: passage to the graded sheaves. We have

T bd
X1

� DX1,d{DX1,d�1 ,

and we consider the tautological exact sequence
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(2.2.3) 0 ÝÑ DX1,d�1 ÝÑ DX1,d ÝÑ T bd
X1

ÝÑ 0 .

For d � 0 we have DX1,0 � T b0
X1

� OX1 . Therefore, if we show

R1pr�pT bd
X1
q � 0

for all d ¥ 0, then we can argue by induction and get R1pr�pDX1,dq � 0 for all d. Using
that taking higher direct images commutes with inductive limits we get

R1pr�pDX1q � 0 .

Working with local coordinates. Over the complement of pr�1pXpFpqq the blow-up mor-
phism is an isomorphism, and the stalk of the sheaf R1pr�pDX1q vanishes thus outside
XpFpq. Consider a point P P XpFpq. Choosing a local coordinate at P we may assume
that P corresponds to the point given by the ideal px, pq of the ring

R � Zpxxy
�

1

xp�1 � 1

�
.

Then SpfpRq is an open neighborhood of P in X. Put

R1 � Zpxx, zy
�

1

xp�1 � 1
,

1

zp�1 � 1

�M
pxz � pq ,

and R2 � Zpxty, and identify the open subsets SpfpR1q �1
z

� � SpfpR1q and SpfpR2q �1
t

� �
SpfpR2q via the relation zt � 1. Then

pr�1pSpfpRqq � SpfpR1q Y SpfpR2q

is an open neighborhood of the fiber pr�1pP q. To show that the stalk of R1pr�pT bd
X1
q at

P vanishes it suffices to show that

H1ppr�1pUq, T bd
X1
q � 0

for all affine open subsets U � SpfpRq � X containing P . Identify SpfpRq with a closed
subset of SpfpR1q. Then we have pr�1pUq � U Y SpfpR2q. Hence it suffices to show that

H1pV Y SpfpR2q, T bd
X1
q � 0

for all affine open subsets V � SpfpR1q � X1 containing P (which we also consider as a
point of X1).
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Using Čech cohomology. For such a V the open subset V Y SpfpR2q always contains
SpfpR1q �1

z

� � SpfpR2q �1
t

�
and we may thus assume SpfpR1q �1

z

� � V . Then we have

V X SpfpR2q � SpfpR1q
�

1

z

�
� SpfpR2q

�
1

t

�
.

Then H1pV Y SpfpR2q, T bd
X1
q is equal to the cokernel of the map

H0
�
V, T bd

X1

�`H0
�
SpfpR2q, T bd

X1

� ÝÑ H0

�
SpfpR2q

�
1

t

�
, T bd

X1



.

which sends ps1, s2q to the difference of these sections when restricted to SpfpR2q �1
t

�
. Any

element in

H0

�
SpfpR2q

�
1

t

�
, T bd

X1



has the form p°iPZ ait

iq Bbd
t . The sum

�°
i¥0 ait

i
� Bbd

t clearly extends to a section over

SpfpR2q. Note that we have in T bd
X1

Bbd
t � p�z2Bzqbd � p�1qdz2dBbd

z

and therefore �¸
i 0

ait
i

�
Bbd
t � p�1qd

�¸
i 0

aiz
�i�d

�
zdBbd

z ,

and this extends to a section over V .

(b) This follows from (a) and the fact that the higher direct image functor commutes with
inductive limits.

(c) This is an immediate consequence of (b) and 2.2.1. �

2.3. The cohomology group H1pX, pr�pDX1qq. Consider the exact sequence 2.2.3 and
the corresponding sequence of direct images on X

(2.3.1) 0 ÝÑ pr�

�
DX1,d�1

	
ÝÑ pr�

�
DX1,d

	
ÝÑ pr�

�
T bd
X1

	
ÝÑ R1pr�

�
DX1,d�1

	
� 0 ,

where we have used 2.2.2 (a). We have

H1pX, pr�pDX1qq � limÝÑ
d

H1pX, pr�pDX1,dqq .
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Because DX1,d is coherent and pr is projective, the sheaf pr�pDX1,dq is coherent and
H1pX, pr�pDX1,dqq is thus a finitely generated Zp-module. Since the corresponding co-
homology group on the generic fiber (in the sense of rigid geometry) vanishes (by GAGA
and [1]), we see that H1pX, pr�pDX1,dqq is annihilated by a finite power of p. (We will
give below a more precise description of H1pX, pr�pDX1,dqq which shows directly that it
is annihilated by a finite power of p.) In the proof of theorem 2.3.4 we will need the
following elementary

Lemma 2.3.2. Let x, y be the standard coordinates on P1 satisfying xy � 1. Then we
have By � �x2Bx and, more generally, for any s P Z¥1

Bsy � p�1qs
ş

t�1

as,tx
s�tBtx ,

where for all s ¥ 1 and 1 ¤ t ¤ s

(2.3.3) as,t �
�
s

t


ps� 1q!
pt� 1q! , in particular , as,1 � s! and as,s � 1 .

Proof. We prove this by induction on s. The formula holds obviously in the case s � 1.
Assuming the formula to be correct for a given s, we have

Bs�1
y � p�x2Bxqp�1qs p°s

t�1 as,tx
s�tBtxq

� p�1qs�1
°s

t�1 pas,tx2pxs�tBx � ps� tqxs�t�1qBtxq

� p�1qs�1
°s

t�1 pas,txs�t�2Bt�1
x � as,tps� tqxs�t�1Btxq

� p�1qs�1 pas,1ps� 1qxs�2Bx

� r°s
t�2 pas,t�1 � as,tps� tqqxs�1�tBt�1

x s � as,sx
2s�2Bs�1

x q

Using 2.3.3 we then get for 2 ¤ t ¤ s that
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as,t�1 � as,tps� tq � �
s

t�1

�
ps�1q!
pt�2q!

� �s
t

�
ps�1q!
pt�1q!

ps� tq

� s!
ps�t�1q!pt�1q!

ps�1q!
pt�2q!

� s!
ps�tq!t!

ps�1q!ps�tq
pt�1q!

� s!ps�1q!
pt�1q!

�
1

pt�2q!ps�t�1q
� s�t

ps�tq!t!

�
� s!ps�1q!

pt�1q!

�
pt�1qt�ps�t�1qps�tq

t!ps�t�1q!

�
� s!ps�1q!

pt�1q!
sps�1q

t!ps�1�tq!
� �

s�1
t

�
s!

pt�1q!
� as�1,t.

And finally one has as,1ps� 1q � s!ps� 1q � ps� 1q! � as�1,1. �

Theorem 2.3.4. For all d ¥ 1 the canonical map

(2.3.5) H1pX, pr�pDX1,d�1qq Ñ H1pX, pr�pDX1,dqq

coming from the long exact cohomology sequence associated to 2.3.1 is injective and embeds
H1pX, pr�pDX1,d�1qq as a direct summand of H1pX, pr�pDX1,dqq. Therefore, there is a
splitting:

(2.3.6) H1pX, pr�pDX1,dqq � H1pX, pr�pDX1,d�1qq `H1pX, pr�pT bd
X1
qq .

Proof. (i) We start with some preliminary considerations. The sheaf pr�pDX1,dq (resp.
pr�pT bd

X1
q) is naturally a subsheaf of DX,d (resp. T bd

X ), cf. [12, 5.2], and we denote by Q¤d

(resp. Qd) the quotient sheaf. Consider the commutative diagram:

0 Ñ pr�pDX1,d�1q Ñ DX,d�1 Ñ Q¤d�1 Ñ 0
Ó Ó Ó

0 Ñ pr�pDX1,dq Ñ DX,d Ñ Q¤d Ñ 0
Ó Ó Ó

0 Ñ pr�pT bd
X1
q Ñ T bd

X Ñ Qd Ñ 0

where the horizontal sequences are the tautological exact sequences. The corresponding
long exact sequences give rise to the commutative diagram
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(2.3.7)

H0pX, pr�pDX1,d�1qq ãÑ H0pX,DX,d�1q Ñ H0pX, Q¤d�1q � H1pX, pr�pDX1,d�1qq
Ó Ó Ó Ó

H0pX, pr�pDX1,dqq ãÑ H0pX,DX,dq Ñ H0pX, Q¤dq � H1pX, pr�pDX1,dqq
Ó Ó Ó Ó

H0pX, pr�pT bd
X1
qq ãÑ H0pX, T bd

X q Ñ H0pX, Qdq � H1pX, pr�pT bd
X1
qq.

Note that the horizontal arrows on the right are surjections, since TX � Op2q and hence
H1pX, T bd

X q � 0 and then H1pX,DX,dq � 0 by induction on d. The sheaves Q¤d�1, Q¤d

and Qd are skyscraper sheaves with support in XpFpq. Let xa be a local coordinate at
a P XpFpq. Then, cf. [12, 5.2 (c)],

(2.3.8) Q¤d �
à

aPXpFpq

dà
k�1

k�1à
i�0

�
Z{pk�i

� � xiaBkxa
,

(2.3.9) Q¤d�1 �
à

aPXpFpq

d�1à
k�1

k�1à
i�0

�
Z{pk�i

� � xiaBkxa
,

and

(2.3.10) Qd �
à

aPXpFpq

d�1à
i�0

�
Z{pd�i

� � xiaBdxa
.

Hence there is a splitting

(2.3.11) Q¤d � Q¤d�1 `Qd .

We introduce the following notation and terminology. For a global section δ P H0pX,DX,dq
we denote its image in Q¤d by Q¤dpδq. The component of this element in Qd, accord-
ing to the splitting 2.3.11, will be denoted by Qdpδq, and we denote the components inÀd�1

i�0

�
Z{pd�i

��xiaBdxa
corresponding to a P XpFpq by Qd,apδq. We call Qdpδq (resp. Q¤dpδq)

the local data in degree d (resp. in degree less or equal to d) of δ. Similarly we call Qd,apδq
the local data in degree d at a of δ.

(ii) Now we prove the injectivity of the map 2.3.5. The injectivity of this map is equivalent,
by the long exact cohomology sequence attached to 2.3.1, to the surjectivity of the map
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(2.3.12) H0pX, pr�pDX1,dqq Ñ H0pX, pr�pT bd
X1
qq

which appears on the right hand side of 2.3.7. We are going to prove that 2.3.12 is
surjective as follows: consider δ1 P H0pX, pr�pT bd

X1
qq and let δ P H0pX, T bd

X q be its image.

Then Qdpδq � 0. The crucial step is to lift δ to an element rδ P H0pX,DX,dq in such a

way that Q¤dprδq � 0. This implies that rδ does in fact come from an element (necessarily

unique) rδ1 P H0pX, pr�pDX1,dqq which is a preimage of δ1 under the map 2.3.12.

We let x � x0 and y � x8. Then δ P H0pX, T bd
X q can be written as

δ �
d�1̧

s�0

Asy
sBbd

y �
ḑ

s1�0

Bs1x
s1Bbd

x P H0pX, T bd
X q

with coefficients As, Bs1 P Zp. Let us consider in detail what it means that Qdpδq � 0.
For instance, if we write δ in terms of By, we have to use the transformation formula (in
H0pX, T bd

X q): xs1Bbd
x � �y2d�s1Bbd

y , and

δ �
d�1̧

s�0

Asy
sBbd

y �
ḑ

s1�0

p�Bs1qy2d�s1Bbd
y .

Since s1 ¤ d we have 2d� s1 ¥ d, we see that the vanishing of the local data of δ in degree
d at 8 imposes the condition that pd�s|As for 0 ¤ s ¤ d � 1. Similarly we find pd�s1 |Bs1

for 0 ¤ s1 ¤ d.

We are looking for a preimage rδ P H0pX,DX,dq of δ whose image in H0pX, Q¤dq vanishes.

We start by taking as a candidate the element rδd which is given by the same formula as
δ, but now the summands are considered to be global sections of DX,d, i.e.,

rδd � d�1̧

s�0

Asy
sBdy �

ḑ

s1�0

Bs1x
s1Bdx P H0pX,DX,dq .

(We write Bbd
x when we consider it as a section of T bd

X , and we write Bdx when we consider
it as a section of DX,d.) By 2.3.2 this is indeed a global section of DX,d.

The problem that we are facing now is this: while the local data of rδd in degree d vanish

(by assumption), it will in general not be the case that the local data of rδd in degree   d

vanish as well. Our aim is to modify rδd by adding a global section of DX,d�1 to it, such
that the difference has vanishing local data in all degrees, hence comes from an element
in pr�DX1,d.
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In order to do so, we determine the local data of rδd at infinity in all degrees. Using 2.3.2
we write

rδd � °d�1
s�0 Asy

sBdy �
°d

s1�0Bs1x
s1Bdx

� °d�1
s�0 Asy

sBdy �
°d

s1�0Bs1p�1qd
�°d

e�1 ad,ey
d�e�s1Bey

	
� °d�1

s�0 Asy
sBdy � p�1qd°d

e�1 ad,e

�°d
s1�0Bs1y

d�e�s1
	
Bey .

Because d� e� s1 ¥ e the term yd�e�s1Bey does not contribute to local data at infinity. So,

in fact, rδd has vanishing local data at infinity in all degrees less or equal to d.

Now we analyze the local data at points a P XpFpqzt8u � Fp. Let ξa P Zp be a lift of a.
We use 2.3.2 again and write

rδd � d�1̧

s�0

Asy
sBdy �

ḑ

s1�0

Bs1x
s1Bdx

�
ḑ

s1�0

Bs1x
s1Bdx �

d�1̧

s�0

Asp�1qd
�

ḑ

e�1

ad,ex
d�e�sBex

�

�
ḑ

s1�0

Bs1x
s1Bdx � p�1qd

ḑ

e�1

ad,e

�
d�1̧

s�0

Asx
d�e�s

�
Bex

p�q�
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx � p�1qd

d�1̧

e�1

ad,e

�
d�1̧

s�0

Asx
d�e�s

�
Bex

�
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx

� p�1qd
d�1̧

e�1

ad,e

�
d�1̧

s�0

Aspxa � ξaqd�e�s

�
Bexa
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�
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx

� p�1qd
d�1̧

e�1

ad,e

�
d�1̧

s�0

d�e�s¸
k�0

�
d� e� s

k



ξkaAsx

d�e�s�k
a Bexa

�
.

The term
�
d�e�s

k

�
ξkaAsx

d�e�s�k
a Bexa

gives a non-zero contribution to the local data at a in
degree e only if d�e�s�k   e, i.e., d   s�k, and in this case the contribution is modulo
pe�pd�e�s�kq � ps�k�d. Since s� k � d ¤ s� pd� e� sq � d � e and because pd�s|As we
find that the contribution of

�
d�e�s

k

�
ξkaAsx

d�e�s�k
a Bexa

vanishes if d � s ¥ e. So we only
need to pay attention to those terms for which d� s   e or, equivalently, d� e   s.

Noting that
°

1 s dAsy
s�1Bd�1

y is a global section of DX,d�1 we now consider

rδd,d�1
def� rδd � ad,d�1

� ¸
1 s d

Asy
s�1

�
Bd�1
y .

Because d�1�ps�1q � d�s and because pd�s|As this differential operator has vanishing

local data at infinity in degree d� 1 (and in degree d). We write rδd,d�1 in terms of powers

of Bx (using equation (*) above for rδd ) and find:

rδd,d�1 �
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx � p�1qd

d�1̧

e�1

ad,e

�
d�ȩ

s�0

Asx
d�e�s

�
Bex

� p�1qd
d�1̧

e�1

ad,e

� ¸
d�e s d

Asx
d�e�s

�
Bex

� p�1qd�1ad,d�1

¸
1 s d

As

�
d�1̧

e�1

ad�1,ex
d�1�e�ps�1qBex

�
.

As mentioned above, the terms in
°d�1

e�1 ad,e

�°d�e
s�0Asx

d�e�s
	
Bex do not contribute to the

local data in degrees less than d. We continue our calculation and find:
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rδd,d�1 �
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx � p�1qd

d�1̧

e�1

ad,e

�
d�ȩ

s�0

Asx
d�e�s

�
Bex

� p�1qd
d�2̧

e�1

ad,e

� ¸
d�e s d

Asx
d�e�s

�
Bex � p�1qdad,d�1

� ¸
1 s d

Asx
2d�1�s

�
Bd�1
x

� p�1qd�1ad,d�1

¸
1 s d

As

�
d�1̧

e�1

ad�1,ex
d�e�sBex

�

�
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx � p�1qd

d�1̧

e�1

ad,e

�
d�ȩ

s�0

Asx
d�e�s

�
Bex

� p�1qd
d�2̧

e�1

ad,e

� ¸
d�e s d

Asx
d�e�s

�
Bex � p�1qdad,d�1

� ¸
1 s d

Asx
2d�1�s

�
Bd�1
x

� p�1qd�1ad,d�1

¸
1 s d

As

�
d�2̧

e�1

ad�1,ex
d�e�sBex

�

� p�1qd�1ad,d�1

¸
1 s d

Asad�1,d�1x
2d�1�sBd�1

x

�
�

ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx � p�1qd

d�1̧

e�1

ad,e

�
d�ȩ

s�0

Asx
d�e�s

�
Bex

� p�1qd
d�2̧

e�1

ad,e

� ¸
d�e s d

Asx
d�e�s

�
Bex

� p�1qd�1ad,d�1

d�2̧

e�1

ad�1,e

� ¸
1 s d

Asx
d�e�s

�
Bex .



ARITHMETIC DIFFERENTIAL OPERATORS ON A SEMISTABLE MODEL OF P1 17

We therefore see that rδd,d�1 has vanishing local data in degrees d and d � 1. As above,

in the last sum
°d�2

e�1 ad�1,e

�°
1 s dAsx

d�e�s
� Bex all those terms with d � s ¥ e do not

contribute local data, so we write rδd,d�1 as the sum of�
ḑ

s1�0

Bs1x
s1 � p�1qd

d�1̧

s�0

Asx
2d�s

�
Bdx

and

p�1qd
d�1̧

e�1

ad,e

�
d�ȩ

s�0

Asx
d�e�s

�
Bex � p�1qd�1ad,d�1

d�2̧

e�1

ad�1,e

�
d�ȩ

s�2

Asx
d�e�s

�
Bex

and

p�1qd
d�2̧

e�1

pad,e � ad,d�1ad�1,eq
� ¸

d�e s d

Asx
d�e�s

�
Bex

Now we define

rδd,d�1,d�2 � rδd,d�1 � p�1qdpad,d�2 � ad,d�1ad�1,d�2q
� ¸

2 s d

Asy
s�2

�
Bd�2
y .

Continuing in this manner shows that we eventually find rδ def� rδd,...,1 P H0pX,DX,dq which
has vanishing local data in all degrees less or equal to d, and its projection to H0pX, T bd

X q
is equal to δ. This finishes the proof of the injectivity of the map 2.3.5.

(iii) Now we prove the splitting 2.3.6. We start by making the following general remark:
if H1 is a subgroup of a finite abelian p-group H, then H1 is a direct summand of H if
(and only if) pH XH1 � pH1.

Now let c¤d P H0pX, Q¤dq be any element and let rc¤ds P H1pX, pr�DX,dq be its image.
Suppose prc¤ds � rpc¤ds lies in H1pX, pr�DX,d�1q, and write rpc¤ds � rc¤d�1s for some
element c¤d�1 P H0pX, Q¤d�1q. Then there is δ¤d P H0pX,DX,dq such that Q¤dpδ¤dq �
pc¤d � c¤d�1. This is implies that

Qdpδ¤dq P H0pX, Qdq �
à

aPXpFpq

d�1à
i�0

�
Z{pd�i

� � xiaBdxa

is such that all its local data in the various groups Z{pd�i are divisible by p. Write
δ¤d � δd � δ¤d�1 with
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δd �
d�1̧

s�0

Asy
sBdy �

ḑ

s1�0

Bs1x
s1Bdx ,

and with δ¤d�1 P H0pX,DX,d�1q. The local data in degree d of δ¤d (or, equivalently, δd) at
a � 8 and a � 0 can be read off immediately from this expression for δd and it follows that
all coefficients As, 0 ¤ s ¤ d� 1, and Bs1 , 0 ¤ s1 ¤ d, are divisible by p. So we can write
δd � pδ1d, and hence δ¤d � pδ1d�δ¤d�1. We then have Q¤dpδ¤dq � pQ¤dpδ1dq�Q¤d�1pδ¤d�1q.
From Q¤dpδ¤dq � pc¤d � c¤d�1 we thus get

ppQ¤dpδ1dq � c¤dq � �Q¤d�1pδ¤d�1q � c¤d�1 .

Write Q¤dpδ1dq � c¤d � cd � c1¤d�1 with c1d P Qd and c1¤d�1 P Q¤d�1 and we find:

pc1¤d�1 � �Q¤d�1pδ¤d�1q � c¤d�1 ,

and thus rc¤d�1s � prc1¤d�1s. �

In order to estimate the exponent of H1pX, pr�pDX1,dqq we need the following elementary
lemma.

Lemma 2.3.13. Let A � Z{pn1 ` � � � ` Z{pnr be an abelian torsion group with 0  
n1 ¤ n2 ¤ . . . ¤ nr. Let a P A be an arbitrary element. Then A{xay surjects onto
Z{pn1 ` � � � ` Z{pnr�1.

Proof. Write a � pa1, . . . , arq, and choose i P t1, . . . , ru such that

ordpaiq � maxtordpajq | j � 1, . . . , ru .
If now b � pb1, . . . , brq P xay is such that bi � 0, then b � 0. Therefore, the map

Z{pn1 ` � � � ` Z{pni�1 ` Z{pni�1 ` Z{pnr ãÑ Z{pn1 ` � � � ` Z{pnr � A� A{xay
is injective. Because finite-abelian groups are self-dual (non-canonically), we see that
there is a surjection

A{xay� Z{pn1 ` � � � ` Z{pni�1 ` Z{pni�1 ` Z{pnr .

But the group on the right clearly surjects onto Z{pn1 ` � � � ` Z{pnr�1 . �

Proposition 2.3.14. For any d ¥ 1 the cohomology group H1pX, pr�pT bd
X1
qq contains

elements of order pe where e � tp�1
p�1

pd � 1qu. In particular, as d tends to infinity, the

exponents of H1pX, pr�pT bd
X1
qq and of H1pX, pr�pDX1,dqq tend to infinity.
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Proof. By 2.3.6 we have

H1pX, pr�pDX1,dqq � H1pX, pr�pDX1,d�1qq `H1pX, pr�pT bd
X1
qq .

Furthermore, H1pX, pr�pT bd
X1
qq is the quotient of

Qd �
à

aPXpFpq

d�1à
i�0

�
Z{pd�i

� � xiaBdxa
�
�

d�1à
i�0

�
Z{pd�i

��`pp�1q

,

cf. 2.3.10, by the image of H0pX, T bd
X q which is a free Zp-module of rank 2d � 1. Write

2d � 1 � kpp � 1q � r with 0 ¤ r ¤ p, so that k � 2d�1
p�1

� r
p�1

. Then, by applying 2.3.13

repeatedly we see that H1pX, pr�pT bd
X1
qq must be of exponent at least pe where

e � d� k � p� 1

p� 1
d� r � 1

p� 1
� p� 1

p� 1
pd� 1q � p� r

p� 1
�
Z
p� 1

p� 1
pd� 1q

^
.

�

Remark 2.3.15. With some more work it should also be possible to explicitly determine
the structure of H1pX, pr�pDX1,dqq.

2.4. pH0pX1,DX1q � H0pX1,DX1q and H1pX1,DX1q is non-torsion.

Theorem 2.4.1. (a) TpH
1pX, pr�pDX1qq � 0.

(b) TpH
1pX1,DX1q � 0.

(c) pH0pX1,DX1q � H0pX1,DX1q.
(d) pH1pX1,DX1q contains a non-torsion element.

(e) H1pX1,DX1q contains a non-torsion element.

Proof. (a) We have H1pX, pr�pDX1qq � limÝÑd
H1pX, pr�pDX1,dqq. Using 2.3.6 we see that

(2.4.2) H1pX, pr�pDX1qq �
8à
d�1

H1pX, pr�pT bd
X1
qq .

Because each group H1pX, pr�pT bd
X1
qq is a finite p-group, the p-adic Tate module

TpH
1pX, pr�pDX1qq

must vanish.

(b) This follows from (a) and 2.2.2.
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(c) This follows from (b) and 2.1.5.

(d) For d ¥ 1 put ed � tp�1
p�1

pd� 1qu. Let cd P H1pX, pr�pT bd
X1
qq be an element of order ed,

cf. 2.3.14. It follows from 2.4.2 that H1pX1,DX1q � H1pX, pr�pDX1qq contains a subgroup
isomorphic to

À
d¥1xcdy. Let pndqd¥1 be an increasing sequence of non-negative integers

nd ¤ ed such that limdÑ8 nd � 8 and limdÑ8ped � ndq � 8. Then c � °
d¥1 p

ndcd

converges in the p-adic completion pH1pX1,DX1q of H1pX1,DX1q. Moreover, c is clearly
not a torsion element.

(e) This follows from the fact that the map

H1pX1,DX1q ÝÑ limÐÝ
k

H1pX1,DX1{pkDX1q � pH1pX1,DX1q ,

cf. 2.1.1, is surjective. (The equality sign on the right is 2.1.6.) �

3. Global sections and cohomology of D pmq on X1

In this section we consider the sheaves of differential operators D pmq
X1

on X1 of level m ¥ 0.
The discussion is along the same lines as in section 2, with a few modifications which we
are going to point out as we proceed.

3.1. Comparing the cohomology of Dpmq and D pmq. Let Dpmq
X1

� Dpmq
X1,log

be the sheaf
of logarithmic differential operators on X1 of level m [12, 5.6]. For a local description let

pa, a1q P R8 �R. For m, d ¥ 0 we let q
pmq
d be defined as usual by d � q

pmq
d pm � r with

0 ¤ r   pm. On an open neighbourhood Xp1q
a � X1 of the singularity corresponding to a,

the OX1-module Dpmq
X1

is generated by operators of the form

q
pmq
d !

�
D

d



where D � xaBxa � �zaBza is a local section of TX1 . On the ’residual disc scheme’ Dp1q

a,a1

with coordinate function x
p1q
a,a1 , the module Dpmq

X1
is generated by the usual divided powers

q
pmq
d !

d!
Bd
x
p1q
a,a1

.

We write Dpmq
X1

for the OX1-module generated by the restriction of Dpmq
X1

to X1. Let D pmq
X1

be the p-adic completion Dpmq
X1

. The first lemma is exactly as 2.1.1.

Lemma 3.1.1. The canonical homomorphism

H ipX1,D
pmq
X1

q ÝÑ limÐÝ
k

H ipX1,Dpmq
X1
{pkDpmq

X1
q .

�
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is an isomorphism for i � 0 and is surjective for i � 1. For i ¡ 1 source and target of
this map vanish.

And also the next result goes over without any changes.

Proposition 3.1.2. (a) For all i ¥ 0 there is a canonical exact sequence

(3.1.3) 0 Ñ pH ipX1,Dpmq
X1
q Ñ limÐÝ

k

H ipX1,Dpmq
X1
{Dpmq

X1
q Ñ Tp

�
H i�1pX1,Dpmq

X1
q
	
Ñ 0 .

(b) For i � 0 the exact sequence in (a) is

(3.1.4) 0 Ñ pH0pX1,Dpmq
X1
q Ñ H0pX1,D

pmq
X1

q Ñ Tp

�
H1pX1,Dpmq

X1
q
	
Ñ 0 .

(c) The cohomology group H2
�
X1,Dpmq

X1

	
vanishes and the exact sequence in (a) gives

therefore a canonical isomorphism

(3.1.5) pH1pX1,Dpmq
X1
q � limÐÝ

k

H1pX1,Dpmq
X1
{pkDpmq

X1
q .

�

3.2. Vanishing of R1pr�pDpmq
X1
q. As above we use the Leray spectral sequence for the

blow-up morphism

pr : X1 ÝÑ X � X0 .

Applied to the sheaf Dpmq
X1

we get an exact sequence

(3.2.1) 0 Ñ H1pX, pr�pDpmq
X1
qq Ñ H1pX1,Dpmq

X1
q Ñ H0pX,R1pr�pDpmq

X1
qq Ñ 0 .

Denote by Dpmq
X,d and Dpmq

X1,d
the sheaves of differential operators of degree less or equal to

d. Note also that

(3.2.2) pT bd
X1
qpmq � q

pmq
d !

d!
T bd
X1

� T bd
X1

bZp Qp ,

cf. [12, 3.2]. Then, similar to 2.2.3, we have an exact sequence

(3.2.3) 0 ÝÑ Dpmq
X1,d�1 ÝÑ Dpmq

X1,d
ÝÑ pT bd

X1
qpmq ÝÑ 0 .
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Lemma 3.2.4. (a) For all d ¥ 0 one has R1pr�pDpmq
X1,d

q � 0.

(b) R1pr�pDpmq
X1
q � 0.

(c) H1pX, pr�pDpmq
X1
qq � H1pX1,Dpmq

X1
q.

Proof. (a) This follows as in 2.2.2 (a) using 3.2.2 in the Cech cohomology argument.

(b) Follows from (a) by passing to the limit.

(c) Follows from (b) and 3.2.1. �

3.3. The cohomology group H1pX, pr�pDpmq
X1
qq. Consider the exact sequence 3.2.3 and

the corresponding sequence of direct images on X

(3.3.1) 0 ÝÑ pr�

�
Dpmq

X1,d�1

	
ÝÑ pr�

�
Dpmq

X1,d

	
ÝÑ pr�

�
T bd
X1

	
ÝÑ R1pr�

�
Dpmq

X1,d�1

	
� 0 ,

where we have used 3.2.4 (a). We have

H1pX, pr�pDpmq
X1
qq � limÝÑ

d

H1pX, pr�pDpmq
X1,d

qq .

We put Bxdypmq
x � q

pmq
d !

d!
Bdx, and similarly for Bdy (and also for Bdxa

). With this notation we
deduce from 2.3.2 the following

Lemma 3.3.2. Let x, y be the standard coordinates on P1 satisfying xy � 1. Then we
have for any s P Z¥1

Bxsypmq
y � p�1qs

ş

t�1

a
pmq
s,t x

s�tBxtypmq
x ,

where for all s ¥ 1 and 1 ¤ t ¤ s

(3.3.3) a
pmq
s,t �

�
s

t


ps� 1q!
pt� 1q!

q
pmq
s !

s!

�
q
pmq
t !

t!

��1

�
�
s� 1

t� 1



q
pmq
s !

q
pmq
t !

.

These numbers are always integers, and we have, in particular,

as,1 � qpmqs ! and as,s � 1 .

�
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Theorem 3.3.4. For all d ¥ 1 the canonical map

(3.3.5) H1pX, pr�pDpmq
X1,d�1qq Ñ H1pX, pr�pDpmq

X1,d
qq

coming from the long exact cohomology sequence associated to 3.3.1 is injective and embeds

H1pX, pr�pDpmq
X1,d�1qq as a direct summand of H1pX, pr�pDpmq

X1,d
qq. Therefore, there is a

splitting:

(3.3.6) H1
�
X, pr�pDpmq

X1,d
q
	
� H1

�
X, pr�pDpmq

X1,d�1q
	
`H1

�
X, pr�ppT bd

X1
qpmqq� .

�

Proof. The proof proceeds along the lines of 2.3.4 taking into account the following points.

(i) The skyscraper sheaf Q
pmq
d q (resp. Q

pmq
¤d ) is defined, similar as before, as the quotient

of pT bd
X qpmq (resp. Dpmq

X,d ) by pr�ppT bd
X1
qpmqq (resp. pr�pDpmq

X1,d
q). By 3.2.2, the sheaf Q

pmq
¤d

(resp. Q
pmq
d ) is actually isomorphic to the sheaf Q¤d (resp. Qd).

(ii) The subtle part is the proof of the injectivity. As in the proof of 2.3.4 consider an

element δ of H0
�
X, pT bd

X qpmq� whose image in the group H0pX, Qpmq
d q vanishes. Then we

want to lift it to an element rδ P H0
�
X,Dpmq

X,d

	
such that the image of rδ in H0pX, Qpmq

¤d q
vanishes. The discussion now proceeds along exactly the same lines as before. The
difference is that one has to use the transformation formula in 3.3.2. This does not affect
the arguments because the coefficients a

pmq
s,t are integral. �

Proposition 3.3.7. For any d ¥ 1 the cohomology group H1
�
X, pr�ppT bd

X1
qpmqq� contains

elements of order pe where e � tp�1
p�1

pd � 1qu. In particular, as d tends to infinity, the

exponents of H1
�
X, pr�ppT bd

X1
qpmqq� and of H1

�
X, pr�pDpmq

X1,d
q
	

tend to infinity.

Proof. The proof of 2.3.14 carries over to the case m ¡ 0. �

Theorem 3.3.8. (a) TpH
1pX, pr�pDpmq

X1
qq � 0.

(b) TpH
1pX1,Dpmq

X1
q � 0.

(c) H0pX1,Dpmq
X1
q^ � H0pX1,D

pmq
X1

q.
(d) H1pX1,D

pmq
X1

q contains non-torsion elements.

Proof. The proof of 2.4.1 carries over to the case when m ¡ 0. �
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3.4. H1pX1,D
:
X1,Qq does not vanish for p ¡ 2.

Theorem 3.4.1. (i) The inductive limit

limÝÑ
m

pH1pX1,Dpmq
X1
q bZ Q

does not vanish when p ¡ 2.

(ii) H1pX1,D
:
X1,Qq does not vanish when p ¡ 2.

Proof. (i) Let us consider the transition map

(3.4.2) pH1pX1,Dp0q
X1
q ÝÑ pH1pX1,Dpmq

X1
q .

Using 2.4.2 and its analogues in level m, together with 3.2.4 and 3.1.5, we rewrite 3.4.2
as

(3.4.3)

�
8à
d�1

H1pX, pr�pT bd
X1
qq
�^

ÝÑ
�

8à
d�1

H1
�
X, pr�ppT bd

X1
qpmqq��^ ,

where r�s^ denotes the p-adic completion of r�s. Because of 3.2.2 we can formally write
the right hand side of 3.4.3 as�

8à
d�1

q
pmq
d !

d!
H1

�
X, pr�pT bd

X1
q��^ .

By definition of the topology, the latter p-adic completion is, as topological Zp-module,
canonically isomorphic to �

8à
d�1

H1
�
X, pr�pT bd

X1
q��^

via mapping, in the d-th component,
q
pmq
d !

d!
ÞÑ 1. With this identification, the map in 3.4.3

assumes the following explicit form

pcdqd¥1 ÞÑ
�

d!

q
pmq
d !

� cd
�

d¥1

P
�

8à
d�1

H1
�
X, pr�pT bd

X1
q��^ ,

where cd P H1
�
X, pr�pT bd

X1
q�. Now let cd be a cohomology class of order ped where

ed � tp�1
p�1

pd � 1qu, cf. 3.3.7. Denote by vp the (logarithmic) normalized p-adic valuation.

Then we have
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vp

�
d!

q
pmq
d !

�
¤ d

p� 1
�
�

t d
pm

u

p� 1
� logp

�Z
d

pm

^
�
¤ d

p� 1
� d

pp� 1qpm � logppdq � 1 .

Let nd be a non-negative integer, and denote by ord the order of an element. Then

vp

�
ord

�
d!

q
pmq
d !

� pndcd




¥ p�1

p�1
pd� 1q � 1� nd � p d

p�1
� d

pp�1qpm
� logppdq � 1q

�
�

p�1
p�1

� 1
p�1

� 1
pp�1qpm

	
d� nd � logppdq � 2

�
�

p2�3p
p2�1

� 1
pp�1qpm

	
d� nd � logppdq � 2 .

If p ¥ 3 and if we put, for instance, nd � t
?
du, d ¥ 1, then we have, for any m,

lim
dÑ8

��
p2 � 3p

p2 � 1
� 1

pp� 1qpm


d� nd � logppdq � 2

�
� 8 .

This means that the sequence of elements ppndcdq defines an element c of pH1pX1,Dp0q
X1
q, and

this element c has the property that its image in any group pH1pX1,Dpmq
X1
q is non-torsion.

The image of c in

limÝÑ
m

pH1pX1,Dpmq
X1
q

will also not be a torsion element.

(ii) Because the maps

H1pX1,D
pmq
X1

q ÝÑ limÐÝ
k

H1pX1,Dpmq
X1
{pkDpmq

X1
q � pH1pX1,Dpmq

X1
q

are surjective, cf. 3.1.1, the same is true after tensoring with Q and taking the limit for
mÑ 8. �
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IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France
E-mail address: Tobias.Schmidt@univ-rennes1.fr

Indiana University, Department of Mathematics, Rawles Hall, Bloomington, IN 47405,
U.S.A.
E-mail address: mstrauch@indiana.edu


