Weak holonomicity for equivariant $\mathcal{D}\text{-modules}$ on rigid analytic flag varieties

Thi Minh Phuong Vu

Colloque Tournant 2021 du GDR

March 26, 2020

Phuong Vu (Rennes)

Weak holonomicity for equivariant $\mathcal D$ -module

March 26, 2020

Outline

1 Introdution

2 The rigid-analytic setting

- Completed skew-group algebras
- Coadmissible equivariant modules

3 Main results

- Weak holonomicity
- Examples

\mathcal{D} -modules and representation theory

Theorem (Beilinson-Bernstein, 1981)

Let G be a connected complex reductive algebraic group with Lie algebra \mathfrak{g} and X := G/B be its flag variety ($B \subset G$ be a fixed Borel subgroup). The global section functor

$$\Gamma: Qcoh(\mathcal{D}_X) \longrightarrow Mod(U(\mathfrak{g}))$$
$$\mathcal{M} \longrightarrow \Gamma(X, \mathcal{M})$$

induces an equivalence of categories between the category of quasi-coherent (res. coherent) \mathcal{D}_X -modules and the category of $U(\mathfrak{g})/Z(\mathfrak{g}) \cap U(\mathfrak{g})\mathfrak{g}$ -modules (resp. finitely generated modules).

p-adic representations

Notations: K be a complete discrete valuation field (ex: finite extensions of \mathbb{Q}_p). $R := \{a \in K, |a| \leq 1\}, \pi$ uniformiser.

G: a locally analytic group over K.

Aim: Study locally analytic representations of G.

Definition

- A representation $G \longrightarrow GL(V)$ is called locally analytic if
 - $\star~V$ is a Hausdorf locally convex K-vector space.
 - \star For each $v \in V$, the orbit map

$$G \longrightarrow V, g \longmapsto gv$$

is locally analytic with values in V.

Phuong Vu (Rennes)

p-adic representations

Notations: K be a complete discrete valuation field (ex: finite extensions of \mathbb{Q}_p). $R := \{a \in K, |a| \leq 1\}, \pi$ uniformiser.

G: a locally analytic group over K.

Aim: Study locally analytic representations of G.

Definition

A representation $G \longrightarrow GL(V)$ is called locally analytic if

- \star V is a Hausdorf locally convex K-vector space.
- \star For each $v \in V$, the orbit map

$$G \longrightarrow V, g \longmapsto gv$$

is locally analytic with values in V.

Phuong Vu (Rennes)

Definition

The strong dual of the locally convex K-vector space $C^{la}(G,K) := \{f: G \longrightarrow K, \text{ locally analytic}\}$

$$D(G,K) := (C^{la}(G,K))'_b$$

is called the distribution algebra of G.

Some remarks:

- 1. $G\subset D(G,K)$ via $g\longmapsto \delta_g(f):=f(g)$ (Dirac distribution). Therefore $K[G]\subset D(G,K)$
- 2. Let $\mathfrak{g} := Lie(G)$, then $U(\mathfrak{g}) \subset D(G, K)$ via

$$x \in \mathfrak{g} \longmapsto f \longmapsto \frac{d}{dt} \mid_{t=0} (f \circ \exp(-tx))(1)$$

Definition

The strong dual of the locally convex K-vector space $C^{la}(G,K) := \{f: G \longrightarrow K, \text{ locally analytic}\}$

$$D(G,K) := (C^{la}(G,K))'_b$$

is called the distribution algebra of G.

Some remarks:

- 1. $G \subset D(G, K)$ via $g \mapsto \delta_g(f) := f(g)$ (Dirac distribution). Therefore $K[G] \subset D(G, K)$
- 2. Let $\mathfrak{g} := Lie(G)$, then $U(\mathfrak{g}) \subset D(G, K)$ via

$$x \in \mathfrak{g} \longmapsto f \longmapsto \frac{d}{dt} \mid_{t=0} (f \circ \exp(-tx))(1)$$

Important result: (Schneider-Teitelbaum) When G is compact, there is an (anti-) equivalence of categories between the category of admissible locally analytic representations and that of coadmissible D(G, K)-modules.

Geometric tools: Establish a p-adic version of Beilinson-Bernstein correspondence (Schmidt-Strauch-Huyghe for arithmetic \mathcal{D} -modules (Berthelot), Ardakov for \widehat{D} -modules on rigid analytic spaces)

Important result: (Schneider-Teitelbaum) When G is compact, there is an (anti-) equivalence of categories between the category of admissible locally analytic representations and that of coadmissible D(G, K)-modules.

Geometric tools: Establish a *p*-adic version of Beilinson-Bernstein correspondence (Schmidt-Strauch-Huyghe for arithmetic \mathcal{D} -modules (Berthelot), Ardakov for \widehat{D} -modules on rigid analytic spaces)

Group algebras

Recall that if R be a unital ring and G is an abstract group which acts on R via $G \longrightarrow Aut(R),$ then

 $R \rtimes G := \{ r_1 g_1 + r_2 g_2 + \dots + r_n g_n, \ r_i \in R, g_i \in G, n \in \mathbb{N} \}$

with (rg).(r'g') = r(g.r')(gg') is an associative ring.

 \implies Each R-module with compatible action of G can be considered as a $R \rtimes G$ -module.

Theorem (Equivariant $\mathcal D$ -modules)

Let **X** be a rigid analytic space equipped with an action of a *p*-adic Lie group *G* and *M* be a *G*-equivariant *D*-module. Then for any admissible open subset $\mathbf{U} \subset \mathbf{X}$ and $H \leq G$ which stablizes \mathbf{U} , $\mathcal{M}(\mathbf{U})$ is a $\mathcal{D}(\mathbf{U}) \rtimes H$ -module.

Group algebras

Recall that if R be a unital ring and G is an abstract group which acts on R via $G \longrightarrow Aut(R),$ then

 $R \rtimes G := \{ r_1 g_1 + r_2 g_2 + \dots + r_n g_n, \ r_i \in R, g_i \in G, n \in \mathbb{N} \}$

with (rg).(r'g') = r(g.r')(gg') is an associative ring.

 \implies Each R-module with compatible action of G can be considered as a $R\rtimes G\text{-module}.$

Theorem (Equivariant $\mathcal D$ -modules)

Let **X** be a rigid analytic space equipped with an action of a *p*-adic Lie group *G* and *M* be a *G*-equivariant *D*-module. Then for any admissible open subset $\mathbf{U} \subset \mathbf{X}$ and $H \leq G$ which stablizes \mathbf{U} , $\mathcal{M}(\mathbf{U})$ is a $\mathcal{D}(\mathbf{U}) \rtimes H$ -module.

Group algebras

Recall that if R be a unital ring and G is an abstract group which acts on R via $G \longrightarrow Aut(R),$ then

 $R \rtimes G := \{ r_1 g_1 + r_2 g_2 + \dots + r_n g_n, \ r_i \in R, g_i \in G, n \in \mathbb{N} \}$

with (rg).(r'g') = r(g.r')(gg') is an associative ring.

 \implies Each R-module with compatible action of G can be considered as a $R\rtimes G\text{-module}.$

Theorem (Equivariant \mathcal{D} -modules)

Let **X** be a rigid analytic space equipped with an action of a *p*-adic Lie group *G* and \mathcal{M} be a *G*-equivariant \mathcal{D} -module. Then for any admissible open subset $\mathbf{U} \subset \mathbf{X}$ and $H \leq G$ which stablizes \mathbf{U} , $\mathcal{M}(\mathbf{U})$ is a $\mathcal{D}(\mathbf{U}) \rtimes H$ -module.

The completed kew-group algebra

Let X be a smooth rigid analytic variety, G a p-adic Lie group acting continuously on X.

 \sim → For **U** an affinoid *H*-stable ($H \le G$) s.t there is a free Lie lattice \mathcal{L} of $Der(\mathcal{O}(\mathbf{U}))$ which is *H*-stable (*H* is then called **U**-small). We define:

$$\widehat{\mathcal{D}}(\mathbf{U},H) \simeq \varprojlim_{n} \widehat{U(\pi^{n}\mathcal{L})}_{K} \rtimes_{J_{n}} H,$$

where $...J_{n+1} \leq J_n... \leq H$ open compact such that there exists $\beta : J_n \longrightarrow \widehat{U(\pi^n \mathcal{L})}_K^{\wedge}$ *H*-equivariant and

$$\widehat{U\left(\pi^{n}\mathcal{L}\right)}_{K}\rtimes_{J_{n}}H=\widehat{U\left(\pi^{n}\mathcal{L}\right)}_{K}\rtimes H/<\beta(g)^{-1}g-1,\ g\in J_{n}>.$$

Theorem (K. Ardakov)

The K-algebra $\widehat{D}(\mathbf{U}, H)$ is Fréchet-Stein : each K-algebra $U(\pi^n \mathcal{L})_K \rtimes_{J_n} H$ is Banach Noetherian, transition maps are flat.

Phuong Vu (Rennes)

The completed kew-group algebra

Let X be a smooth rigid analytic variety, G a p-adic Lie group acting continuously on X.

→ For **U** an affinoid *H*-stable ($H \le G$) s.t there is a free Lie lattice \mathcal{L} of $Der(\mathcal{O}(\mathbf{U}))$ which is *H*-stable (*H* is then called **U**-small). We define:

$$\widehat{\mathcal{D}}(\mathbf{U},H) \simeq \varprojlim_{n} \widehat{U(\pi^{n}\mathcal{L})}_{K} \rtimes_{J_{n}} H,$$

where $...J_{n+1} \leq J_n... \leq H$ open compact such that there exists $\beta : J_n \longrightarrow \widehat{U(\pi^n \mathcal{L})}_K^{\wedge}$ *H*-equivariant and

$$\widehat{U\left(\pi^{n}\mathcal{L}\right)}_{K}\rtimes_{J_{n}}H=\widehat{U\left(\pi^{n}\mathcal{L}\right)}_{K}\rtimes H/<\beta(g)^{-1}g-1,\ g\in J_{n}>.$$

Theorem (K. Ardakov)

The K-algebra $\widehat{D}(\mathbf{U}, H)$ is Fréchet-Stein : each K-algebra $U(\pi^n \mathcal{L})_K \rtimes_{J_n} H$ is Banach Noetherian, transition maps are flat.

Phuong Vu (Rennes)

Coadmissible equivariant modules

Definition

A module over a Fréchet-Stein K-algebra $U = \varprojlim_n U_n$ is coadmissible (denoted by $\mathcal{C}_{\widehat{D}(\mathbf{X},G)}$) if $M \cong \varprojlim_n M_n$ with $M_n \in Mod_c(U_n)$ such that

$$U_n \otimes_{U_{n+1}} M_{n+1} \xrightarrow{\sim} M_n.$$

Theorem (K.Ardakov)

Suppose that X is affinoid and (X,G) is small. Let M be a coadmissible $\widehat{D}(X,G)$ -module

(i) If (\mathbf{U}, H) is small, the $\widehat{D}(\mathbf{U}, H)$ -module

$$M(\mathbf{U},H):=\widehat{D}(\mathbf{U},H)\widehat{\otimes}_{\widehat{D}(\mathbf{X},H)}M$$

is coadmissible

(ii) The correspondence $\mathbf{U} \mapsto \varprojlim_{H} M(\mathbf{U}, H)$ induces a *G*-equivariant sheaf $Loc_{\overline{\mathcal{D}}(\mathbf{X},G)}^{\mathbf{X}}(M)$ of \mathcal{D} -modules on \mathbf{X} .

Coadmissible equivariant modules

Definition

A module over a Fréchet-Stein K-algebra $U = \varprojlim_n U_n$ is coadmissible (denoted by $\mathcal{C}_{\widehat{D}(\mathbf{X},G)}$) if $M \cong \varprojlim_n M_n$ with $M_n \in Mod_c(U_n)$ such that

$$U_n \otimes_{U_{n+1}} M_{n+1} \xrightarrow{\sim} M_n.$$

Theorem (K.Ardakov)

Suppose that **X** is affinoid and (\mathbf{X}, G) is small. Let M be a coadmissible $\widehat{D}(\mathbf{X}, G)$ -module

(i) If
$$(\mathbf{U}, H)$$
 is small, the $\widehat{D}(\mathbf{U}, H)$ -module

$$M(\mathbf{U},H) := \widehat{D}(\mathbf{U},H)\widehat{\otimes}_{\widehat{D}(\mathbf{X},H)}M$$

is coadmissible

(ii) The correspondence $\mathbf{U} \mapsto \varprojlim_H M(\mathbf{U}, H)$ induces a G-equivariant sheaf $Loc_{\widehat{D}(\mathbf{X},G)}^{\mathbf{X}}(M)$ of \mathcal{D} -modules on \mathbf{X} .

Definition

A *G*-equivariant $\mathcal{D}_{\mathbf{X}}$ -module \mathcal{M} is called coadmissible (denoted by $\mathcal{M} \in \mathcal{C}_{\mathbf{X}/G}$) if

(i) For each **U** affinoid, $\mathcal{M}(\mathbf{U})$ is equipped with a Fréchet topology such that the *G*-action is continuous.

(ii) $\mathcal{M}|_{\mathbf{U}} \cong Loc_{\widehat{D}(\mathbf{U},H)}^{\mathbf{U}}(M)$ for some coadmissible $\widehat{D}(\mathbf{U},H)$ -module M.

Main results Weak holonomicity

Phuong Vu (Rennes)

Weak holonomicity for equivariant $\mathcal D$ -module

March 26, 2020

Dimension theory

Theorem (V.)

(i) The K-algebra $\widehat{D}(\mathbf{X}, G)$ is coadmissibly Auslander-Gorenstein, meaning that there exists a free Lie lattice \mathcal{L} for $Der_K(\mathcal{O}(\mathbf{X}))$ such that each $D_n := \widehat{U(\pi^n \mathcal{L})}_K \rtimes_{J_n} G$ is Auslander-Gorenstein and

$$\widehat{D}(\mathbf{X},G) \cong \varprojlim_n D_n$$

(*ii*) There is a dimension function on the category of coadmissible $\widehat{D}(\mathbf{X}, G)$ modules: $d: \ \mathcal{C}_{\widehat{D}(\mathbf{X}, G)} \longrightarrow \mathbb{Z}_{\geq 0}$ given by

 $d(M) := 2 \dim \mathsf{X} - \min\{i \ge 0 : Ext^i(M, \widehat{D}(X, G)) \neq 0\}$

Example

Example

If $P \in \mathcal{D}(\mathbf{X})$ is a regular differential operator (P is not a zero divisor of $\mathcal{D}(\mathbf{X})$). Then the coadmissible left $\widehat{\mathcal{D}}(\mathbf{X}, G)$ -module

$$M = \widehat{\mathcal{D}}(\mathbf{X}, G) / \widehat{\mathcal{D}}(\mathbf{X}, G) P$$

is of dimension $d(M) \leq 2d - 1$.

Proof.

Let $D := \mathcal{D}(X)$. We have $M \cong \lim_{n \to \infty} D_n/D_n P$ and $D_n/D_n P \cong D_n \otimes_D D/DP$. Now, D_n is flat over D, hence

 $Ext_D^i(D/DP, D) \otimes_D D_n \cong Ext_{D_n}^i(D_n \otimes_D D/DP, D_n).$

Example

Example

If $P \in \mathcal{D}(X)$ is a regular differential operator (P is not a zero divisor of $\mathcal{D}(X)$). Then the coadmissible left $\widehat{\mathcal{D}}(X,G)$ -module

$$M = \widehat{\mathcal{D}}(\mathbf{X}, G) / \widehat{\mathcal{D}}(\mathbf{X}, G) P$$

is of dimension $d(M) \leq 2d - 1$.

Proof.

Let $D := \overline{\mathcal{D}(X)}$. We have $M \cong \lim_{n \to \infty} D_n/D_n P$ and $D_n/D_n P \cong D_n \otimes_D D/DP$. Now, D_n is flat over D, hence

 $Ext_D^i(D/DP, D) \otimes_D D_n \cong Ext_{D_n}^i(D_n \otimes_D D/DP, D_n).$

Dimension of coadmissible equivariant \mathcal{D} -modules

Definition

Let \mathcal{U} be an admissible covering of **X** by affinoid subdomains and \mathcal{M} be a coadmissible *G*-equivariant left $\mathcal{D}_{\mathbf{X}}$ -module on **X**. Then the dimension of \mathcal{M} with respect to \mathcal{U} is defined as follows:

$$d_{\mathcal{U}}(\mathcal{M}) := \sup \left\{ d(\mathcal{M}(\mathbf{U})) | \mathbf{U} \in \mathcal{U} \right\},\$$

where $d(\mathcal{M}(\mathbf{U}))$ is the dimension of the coadmissible $\widehat{\mathcal{D}}(\mathbf{U}, H)$ -module $\mathcal{M}(\mathbf{U})$ for some open compact subgroup H of G which stablizes \mathbf{U} .

Notations

From now on:

 $\mathbb{G}:$ connected, simply connected, split semi-simple algebraic group over K.

 $\mathbb{B} \subset \mathbb{G}$ a Borel subgroup.

 $G := \mathbb{G}(K)$ locally K-analytic group.

 $X=(\mathbb{G}/\mathbb{B})^{an}$ the rigid analytic flag variety of $\mathbb{G}.$

Weak holonomicity

Theorem (V.)

Let $0 \neq \mathcal{M} \in \mathcal{C}_{\mathbf{X}/G}$. Then the dimension $d(\mathcal{M})$ is at least dim \mathbf{X} .

Definition

A coadmissible *G*-equivariant \mathcal{D}_X -module \mathcal{M} is called weakly holonomic if it is zero or dim $\mathcal{M} = \dim X$.

Remark: Weakly holonomic equivariant modules form an abelian subcategory $C^{wh}_{\mathbf{X}/G}$ of $\mathcal{C}_{\mathbf{X}/G}$ and stable under extensions (the dimension function is exact!).

Weak holonomicity

Theorem (V.)

Let $0 \neq \mathcal{M} \in \mathcal{C}_{\mathbf{X}/G}$. Then the dimension $d(\mathcal{M})$ is at least dim \mathbf{X} .

Definition

A coadmissible *G*-equivariant $\mathcal{D}_{\mathbf{X}}$ -module \mathcal{M} is called weakly holonomic if it is zero or $\dim \mathcal{M} = \dim \mathbf{X}$.

Remark: Weakly holonomic equivariant modules form an abelian subcategory $\mathcal{C}^{wh}_{\mathbf{X}/G}$ of $\mathcal{C}_{\mathbf{X}/G}$ and stable under extensions (the dimension function is exact!).

Weak holonomicity

Theorem (V.)

Let $0 \neq \mathcal{M} \in \mathcal{C}_{\mathbf{X}/G}$. Then the dimension $d(\mathcal{M})$ is at least dim \mathbf{X} .

Definition

A coadmissible *G*-equivariant $\mathcal{D}_{\mathbf{X}}$ -module \mathcal{M} is called weakly holonomic if it is zero or $\dim \mathcal{M} = \dim \mathbf{X}$.

Remark: Weakly holonomic equivariant modules form an abelian subcategory $\mathcal{C}^{wh}_{\mathbf{X}/G}$ of $\mathcal{C}_{\mathbf{X}/G}$ and stable under extensions (the dimension function is exact!).

Duality

Theorem (V.)

For each $i \geq 0$, there exists a functor $\mathcal{E}^i : \mathcal{C}_{\mathbf{X}/G} \longrightarrow \mathcal{C}^r_{\mathbf{X}/G}$ from coadmissible *G*-equivariant left \mathcal{D}_X -modules to coadmissible *G*-equivariant right \mathcal{D}_X -modules such that

$$\mathcal{E}^{i}(\mathcal{M})(\mathbf{U}) = Ext^{i}_{\widehat{\mathcal{D}}(\mathbf{U},H)}(\mathcal{M}(\mathbf{U}),\widehat{\mathcal{D}}(\mathbf{U},H))$$

for each $\mathcal{M} \in \mathcal{C}_{\mathbf{X}/G}$ and $\mathbf{U} \in \mathbf{X}_w(\mathcal{T})$, $H \leq G$ which is U-small.

Theorem (V.)

The endofunctor $\mathbb{D} := \mathcal{H}om_{\mathcal{O}_{\mathbf{X}}}(\Omega_{\mathbf{X}}, \mathcal{E}^{\dim \mathbf{X}}(-))$ preserves weak holonomicity and satisfies $\mathbb{D}^2 = Id$.

Phuong Vu (Rennes)

Main results Examples

Phuong Vu (Rennes)

Weak holonomicity for equivariant $\mathcal D$ -module

March 26, 2020

p-adic Beilinson Bernstein correspondence

Remank: (K. Ardakov): $D(G,K) \cong \widehat{U}(\mathfrak{g},G) \supset U(\mathfrak{g}) \rtimes G$.

Theorem (Huyghe-Strauch-Schmidt, Ardakov)

The composition of two functors

$$\Gamma: \mathcal{C}_{\mathbf{X}/G} \longrightarrow \mathcal{C}_{\widehat{U}(\mathfrak{g},G)}, \quad \mathcal{M} \longmapsto \Gamma(\mathbf{X},\mathcal{M})$$

and

$$\mathcal{C}_{D(G,K)} \longrightarrow Rep_K^{adm}(G), \quad M \longmapsto (M)_b'$$

induces an anti-equivalence of category between the category of coadmissible G-equivariant $\mathcal{D}_{\mathbf{X}}$ -modules and the category of admissible locally analytic representations of G with trivial central character.

p-adic Beilinson Bernstein correspondence

Remank: (K. Ardakov):
$$D(G,K) \cong \widehat{U}(\mathfrak{g},G) \supset U(\mathfrak{g}) \rtimes G$$
.

Theorem (Huyghe-Strauch-Schmidt, Ardakov)

The composition of two functors

$$\Gamma: \mathcal{C}_{\mathbf{X}/G} \longrightarrow \mathcal{C}_{\widehat{U}(\mathfrak{g},G)}, \quad \mathcal{M} \longmapsto \Gamma(\mathbf{X},\mathcal{M})$$

and

$$\mathcal{C}_{D(G,K)} \longrightarrow Rep_K^{adm}(G), \ M \longmapsto (M)_b'$$

induces an anti-equivalence of category between the category of coadmissible G-equivariant $\mathcal{D}_{\mathbf{X}}$ -modules and the category of admissible locally analytic representations of G with trivial central character.

The cateogory $\mathcal{O}^{\mathfrak{p}}$

Let $\mathbb{P} \subset \mathbb{G}$ be a parabolic subgroup. Fix a maximal torus $\mathbb{T} \subset \mathbb{P}$ of \mathbb{G} and write $\mathfrak{g} := Lie(\mathbb{G}), \mathfrak{p} := Lie(\mathbb{P}), \mathfrak{t} := Lie(\mathbb{T}).$

Definition

An $U(\mathfrak{g})$ -module M is in the category $\mathcal{O}^{\mathfrak{p}}$ if:

- (1) M is a finitely generated $U(\mathfrak{g})$ -module.
- (2) M is \mathfrak{t} -semi-simple, i.e $M = \oplus_{\lambda \in \mathfrak{t}^*} M_\lambda$
- (3) The action of \mathfrak{p} on M is locally finite, which means that for every $m \in M$, the subspace $U(\mathfrak{p}).m \subset M$ is a finite-dimensional K-vector space.

Let $\mathfrak{m}_0 := Z(\mathfrak{g}) \cap U(\mathfrak{g})\mathfrak{g}$. Define $\mathcal{O}^\mathfrak{p} := \{ M \in \mathcal{O}^\mathfrak{p} : \mathfrak{m}_0 M = 0 \}.$

Theorem (V.)

- (i) Let \mathcal{N} be a P-equivariant weakly holonomic $\mathcal{D}_{\mathbf{X}}$ -module. Then $\operatorname{ind}_{P}^{G}(\mathcal{N})$ is a G-equivariant weakly holonomic $\mathcal{D}_{\mathbf{X}}$ -module.
- (ii) Let $\underline{M} \in \mathcal{O}_0^{\mathfrak{g}}$. Then $\operatorname{ind}_P^G(\operatorname{Loc}_{\mathbf{X}}^{\widehat{U}(\mathfrak{g},P)}(\widehat{U}(\mathfrak{g},P)\otimes_{D(\mathfrak{g},P)}M))$ is a G-equivariant weakly holonomic $\mathcal{D}_{\mathbf{X}}$ -module.

The End

Phuong Vu (Rennes)

Weak holonomicity for equivariant $\mathcal D$ -module

March 26, 2020