The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivarian Cox ring

Complexity one varieties

U-invariants

The Cox ring of a complexity one variety (Colloque Tournant 2021 du GDR Théorie de Lie Algébrique et Géométrique)

Antoine VEZIER

Institut Fourier, Université Grenoble Alpes

26 March 2021

Conventions

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dreai Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

In this talk, we work over an algebraically closed field k of characteristic zero. An **algebraic group** is an **affine** k-group scheme of finite type.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Fact : Any finitely generated integral *k*-algebra *A* defines an affine variety X := Spec A. Morevover, *A* is recovered by taking the algebra $\mathcal{O}(X)$ of regular functions on *X*.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Fact : Any finitely generated integral k-algebra A defines an affine variety X := Spec A. Morevover, A is recovered by taking the algebra $\mathcal{O}(X)$ of regular functions on X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Projective varieties : $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^n_k$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Fact : Any finitely generated integral *k*-algebra *A* defines an affine variety X := Spec A. Morevover, *A* is recovered by taking the algebra $\mathcal{O}(X)$ of regular functions on *X*.

Projective varieties : $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}_k^n$ This closed immersion is determined by the very ample invertible sheaf $\mathcal{L} := \iota^* \mathcal{O}(1)$ and the pullbacks $s_0, ..., s_n \in \Gamma(X, \mathcal{L})$ of homogeneous coordinates on \mathbb{P}_k^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varietie

U-invariants

Fact : Any finitely generated integral k-algebra A defines an affine variety X := Spec A. Morevover, A is recovered by taking the algebra $\mathcal{O}(X)$ of regular functions on X.

Projective varieties : $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}_k^n$ This closed immersion is determined by the very ample invertible sheaf $\mathcal{L} := \iota^* \mathcal{O}(1)$ and the pullbacks $s_0, ..., s_n \in \Gamma(X, \mathcal{L})$ of homogeneous coordinates on \mathbb{P}_k^n .

The image S_i of the natural graded morphism

$$k[x_0,...,x_n] \to \bigoplus_{m \geqslant 0} \Gamma(X, \mathcal{L}^{\otimes m}), x_i \mapsto s_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is the **homogeneous coordinate ring** of $\iota(X)$.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Fact : Any finitely generated integral *k*-algebra *A* defines an affine variety X := Spec *A*. Morevover, *A* is recovered by taking the algebra $\mathcal{O}(X)$ of regular functions on *X*.

Projective varieties : $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}_k^n$ This closed immersion is determined by the very ample invertible sheaf $\mathcal{L} := \iota^* \mathcal{O}(1)$ and the pullbacks $s_0, ..., s_n \in \Gamma(X, \mathcal{L})$ of homogeneous coordinates on \mathbb{P}_k^n .

The image S_{ι} of the natural graded morphism

$$k[x_0,...,x_n] \to \bigoplus_{m \geqslant 0} \Gamma(X, \mathcal{L}^{\otimes m}), x_i \mapsto s_i$$

is the **homogeneous coordinate ring** of $\iota(X)$.

Problem : This algebra depends on ι ! **Idea** : Define a **total coordinate ring** (or **Cox ring**) containing

all the sections of (isomorphism classes of) invertible sheaves.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A divisorial sheaf on X is a reflexive coherent sheaf of rank one.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

 $\operatorname{WDiv}(X) / \operatorname{PDiv}(X) \to \operatorname{Cl}(X), \ [D] \mapsto [\mathcal{O}_X(D)],$ where $\Gamma(U, \mathcal{O}_X(D)) := \{f \in k(X)^*; (\operatorname{div}(f) + D)_{|U} \ge 0\} \cup \{0\}.$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

$$\begin{split} & \mathsf{WDiv}(X)/\operatorname{PDiv}(X)\to \mathsf{Cl}(X),\ [D]\mapsto [\mathcal{O}_X(D)],\\ & \text{where } \Gamma(U,\mathcal{O}_X(D)):=\{f\in k(X)^*;(\operatorname{div}(f)+D)_{|U}\geqslant 0\}\cup\{0\}.\\ & \textbf{Cox sheaf}: \mathcal{R}_X:=\bigoplus_{[\mathcal{F}]\in \mathsf{Cl}(X)}\mathcal{F} \end{split}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

$$\begin{split} & \operatorname{WDiv}(X) / \operatorname{PDiv}(X) \to \operatorname{Cl}(X), \ [D] \mapsto [\mathcal{O}_X(D)], \\ & \text{where } \Gamma(U, \mathcal{O}_X(D)) := \{f \in k(X)^*; (\operatorname{div}(f) + D)_{|U} \ge 0\} \cup \{0\}. \\ & \text{Cox sheaf} : \mathcal{R}_X := \bigoplus_{[\mathcal{F}] \in \operatorname{Cl}(X)} \mathcal{F} \\ & \text{Cox ring} : \operatorname{Cox}(X) := \Gamma(X, \mathcal{R}_X) \end{split}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

$$\begin{split} & \operatorname{WDiv}(X) / \operatorname{PDiv}(X) \to \operatorname{Cl}(X), \ [D] \mapsto [\mathcal{O}_X(D)], \\ & \text{where } \Gamma(U, \mathcal{O}_X(D)) := \{f \in k(X)^*; (\operatorname{div}(f) + D)_{|U} \ge 0\} \cup \{0\}. \\ & \text{Cox sheaf} : \mathcal{R}_X := \bigoplus_{[\mathcal{F}] \in \operatorname{Cl}(X)} \mathcal{F} \\ & \text{Cox ring} : \operatorname{Cox}(X) := \Gamma(X, \mathcal{R}_X) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Problem : \mathcal{O}_X -algebra structure on \mathcal{R}_X ?

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

$$\begin{split} & \operatorname{WDiv}(X) / \operatorname{PDiv}(X) \to \operatorname{Cl}(X), \ [D] \mapsto [\mathcal{O}_X(D)], \\ & \operatorname{where} \ \Gamma(U, \mathcal{O}_X(D)) := \{f \in k(X)^*; (\operatorname{div}(f) + D)_{|U} \ge 0\} \cup \{0\}. \\ & \operatorname{Cox} \ \operatorname{sheaf} : \mathcal{R}_X := \bigoplus_{[\mathcal{F}] \in \operatorname{Cl}(X)} \mathcal{F} \\ & \operatorname{Cox} \ \operatorname{ring} : \operatorname{Cox}(X) := \Gamma(X, \mathcal{R}_X) \\ & \operatorname{Problem} : \mathcal{O}_X \text{-algebra structure on } \mathcal{R}_X ? \\ & \operatorname{Example} : \operatorname{Cl}(X) \simeq \mathbb{Z} / n\mathbb{Z} \simeq \langle [\mathcal{L}] \rangle, \ \operatorname{Cox}(X) = \bigoplus_{k=0}^{n-1} \Gamma(\mathcal{L}^{\otimes k}, X) \end{split}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let X be a normal variety such that $\mathcal{O}(X)^* \simeq k^*$.

A **divisorial sheaf** on X is a reflexive coherent sheaf of rank one. The **class group** Cl(X) is the abelian group of isomorphism classes of divisorial sheaves on X. There is a canonical isomorphism

$$\begin{split} & \operatorname{WDiv}(X)/\operatorname{PDiv}(X) \to \operatorname{Cl}(X), \ [D] \mapsto [\mathcal{O}_X(D)], \\ & \operatorname{where} \ \Gamma(U, \mathcal{O}_X(D)) := \{f \in k(X)^*; (\operatorname{div}(f) + D)_{|U} \ge 0\} \cup \{0\}. \\ & \operatorname{Cox \ sheaf} : \mathcal{R}_X := \bigoplus_{[\mathcal{F}] \in \operatorname{Cl}(X)} \mathcal{F} \\ & \operatorname{Cox \ ring} : \operatorname{Cox}(X) := \Gamma(X, \mathcal{R}_X) \\ & \operatorname{Problem} : \mathcal{O}_X \text{-algebra \ structure \ on \ } \mathcal{R}_X ? \\ & \operatorname{Example} : \operatorname{Cl}(X) \simeq \mathbb{Z}/n\mathbb{Z} \simeq \langle [\mathcal{L}] \rangle, \ \operatorname{Cox}(X) = \bigoplus_{k=0}^{n-1} \Gamma(\mathcal{L}^{\otimes k}, X) \\ & \dots \ \text{must choose \ an \ isomorphism} \ \mathcal{L}^{\otimes n} \simeq \mathcal{O}_X. \end{split}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Idea : Choose a (closed) point $x \stackrel{i}{\hookrightarrow} X_{sm}$.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Idea : Choose a (closed) point $x \stackrel{i}{\hookrightarrow} X_{sm}$.

A **rigidified divisorial sheaf** is a pair (\mathcal{F}, f) where \mathcal{F} is a divisorial sheaf on X, and $f : i^*\mathcal{F} \to k$ is an isomorphism of k-vector spaces.

A morphism $v : (\mathcal{F}, f) \to (\mathcal{G}, g)$ of rigidified divisorial sheaves is an \mathcal{O}_X -module morphism such that the diagram

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Idea : Choose a (closed) point $x \stackrel{i}{\hookrightarrow} X_{sm}$.

A **rigidified divisorial sheaf** is a pair (\mathcal{F}, f) where \mathcal{F} is a divisorial sheaf on X, and $f : i^*\mathcal{F} \to k$ is an isomorphism of k-vector spaces.

A morphism $v : (\mathcal{F}, f) \to (\mathcal{G}, g)$ of rigidified divisorial sheaves is an \mathcal{O}_X -module morphism such that the diagram

Let E be the abelian group of isomorphism classes of rigidified divisorial sheaves.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Important features :

a rigidified divisorial sheaf has no non-trivial automorphism,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

■ the canonical morphism E → Cl(X), [(F, f)] ↦ [F] is an isomorphism.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Important features :

- a rigidified divisorial sheaf has no non-trivial automorphism,
- the canonical morphism E → Cl(X), [(F, f)] ↦ [F] is an isomorphism.

For each class $[\mathcal{F}] \in Cl(X)$, there is a canonical representative \mathcal{F}^{x} called the **rigidified sheaf associated to** $[\mathcal{F}]$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Important features :

- a rigidified divisorial sheaf has no non-trivial automorphism,
- the canonical morphism E → Cl(X), [(F, f)] ↦ [F] is an isomorphism.

For each class $[\mathcal{F}] \in Cl(X)$, there is a canonical representative \mathcal{F}^{\times} called the **rigidified sheaf associated to** $[\mathcal{F}]$

It follows that the Cox sheaf of the pointed variety (X, x)

$$\mathcal{R}_X = \bigoplus_{[\mathcal{F}] \in \mathsf{Cl}(X)} \mathcal{F}^x$$

has a canonical multiplication law via

 $\Gamma(U,\mathcal{F}^{x})\otimes_{\mathcal{O}_{X}(U)}\Gamma(U,\mathcal{G}^{x})\to \Gamma(U,(\mathcal{F}\otimes_{\mathcal{O}_{X}}\mathcal{G})^{\vee\vee})^{x}).$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Important features :

- a rigidified divisorial sheaf has no non-trivial automorphism,
- the canonical morphism $E \to Cl(X), [(\mathcal{F}, f)] \mapsto [\mathcal{F}]$ is an isomorphism.

For each class $[\mathcal{F}] \in Cl(X)$, there is a canonical representative \mathcal{F}^x called the **rigidified sheaf associated to** $[\mathcal{F}]$

It follows that the Cox sheaf of the pointed variety (X, x)

$$\mathcal{R}_X = \bigoplus_{[\mathcal{F}] \in \mathsf{Cl}(X)} \mathcal{F}^x$$

has a canonical multiplication law via

$$\Gamma(U,\mathcal{F}^{x})\otimes_{\mathcal{O}_{X}(U)}\Gamma(U,\mathcal{G}^{x})\to \Gamma(U,(\mathcal{F}\otimes_{\mathcal{O}_{X}}\mathcal{G})^{\vee\vee})^{x}).$$

This doesn't depend on the choice of the point x up to graded isomorphism.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The Cox ring is a Cl(X)-graded integral normal *k*-algebra which is **factorially graded**.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The Cox ring is a Cl(X)-graded integral normal *k*-algebra which is **factorially graded**.

Suppose that Cox(X) is finitely generated. Then, we have a diagram of varieties

$$\hat{X} = \operatorname{Spec}_{X} \mathcal{R}_{X} \stackrel{j}{\longleftrightarrow} \tilde{X} = \operatorname{Spec}(\operatorname{Cox}(X))$$

$$\downarrow^{q}_{X}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The Cox ring is a Cl(X)-graded integral normal *k*-algebra which is **factorially graded**.

Suppose that Cox(X) is finitely generated. Then, we have a diagram of varieties

$$\hat{X} = \operatorname{Spec}_X \mathcal{R}_X \stackrel{j}{\longrightarrow} \tilde{X} = \operatorname{Spec}(\operatorname{Cox}(X))$$

$$\downarrow^q_X$$

 \hat{X} is the **characteristic space** and \tilde{X} the **total coordinate space**.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The Cox ring is a Cl(X)-graded integral normal *k*-algebra which is **factorially graded**.

Suppose that Cox(X) is finitely generated. Then, we have a diagram of varieties

$$\hat{X} = \operatorname{Spec}_{X} \mathcal{R}_{X} \stackrel{j}{\longleftrightarrow} \tilde{X} = \operatorname{Spec}(\operatorname{Cox}(X))$$
$$\bigcup_{\substack{q \\ X}} q$$

 \hat{X} is the **characteristic space** and \tilde{X} the **total coordinate space**.

The gradings translate in an action of the **diagonalizable group** $\Gamma_{CI(X)}$ on \hat{X} and \tilde{X} .

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The affinization morphism j is an equivariant open immersion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

The affinization morphism j is an equivariant open immersion. The structural morphism q is an **almost principal** $\Gamma_{Cl(X)}$ -**bundle**. Moreover, it is universal in the sense that it factors through any almost principal bundle $f : Y \to X$ under a diagonalizable group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

If X is a smooth complete intersection of dimension ≥ 3 in \mathbb{P}_k^n , then the restriction $\operatorname{Cl}(\mathbb{P}_k^n) \to \operatorname{Cl}(X)$ is an isomorphism, and the Cox ring coincide with the homogeneous coordinate ring of the embedding $X \subset \mathbb{P}_k^n$.

Examples

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

If X is a smooth complete intersection of dimension ≥ 3 in \mathbb{P}_k^n , then the restriction $\operatorname{Cl}(\mathbb{P}_k^n) \to \operatorname{Cl}(X)$ is an isomorphism, and the Cox ring coincide with the homogeneous coordinate ring of the embedding $X \subset \mathbb{P}_k^n$.

If X is a **toric variety** under a torus T. Then Cox(X) is a polynomial k-algebra in the canonical sections of the prime divisors in $X \setminus T$.

Examples

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varietie

U-invariants

If X is a smooth complete intersection of dimension ≥ 3 in \mathbb{P}_k^n , then the restriction $\operatorname{Cl}(\mathbb{P}_k^n) \to \operatorname{Cl}(X)$ is an isomorphism, and the Cox ring coincide with the homogeneous coordinate ring of the embedding $X \subset \mathbb{P}_k^n$.

If X is a **toric variety** under a torus T. Then Cox(X) is a polynomial k-algebra in the canonical sections of the prime divisors in $X \setminus T$.

The simplest example is the projective space :

$$\mathbb{A}_{k}^{n+1} \setminus \{0\} \stackrel{j}{\longrightarrow} \mathbb{A}_{k}^{n+1}$$
$$\stackrel{j}{\bigcup}_{\mathbb{G}_{m}} \mathbb{P}_{k}^{n}$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

After Hu and Keel, a normal variety with finitely generated Cox ring is called a **Mori Dream Space** (MDS).

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

After Hu and Keel, a normal variety with finitely generated Cox ring is called a **Mori Dream Space** (MDS).

In fact, their definition restricts to projective \mathbb{Q} -factorial varieties. They show that such a MDS behaves optimally with respect to the **Minimal Model Program** of Mori.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

After Hu and Keel, a normal variety with finitely generated Cox ring is called a **Mori Dream Space** (MDS).

In fact, their definition restricts to projective \mathbb{Q} -factorial varieties. They show that such a MDS behaves optimally with respect to the **Minimal Model Program** of Mori.

The contractions and flips are described by a **fan** structure on the **effective cone** $\text{Eff}(X) \subset \text{Pic}(X)_{\mathbb{Q}}$: the **Mori chamber decomposition**.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

After Hu and Keel, a normal variety with finitely generated Cox ring is called a **Mori Dream Space** (MDS).

In fact, their definition restricts to projective \mathbb{Q} -factorial varieties. They show that such a MDS behaves optimally with respect to the **Minimal Model Program** of Mori.

The contractions and flips are described by a **fan** structure on the **effective cone** $\text{Eff}(X) \subset \text{Pic}(X)_{\mathbb{Q}}$: the **Mori chamber decomposition**.

Given a projective \mathbb{Q} -factorial MDS X, this chamber decomposition also describes all the projective varieties sharing the same Cox ring as X. Of course, they are all birationally equivalent.

Examples of Mori Dream Spaces

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

- The open subsets of the projective line are the only one dimensional MDS,
- a K3 surface is a MDS if and only if its automorphism group is finite,

- spherical varieties,
- Fano varieties.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Problem : Describe the Cox ring of a given MDS X by generators and relations.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Problem : Describe the Cox ring of a given MDS X by generators and relations.

Idea for *G*-varieties (*G* is an algebraic group) : Keep track of the *G*-action in Cox(X). This means lifting the *G*-action to \hat{X} .

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Problem : Describe the Cox ring of a given MDS X by generators and relations.

Idea for *G***-varieties (***G* **is an algebraic group)** : Keep track of the *G*-action in Cox(X). This means lifting the *G*-action to \hat{X} . **Problem** : Not possible in general. When possible, this (usually) depends on a choice.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Problem : Describe the Cox ring of a given MDS X by generators and relations.

Idea for *G*-varieties (*G* is an algebraic group) : Keep track of the *G*-action in Cox(X). This means lifting the *G*-action to \hat{X} .

Problem : Not possible in general. When possible, this (usually) depends on a choice.

Idea : Define an equivariant analogue of the Cox ring and relate it to the ordinary one.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let *G* be an algebraic group. A *G*-linearized divisorial sheaf \mathcal{F} on a normal *G*-variety $G \times X \xrightarrow{\sigma} X$ is the given of an isomorphism $\sigma^* \mathcal{F} \to \rho_X^* \mathcal{F}$ satisfying a "cocycle condition".

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be an algebraic group. A G-linearized divisorial sheaf \mathcal{F} on a normal G-variety $G \times X \xrightarrow{\sigma} X$ is the given of an isomorphism $\sigma^* \mathcal{F} \to p_X^* \mathcal{F}$ satisfying a "cocycle condition". The isomorphism translates in a commutative square

$$\begin{array}{c} G \times L & \stackrel{\alpha}{\longrightarrow} L \\ \downarrow & \downarrow \\ G \times X & \stackrel{\sigma}{\longrightarrow} X \end{array}$$

where $L := \operatorname{Spec}_X(\operatorname{Sym}_{\mathcal{O}(X)}(\mathcal{F}))$. The cocycle condition guarantees that α is an action.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be an algebraic group. A G-linearized divisorial sheaf \mathcal{F} on a normal G-variety $G \times X \xrightarrow{\sigma} X$ is the given of an isomorphism $\sigma^* \mathcal{F} \to p_X^* \mathcal{F}$ satisfying a "cocycle condition". The isomorphism translates in a commutative square

$$\begin{array}{c} G \times L \xrightarrow{\alpha} L \\ \downarrow \\ G \times X \xrightarrow{\sigma} X \end{array}$$

where $L := \operatorname{Spec}_X(\operatorname{Sym}_{\mathcal{O}(X)}(\mathcal{F}))$. The cocycle condition guarantees that α is an action.

The abelian group of isomorphism classes of *G*-linearized divisorial sheaves is the **equivariant class group** $Cl^{G}(X)$.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Similarly as before, under the assumption that $\mathcal{O}(X)^{*G} \simeq k^*$ we can define the **equivariant Cox sheaf and ring** :

$$\mathcal{R}^{\mathcal{G}}_{X} := \bigoplus_{\mathcal{F} \in \mathsf{Cl}^{\mathcal{G}}(X)} \mathcal{F}^{x}$$
, $\mathsf{Cox}^{\mathcal{G}}(X) := \mathsf{F}(X, \mathcal{R}^{\mathcal{G}}_{X})$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Similarly as before, under the assumption that $\mathcal{O}(X)^{*G} \simeq k^*$ we can define the **equivariant Cox sheaf and ring** :

$$\mathcal{R}^{\mathsf{G}}_{X} := \bigoplus_{\mathcal{F} \in \mathsf{Cl}^{\mathsf{G}}(X)} \mathcal{F}^{\mathsf{x}}$$
, $\mathsf{Cox}^{\mathsf{G}}(X) := \mathsf{F}(X, \mathcal{R}^{\mathsf{G}}_{X})$

The equivariant Cox ring is a normal integral $Cl^{G}(X)$ -graded *k*-algebra. Moreover, it has a canonical structure of *G*-algebra compatible with the grading.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Similarly as before, under the assumption that $\mathcal{O}(X)^{*G} \simeq k^*$ we can define the **equivariant Cox sheaf and ring** :

$$\mathcal{R}^{\mathsf{G}}_X := igoplus_{\mathcal{F} \in \mathsf{Cl}^{\mathsf{G}}(X)} \mathcal{F}^{\mathsf{x}}$$
, $\mathsf{Cox}^{\mathsf{G}}(X) := \mathsf{F}(X, \mathcal{R}^{\mathsf{G}}_X)$

The equivariant Cox ring is a normal integral $Cl^{G}(X)$ -graded *k*-algebra. Moreover, it has a canonical structure of *G*-algebra compatible with the grading.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected algebraic group and X a normal G-variety.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected algebraic group and X a normal G-variety. There is an exact sequence

$$0 \to \mathcal{O}(X)^{*\mathcal{G}} \to \mathcal{O}(X)^* \to \hat{\mathcal{G}} \xrightarrow{\gamma} \mathsf{Cl}^{\mathcal{G}}(X) \xrightarrow{\phi} \mathsf{Cl}(X),$$

where γ sends a character λ to the associated linearization $\mathcal{O}(\lambda)$ of \mathcal{O}_X .

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected algebraic group and X a normal G-variety. There is an exact sequence

$$0 o \mathcal{O}(X)^{*G} o \mathcal{O}(X)^* o \hat{G} \xrightarrow{\gamma} \mathsf{Cl}^G(X) \xrightarrow{\phi} \mathsf{Cl}(X),$$

where γ sends a character λ to the associated linearization $\mathcal{O}(\lambda)$ of \mathcal{O}_X .

Also there is a canonical graded morphism

$$\varphi: \mathsf{Cox}^{\mathsf{G}}(X) \to \mathsf{Cox}(X)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

whose induced morphism between grading groups is ϕ .

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected algebraic group and X a normal G-variety. There is an exact sequence

$$0 o \mathcal{O}(X)^{*G} o \mathcal{O}(X)^* o \hat{G} \xrightarrow{\gamma} \mathsf{Cl}^G(X) \xrightarrow{\phi} \mathsf{Cl}(X),$$

where γ sends a character λ to the associated linearization $\mathcal{O}(\lambda)$ of \mathcal{O}_X .

Also there is a canonical graded morphism

$$\varphi: \operatorname{Cox}^{G}(X) \to \operatorname{Cox}(X)$$

whose induced morphism between grading groups is ϕ . The morphism φ is finite in general, and surjective if ϕ is surjective (e.g. when Pic(G) = 0).

Description of $\ker\varphi$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

 $\operatorname{Cox}^{G}(X)$ has a natural structure of $k[\hat{G}]$ -algebra : $\forall [\mathcal{F}] \in \operatorname{Cl}^{G}(X), \forall s \in \operatorname{Cox}^{G}(X)_{[\mathcal{F}]}, \forall \lambda \in \hat{G}, \text{ define } \lambda.s \text{ as the}$ unique element of $\operatorname{Cox}^{G}(X)_{[(\mathcal{F} \otimes \mathcal{O}(\lambda))^{\vee \vee}]}$ such that $\varphi(\lambda.s) = \varphi(s)$.

Description of $\ker\varphi$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

 $\operatorname{Cox}^{G}(X)$ has a natural structure of $k[\hat{G}]$ -algebra : $\forall [\mathcal{F}] \in \operatorname{Cl}^{G}(X), \forall s \in \operatorname{Cox}^{G}(X)_{[\mathcal{F}]}, \forall \lambda \in \hat{G}, \text{ define } \lambda.s \text{ as the}$ unique element of $\operatorname{Cox}^{G}(X)_{[(\mathcal{F} \otimes \mathcal{O}(\lambda))^{\vee \vee}]}$ such that $\varphi(\lambda.s) = \varphi(s)$.

Suppose that ϕ is surjective and $\mathcal{O}(X)^* \simeq k^*$. Then ker $\varphi = ((1 - \lambda_i.1)_i)$, where $(\lambda_i)_i$ is any \mathbb{Z} -basis of \hat{G} .

Proposition

Under the above assumptions, we have

$$\mathsf{Cox}(X) \simeq \mathsf{Cox}^{\mathsf{G}}(X)/((1-\lambda_i.1)_i).$$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected reductive group acting on a normal variety X. Fix a maximal torus T and a Borel subgroup B containing T.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected reductive group acting on a normal variety X. Fix a maximal torus T and a Borel subgroup B containing T. The **complexity** c(X) of the action is the minimal codimension of an orbit by B.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected reductive group acting on a normal variety X. Fix a maximal torus T and a Borel subgroup B containing T. The **complexity** c(X) of the action is the minimal codimension of an orbit by B.

By a theorem of Rosenlicht, there exists a dense open *B*-stable subvariety $X_0 \subset X$ and a geometric quotient $X_0 \to Y$ by *B*. Hence, we have $c(X) = \text{trdeg } k(X)^B$.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected reductive group acting on a normal variety X. Fix a maximal torus T and a Borel subgroup B containing T. The **complexity** c(X) of the action is the minimal codimension of an orbit by B.

By a theorem of Rosenlicht, there exists a dense open *B*-stable subvariety $X_0 \subset X$ and a geometric quotient $X_0 \to Y$ by *B*. Hence, we have $c(X) = \operatorname{trdeg} k(X)^B$.

The normal varieties of complexity zero are the spherical varieties (e.g. a toric variety is spherical), they are MDS (Brion).

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

Let G be a connected reductive group acting on a normal variety X. Fix a maximal torus T and a Borel subgroup B containing T. The **complexity** c(X) of the action is the minimal codimension of an orbit by B.

By a theorem of Rosenlicht, there exists a dense open *B*-stable subvariety $X_0 \subset X$ and a geometric quotient $X_0 \to Y$ by *B*. Hence, we have $c(X) = \text{trdeg } k(X)^B$.

The normal varieties of complexity zero are the spherical varieties (e.g. a toric variety is spherical), they are MDS (Brion).

A normal variety of complexity one is an MDS if and only if it is a rational variety (Brion, Knop, Luna, Vust).

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, suppose that X is rational of complexity one.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, suppose that X is rational of complexity one.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fact : there is a rational quotient $\pi : X \dashrightarrow \mathbb{P}^1_k$ by *B*.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, suppose that X is rational of complexity one.

Fact : there is a rational quotient $\pi : X \dashrightarrow \mathbb{P}^1_k$ by *B*.

Fact : π is determined by a linear system $\operatorname{Vect}_k(a, b) \subset \Gamma(X, \mathcal{F})$ of dimension two.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, suppose that X is rational of complexity one.

Fact : there is a rational quotient $\pi : X \dashrightarrow \mathbb{P}^1_k$ by *B*.

Fact : π is determined by a linear system $\operatorname{Vect}_k(a, b) \subset \Gamma(X, \mathcal{F})$ of dimension two.

Fact : The pullback of Cartier divisors is given by

 $\pi^*: \mathsf{WDiv}(\mathbb{P}^1_k) \to \mathsf{WDiv}(X)^B, \ p = [\alpha:\beta] \mapsto \mathsf{div}_X(\beta a - \alpha b).$

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Dream Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, suppose that X is rational of complexity one.

Fact : there is a rational quotient $\pi : X \dashrightarrow \mathbb{P}^1_k$ by *B*.

Fact : π is determined by a linear system $\operatorname{Vect}_k(a, b) \subset \Gamma(X, \mathcal{F})$ of dimension two.

Fact : The pullback of Cartier divisors is given by

$$\pi^*: \mathsf{WDiv}(\mathbb{P}^1_k) \to \mathsf{WDiv}(X)^B, \ p = [\alpha:\beta] \mapsto \mathsf{div}_X(\beta a - \alpha b).$$

Definition

The finite set of *B*-stable prime divisors that doesn't lie in the image of π^* is the set of *exceptional divisors*. For an exceptional divisor *E*, the image of $\pi_{|E}$ is either dense or a point in \mathbb{P}^1_k . In the former case, we say that *E* is *central*, in the latter case, the image point is called *exceptional*.

The subalgebra $Cox^{G}(X)^{U}$ of U-invariants

The Cox ring of a complexity one variety
Antoine VEZIER
<i>U</i> -invariants

(ロ)、(型)、(E)、(E)、 E) の(()

The subalgebra $Cox^{G}(X)^{U}$ of U-invariants

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, let U be the unipotent part of B. We use the following notation

• the set of exceptional points is denoted S_X .

•
$$\pi^*(x) = \sum_j n_{j,x} E_j^x$$
, $x = [lpha_x:eta_x] \in \mathcal{S}_X \subset \mathbb{P}^1_k$

• $(E_k)_k$ are the (exceptional) central divisors,

s_{j,x} (resp. *s_k*) are the canonical sections associated with the *E_j^x* (resp. *E_k*).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The subalgebra $Cox^{G}(X)^{U}$ of U-invariants

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

With the same notations an assumptions as before, let U be the unipotent part of B. We use the following notation

• the set of exceptional points is denoted S_X .

•
$$\pi^*(x) = \sum_j n_{j,x} E_j^x$$
, $x = [\alpha_x : \beta_x] \in \mathcal{S}_X \subset \mathbb{P}^1_k$

• $(E_k)_k$ are the (exceptional) central divisors,

• $s_{j,x}$ (resp. s_k) are the canonical sections associated with the E_j^x (resp. E_k).

Theorem

 $Cox^{G}(X)^{U}$ is generated over $k[\hat{G}]$ by $a, b, (s_{j,x})_{j,x}, (s_{k})_{k}$. The ideal of relations contains

$$\beta_x a - \alpha_x b = \lambda_i \prod_j s_{j,x}^{n_{j,x}}$$
, for $x \in \mathcal{S}_X$ $(\lambda_i \in \hat{G})$.

If moreover the common degree of a and b has no \mathbb{Z} -torsion, then these relations generate the whole ideal.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drean Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

When $G = \mathbb{T}$ is a torus and $\mathcal{O}(X)^{\mathbb{T}} \simeq k$, this provides a description of $Cox^{\mathbb{T}}(X)$ (hence of Cox(X)) by generators and relations.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

When $G = \mathbb{T}$ is a torus and $\mathcal{O}(X)^{\mathbb{T}} \simeq k$, this provides a description of $Cox^{\mathbb{T}}(X)$ (hence of Cox(X)) by generators and relations.

Fact (Gongyo, Okawa, Sannai, Takagi) : a projective Q-factorial variety is of **Fano type** if and only if it is a MDS whose total coordinate space has at most log terminal singularities.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

When $G = \mathbb{T}$ is a torus and $\mathcal{O}(X)^{\mathbb{T}} \simeq k$, this provides a description of $Cox^{\mathbb{T}}(X)$ (hence of Cox(X)) by generators and relations.

Fact (Gongyo, Okawa, Sannai, Takagi) : a projective \mathbb{Q} -factorial variety is of **Fano type** if and only if it is a MDS whose total coordinate space has at most log terminal singularities. The description of $Cox^G(X)^U$ allows to characterize the log terminality in the total coordinate space of an **almost homogeneous variety** of complexity one by reducing to the case of varieties with torus action.

The Cox ring of a complexity one variety

> Antoine VEZIER

Motivation

Mori Drear Spaces

Equivariant Cox ring

Complexity one varieties

U-invariants

When $G = \mathbb{T}$ is a torus and $\mathcal{O}(X)^{\mathbb{T}} \simeq k$, this provides a description of $Cox^{\mathbb{T}}(X)$ (hence of Cox(X)) by generators and relations.

Fact (Gongyo, Okawa, Sannai, Takagi) : a projective Q-factorial variety is of **Fano type** if and only if it is a MDS whose total coordinate space has at most log terminal singularities. The description of $Cox^{G}(X)^{U}$ allows to characterize the log terminality in the total coordinate space of an **almost homogeneous variety** of complexity one by reducing to the case of varieties with torus action.

The result on *U*-invariants provides homogeneous generators for the equivariant Cox ring (as a $k[\hat{G}]$ -algebra) : the elements of the bases of the simple *G*-modules spanned by the elements $a, b, (s_{j,x})_{j,x}, (s_k)_k$.