Boundary distributions on the Drinfeld period domain for GL_3 (Journées du GDR TLAG 2021)

Peter Gräf

University of Heidelberg

March 26th, 2021

Peter Gräf (University of Heidelberg)

Boundary distributions for GL₃

Motivation

2 The central objects

3 The GL₂-case (after Schneider-Teitelbaum)

4 The GL₃-case

Peter Gräf (University of Heidelberg)

Motivation

Modular forms and modular symbols

Let $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$, the (complex) *upper half plane*.

Association:

This association is Hecke-equivariant!

Modular forms and modular symbols

Upshot:

- Modular symbols "know" special L-values.
- Great tool for explicit computations (for example to compute Heegner points).
- Modular symbols (and their overconvergent variant) show up in the construction of eigenvarieties.

Aim: Discuss a non-archimedean analogue of this construction.

The central objects

Notation

• Let K be a non-archimedean local field:

$$\begin{cases} \operatorname{char}(K) = 0 : & K/\mathbb{Q}_p \text{ finite extension} \\ \operatorname{char}(K) = p > 0 : & K = \mathbb{F}_q((t)), \ q = p^e \end{cases}$$

- Let π denote a uniformizing parameter in K and $\nu(\cdot)$ the normalized valuation on K.
- Let \mathcal{O}_K denote the ring of integers of K.
- Let $\mathbb{C}_{\mathcal{K}}$ denote the completion of an algebraic closure of \mathcal{K} .
- Let $n \ge 2$ and $G = GL_n(K)$. (In the sequel, mostly $n \in \{2, 3\}$.) The diagonal torus in G is denoted by T. The Borel subgroup of upper triangular matrices in denoted by B.

The Drinfeld period domain

The Drinfeld period domain for G is the space

$$\mathcal{X} := \mathcal{X}^{(n)} := \mathbb{P}_{K}^{n-1} \setminus \bigcup_{H \in \mathcal{H}} H,$$

where \mathcal{H} denotes the set of all K-rational hyperplanes in \mathbb{P}_{K}^{n-1} .

- \mathcal{X} is a rigid space over K.
- X carries a natural action by G.

Remark: For n = 2, we have

$$\mathcal{X}(\mathbb{C}_{K}) = \mathbb{P}^{1}(\mathbb{C}_{K}) \setminus \mathbb{P}^{1}(K) = \mathbb{C}_{K} \setminus K.$$

 $\rightsquigarrow \mathcal{X}$ serves as an analogue of $\mathbb{H}.$

The Bruhat-Tits building

The *Bruhat-Tits building* $T := T^{(n)}$ of *G* is the simplicial complex given as follows.

- The vertices \mathcal{T}_0 consist of homothety classes [Λ] of lattices $\Lambda \subset \mathcal{K}^n$.
- The *m*-cells \mathcal{T}_m for $m \in \{1, \ldots, n-1\}$ consist of sets $\{[\Lambda_0], \ldots, [\Lambda_m]\}$ where

$$\pi\Lambda_0 \subsetneq \Lambda_m \subsetneq \Lambda_{m-1} \subsetneq \cdots \subsetneq \Lambda_0.$$

A pointed *m*-cell is an *m*-cell with a distinguished vertex $[\Lambda_0]$. The set of pointed *m*-cells is denoted by $\widehat{\mathcal{T}}_m$.

- The group G acts transitively on \mathcal{T} .
- There is a G-equivariant reduction map red: X → T. The preimages of the (n 1)-cells are certain multi-annuli in X. This map encodes the structure of X as a rigid space.
- The flag variety G/B can be viewed as the boundary of \mathcal{T} .

Peter Gräf (University of Heidelberg)

Boundary distributions for GL₃

The Bruhat-Tits building

Figure The Bruhat-Tits building for n = 2 and $K = \mathbb{Q}_2$ or $K = \mathbb{F}_2((t))$.

The central triangle

Let $k \ge 0$ with $n \mid k$. We want to find maps and relations between the following three objects:

The holomorphic discrete series representation

Definition:

The holomorphic discrete series representation $\mathcal{O}_{\mathcal{X}}(k+n)$ of weight k+n is the space $\mathcal{O}_{\mathcal{X}}$ of global rigid analytic functions on \mathcal{X} endowed with a weight-(k+n) action by G:

$$g_*f(\omega) = \det(g)^{(k+n)/n} j(g,\omega)^{-(k+n)} f(g\omega), \quad f \in \mathcal{O}_\mathcal{X}, \omega \in \mathcal{X}, g \in \mathcal{G}.$$

Example: k = 0: $\mathcal{O}_{\mathcal{X}}(n) \cong \Omega_{\mathcal{X}}^{n-1}$.

Remark: Invariants under arithmetic group \rightsquigarrow analogue of modular forms.

The central triangle

Let $k \ge 0$ with $n \mid k$. We want to find maps and relations between the following three objects:

Harmonic Cocycles

Let
$$V_k \coloneqq (\operatorname{Sym}^k((\mathbb{C}^n_K)^*) \otimes_{\mathbb{C}_K} \det^{-k/n})^*.$$

Definition:

A map $c: \widehat{\mathcal{T}}_{n-1} \to V_k$ is called a *harmonic cocycle* if:

(i) Let $\sigma \in \widehat{\mathcal{T}}_{n-1}$ and let ρ_{σ} be a generator of the group fixes σ modulo the group that fixes σ pointwise. Then

$$c(\rho_{\sigma}\sigma) = (-1)^{n-1}c(\sigma).$$

(ii) Let $\tau \in \mathcal{T}_{n-2}$. Then

$$\sum_{\sigma\mapsto\tau}c(\sigma)=0,$$

where the sum is over all pointed (n-1)-cells $\sigma \in \widehat{\mathcal{T}}_{n-1}$ sharing the face τ , each with distinguished vertex opposite to τ .

The G-module of harmonic cocycles is denoted by $C_{har}(\mathcal{T}, V_k)$.

Peter Gräf (University of Heidelberg)

Boundary distributions for GL₃

The central triangle

Let $k \ge 0$ with $n \mid k$. We want to find maps and relations between the following three objects:

The locally analytic Steinberg representation

Let $\chi_k \colon T \to K^{\times}$ be the character given by $t \mapsto \det(t)^{-k/n} t_{nn}^k$. Let

$$\mathcal{A}_k\coloneqq \operatorname{Ind}_B^{\mathcal{G}}(\chi_k)=ig\{f\in \mathcal{C}^{\operatorname{an}}(\mathcal{G},\mathbb{C}_{\mathcal{K}})\mid f(gb)=\chi_k(b^{-1})f(g),\,\,g\in \mathcal{G},b\in Big\}$$

the locally analytic induction from B to G of χ_k . This is a locally analytic G-representation in the sense of Schneider-Teitelbaum.

Let $B \subsetneq P \subset G$ be a parabolic subgroup. Then

$$\mathcal{A}_{P,k} \coloneqq \operatorname{Ind}_{P}^{\mathcal{G}}(\operatorname{Ind}_{B}^{P,\operatorname{alg}}(\chi_{k}) \otimes_{\mathcal{K}} \mathbb{C}_{\mathcal{K}})$$

is naturally a G-submodule of \mathcal{A}_k .

Definition:

The locally analytic Steinberg representation of G of weight k is the G-module

$$\operatorname{St}_n^{\operatorname{an}}(k) \coloneqq \mathcal{A}_k / \sum_{B \subsetneq P \subset G} \mathcal{A}_{P,k}.$$

The GL₂-case (after Schneider-Teitelbaum)

The residue map

Note that $V_k \cong \mathcal{P}_k^*$ with $\mathcal{P}_k \coloneqq \mathbb{C}_{\mathcal{K}}[x]_{\deg \leq k}$.

Theorem: (Schneider (1984))

There is a G-equivariant residue map $\operatorname{Res}_k : \mathcal{O}_{\mathcal{X}}(k+2) \to C_{\operatorname{har}}(\mathcal{T}, V_k)$ given by

$$\operatorname{Res}_k(f)(\sigma)(x^i) = \operatorname{res}_{\sigma}(\omega^i f(\omega) \mathrm{d} \omega) \quad \text{for } f \in \mathcal{O}_{\mathcal{X}}, \sigma \in \widehat{\mathcal{T}}_1,$$

where $res_{\sigma}(\cdot)$ is the residue in the series expansion on the oriented annulus given by the preimage of (the interior of) σ under the reduction map.

Note that we have $G/B \cong \mathbb{P}^1$ and pullback under $K \hookrightarrow \mathbb{P}^1(K)$ gives an isomorphism

$$\operatorname{St}_{2}^{\operatorname{an}}(k)\cong C^{\operatorname{an}}(\mathbb{P}^{1},k)/\mathcal{P}_{k}.$$

Here, $C^{\mathrm{an}}(\mathbb{P}^1, k)$ is the space of locally analytic functions on $\mathbb{P}^1(\mathcal{K})$ except for a possible pole of order $\leq k$ at ∞ .

Theorem: (Teitelbaum (1990))

There is a G-equivariant Poisson kernel I_k : $\operatorname{St}_2^{\operatorname{an}}(k)' \to \mathcal{O}_{\mathcal{X}}(k+2)$ given by

$$I_k(\lambda)(\omega) = \lambda(x \mapsto \theta(x, \omega)) \quad \text{for } \lambda \in \operatorname{St}_2^{\operatorname{an}}(k)', \omega \in \mathcal{X},$$

where $\theta(x, \omega) = 1/(\omega - x)$, the *kernel function*.

Extending distributions

Let $C_{har}^{b}(\mathcal{T}, V_{k}) \subset C_{har}(\mathcal{T}, V_{k})$ be the subspace of *bounded* harmonic cocycles.

Theorem: (Amice-Vélu (1975), Vishik (1976), Schneider (1984), Teitelbaum (1990))

There is a G-equivariant injective map

$$L_k \colon C^b_{\mathrm{har}}(\mathcal{T}, V_k) \to \mathrm{St}_2^{\mathrm{an}}(k)'.$$

Idea: $c \in C_{har}(\mathcal{T}, V_k)$ defines a distribution on locally polynomial functions (of degree $\leq k$). If this distribution is bounded, it can be uniquely extended to allow integration of locally analytic functions.

Remark: The case k = 0 is particularly simple: Approximate continuous (or locally analytic) function on $\mathbb{P}^1(\mathcal{K})$ by locally constant ones.

The central triangle

If we transfer the notion of boundedness to the other spaces, we obtain the triangle:

Theorem: (Teitelbaum (1990)) We have $\operatorname{Res}_k \circ I_k \circ L_k = \operatorname{id}$.

Applications

All maps are G-equivariant \rightsquigarrow Can take invariants under arithmetic groups.

- char(K) = 0: Construction of p-adic *L*-invariants: Teitelbaum (1990), lovita-Spieß (2003), Chida-Mok-Park (2015)
- char(K) = p > 0: Eichler-Shimura isomorphism for Drinfeld modular forms: Böckle (2012), Hecke-module structures of spaces of Drinfeld modular forms: Böckle-G.-Perkins (2019)
- Explicit computations: Böckle-Butenuth (2012), G. (2019)

The GL₃-case

Peter Gräf (University of Heidelberg)

Boundary distributions for GL_3

March 26th, 2021 23 / 34

Going beyond GL₂

- Schneider-Teitelbaum (1997): Any $n \ge 2$, char(K) = 0 and k = 0.
- All other cases for $n \ge 3$ have been open.
- We consider n = 3, K of arbitrary characteristic and any k ≥ 0.
 (~→ restrict n, allow any K and k)

24 / 34

The residue map

Schneider-Teitelbaum: Construct $\operatorname{Res}_0 \colon \mathcal{O}_{\mathcal{X}}(3) \to C_{\operatorname{har}}(\mathcal{T}, \mathbb{C}_{\mathcal{K}})$ in analogy with the GL_2 -case.

Idea: Construct a *translation map* $t_k : \mathcal{O}_{\mathcal{X}}(k+3) \hookrightarrow \mathcal{O}_{\mathcal{X}}(3) \otimes_{\mathbb{C}_K} V_k$ and consider

$$\mathcal{O}_{\mathcal{X}}(k+3) \xrightarrow{t_k} \mathcal{O}_{\mathcal{X}}(3) \otimes_{\mathbb{C}_K} V_k \xrightarrow{\operatorname{Res}_0 \otimes \operatorname{id}} \mathcal{C}_{\operatorname{har}}(\mathcal{T},\mathbb{C}_K) \otimes_{\mathbb{C}_K} V_k \to \mathcal{C}_{\operatorname{har}}(\mathcal{T},V_k).$$

(In the GL₂-case: Schneider-Stuhler (1991))

Theorem: (k = 0: Schneider-Teitelbaum (1997), k > 0: G. (2020)) There is a *G*-equivariant residue map $\text{Res}_k : \mathcal{O}_{\mathcal{X}}(k+3) \to C_{\text{har}}(\mathcal{T}, V_k)$ given by the analogous formula as in the GL₂-case.

Fix the *Plücker-embedding* $pI: G/B \to \mathbb{P}^2(K) \times \mathbb{P}^2(K)$ given by

 $g \mapsto ([\alpha_1(g) : \alpha_2(g) : \alpha_3(g)], [\beta_1(g) : \beta_2(g) : \beta_3(g)]),$

where the column vector $(\alpha_1(g), \alpha_2(g), \alpha_3(g))$ is the first column of g and $\beta_i(g)$ is the determinant of the 2 × 2 submatrix of g consisting of the first two columns and row 4 - i removed. It is a closed immersion.

The kernel function: (Schneider-Teitelbaum (1997)) Define $\theta: G/B \times \mathcal{X} \to \mathbb{C}_K$ by

$$\theta(g,\omega) = \frac{\alpha_1(g)}{\alpha_1(g)\omega_1 + \alpha_2(g)\omega_2 + \alpha_3(g)} \cdot \frac{\beta_1(g)}{\beta_1(g)\omega_2 + \beta_2(g)}.$$

Problem: The function $\theta(g, \omega)$ is *not* locally analytic everywhere.

- This did not occur in the GL₂-case!
- Major obstacle for integration in the case k > 0.

Proposition: (G. (2020))

There exists an explicit locally analytic representative $\hat{\theta}(g, \omega)$ for the class of $\theta(g, \omega)$ in $\operatorname{St}_3^{\operatorname{con}} \coloneqq C(G/B, \mathbb{C}_K) / \sum_{B \subsetneq P \subset G} C(G/P, \mathbb{C}_K)$.

Idea: Analyse the locus where $\theta(g, \omega)$ is not locally analytic. It turns out that this is an explicit $\mathbb{P}^1 \subset G/B$ that is linked to a parabolic subgroup $P \subset G$. We modify the kernel function in a natural way on an open neighborhood of this locus.

We can prove the following theorem.

Theorem: (G. (2020))

There is a *G*-equivariant Poisson kernel I_k : $\operatorname{St}_3^{\operatorname{an}}(k)' \to \mathcal{O}_{\mathcal{X}}(k+3)$ given by

$$I_k(\lambda)(\omega) = \lambda(g \mapsto \det(g)^{-2k/3}\beta_1(g)^k \hat{\theta}(g,\omega)) \quad \text{for } \lambda \in \operatorname{St}_3^{\operatorname{an}}(k)', \omega \in \mathcal{X}.$$

Idea: We first prove the theorem for k = 0. Then we consider the diagram:

Boundary distributions for GL₃

Extending distributions

The final step is to develop an analogue of the theorem of Amice-Vélu and Vishik. To develop as systematic approach for this, we introduce the following space of *(generalized) automorphic forms*:

$$\mathbb{A}(V_k) \coloneqq \left\{ \varphi \colon \mathcal{G} \to V_k \mid \varphi(\mathsf{xgh}) = \varphi(g) \cdot h \text{ for } x \in \mathcal{K}^{\times}, h \in \mathcal{I} \right\},$$

where $\mathcal{I} \subset GL_3(\mathcal{O}_K)$ denotes the Iwahori subgroup of matrices that are upper triangular mod π .

There are four natural Hecke operators acting on $\mathbb{A}(V_k)$: Two *U*-operators $(U_{\pi,i})_{i \in \{1,2\}}$ and two Atkin-Lehner operators $(W_{\pi,i})_{i \in \{1,2\}}$.

We obtain a *G*-equivariant embedding $C_{har}(\mathcal{T}, V_k) \hookrightarrow \mathbb{A}(V_k)$ whose image $\mathbb{A}(V_k)^{new}$ consists of eigenforms for all four operators with explicit eigenvalues: \rightsquigarrow Can also transfer the notion of boundedness and consider a space $\mathbb{A}(V_k)_b^{new}$.

Extending distributions

Definition:

An eigenform $\varphi \in \mathbb{A}(V_k)_b$ is called *non-critical* if it lifts uniquely to an eigenform in spaces of automorphic forms with overconvergent and partially overconvergent coefficients (i.e. the analogue of Coleman classicality holds).

Idea: In this non-critical case, we can use the values of the lifts as local building blocks for the desired extension of the distribution. This is inspired by the GL_2 -case, where similar automorphic forms have been used to explicitly compute these distributions, but not to construct them.

Theorem: (G. (2020))

Assume that every automorphic form in $\mathbb{A}(V_k)_b^{\text{new}}$ is non-critical. Then we obtain the desired *G*-equivariant map

$$L_k\colon C^b_{\mathrm{har}}(\mathcal{T},V_k)\to \mathrm{St}^{\mathrm{an}}_3(k)'.$$

A control theorem

Let $\alpha_1, \alpha_2 \in \mathcal{O}_K \setminus \{0\}$. We say that the pair (α_1, α_2) has small slope if

$$u(lpha_i) \leq
u_i^{ ext{crit}} \quad ext{where} \quad
u_i^{ ext{crit}} = egin{cases} k, & i=1, \ 0, & i=2, \end{cases}$$

for $i \in \{1, 2\}$.

Theorem: (G. (2020))

Let $\alpha_1, \alpha_2 \in \mathcal{O}_K \setminus \{0\}$ be such that the pair (α_1, α_2) has small slope. Then each form in $\mathbb{A}(V_k)_b^{(U_{\pi,i}=\alpha_i)_{i\in\{1,2\}}}$ is non-critical.

Non-critical forms

The bounds in the previous theorem are consistent with the standard literature, e.g. Williams (2018), Bellaïche-Chenevier (2019).

But: Since the forms in $\mathbb{A}(V_k)_b^{\text{new}}$ have slopes (2k/3, k/3), this only gives the existence of L_k for k = 0.

Conjecture: (G. (2020))

Every automorphic form in $\mathbb{A}(V_k)_b^{\text{new}}$ is non-critical.

Hope: The forms in $\mathbb{A}(V_k)_b^{\text{new}}$ are very special: They are not just eigenforms for the two *U*-operators, but also for the Atkin-Lehner operators. We want to exploit these additional symmetries.

Remark: While we did not obtain the existence of L_k in general, the transfer to a lifting question makes the problem a lot more accessible. Systematically, this seems to be the correct point of view.

Peter Gräf (University of Heidelberg)

Boundary distributions for GL₃

The central triangle

Finally we obtain the triangle:

Theorem: (G. (2020)

Assume that our conjecture holds. Then we have $\operatorname{Res}_k \circ I_k \circ L_k = \operatorname{id}$.