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Motivation

Modular forms and modular symbols

Let H = {z ∈ C | Im(z) > 0}, the (complex) upper half plane.

Association:

{
modular forms on H

} {
modular symbols

}
(analytic objects) (combinatorial objects)

Period integrals

This association is Hecke-equivariant!
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Motivation

Modular forms and modular symbols

Upshot:
• Modular symbols “know” special L-values.
• Great tool for explicit computations (for example to compute Heegner

points).
• Modular symbols (and their overconvergent variant) show up in the

construction of eigenvarieties.

Aim: Discuss a non-archimedean analogue of this construction.
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The central objects

Notation

• Let K be a non-archimedean local field:{
char(K ) = 0 : K/Qp finite extension
char(K ) = p > 0 : K = Fq((t)), q = pe

}

• Let π denote a uniformizing parameter in K and ν(·) the normalized
valuation on K .
• Let OK denote the ring of integers of K .
• Let CK denote the completion of an algebraic closure of K .
• Let n ≥ 2 and G = GLn(K ). (In the sequel, mostly n ∈ {2, 3}.) The

diagonal torus in G is denoted by T . The Borel subgroup of upper
triangular matrices in denoted by B .
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The central objects

The Drinfeld period domain

The Drinfeld period domain for G is the space

X := X (n) := Pn−1
K \

⋃
H∈H

H,

where H denotes the set of all K -rational hyperplanes in Pn−1
K .

• X is a rigid space over K .
• X carries a natural action by G .

Remark: For n = 2, we have

X (CK ) = P1(CK ) \ P1(K ) = CK \ K .

 X serves as an analogue of H.
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The central objects

The Bruhat-Tits building

The Bruhat-Tits building T := T (n) of G is the simplicial complex given as
follows.
• The vertices T0 consist of homothety classes [Λ] of lattices Λ ⊂ Kn.
• The m-cells Tm for m ∈ {1, . . . , n− 1} consist of sets {[Λ0], . . . , [Λm]}

where
πΛ0 ( Λm ( Λm−1 ( · · · ( Λ0.

A pointed m-cell is an m-cell with a distinguished vertex [Λ0]. The set of
pointed m-cells is denoted by T̂m.
• The group G acts transitively on T .
• There is a G -equivariant reduction map red : X → T . The preimages

of the (n − 1)-cells are certain multi-annuli in X . This map encodes
the structure of X as a rigid space.
• The flag variety G/B can be viewed as the boundary of T .
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The central objects

The Bruhat-Tits building

Figure The Bruhat-Tits building for n = 2 and K = Q2 or K = F2((t)).
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The central objects

The central triangle

Let k ≥ 0 with n | k . We want to find maps and relations between the
following three objects:

OX (k + n) Char(T ,Vk)

Stan
n (k)′
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The central objects

The holomorphic discrete series representation

Definition:
The holomorphic discrete series representation OX (k + n) of weight k + n
is the space OX of global rigid analytic functions on X endowed with a
weight-(k + n) action by G :

g∗f (ω) = det(g)(k+n)/nj(g , ω)−(k+n)f (gω), f ∈ OX , ω ∈ X , g ∈ G .

Example: k = 0: OX (n) ∼= Ωn−1
X .

Remark: Invariants under arithmetic group  analogue of modular forms.
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The central objects

Harmonic Cocycles

Let Vk := (Symk((Cn
K )∗)⊗CK

det−k/n)∗.

Definition:

A map c : T̂n−1 → Vk is called a harmonic cocycle if:
(i) Let σ ∈ T̂n−1 and let ρσ be a generator of the group fixes σ modulo

the group that fixes σ pointwise. Then

c(ρσσ) = (−1)n−1c(σ).

(ii) Let τ ∈ Tn−2. Then ∑
σ 7→τ

c(σ) = 0,

where the sum is over all pointed (n − 1)-cells σ ∈ T̂n−1 sharing the
face τ , each with distinguished vertex opposite to τ .

The G -module of harmonic cocycles is denoted by Char(T ,Vk).
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The central objects

The locally analytic Steinberg representation

Let χk : T → K× be the character given by t 7→ det(t)−k/ntknn. Let

Ak := IndG
B (χk) =

{
f ∈ C an(G ,CK ) | f (gb) = χk(b−1)f (g), g ∈ G , b ∈ B

}
the locally analytic induction from B to G of χk . This is a locally analytic
G -representation in the sense of Schneider-Teitelbaum.

Let B ( P ⊂ G be a parabolic subgroup. Then

AP,k := IndG
P (IndP,alg

B (χk)⊗K CK )

is naturally a G -submodule of Ak .

Definition:
The locally analytic Steinberg representation of G of weight k is the
G -module

Stan
n (k) := Ak/

∑
B(P⊂G

AP,k .
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The GL2-case (after Schneider-Teitelbaum)

The residue map

Note that Vk
∼= P∗k with Pk := CK [x ]deg≤k .

Theorem: (Schneider (1984))

There is a G -equivariant residue map Resk : OX (k + 2)→ Char(T ,Vk)
given by

Resk(f )(σ)(x i ) = resσ(ωi f (ω)dω) for f ∈ OX , σ ∈ T̂1,

where resσ(·) is the residue in the series expansion on the oriented annulus
given by the preimage of (the interior of) σ under the reduction map.
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The GL2-case (after Schneider-Teitelbaum)

The Poisson kernel

Note that we have G/B ∼= P1 and pullback under K ↪→ P1(K ) gives an
isomorphism

Stan
2 (k) ∼= C an(P1, k)/Pk .

Here, C an(P1, k) is the space of locally analytic functions on P1(K ) except
for a possible pole of order ≤ k at ∞.

Theorem: (Teitelbaum (1990))

There is a G -equivariant Poisson kernel Ik : Stan
2 (k)′ → OX (k + 2) given by

Ik(λ)(ω) = λ(x 7→ θ(x , ω)) for λ ∈ Stan
2 (k)′, ω ∈ X ,

where θ(x , ω) = 1/(ω − x), the kernel function.
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The GL2-case (after Schneider-Teitelbaum)

Extending distributions

Let Cb
har(T ,Vk) ⊂ Char(T ,Vk) be the subspace of bounded harmonic

cocycles.

Theorem: (Amice-Vélu (1975), Vishik (1976), Schneider (1984),
Teitelbaum (1990))

There is a G -equivariant injective map

Lk : Cb
har(T ,Vk)→ Stan

2 (k)′.

Idea: c ∈ Char(T ,Vk) defines a distribution on locally polynomial
functions (of degree ≤ k). If this distribution is bounded, it can be
uniquely extended to allow integration of locally analytic functions.

Remark: The case k = 0 is particularly simple: Approximate continuous
(or locally analytic) function on P1(K ) by locally constant ones.
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The GL2-case (after Schneider-Teitelbaum)

The central triangle

If we transfer the notion of boundedness to the other spaces, we obtain the
triangle:

OX (k + 2)b Cb
har(T ,Vk)

Stan
2 (k)′,b

Resk

LkIk

Theorem: (Teitelbaum (1990))

We have Resk ◦ Ik ◦ Lk = id.

Peter Gräf (University of Heidelberg) Boundary distributions for GL3 March 26th, 2021 21 / 34



The GL2-case (after Schneider-Teitelbaum)

Applications

All maps are G -equivariant  Can take invariants under arithmetic groups.
• char(K ) = 0: Construction of p-adic L-invariants: Teitelbaum (1990),

Iovita-Spieß (2003), Chida-Mok-Park (2015)
• char(K ) = p > 0: Eichler-Shimura isomorphism for Drinfeld modular

forms: Böckle (2012), Hecke-module structures of spaces of Drinfeld
modular forms: Böckle-G.-Perkins (2019)
• Explicit computations: Böckle-Butenuth (2012), G. (2019)
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The GL3-case
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The GL3-case

Going beyond GL2

• Schneider-Teitelbaum (1997): Any n ≥ 2, char(K ) = 0 and k = 0.
• All other cases for n ≥ 3 have been open.
• We consider n = 3, K of arbitrary characteristic and any k ≥ 0.

( restrict n, allow any K and k)
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The GL3-case

The residue map

Schneider-Teitelbaum: Construct Res0 : OX (3)→ Char(T ,CK ) in analogy
with the GL2-case.

Idea: Construct a translation map tk : OX (k + 3) ↪→ OX (3)⊗CK
Vk and

consider

OX (k+3)
tk−→ OX (3)⊗CK

Vk
Res0⊗id−−−−−→ Char(T ,CK )⊗CK

Vk → Char(T ,Vk).

(In the GL2-case: Schneider-Stuhler (1991))

Theorem: (k = 0: Schneider-Teitelbaum (1997), k > 0: G. (2020))

There is a G -equivariant residue map Resk : OX (k + 3)→ Char(T ,Vk)
given by the analogous formula as in the GL2-case.
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The GL3-case

The Poisson kernel

Fix the Plücker-embedding pl : G/B → P2(K )× P2(K ) given by

g 7→ ([α1(g) : α2(g) : α3(g)], [β1(g) : β2(g) : β3(g)]) ,

where the column vector (α1(g), α2(g), α3(g)) is the first column of g and
βi (g) is the determinant of the 2× 2 submatrix of g consisting of the first
two columns and row 4− i removed. It is a closed immersion.

The kernel function: (Schneider-Teitelbaum (1997)) Define
θ : G/B ×X → CK by

θ(g , ω) =
α1(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
· β1(g)

β1(g)ω2 + β2(g)
.
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The GL3-case

The Poisson kernel

Problem: The function θ(g , ω) is not locally analytic everywhere.
• This did not occur in the GL2-case!
• Major obstacle for integration in the case k > 0.

Proposition: (G. (2020))

There exists an explicit locally analytic representative θ̂(g , ω) for the class
of θ(g , ω) in Stcon

3 := C (G/B,CK )/
∑

B(P⊂G C (G/P,CK ).

Idea: Analyse the locus where θ(g , ω) is not locally analytic. It turns out
that this is an explicit P1 ⊂ G/B that is linked to a parabolic subgroup
P ⊂ G . We modify the kernel function in a natural way on an open
neighborhood of this locus.
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The GL3-case

The Poisson kernel

We can prove the following theorem.

Theorem: (G. (2020))

There is a G -equivariant Poisson kernel Ik : Stan
3 (k)′ → OX (k + 3) given by

Ik(λ)(ω) = λ(g 7→ det(g)−2k/3β1(g)k θ̂(g , ω)) for λ ∈ Stan
3 (k)′, ω ∈ X .

Idea: We first prove the theorem for k = 0. Then we consider the diagram:

Stan
3 (k)′ Stan

3 (0)′ ⊗CK
Vk

OX (k + 3) OX (3)⊗CK
Vk

tk

Ik I0 ⊗ id
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The GL3-case

Extending distributions

The final step is to develop an analogue of the theorem of Amice-Vélu and
Vishik.To develop as systematic approach for this, we introduce the
following space of (generalized) automorphic forms:

A(Vk) :=
{
ϕ : G → Vk | ϕ(xgh) = ϕ(g) · h for x ∈ K×, h ∈ I

}
,

where I ⊂ GL3(OK ) denotes the Iwahori subgroup of matrices that are
upper triangular mod π.

There are four natural Hecke operators acting on A(Vk): Two U-operators
(Uπ,i )i∈{1,2} and two Atkin-Lehner operators (Wπ,i )i∈{1,2}.

We obtain a G -equivariant embedding Char(T ,Vk) ↪→ A(Vk) whose image
A(Vk)new consists of eigenforms for all four operators with explicit
eigenvalues:  Can also transfer the notion of boundedness and consider a
space A(Vk)new

b .
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The GL3-case

Extending distributions

Definition:
An eigenform ϕ ∈ A(Vk)b is called non-critical if it lifts uniquely to an
eigenform in spaces of automorphic forms with overconvergent and partially
overconvergent coefficients (i.e. the analogue of Coleman classicality
holds).

Idea: In this non-critical case, we can use the values of the lifts as local
building blocks for the desired extension of the distribution. This is inspired
by the GL2-case, where similar automorphic forms have been used to
explicitly compute these distributions, but not to construct them.

Theorem: (G. (2020))

Assume that every automorphic form in A(Vk)new
b is non-critical. Then we

obtain the desired G -equivariant map

Lk : Cb
har(T ,Vk)→ Stan

3 (k)′.
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The GL3-case

A control theorem

Let α1, α2 ∈ OK \ {0}. We say that the pair (α1, α2) has small slope if

ν(αi ) ≤ νcrit
i where νcrit

i =

{
k, i = 1,
0, i = 2,

for i ∈ {1, 2}.

Theorem: (G. (2020))

Let α1, α2 ∈ OK \ {0} be such that the pair (α1, α2) has small slope.

Then each form in A(Vk)
(Uπ,i=αi )i∈{1,2}
b is non-critical.
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The GL3-case

Non-critical forms

The bounds in the previous theorem are consistent with the standard
literature, e.g. Williams (2018), Bellaïche-Chenevier (2019).

But: Since the forms in A(Vk)new
b have slopes (2k/3, k/3), this only gives

the existence of Lk for k = 0.

Conjecture: (G. (2020))

Every automorphic form in A(Vk)new
b is non-critical.

Hope: The forms in A(Vk)new
b are very special: They are not just

eigenforms for the two U-operators, but also for the Atkin-Lehner
operators. We want to exploit these additional symmetries.

Remark: While we did not obtain the existence of Lk in general, the
transfer to a lifting question makes the problem a lot more accessible.
Systematically, this seems to be the correct point of view.
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The GL3-case

The central triangle

Finally we obtain the triangle:

OX (k + 3)b Cb
har(T ,Vk)

Stan
3 (k)′,b

Resk

LkIk

Theorem: (G. (2020)

Assume that our conjecture holds. Then we have Resk ◦ Ik ◦ Lk = id.
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