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Tx = {0 € Endc(Ox) | 0(fg) = 0(F)g + F0(g)}-

By identifying

OX — gndc(Ox)
f = [g—fg]

We can define
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Finiteness properties

If U is a chart with coordinate system {x;, 0, }, then
Dy= P 0uvd*, 9= =005
a€Nd

Furthermore, the obvious morphism

Tx = gr1(Dx) — gr(Dx)

induces a canonical identification

sym(7x) —  gr(DPx)
(locally) Ox; — & =0(0x)

i

and we have

gr(Dy) = Oy, - -+ , &)

e Dx has noetherian sections over affine open subsets.

e Dx is a coherent sheaf of rings.



Finiteness properties

If U is a chart with coordinate system {x;, 0, }, then

DU:®Ouﬁg, Qgizazl’“agd.

a€cNd

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Finiteness properties

If Uis a chart with coordinate system {x;, d; }, then

Dy= P Ovd*, 0*=05 - 0.

Furthermore, the obvious morphism

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Finiteness properties

If Uis a chart with coordinate system {x;, d; }, then

DU:@OUng 9% =0 - 9gd.

Xd
Furthermore, the obvious morphism

Tx = gri(Dx) — gr(Dx)

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Finiteness properties

If Uis a chart with coordinate system {x;, d; }, then

DU:@OUng 9% =0 - 9gd.

Xd
Furthermore, the obvious morphism

Tx = gri(Dx) — gr(Dx)

induces a canonical identification

Sym(Tx) — gr(Dx)
(locally) Ox; = &= 0(0)

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Finiteness properties

If Uis a chart with coordinate system {x;, d; }, then

DU:@OUng 9% =0 - 9gd.

Xd
Furthermore, the obvious morphism
Tx = gri(Dx) — gr(Dx)
induces a canonical identification

Sym(Tx) — gr(Dx)
(locally) Ox; = &= 0(0x)

and we have

gr(Du) = Oulés,- -+, &d]-

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Localization of

Finiteness properties Admissible Locally

Analytic
Representations

Andrés Sarrazola
Alzate

If Uis a chart with coordinate system {x;, d; }, then

Historical Setting

Dy= P Ovd*, 0*=05 - 0.
Furthermore, the obvious morphism

Tx = gri(Dx) — gr(Dx)

induces a canonical identification

Sym(Tx) — gr(Dx)
(locally) Ox, = &= 0(0)

and we have

gr(Du) = Oulés,- -+, &d]-

e Dx has noetherian sections over affine open subsets.



Finiteness properties Ao ooty

Analytic
Representations

Andrés Sarrazola
Alzate

If Uis a chart with coordinate system {x;, d; }, then

Historical Setting

DU:@OUng 9% =0 - 9gd.

Xd
Furthermore, the obvious morphism

Tx = gri(Dx) — gr(Dx)

induces a canonical identification

Sym(Tx) — gr(Dx)
(locally) Ox, = &= 0(0)

and we have
gr(Du) = Oulés, -+, &d]-

e Dx has noetherian sections over affine open subsets.

e Dx is a coherent sheaf of rings.



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox -5 Dx).

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox -+ Dx).

A pair (A, 1) is a sheaf of twisted differential operators on X if:

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox X Dx).

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox X Dx).

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,
e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox X Dx).

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,

e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

We have a bijection

IsoClass(t.d.0) ~ H*(X, Zx).

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators

We will need the following generalization of the pair (Dx, Ox X Dx).

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,
e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

We have a bijection

IsoClass(t.d.0) ~ H*(X, Zx).

In this presentation we will consider the following subcategory

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Historical Setting



Sheaves of (homogeneous) twisted differential operators Localization of

Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

We will need the following generalization of the pair (Dx, Ox 5 Dx). | Historical sesting

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,
e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

We have a bijection

IsoClass(t.d.0) ~ H*(X, Zx).

‘ In this presentation we will consider the following subcategory

(A, ) is a homogeneous sheaf of t.d.o if



Sheaves of (homogeneous) twisted differential operators Localization of

Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

We will need the following generalization of the pair (Dx, Ox 5 Dx). | Historical sesting

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,
e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

We have a bijection

IsoClass(t.d.0) ~ H*(X, Zx).

‘ In this presentation we will consider the following subcategory

(A, ) is a homogeneous sheaf of t.d.o if

e A is endowed with an algebraic G-action preserving mult.,



Sheaves of (homogeneous) twisted differential operators Localization of

Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

We will need the following generalization of the pair (Dx, Ox 5 Dx). | Historical sesting

A pair (A, 1) is a sheaf of twisted differential operators on X if:

e . : Ox — Ais a morphism of C-algebras with unit,
e X admits a cover by open sets U such that (A|u, ¢t|v) =~ (Du, tu).

We have a bijection

IsoClass(t.d.0) ~ H*(X, Zx).

‘ In this presentation we will consider the following subcategory

(A, ) is a homogeneous sheaf of t.d.o if
e A is endowed with an algebraic G-action preserving mult.,

o Differentiating the G-action induces a G-equivariant morphism

& : U(g) — T(X, A).
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and
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X := G/N the affine

basic space.
Endowed with commutating X = G/B the flag
(G, T)-actions. variety

. § is a locally trivial T-torsor,
= (&.Dg)7. If U C X trivialises &, then D]y ~ Dy @c U(t),
. for A € t" := Homc— mods(t, C), we can define

Dy = D ®u Ca,

and we get an injection

t — HY(X, Zx).
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Localization of gc-modules

The localization theorem decomposes in two parts:

The canonical action of G over X gives a canonical isomorphism of
algebras

Z/{)\ = Z/l(g(c)/m)\ ~ HO(X,D)\).

If A+ p € t¢ is a regular and dominant character, then

{Dx-modules} H(X.0), {Uxr-modules}

is equivalence of categories.
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Arithmetic Version of Beilinson-Bernstein’s Localization
(Algebraic Case)

A € Hom(T, Gn,) ~
Z(A) invertible

e 21(\) sheaf of (arithmetic) \-twisted differential operators

2L\ = 2(\) ® 25 @ 2(\)Y.

D'™(G) arithmetic [j(m)(G)A
distribution algebra p-adic completion
D('”)(G)L =U(gL) ‘ DT(G)A . I|_m> 5(”’)(G),\,L

D™(G), := D™ (G)/ (Ker(x)\) nD"(G)).

Theorem. [HS] The formal flag o-scheme X is 2 (\)-affine for
every algebraic character \ such that A\ + p is dominant and
regular.
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Example GLo 7,
G = GLz,ZP > 9[2,2,,

We have

0 0
/001 /10 /0 0\ f= ( )
=(o) m-(o) »-(3) Tl
Elz,zp :Zp~e@Zp~h1 @Zp~h2@Zp~ f
o D™ (GLaz,) C Ul(glyz,) @z, Qp is the Zy-subalgebra generated by
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D(m)(GL2’ZP) ®z, Qp = U(g[z,zp) ®z, Qp




Example GLo 7,
G = GLz,ZP > 9[2,2,,

We have

0 0
/001 /10 00\ f= ( )
=0 o) m-lo) -3 Tl
Elz,zp :Zp~e@Zp~h1 @Zp~h2@Zp~ f
o D™ (GLaz,) C U(glyz,) @z, Qp is the Zy-subalgebra generated by

vi

e h ho fre

o . +  — | | |
4 quvp rv Quy 1 Qus: *qQuz: *Qug: -
V1! V2 V3 vg!

D(m)(GL2’ZP) ®z, Qp = U(g[z,zp) ®z, Qp




Example GLo 7,
G = GLz,ZP ~ 9[2,Zp

We have

0 0
/001 /10 /0 0\ f= ( )
=0 o) m-(o) -3 Tl
Elz,zp :Zp~e@Zp~h1 @Zp~h2@Zp~ f
o D™ (GLaz,) C Ul(glyz,) @z, Qp is the Zy-subalgebra generated by

vi

e hy ho fre

o - +  — | | |
4 quvp rv Quy 1 Qus: *qQuz: *Qug: -
V1! V2 V3 vg!

D(m)(GL2’ZP) ®z, Qp = U(g[z,zp) ®z, Qp




Example GLo 7,
G = GLz,ZP ~ 9[2,Zp

We have

0 0
/001 /10 /0 0\ f= ( )
=0 o) m-(o) -3 Tl
Elz,zp :Zp~e@Zp~h1 @Zp~h2@Zp~ f
o D™ (GLaz,) C Ul(glyz,) @z, Qp is the Zy-subalgebra generated by

vi

e hy ho fre

o - +  — | | |
4 quvp rv Quy 1 Qus: *qQuz: *Qug: -
V1! V2 V3 vg!

D(m)(GL2’ZP) ®z, Qp = U(g[z,zp) ®z, Qp




Example GLo 7,
G = GLz,ZP ~ 9[2,;2,,

We have

0 0

(01 /10 /00 f:( )

=) m(o) m(1 Tl
g[zﬂzp:Zp~e@Zp~h1€BZp-h2@Zp-f

D(”’)(GLz,ZP) C U(gl z,) ®z, Qp is the Z,-subalgebra generated by

m eVl hl hZ fy4

(GL2// )® p*u(g[za )®Zp Qp




Example GLo 7,
G = GLz,ZP ~ 9[2,23,,

We have

0 0

(01 /10 /00 f:( )

(0o mGo
g[zﬂp:Zp~e@Zp~h1@Zp-h2@Zp-f

o D™ (GLaz,) C Ul(glyz,) @z, Qp is the Zy-subalgebra generated by

v & ([ [ e o
! . !

D(m)(GLg,ZP) ®z, Qp = [/{(g[zzp) ®z, Qp




Example GLy 7,
G =Gloy,

We have

= o)

hy

(

10
0 0

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

9[2,2p

Arithmetic Version



Example GLy 7,

G =Glag,

We have

g

0 1
0 0

)

hy

(

le,zp

)

o

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola
Alzate

Arithmetic Version



Localizati f
Example GLo 7, AT e

Analytic
Representations

G =GL s [ Andrés Sarrazola
2:Lp 9 2,Zp Alzate

We have

Arithmetic Version

G G ey 0

9[2,ZPZZP'6@ZP"71 @Zp-hz @pr



Localizati f
Example GLo 7, AT e

Analytic
Representations

G =GL s [ Andrés Sarrazola
2:Lp 9 2,Zp Alzate

We have

Arithmetic Version

0 0

(0 1 (10 (00 f:( )

=0 o) m=lo) ==(3) Tho
g[zzp:Zp-e@Zp~h1@Zp~h2€BZp-f

° D(m)(GLQ,Zp) C U(glp z,) ®z, Qp is the Z,-subalgebra generated by



Example GLy 7,
G =Glag,
We have

0 1 1
= o) =0

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola

~ [
9h .2, Alzate

Arithmetic Version

) m-(08) (o)

g[zzp:Zp-e@Zp~h1@Zp~h2€BZp-f

° D(m)(GLQ,Zp) C U(glp z,) ®z, Qp is the Z,-subalgebra generated by

et
1/1!

YRR Y - Y
Quy: Vo Qus* V3 Qug: VA!



Example GLo 7,
G =Glzag,
We have

0 1 1
= o) =0

Localization of
Admissible Locally
Analytic
Representations

Andrés Sarrazola

~ [
95,2, Alzate

Arithmetic Version

) m-(08) (o)

g[zzp:Zp~e@Zp~h1@Zp~h2€BZp-f

° D(m)(GLz,Zp) C U(glp z,) ®z, Qp is the Z,-subalgebra generated by

et
1/1!

YRR Y - Y
Quy: Vo Qus* V3 Qug: VA!

D(m)(GLZaZp) Rz, Qp = u(glz,zp) z, Qp




The Arithmetic Projective Line
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For every m € N, we can consider the sheaf D];'; (S D]P% ®z, Qp).
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Arithmetic Differential Operators on the Projective Line

For every m € N, we can consider the sheaf D];'; (< Dy ®z, Qp)-
) »

<oo (m)
/ qv
PREA R

<oo
E ay
v

The relation

81/
XOx v Ux
( v ) - ;
allows to complete the diagram
tha 0 (100
P

{ $
g™ (") e D™(GLaz,) --» H° <P§p,p§,§z")> 5 x
P

!
dy

l’qy

01/
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Beilinson-Bernstein Localization?
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How to generalize for non-algebraic characters the Arithmetic
Beilinson-Bernstein Localization?

e For technical reasons we need to restrict our constructions to Z,.
We consider

N C B unipotent radical of B

X := G/N the affine X :=G/B the flag

basic space scheme
X=X
We will also consider the distribution algebra
. T (m)
Dist(T) = h_)mmeN D'™(T)
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Distribution Algebra

Let us exemplify the avatar Dist(T) when T is the maximal torus

oz, DT={(T 12) } = Spectzalr=) = &,
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Let us exemplify the avatar Dist(T) when T is the maximal torus
T +1
(Stez, 2) T = { ( T_l) } = Spec(Zy[T*']) = G

¥n € N, we can consider 6,((1 — T)") = 6, (Kronecher's delta).
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In particular
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¥n € N, we can consider 6,((1 — T)") = 6, (Kronecher's delta).
{0n}nen is a Zp-basis for Dist(T) C Dist(T) ®z, Q, s.t

o= ().

n

In particular

‘ Dist(T)®z,Qp = Qp[01] = U(t)®2,Qp \

Now, A € Homg, med(t, Zy) induces A € Homy, _,¢(Dist(T), Qp)

Aén) = (A0) € 7,

n

bijection
=N

Homz, -mod(t, Zy) — Homz, aig(Dist(T), Z,)
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Let U e S.

'ZS(m)|U ~ D&m)|u ®z, D(m)(']I‘) - -
(T, 'D(m))'JT _ D(m)(T)! Dxn?)\\u ~ DXm lu.

The sheaf D&m; is an integral model of D,.
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Theorem.[S]
Let A € Dist(T)* be a character of Dist(T) s.t A+ p € t@p
is a dominant and regular character. Then

HO(x,
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J

e The inverse functor is determined by the localization functor

ZOC;S,/\(.) = @;,A ®pi(g), (*):
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Admissible Blow-ups

T C Ox suchthat p“e T

A blow-up pr : Y — X along V(Z) is called an admissible
blow-up.

e Congruence level of Y:

ky = mIinmin{k eN|p“eT}

Theorem.[HS] Let pr : Y — X be an admissible blow-up
and k > ky. Then

D(Ym’k) = pr*D&m‘k) = Oy ®p-10, prleﬁm’k)

is endowed with a mult. structure extending pr’lDEé"’k).

(A2 0) (£ ®0) = hoi(h) © 02 + e ® 102
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A blow-up pr : Y — X along V(Z) is called an admissible
blow-up.

e Congruence level of Y

ky == mIinmin{k eN|p e}

Theorem.[HS] Let pr : Y — X be an admissible blow-up
and k > ky. Then

DY = prrD™H = 0y ®pr—10y pr DR

is endowed with a mult. structure extending pr’lD&m’k).
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pr: Y — X formal completion of an admissible blow-up.

‘C(A)/y Arithmetic

Differential
AE X(T) ~ operators on

Admissible

Blow-ups

If k> ky we have a sheaf of differential operators on )

meN \JeN

Py 4= lim Qm D&““/WD‘J"*”) ®z, Qo

o Let us fix k > ky.

We can define a sheaf of A-twisted differential operators act-
ing over £ ()
25.(A) = Z(\) ®o, 74, ®o, L(N)"
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Theorem. [S]
Let A € X(T) such that XA + p is dominant and regular.
Then
HO(%,0)
Coh(Z% 1) -
o~ Modz,(DT(G(k))x

‘ Congruence groups ‘

e G(k) denotes the k-th congruence subgroup.

G=Glyy,

G(k)(Zp) = {(i Z) la—1,bc,d—1¢€ pkzp}
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We start by considering the compact p-adic group Go := G(Z,).
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Go-equivariance of Formal Models of Flag Varieties

We start by considering the compact p-adic group Go := G(Z,).

Locally analytic
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(with central char. \)
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Go-equivariance of Formal Models of Flag Varieties

We start by considering the compact p-adic group Go := G(Z,).

Locally analytic Coadmissible Gp-equivariant
Go-representations arithmetic
(with central char. X) Px-modules
T (o)

‘ Key point: to build a weak Fréchet-Stein structure over D(Go, Q,).
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Weak Fréchet-Stein Structure

The work carried by Huyghe-Schmidt gives us

DY(G(K)x = D™ (G(k))x

where D*"(G(k)°) := Homej:)"‘(OG(,()O((G(k)")7 Qp)-
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Weak Fréchet-Stein Structure

The work carried by Huyghe-Schmidt gives us

DY(G(K))x = D*™(G(k)°)x

where D*"(G(k)°) := Hom&™ (O xy (G(K)°), Qp).

Let D(G(k)o, Go) = (Ccont(G\o,(@p)(;,(k)o_an)é7 such that

defines a weak Fréchet-Stein algebra structure over D(Go, Qp).

Moreover

D(Go, L) = lim, _ D(G(k)®, Go)
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Weak Fréchet-Stein Structure

The work carried by Huyghe-Schmidt gives us

DY(G(K))x = D*™(G(k)°)x

where D*"(G(k)°) := Hom&™ (O xy (G(K)°), Qp).

Let D(G(k)o, Go) = (Ccont(G\o,(@p)@(k)o_an)é7 such that

D(Go, L) = lim, _ D(G(k)®, Go)

defines a weak Fréchet-Stein algebra structure over D(Go, Qp).

Moreover

D(G(K)°, Go) "= D D™ (G(K)*)d,.

g€ Go /Gy
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Weak Fréchet-Stein Structure

The work carried by Huyghe-Schmidt gives us

DY(G(K))x = D*™(G(k)°)x

where D*"(G(k)°) := Home‘;"t(Oq;(k)o(G(k)o), Qp)-

Let D(G(k)o, Go) = (C“"t(Go,Qp)G(k)o_an)Q, such that

D(Go, L) = lim, _ D(G(k)®, Go)

defines a weak Fréchet-Stein algebra structure over D(Go, Qp).
Moreover

D(G(K)°, Go) "= €D D™(G(K)°)s.

g€ Go /Gy

Gk := G(k)(Zp) and d, is the Dirac distribution supported at g.
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Localization of

Strongly Gg-equivariant Arithmetic Z)\-modules ey

Analytic
Representations

Andrés Sarrazola

On the geometric side, if pr: 9 — X is admissible and 2
. . . zate
Go-equivariant we have a left Go-action

Te: -@;Tn,k()‘) - (pg)*-@gn,k()‘) The = (pg)«Tho Tg

h,g € Go and pg : Y — 2 is the comorphism induced by the

action.
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Strongly Gg-equivariant Arithmetic Z)\-modules

On the geometric side, if pr: 9 — X is admissible and
Go-equivariant we have a left Go-action

T 79 (A) = (p)« 23 (N)  Thg = (pg)«Tho Ty

h,g € Go and pg : Y — 2 is the comorphism induced by the
action.

A coherent @T «(A)-module .7 is strongly Go-equivariant, if there
exists a famlly (gog)geco of isomorphisms

[0s st > (pe)ott |

of sheaves of Q,-vect. spaces satisfying the following properties (1):
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Strongly Gg-equivariant Arithmetic Z)\-modules

On the geometric side, if pr: 9 — X is admissible and
Go-equivariant we have a left Go-action

T 79 (A) = (p)« 23 (N)  Thg = (pg)«Tho Ty

h,g € Go and pg : Y — 2 is the comorphism induced by the
action.

A coherent @T «(A)-module .7 is strongly Go-equivariant, if there
exists a famlly (gog)geco of isomorphisms

[0s st > (pe)ott |

of sheaves of Q,-vect. spaces satisfying the following properties (1):

e Vh,g € Go, we have vng = (pg)«ph © Pg.
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Strongly Gg-equivariant Arithmetic Z)\-modules

On the geometric side, if pr: 9 — X is admissible and
Go-equivariant we have a left Go-action

T 79 (A) = (p)« 23 (N)  Thg = (pg)«Tho Ty

h,g € Go and pg : Y — 2 is the comorphism induced by the
action.

A coherent @T «(A)-module .7 is strongly Go-equivariant, if there
exists a famlly (gog)geco of isomorphisms

[0s st > (pe)ott |

of sheaves of Q,-vect. spaces satisfying the following properties (1):

e Vh,g € Go, we have vng = (pg)«ph © Pg.
o Locally @z (P - m) = Tg(P) - pg(m).
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Strongly Gg-equivariant Arithmetic Z)\-modules ocalizatichlof

Admissible Locally
Analytic
Representations

On the geometric side, if pr: ) — X is admissible and e T
. . . zate
Go-equivariant we have a left Go-action

T 79 (A) = (p)« 23 (N)  Thg = (pg)«Tho Ty

h,g € Go and pg : Y — 2 is the comorphism induced by the
action.

Gp-equivariance of
Formal Models of
Flag Varieties

A coherent QT «(A)-module .7 is strongly Go-equivariant, if there
exists a famlly (gog)geco of isomorphisms

(o : = (o)t |

of sheaves of Q,-vect. spaces satisfying the following properties (1):
e Vh,g € Go, we have vng = (pg)«ph © Pg.
o Locally gg(P - m) = Tg(P) - @g(m).
e If g € Giy1, then ¢z = multiplication by §; € D*"(G(k)°)a.
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Let us denote
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First Equivalence

Let us denote
e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
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First Equivalence

Let us denote
e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
° Coh(@%’k(/\), Go); category of strongly Go-equivariant coherent
@%’k()\)-modules.
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First Equivalence

Let us denote
e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
° Coh(@gxk(/\), Go); category of strongly Go-equivariant coherent
@%’k()\)-modules.

Theorem(S]

Let A € X(T) such that A+ p € ] is dominant and
regular. Then
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First Equivalence

Let us denote

e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
° Coh(@gxk(/\), Go); category of strongly Go-equivariant coherent

@%’k()\)-modules.

Theorem(S]

regular. Then

Let A € X(T) such that A+ p € ] is dominant and
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First Equivalence

Let us denote
e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
° Coh(@gxk(/\), Go); category of strongly Go-equivariant coherent
@%’k()\)-modules.

Theorem(S]

Let A € X(T) such that A+ p € ] is dominant and
regular. Then

foc%ﬁk(k)
D(G(k)c, Go),\-mods
of finite HoD.0)

presentations
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First Equivalence

Let us denote
e Cgy,» := {Coadmissible D(Go, Q,)-modules} N Mod(D(Go, Q@p)x).
° Coh(@g)yk(/\), Go); category of strongly Go-equivariant coherent
@%’k()\)-modules.

Theorem(S]

Let A € X(T) such that A+ p € ] is dominant and
regular. Then

foc%ﬁk(k)
D(G(k)o, Go),\-mods E—
of finite H@e Coh(Z) ((A), Go)

presentations
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Coadmissible Gg-equivariant Z,-modules

Still on the geometric side, Let F, be the set of couples
(9), k) such that Q) is an admissible blow-up X and k > ky.
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Coadmissible Gg-equivariant Z,-modules

Still on the geometric side, Let F, be the set of couples
(9), k) such that Q) is an admissible blow-up X and k > ky.

Let g € Go. Pour every (9), k) € F there exists
(9 - g, ky.g) € Fy endowed with an isomorphism pz : 9 = - g
such that ky = ky ;.
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Coadmissible Gg-equivariant Z,-modules

Still on the geometric side, Let F, be the set of couples
(9), k) such that Q) is an admissible blow-up X and k > ky.

Let g € Go. Pour every (9), k) € F there exists
(9 - g, ky.g) € Fy endowed with an isomorphism pz : 9 = - g
such that ky = ky ;.

A family .4 = (My k) 0er, Of coherent @g)yk()\)-modules is a
coadmissible Go-equivariant Z(\)-module over F ., if for every
g € Gp, there is
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Coadmissible Gg-equivariant Z,-modules

Still on the geometric side, Let F, be the set of couples
(9), k) such that Q) is an admissible blow-up X and k > ky.

Let g € Go. Pour every (9), k) € F there exists
(9 - g, ky.g) € Fy endowed with an isomorphism pz : 9 = - g
such that ky = ky ;.

A family .4 = (My k) 0er, Of coherent @g)yk()\)-modules is a
coadmissible Go-equivariant Z(\)-module over F ., if for every
g € Go, there is

g 1 My.gk = (Pg)sM

satisfying (1) and such that if (9, k") = (9, k) with 7 : 9" — ),
then there exists a transition morphism ..y v — My k.
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Coadmissible Gg-equivariant Z,-modules

Still on the geometric side, Let F, be the set of couples
(9), k) such that Q) is an admissible blow-up X and k > ky.

Let g € Go. Pour every (9), k) € F there exists
(9 - g, ky.g) € Fy endowed with an isomorphism pz : 9 = - g
such that ky = ky ;.

A family .4 = (My k) 0er, Of coherent @%7k(>\)-modules is a
coadmissible Go-equivariant Z(\)-module over F ., if for every
g € Go, there is

g My.gk = (Pg)s My
satisfying (1) and such that if (9, k") = (9, k) with 7 : 9" — ),
then there exists a transition morphism ..y v — My k.
Those morphisms allow us to form the proj. limit

— i 0
M) = lim o (D, A i),
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The Localization Functor

o Rep™™(Gy): admissible locally analytic representations.
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The Localization Functor

o Rep™™(Gy): admissible locally analytic representations.

M € Cgo,n
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The Localization Functor Localization of

Admissible Locally
Analytic
Representations
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o Rep™™(Gy): admissible locally analytic representations.

M € Cgo,n (®)h
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The Localization Functor Localization of

Admissible Locally
Analytic
Representations
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Alzate

o Rep™™(Gy): admissible locally analytic representations.

M € Ceo QL V € Rep®™™(Go)
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The Localization Functor

e Rep®™™(Gy): admissible locally analytic representations.
M € Cgy.x Qs V € Rep®™™(Go)

~

o Mi:= (Vkyo—an) is @ D(G(k)°, Go)-module of finite
presentation.
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The Localization Functor Admissible Locally
Analytic
Representations
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e Rep®™™(Gy): admissible locally analytic representations. '
M € Cey ()s V € Rep?™™(Go)
o Mi:= (Vkyo—an) is @ D(G(k)°, Go)-module of finite Go-<auivariance of
presentation. log Varictics

Flag Varieties

o For every element (2), k) € F, we get a coherent @%’k()\)-module

Zocy (N (Mi) = 23 (A) @pan(s(iye), Mi



The Localization Functor ey
Analytic
Representations

Andrés Sarrazola

Alzate
e Rep®™™(Gy): admissible locally analytic representations. '
M € Cgy.x ()s V € Rep?™™(Go)
o Mi:= (Vkyo—an) is @ D(G(k)°, Go)-module of finite Go-<auivariance of
presentation. log Varictics

Flag Varieties

o For every element (2), k) € F, we get a coherent @gj’k()\)-module

Zocy (N (Mi) = 23 (A) @pan(s(iye), Mi

ZLoc®(M) = (.,?OC%’,((A)(MI())

(D,k)EE % ’




Second Equivalence

o Let Cg‘,’)\ be the category of coadmissible Gp-equivariant
2(X)-modules over F .

Theorem|[S]
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Second Equivalence

o Let Cg?)\ be the category of coadmissible Gp-equivariant
2(X)-modules over F .

Theorem|[S]

Let A € X(T) such that A+ p € ¢ is dominant and
regular. Then
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Second Equivalence

o Let Cg?)\ be the category of coadmissible Gp-equivariant
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Theorem|[S]

Let A € X(T) such that A + p € t] is dominant and
regular. Then

CGO,)\ —
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Second Equivalence

o Let Cg?)\ be the category of coadmissible Gp-equivariant
2(X)-modules over F .

Theorem|[S]

Let A € X(T) such that A + p € t] is dominant and
regular. Then

Céo.x
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G = G(Qp)-equivariance structures

Actually, we dispose of a (non-compact) version of the pre-
vious equivalence for the group G = G(Q,).

D(G,Qp) CG,/\ — Cf
1 !

i
D(Go, @) Cor —> C;;?/\. Forgetful funct.
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Localization of principal series representations

G=G(Q) B=B(Qy) T=T(Q)

Let A\: T — Qp be an analytic character.

Indg(A™") := {f € C*(G,Q,) | f(gb) = A(b)f(g) be B, g € G}
The coadmissible D(G, Q,)-module M()) := (Indg()))} satisfies

M(X) = D(G) @p(&)@yeu(a) | U(8) Ducs) Qp.dx
N—_— ————

M(X)

and

Zoc! (M(A)) = ®iz1(pg )« ZL ¢y @ (sPx)«tLoc(M(N))

Example.[HPSS] If A = —2p then .ZocT(M(\)k) is a sum of a
skyscraper sheaf placed at finitely many points gi0, ...,gs0 € X and
0 =spyxt *(B).
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Localization of principal series representations

G =G(Qy) B=B(Q,) T=T(Qp)

Let A: T — Qp be an analytic character.

Indg(A™1) := {f € C*(G,Q,) | f(gb) = A(b)f(g) be B, g € G}
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G =G(Q) B=B(Q,) T=T(Q) A

Let A: T — Qp be an analytic character.

Indg(A™") := {f € C"(G,Qy) | f(gb) = A(b)f(g) be B, g € G}
The coadmissible D(G, Qp)-module M()) := (Indg()\))i, satisfies Gyceritrmen
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M(X) = D(G) ©p(B)syeita) | U(8) uco) Qp,ax
——

M(X)



Localization of principal series representations

G =G(Qy) B=B(Q,) T=T(Qp)

Let A: T — Qp be an analytic character.

Indg(A™") := {f € C*(G,Q,) | f(gb) = A(b)f(g) be B, g € G}
The coadmissible D(G,Q,)-module M()) := (Ind§()\))}, satisfies

M(X) = D(G) ©p(B)syeita) | U(8) uco) Qp,ax
——

M(X)

and

Zoc' (M(A)k) = ©i-1(pg)« Pk 1.0 © (5P2) 1 Loc(M(A))
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Localization of principal series representations

G =G(Qy) B=B(Q,) T=T(Qp)

Let A: T — Qp be an analytic character.

Indg(A™") := {f € C*(G,Q,) | f(gb) = A(b)f(g) be B, g € G}
The coadmissible D(G,Q,)-module M()) := (Ind§()\))}, satisfies

M(X) = D(G) ©p(B)syeita) | U(8) uco) Qp,ax
——

M(X)

and

Zoc' (M(A)k) = ©i-1(pg)« Pk 1.0 © (5P2) 1 Loc(M(A))

Example.[HPSS] If A = —2p then .ZocT(M(\)«) is a sum of a
skyscraper sheaf placed at finitely many points g10, ...,gs0 € X and
0 =spxt '(B).
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