Derived products and the left adjoint of derived parabolic induction

Claudius Heyer

Westfälische Wilhelms-Universität Münster

March 24, 2021 Journées du GDR TLAG

Smooth representations

• k = field,

- G = locally profinite group [Hausdorff topological group admitting a neighborhood basis of 1 consisting of compact open subgroups],
 [Example: GL_n(Q_p) with K_j = I_n + p^j Mat_{n,n}(Z_p)]
- ► A *G*-representation [on a *k*-vector space] *V* is called smooth if every vector has open stabilizer in *G*, equivalently

$$V = V^{\infty} := \bigcup_{\substack{l \le G \\ \text{compact open}}} V^{l}$$

Example:
$$C(G, k) = \left\{ f: G \to k \mid \exists I \leq G \text{ compact open s.t.} \\ f(gx) = f(g) \forall g \in G, x \in I \right\}$$

with G acting by right translation [i.e., $(g \cdot f)(g') = f(g'g)$].

Rep_k(G) = category of smooth representations of G [it is an abelian Grothendieck category, i.e., AB5 and has a generator; it has enough injectives]. Smooth mod-*p* representations of a *p*-adic Lie group

• k = field of characteristic p > 0,

► G = p-adic Lie group (it is locally pro-p), [e.g., GL_n(Q_p), B_n(Q_p), GL_n(Z_p), etc.; but not GL_n(F_p((t)))!]

"Special features" (as opposed to $k = \mathbb{C}$)

Let $I \leq G$ be (open) pro-p.

1.
$$V \neq \{0\}$$
 in $\operatorname{Rep}_k(G) \implies V' \neq \{0\}$.

2. The functor $V \mapsto V'$ is left exact, but not exact. Example: take $V \neq V'$ in $\operatorname{Rep}_k(I)$ [e.g., V = C(I, k)]. Then $V \twoheadrightarrow V/V' \neq \{0\}$ is surjective, but

 $V' \stackrel{0}{\longrightarrow} (V/V')' \neq \{0\}$ is not!

Upshot: To understand $\operatorname{Rep}_k(G)$, need to study $\operatorname{H}^i(I, V)$, i > 0.

Derived categories

Conceptually better: replace $\operatorname{Rep}_k(G)$ by

D(G) = derived category of $\operatorname{Rep}_k(G)$ of (unbounded) cochain complexes,

obtained from $C(\operatorname{Rep}_k(G))$ by inverting quasiisomorphisms [i.e., those $f: X^{\bullet} \to Y^{\bullet}$ with $\operatorname{H}^i(f): \operatorname{H}^i(X^{\bullet}) \xrightarrow{\cong} \operatorname{H}^i(Y^{\bullet})$, for all $i \in \mathbb{Z}$]. D(G) is a triangulated category [it is not abelian].

 $V \mapsto V^{I}$ gives rise to an exact functor $\operatorname{RH}^{0}(I, -) \colon D(G) \to D(\operatorname{Vect}_{k})$ such that

$$\mathrm{H}^{i}(I, V) = \mathrm{H}^{i}(\mathrm{R}\mathrm{H}^{0}(I, V[0])), \qquad \text{for all } i \in \mathbb{Z}.$$

[V[0] = V regarded as a complex concentrated in degree 0.]

Parabolic induction

► F/\mathbb{Q}_p finite extension,

- ► G = F-points of a connected reductive F-group [e.g. GL_n(F), SL_n(F), Sp_{2n}(F),...]
- ► $P = UM \leq G$ parabolic with Levi M and unipotent radical U[e.g. $\begin{pmatrix} GL_{n_1}(F) & * & * \\ & & & \\ & & & \\ & & \\ & &$
- parabolic induction is the functor

$$i_M^G \colon \operatorname{Rep}_k(M) \xrightarrow{\operatorname{Inf}_P^M} \operatorname{Rep}_k(P) \xrightarrow{\operatorname{Ind}_P^G} \operatorname{Rep}_k(G),$$

where $Inf_P^M V = V$ with U acting trivially and

$$\operatorname{Ind}_{P}^{G} V = \left\{ f \colon G \to V \middle| \begin{array}{c} f \text{ locally constant, and} \\ f(xg) = x \cdot f(g), \ \forall x \in P, g \in G \end{array} \right\}$$

[G acts by right translation].

Derived parabolic induction

 $i_M^G \colon \operatorname{Rep}_k(M) \to \operatorname{Rep}_k(G)$ is exact, hence extends to a functor $\operatorname{Ri}_M^G \colon D(M) \longrightarrow D(G).$

Question

Do there exist left or right adjoints of Ri_M^G ?

- *i*^G_M admits a right adjoint and this extends to a derived adjunction. [Because Rep_k(G) has enough injectives.]
- i_M^G has a left adjoint $L^0(U, -)$, given by

 $L^0(U, V) = V_U := V/\langle u \cdot v - v \mid u \in U, v \in V \rangle.$

[U-coinvariants/Jacquet functor/parabolic restriction]

Problem: Rep_k(G) lacks projective objects, so the left derived functor of L⁰(U, -) may not even exist.

Brown representability (Brown, Neeman, Krause, Franke)

Let C =compactly generated, triangulated, with infinite \bigoplus .

- 1. $H: \mathcal{C}^{\mathrm{op}} \to (\mathsf{Ab})$ homological and $H(\bigoplus_{j \in J} X_j) = \prod_{j \in J} H(X_j)$ $\implies H = \mathcal{C}(-, X)$, some $X \in \mathcal{C}$.
- 2. C admits infinite \prod [apply 1. with $H = \prod_{j \in J} C(-, X_j)$].
- 3. $H: \mathcal{C} \to (Ab)$ homological and $H(\prod_{j \in J} X_j) = \prod_{j \in J} H(X_j)$ $\implies H = \mathcal{C}(X, -)$, some $X \in \mathcal{C}$.

D(M) and D(G) satisfy Brown representability, hence:

- Infinite products exist in D(M).
- ▶ If $\operatorname{Ri}_{M}^{G}$: $D(M) \to D(G)$ commutes with products, then $\operatorname{Ri}_{M}^{G}$ admits a left adjoint [apply 3. with $H = D(G)(X, \operatorname{Ri}_{M}^{G}(-))$].

Note: Infinite products in $\operatorname{Rep}_k(G)$ are not exact [they are of the form $(\prod_{j \in J} V_j)^{\infty}$, and $(\cdot)^{\infty} = \varinjlim_{l \leq G} (\cdot)^l$ is not exact] \implies products in D(G) cannot be computed "degreewise".

An auxiliary category

- Put $\Omega_G = \{ \text{compact open subgroups of } G \} \text{ [it is a G-poset]}$
- Define a category Fun_k(G): objects are
 - functors $\omega \colon \Omega_{\mathcal{G}}^{\mathrm{op}} \to \operatorname{Vect}_k$ and
 - ▶ natural maps $\rho_I(g)$: $\omega(I) \xrightarrow{\cong} \omega(gIg^{-1})$ for $g \in G$, $I \in \Omega_G$, such that $\rho_I(gh) = \rho_{hIh^{-1}}(g)\rho_I(h)$ and $\rho_I(x) = id$, for $x \in I$.
- Fun_k(G) is Grothendieck abelian and arbitrary \prod are exact.

Example

▶ Put $\Gamma_G(V)(I) := V^I$ and $\rho_I(g) \colon V^I \xrightarrow{v \mapsto gv} V^{glg^{-1}}$; this defines a [fully faithful left exact] embedding $\Gamma_G \colon \operatorname{Rep}_k(G) \to \operatorname{Fun}_k(G)$.

•
$$\Phi_G(\omega) := \varinjlim_{I \in \Omega_G} \omega(I)$$
 is exact and left adjoint to Γ_G and satisfies
 $\Phi_G \circ \Gamma_G \cong \operatorname{id}_{\operatorname{Rep}_k(G)}$.

$$\blacktriangleright (\prod_{j \in J} V_j)^{\infty} = \varinjlim_{I \in \Omega_G} \prod_{j \in J} V_j^I = \Phi_G \prod_{j \in J} \Gamma_G(V_j).$$

Computing derived products

Theorem (H.)

1. The derived functors

$$D(G) \xrightarrow[\mathrm{R} \Gamma_G]{\tau} D(\mathrm{Fun}_k(G))$$

exist, are adjoint, and satisfy $\mathrm{R}\Phi_G \circ \mathrm{R}\Gamma_G \cong \mathrm{id}_{D(G)}$.

2. $R^i \Gamma_G(V)(I) = \mathrm{H}^i(I, V)$, for $i \ge 0$.

3.
$$\prod_{j \in J} V_j^{\bullet} \cong \mathrm{R}\Phi_G \prod_{j \in J} \mathrm{R}\Gamma_G(V_j^{\bullet})$$
 in $D(G)$.

Example

$$\mathrm{H}^{i}(\prod_{j\in J}V_{j}[0])=\lim_{I\in\Omega_{G}}\prod_{j\in J}\mathrm{H}^{i}(I,V_{j}).$$

Theorem (H.)

 $\operatorname{Ri}_M^G \colon D(M) \to D(G)$ commutes with products.

Proof sketch:

 $\triangleright \operatorname{R} i_M^G = \operatorname{R} \operatorname{Ind}_P^G \circ \operatorname{R} \operatorname{Inf}_P^M,$

▶ $R \operatorname{Ind}_{P}^{G}$ commutes with products [since $R \operatorname{Res}_{P}^{G} \dashv R \operatorname{Ind}_{P}^{G}$],

remains to show

$$\alpha \colon \operatorname{R} \operatorname{Inf}_{P}^{M} \prod_{j \in J} V_{j}^{\bullet} \xrightarrow{\cong} \prod_{j \in J} \operatorname{R} \operatorname{Inf}_{P}^{M} V_{j}^{\bullet} \quad \text{in } D(P),$$

▶ reduce to "baby case": for $V_j^{\bullet} = V_j[r_j]$ [sitting in degree $-r_j$]

$$\mathrm{H}^{i}(\alpha) \colon \varinjlim_{I_{M} \in \Omega_{M}} \prod_{j \in J} \mathrm{H}^{i+r_{j}}(I_{M}, V_{j}) \xrightarrow{\text{inflation}} \varinjlim_{I_{P} \in \Omega_{P}} \prod_{j \in J} \mathrm{H}^{i+r_{j}}(I_{P}, V_{j}).$$

[This uses that P is a p-adic Lie group.]

Left adjoint of derived parabolic induction

Corollary (Brown representability)

 Ri_M^G admits a left adjoint $\operatorname{L}(U, -) \colon D(G) \to D(M)$.

Question: What does L(U, -) look like? Can it be computed?

$$\blacktriangleright L^i(U,V) := \mathrm{H}^i(\mathrm{L}(U,V[0])) = \begin{cases} V_U, & \text{if } i = 0, \\ 0, & \text{if } i > 0. \end{cases}$$

- L(U, -) = L_U ∘ R Res^G_P, where L_U: D(P) → D(M) is the left adjoint of R Inf^M_P [it exists for any *p*-adic Lie group P = U ⋊ M].
- ▶ $L_U \circ R \operatorname{c-Ind}_{I_P}^P \cong R \operatorname{c-Ind}_{I_M}^M \circ L_{I_P \cap U}$, for $I_P \leq P$ compact open. [$\operatorname{c-Ind}_{I_P}^P \dashv \operatorname{Res}_{I_P}^P$: $\operatorname{Rep}_k(P) \to \operatorname{Rep}_k(I_P)$.]

Theorem (H.)

 $\operatorname{Hom}_{k}(L^{-i}(U,V),W) \cong \operatorname{Ext}_{\operatorname{Rep}_{k}(U)}^{i}(V,W) \text{ naturally}$ [for $V \in \operatorname{Rep}_{k}(G), W \in \operatorname{Vect}_{k}; U$ acts trivially on W]. If $P = U \rtimes M$ is compact and torsion-free, one can say more: Let $d = \dim U$ and write $\omega := \operatorname{Hom}_k(\operatorname{H}^d(U, k), k)[d] \in D(P)$ [it is an invertible complex concentrated in degree -d]. Applying a result of Balmer–Dell'Ambrogio–Sanders we deduce:

Theorem (H., Schneider)

The left adjoint of $\operatorname{R} \operatorname{Inf}_{P}^{M} \colon D(M) \to D(P)$ is

$$L_U = RH^0(U, \omega \otimes_k -) \colon D(P) \longrightarrow D(M).$$

It follows that there is an infinite chain of adjunctions

 $\cdots \dashv \operatorname{R} \operatorname{Inf}_{P}^{M}(-) \otimes \omega^{-1} \dashv \operatorname{RH}^{0}(U, \omega \otimes_{k} -) \dashv \operatorname{R} \operatorname{Inf}_{P}^{M} \dashv \operatorname{RH}^{0}(U, -) \dashv \cdots$