" JOURNÉES DU GDR TLAG 24-26 MARS 2021 "

Title : Weierstrass sections for some truncated parabolic subalgebras

by Florence Fauquant-Millet, Univ. Jean Monnet, ICJ, St-Etienne.

Abstract

Let \mathfrak{g} be a reductive Lie algebra over the field of complex numbers \mathbb{C} and let $Y(\mathfrak{g})$ be the algebra of invariant polynomial functions on its dual space \mathfrak{g}^* . By a classical result of Chevalley, $Y(\mathfrak{g})$ is a polynomial algebra over \mathbb{C} , that is, the algebra $Y(\mathfrak{g})$ is generated by a finite number of homogeneous algebraically independent invariant functions. Moreover by a result of Kostant, there exists in \mathfrak{g}^* an affine subspace S, called the Kostant section or Kostant slice, such that restriction of functions to S induces an algebra isomorphism between $Y(\mathfrak{g})$ and the algebra of polynomial functions on S. This subspace S is given by a principal \mathfrak{sl}_2 -triple in \mathfrak{g} . In my talk I will extend the notion of Kostant section, called here Weierstrass section, following the Russian school, to non reductive Lie algebra \mathfrak{g} . Of course a Weierstrass section requires the polynomiality of $Y(\mathfrak{p})$ but the latter is not sufficient. As for the Kostant section, our Weierstrass section is given by an analogue of a principal \mathfrak{sl}_2 -triple (which does not exist in general in \mathfrak{p}), that is, by a so-called adapted pair for \mathfrak{p} .