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Introduction

Version en Francais

Un résultat important dans la théorie des représentations est le théoréme de Beilinson-Bernstein [2]. Rappelons brievement
son énoncé. Soit G un groupe algébrique complexe semi-simple et g- := Lie(G) son algebre de Lie. Soit tc C g¢ une
sous-algebre de Cartan et 3 C U(gc) le centre de 1’algebre enveloppante de g-. Pour chaque caractere 4 € tz‘: 1=
Homc(t, C) on dénote par m; C 3 I’idéal maximal correspondent, qui est induit via I’homomorphisme d’Harish-Chandra
[20, Theorem 7.4.5]. On définit U; := U(gc)/m,. Le théoréme affirme que si X est la variété de drapeaux de G et
Dy , le faisceau des opérateurs différentiels A-tordus [2, 2. Théoréme principal], alors on a une équivalence de catégories
Moqu(D x.2) = Mod(U,) a condition que 4 soit un caractere dominant et régulier (2.5.3). Ici Moqu(D x.2) estla catégorie
des Dy ;-modules qui sont O y -quasi-cohérents. De plus, dans cette équivalence de catégories, les Dy ;-modules qui sont

cohérents correspondent aux I{;-modules qui sont de type fini.

Le théoreme de Beilinson-Bernstein a été démontré indépendamment par A. Beilinson et J. Bernstein dans [2], et par
J-L. Brylinski et M. Kashiwara dans [15]. Il a été un outil important dans la preuve de la conjecture de la multiplicité de
Kazhdan-Lusztig [40]. En caractéristique mixte, un progres important se trouve dans les travaux de C. Huyghe [32, 33]
et Huyghe-Schmidt [37]. Dans cette situation, si o est I’anneau des entiers d’une extension finie L du corps des nombres
p-adiques Q,, et G est un groupe reductif, connexe et déployé sur o, alors ils utilisent des opérateurs différentiels arithmé-
tiques introduits par P. Berthelot dans [5] pour montrer une version arithmétique du théoréme de Beilinson-Bernstein pour
la variété de drapeaux formelle sur 0. Dans ce contexte, les sections globales de ces opérateurs sont canoniquement iso-
morphes a une version cristalline de 1’algebre de distribution classique Dist(G) du schéma en groupes G (cf. [37, Théoréme
3.2.3 ()] et [36, Proposition 5.3.1]).

Avant de présenter les objets construits et les résultats montrés dans ce travail, nous remarquons pour le lecteur que dans
tout ce travail, si e est I'indece de ramification de L, alors e < p — 1 (pour plus des détails sur cette condition technique le
lecteur est invité a regarder I’exemple 1.1.1 et la proposition 5.3.1 de [36]). Soit B C G un sous-groupe de Borelet T C B
un tore maximal et déployé de G. Nous noterons X := G/B la schéma de drapeaux associé a G. Dans la premiére partie
de ce travail, nous introduirons des faisceaux des opérateurs différentielles tordus' sur le schéma de drapeaux formel X
sur o et montrerons un équivalent arithmétique du théoréme de Beilinson-Bernstein, introduit dans le premier paragraphe.
Ici le «twist» est fait par rapport a un morphisme d’algebres A : Dist(T) — o, ou Dist(T) est I’algebre de distribution au
sens de [19]. Ces faisceaux sont notés @;, ;- En particulier, il existe une base S de X constituée d’ouverts affines, tels que

pour chaque U € S nous avons

f gt
Dy alu =2y
En d’autres termes, localement nous retrouvons le faisceau des opérateurs différentiels introduits par P. Berthelot 2. Pour

calculer ses sections globales, nous utiliserons la description de Dist(G), donnée par Huyghe-Schmidt dans [36], comme

IParfois on utilisera son équivalent en anglais «twist».
2Cette propriété clarifie pourquoi ils sont appelés «tordus».

11



12 CONTENTS

une limite inductive des o-algebres noethériennes Dist(G) = li_r)nmGN DM(G), telle que pour tout m € N nous avons
D)(G) ®, L = U(Lie(G) ®, L), I’algebre enveloppante de g; := Lie(G) ®, L. En particulier, chaque caractére
A : Dist(T) — o induit, via produit tensoriel avec L et I’homomorphisme d’Harish-Chandra, un caractere central y; :
3 — L. Notons D™(G), la complétion p-adique de la réduction centrale D" (G)/(D"(G)nKer(y,)) et D'(G), la limite
inductive du systtme D™(G) Q. L — 15(””)(6) 1 ®, L. Avant d’énoncer notre premier résultat, considérons le décalage
suivant. Tout d’abord, la représentation adjointe [38, I, 7.18] induit une structure de T-module sur g := Lie(G) telle que

g se décompose de la forme

g =Lie() & P g,

aEA

Ici A C X (T) représente les racines de G par rapport 2 T. Nous choisissons un systeéme positif des racines AT C A et nous
considérons le caractére de Weyl p = % Y wen+ @. Dans le chapitre 4 nous montrerons le théoréme suivant (théoreme
4.2.1).

Théoreéme 1. Soit A : Dist(T) — o un caractére de 1’algebre de distribution Dist(T) tel que A+p € t’z = (Lie(T®, L)*3
est un caractere dominant et régulier de £; := Lie(T) ®, L. Le foncteur sections globales induit une équivalence de

catégories entre la catégorie des 9; ,-modules cohérents et la catégories des D(G) ,-modules de présentation finie.

Comme nous expliquerons dans la suite, le théoréme est basé sur une version plus fine pour les faisceaux (des opérateurs
différentiels tordus de niveau m) @(xm/)l o Comme dans le cas classique, le foncteur inverse est déterminé par le foncteur
de localisation

o = ot
ZLocy ;) =Dy, ®pie), ()

avec une définition complétement analogue pour chaque m € N.

Le chapitre 1 est dédié a fixer quelques constructions arithmétiques (elles sont introduites dans [5], [32] et [36]). Dans
le chapitre 2 nous construisons notre faisceau des opérateurs différentiels tordus de niveau m sur le schéma de drapeaux
formel X sur o. Pour cela, notons t := Lie(T) I’algebre de Lie du tore T et part; :=1®, L. Ce sont des sous-algebres de
Cartan de g et g, respectivement. Soit N le radical unipotent du groupe de Borel B et considérons les o-schémas lisses et
séparés X :=G /Net X := G/B (I’espace affine basique et le schéma de drapeaux). La projection canonique & : X->X

est un T-torseur localement trivial pour la topologie de Zariski de X et, comme dans [11], nous considérons [’algebre
(m),

enveloppante de niveau m du torseur comme le sous-faisceau des T-invariants de &, DX :

B = (£,00)" .

Comme nous expliquons dans la section 2.3, c’est un faisceau de D”)(T)-modules qui localement, sur un ouvert affine
U C X qui trivialise le torseur, peut étre décrit comme le produit tensoriel Dg:")lU ®, D"(T). D’autre part, si 4 :
Dist(T) — o est un morphisme de o-algébres (qu’on appellera un caractere de Dist(T)) alors, grace aux propriétés juste

annoncées, dans la section 2.5 nous définissons un faisceau d 'opérateurs différentiels arithmétiques tordus sur X par
(m) . _

Ceci définit un modele entier du faisceau des opérateurs différentiels tordus D, , sur la variété de drapeaux X, :=
X Xgpec(o) Spec(L). La section 2.6 est dédiée a explorer quelques propriétés de finitude de la cohomologie des D;’t;-

modules cohérents. Un cas important est le cas ol 4 + p € t] est un caractére dominant et régulier de ;. Sous cette

(m)

hypothese, les groupes de cohomologie de tout D~

-module cohérent sont a p-torsion bornée, ce qui est un résultat central

3Nous notons également par A la caractére de I’alggbre de Lie Lie(T) induit para (2.24)
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dans ce travail. Dans le chapitre 3 nous considérerons la complétion p-adique de (4) que nous désignerons par ‘@(xm,)l et

nous étudierons ses propriétés cohomologiques lorsque le caractere 4 + p € t) est dominant et régulier. Finalement, le
chapitre 4 est dédié a I’étude du passage a la limite inductive

2f o1 ~,(m) S(m) L SHim)
Dy := lim D% i D% 10 = Z%;® L.
meN

et a démontrer un théoréeme de Beilinson-Berstein pour les 9; l—modules arithmétiques (Theorem 4.2.1).

Les travaux développés par C. Huyghe dans [33] et par D. Patel, T. Schmidt et M. Strauch dans [47], [48] et [34] montrent
que le théoreme arithmétique de Beilinson-Bernstein est un outil important dans le théoréme de localisation suivant [34,
Theorem 5.3.8]: si X note le schéma de drapeaux formel du groupe G, alors le théoréeme fournit une équivalence de
catégories entre la catégorie des représentations admissibles localement analytiques de G := G(L) (a caractere trivial !)
et la catégorie des Z-modules arithmétiques coadmissibles G-équivariants (sur la famille des modéles formels de la variété
de drapeaux rigide de G). Notre motivation a été d’étudier ce théoréme de localisation dans le cas tordu. Pour cela, dans le
chapitre 5, nous introduirons un faisceau d’opérateurs différentiels @; . dvecun niveau de congruence k € N (définition
5.20). Moralement, nous suivrons la philosophie décrite dans [34] pour introduire un faisceau d’opérateurs différentiels
sur chaque éclatement admissible de X. Plus précisément, si pr : 9 — % est un éclatement admissible de ¥ et k >> 0%,
alors

-@Q),k,x = pr*'@;k,i = Oy Qy-10, pr—lgi’“ @)
est un faisceau des anneaux sur %). Dans ce travail nous considérerons le cas algébrique, c’est-a-dire, A € Hom(T, G,,).

Dans cette situation A induit un faisceau inversible .Z(4) sur 9) et @; dévient le faisceau des opérateurs différentiels

ke, A
qui agissent sur .Z(4). A partir de maintenant nous noterons ce faisceau @; k(/l) pour tenir compte de 1’action sur .Z(4),
et nous supposerons que 4 + p € 1} est un caractere dominant et régulier de t;. Dans la section 6.2 nous démontrerons
que le foncteur pr, induit une équivalence de catégories entre la catégorie des .@; k(l)—modules cohérents et la catégorie

des @; (4)-modules cohérents. De plus, nous avons pr, 9;) (A= 9; (), ce qui implique notamment que
0 il — o0 i — nT
H(Q), Py (D) = H (X, Dy, (1) = D'(G(K));.

Ici, G(k) est le k-ieme sous-groupe de congruence de G (ceux qui sont rappelés dans la section 5.1.2). En particulier
H%9),+) = H(X,) o z, est un foncteur exact et nous avons le théoréme suivant.

Théoréme 2. Soit pr : ¥ — X un éclatement admissible. Supposons que A € Hom(T, G,,) est un caractére algébrique tel
que A+p € t] estun caractere dominant et régulier de t; . Le foncteur H 0(9), ») induit une équivalence entre les catégories
des @;) k(/l)—modules cohérents et des DT (G(k)) ,-modules de présentation finie.

Comme dans le théoreme précédent, le foncteur inverse est déterminé par le foncteur de localisation
i . i
Locy (D) = Dy, (D) ®pi(aquy, )

Décrivons maintenant les outils les plus importants dans notre théoréme de localisation. Du c6té algébrique, nous sup-
poserons d’abord que G, = G(o) et que D(G,, L) est I’algebre de distribution du groupe analytique compact G,. Le point
clé sera de construire une structure d’algebre de Fréchet-Stein faible sur D(Gy, L) (au sens de [23, Definition 1.2.6]) qui
nous permettra de localiser les D(G(, L)-modules coadmissibles (par rapport a cette structure d’algebre de Fréchet-Stein
faible). Pour cela, dans un premier temps nous montrerons que d’apres les travaux de Huyghe-Schmidt dans [37] nous
pouvons identifier 1’algébre DT (G(k)) , avec la réduction centrale D*(G(k)°), de I’algebre des distributions D*(G(k)°)

4Cette condition technique est clarifiée dans la proposition 6.1.2
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(au sens d’Emerton [23]) du groupe rigide analytique G(k)° («the wide open rigid-analytic k-th congruence subgroup»
décrit dans la sous-section 6.4.2). On a donc un isomorphisme

DY(G(k)),— D™ (G(k)°),.

Dans un deuxieme temps nous suivrons les travaux de Huyghe-Patel-Schmidt-Strauch dans [34] ou ils montrent que si
C(Gy, L)Gyo—an €St I'espace des vecteurs localement G(k)°-analytiques de I’espace des fonctions continues a valeurs

dans L et D(G(k)°, Gy) 1= (C°5(G, L)G(k)o)g7 est son dual fort, alors nous avons un isomorphisme

D(Gy, L)— lim D(G(k)°, Gy)
keN

qui définit une structure d’algebre de Fréchet-Stein faible sur D(G, L), telle que

D(G(k)°, Gy) = @ D*™(G(k)°)é,. 3

8€Gy /Gy,

Ici G}, := G(k)(o) est un sous-groupe normal de G, la somme directe parcourt un ensemble de représentants de la classe
de G dans G, et 5, est la distribution de Dirac supportée dans g. Nous dénoterons par CGO’ ; la catégorie des D(Gy, L)-

modules coadmissibles a caractere central A (D(Gy, L),;-modules coadmissibles, ou D(Gy, L), est la réduction centrale).

Or, du c6té géométrique, nous considérerons pr : %) — ¥ un éclatement admissible G-équivariant tel que le faisceau .Z’(4)

est muni d’une G-action qui nous permet définir une G-action a gauche T, : T (/1) (pg) % (l) sur 9, T (ﬂ) au

sens que pour chaque g, h € G, nous avons la propriété de cocycle Ty, = (pg)*Th o T Nous dlrons donc qu’un QT (/I)
module cohérent .# est fortement G-équivariant s’il existe une famille ((pg) ¢€G, d’isomorphismes Pg : M~ (pg)*

de faisceaux de L-espaces vectoriels, qui satisfont les propriétés suivantes (conditions (1)) :
+ Pour tout g, h € G nous avons (pg)*(ph ° Py = Ppg-
e Sild C 9 est sous-ensemble ouvert, P € @;) k(/l)(Z/{) etm € A (U) alors @ (P e m) =T,(P)+ @,(m).
« 3 Pour tout g € Gy, I'application Qg 2 M — (py), A estégale ala multiplication par 6, € D*(G(k)),;.

Un morphisme entre deux @;,k(i)—modules fortement G-équivariants (4, ((pg‘/” )geq,) et v, (qo;,” )geG,) est un mor-
phisme w : .#Z — 4 qui est Qg’k(/l)-linéaire et tel que, pour tout g € Gy, on a (pg“‘/ oy = (py)y © (p‘g’”. Notons
Coh(@; k(/l), G) la catégorie des 9; k(l)-modules cohérents qui sont fortement G-équivariants. Nous avons le résultat

suivant ©

Théoréme 3. Soit A € Hom(T, G,,) un caractere algébrique tel que 4 + p € 1} est un caractere dominant et régulier de
t; . Les foncteurs .Zoc (/l) et H(9), ») induisent des equlvalences des catégories entre les catégories des D(G(k)°, Gy)-

modules de presentatlon finie (a caractére central 4) et Coh(Z, ) k(/l), Gy).

Toujours du coté géométrique, considérons I’ensemble . des couples (), k) tels que 2 est un éclatement admissible de
Xetk> kg), ou

ky :=min min{k €N | wke 7).

Cet ensemble est ordonné par la relation (2)’, k) > (), k) si et seulement si 9)’ est un éclatement admissible de Y et k" > k.
Comme il est montré dans [34] le groupe G-agit sur . . et cette action respecte le niveau de congruence. C’est-a-dire,

5Nous identifions ici H%(9), jT (/1)) avec D*(G(k)°), et nous utilisons le lemme 6.3.3 pour donner un sens a cette condition.

%Nous utilisons la relation (6) pour donner du sens a I’affirmation du théoréme.
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pour tout couple (9, k) € J il existe un couple (2).g,ky) ,) € F, muni d’un isomorphisme p, : Y — 9.g et tel que
kg) = kg)‘ ¢+ Nous dirons donc qu’une famille .#Z := (///2)’ k)(g), OEF des :@;)’ k(/l)-modules cohérentes est un Z(4)-module
coadmissible G-équivariant sur F . si pour tout g € Gy, avec morphisme p, : 9 — 9).g, il existe un isomorphisme

Pg - My i = (P My

qui satisfait les conditions () et tel que, si (9, k") > (9,k) avec # : Y — 9, alors il existe un morphisme de transi-
tion 7.y j» — My . Ces morphismes satisfont une condition de transitivité évidente qui permet de former la limite
projective

D) = lim HO(Y, #y )
Q. EF

au sens des groupes abéliens. Un morphisme .#Z — .4 entre deux tels modules est un morphisme L//yk - c/Vg)’k de

. . . . . G
9; . (A)-modules qui est compatible avec les structures supplémentaires. Nous noterons cette catégorie Cx"/l.

Une fois construits les outils, nous pouvons construire un foncteur vers la catégorie CGO, , des D(Gy, L),;-modules coadmis-
sibles. Prenons donc un tel module M et notons V' := M ; sa représentations localement analytique associée. L’ espace
des vecteurs G(k)°-analytiques Ve, © V est stable sous I’action de Gy et son dual My := (Vgyo_an) €St un

D(G(k)°, Gy)-module de présentation finie. Dans cette situation, le théoréme 3 produit un @; k(/l)-module cohérent

Xac;k(/l)(Mk) ‘= %’ku) ®pu(rye), M

pour chaque élément (), k) € F x- Dans la section 6.5 nous démontrerons le théoréme suivant (théoréme 6.5.6).
Théoréme 4. Soit A € Hom(T, G,,) un caractere algébrique tel que 4+ p € t] est un caractére dominant et régulier de t; .

(i) La famille

Gy . T
Loc (M) = (.,sfocg)’k(/l)(Mk))(%ezaE

induit un Z(4)-module coadmissible G -équivariant sur .. Cela signifie que .’ och(M ) est un objet de C:OA. De

plus, la formation de .¥ ocf0 (*) c’est fonctoriel.

(ii) Les foncteurs . ocfo(-) et I'(») induisent des équivalences des catégories entre la catégorie CGO’ , (des D(Gy, L);-

. . G
modules coadmissibles) et la catégorie Cxo/l.

Finalement, la derniére partie de ce travail est consacrée a I’étude de la catégorie des D(G, L),;-modules coadmissibles,
ol G := G(L)’. Pour cela, nous considérerons I’immeuble de Bruhat-Tits 3 de G ([16] et [17]). 1I s’agit d’un complexe
simplicial équipé d’une action de G. Pour tout sommet spécial v € B, la théorie de Bruhat et Tits associe un groupe
réductif G, dont fibre générique est canoniquement isomorphe & G Xgpe () Spec(L). Soit X, le schéma de drapeaux
de G,, et X, sa complétée formelle le long de sa fibre spéciale. Nous considérons 1’ensemble F composé des triples
(9, k, v) tels que v est un sommet spécial, 9, — X, est un éclatement admissible de X, et k > kg . D’apres (6.6.2)
F est muni d’une relation d’ordre partiel. De plus, pour chaque sommet spécial v € B, chaque élément g € G induit
un isomorphisme pg DX, > X,,, tel que si (pg)” : Oxug - (p;)*(’)xu est le comorphisme et 7 @ 9, — X, est un
éclatement admissible le long de V' (.#), alors I’éclatement au long de V((pé”,)‘1 (pg)*f) produit un schéma %) ,,, muni d’un
isomorphisme pg 09, > Yy tel que ky = k%g et pour tout g, A € G nous avons ng ) pg = pgh.

7Ici Gy est un sous-goupe (maximal) compact de G. Cette propriété de compacité permet de définir la structure d’algebre de Fréchet-Stein faible
remarquée avant.
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Un Z(4)-module arithmétique coadmissible G-équivariant sur £, consiste d’une famille (.#Z(g) 1))@, k.v)eF 9€ @;) (D-
modules cohérents satisfaisant la condition () plus certaines propriétés de compatibilité (définition 6.6.4) permettant de

former la limite projective

L) = lim  HQp My, sy)-
Qy:k0)EE

Ce qui, comme nous le montrerons, porte une structure de D(G, L),-module coadmissible. D’autre part, étant donné
un D(G, L),-module coadmissible M, on considére V := M l; son dual continu, qui est une représentation localement

analytique de G. Soit ensuite M, ; I'espace dual du sous-espace Vg (xyo_an © V' des vecteurs G, (k)°-analytiques. Pour

—an =

tout (%), k, v) € F, nous avons un 9; k(/l)—module cohérent

i

”E’ﬂoc-y“:)wk(/l)(MU,k) = @Ewk(i) ®Dan(g3v(k)o)/1 MU,k'

On note cette famille par focf(M ). Nous montrerons le résultat suivant (théoréme 6.6.5).

Théoreme 5. Soit 4 € Hom(T, G,,) un caractére algébrique tel que 4+ p € 1] est un caractere dominant et régulier de
t;. Les foncteurs .,%ocf(-) et I'(+) donnent des équivalences quasi-inverses entre les catégories des D(G, L),-modules

coadmissibles et des Z(4)- modules arithmétiques coadmissibles G-équivariants.

A

La derniere tache a consisté a étudier la limite projective

Xy i= 1(& 2,
(p-k.0)

Il s’agit de I’espace de Zariski-Riemann associé a la variété de drapeau rigide X"€. On peut aussi former la limite projective
2(4) des faisceaux @; (4) qui est un faisceau des opérateurs G-équivariants des anneaux p-adiquement complétes sur
X . De méme, si (A i), k0er estun Z(4)-module arithmétique coadmissible G-équivariant, alors on peut former
la limite projective .#,,. La donnée .#(y i e ~ 4 induit un foncteur fidele de la catégorie des Z(4)- modules
arithmétiques coadmissibles G-équivariants sur F vers la catégorie des Z(4)-modules G-équivariants sur X, (théor¢me
6.6.7).



Introduction

English version

An important result in representation theory is the so-called Beilinson-Bernstein theorem [2]. Let us briefly recall its
statement. Let G be a semi-simple complex algebraic group and g := Lie(G) its Lie algebra. Let t- C g be a Cartan
subalgebra and 3 C U/(g¢) the center of the universal enveloping algebra of g.. For each character A € tE := Hom¢(t, C)
we denote by m; C 3 the corresponding maximal ideal, which is induced via the homomorphism of Harish-Chandra [20,
Theorem 7.4.5]. We define U, := U(gc)/m ;. The theorem states that if X is the flag variety of G and Dy , is the sheaf of
A-twisted differential operators [2, 2. Main theorem], then we have an equivalence of categories Modqc(D x.1) = Mod(U),
provided that 4 is a dominant and regular character of t¢ (2.5.3). Here Mod, (Dy ;) is the category of Dy ;-modules that
are O y-quasi-coherent. In addition, in this equivalence of categories, coherent Dy ;-modules correspond to the I/;-
modules that are of the finite type.

The Beilinson-Bernstein theorem was independently demonstrated by A. Beilinson and J. Bernstein in [2], and by J-L.
Brylinski and M. Kashiwara in [15]. It has been an important tool in proving Kazhdan-Lusztig’s multiplicity conjecture
[40]. In mixed characteristic, an important progress can be found in the work of C. Huyghe [32, 33] and Huyghe-Schmidt
[37]. In this situation, if o is the ring of integers of a finite extension L of the field of p-adic numbers Q, and G is a split
conneccted, redactive group scheme over o, then they use the arithmetic differential operators introduced by P. Berthelot in
[5] to show an arithmetic version of the Beilinson-Bernstein theorem for the formal flag o-scheme X. In this context, the
global sections of these operators are canonically isomorphic to a crystalline version of the classical distribution algebra
Dist(G) of the group scheme G (cf. [37, Theorem 3.2.3 (i)] and [36, Proposal 5.3.1]).

Before presenting the objects built and the results shown in this work, we remark for the reader that troughout this work,
if e denotes the index of ramification of L, then e < p — 1 (for more details about this technical condition the reader is
invited to look at the example 1.1.1 and the proposition 5.3.1 of [36]). Let us take B C G a Borel subgroup and T C B
a split maximal torus of G. We will denote by X := G/B the flag scheme associated to G. In the first part of this work,
we will introduce sheaves of twisted differential operators on the formal flag o-scheme X and we will show an arithmetic
equivalent of the Beilinson-Bernstein theorem, introduced in the first paragraph. Here the twist is made in relation to a
morphism of o-algebras 4 : Dist(T) — o, where Dist(T) is the sense of [19]. These sheaves are denoted by @3’5 I In
particular, there is a base S of X made up of open affine subsets, such that for each i/ € S we have

gt
936’ u = @U.
In other words, locally we find the sheaf of differential operators introduced by P. Berthelot 8. To calculate its global
sections, we will use the description of Dist(G), given by Huyghe-Schmidt in [36], as an inductive limit of noetherian
o-algebras Dist(G) =1i_1)n N D™)(G), such that for every m € N we have D")(G) ®, L = U(Lie(G) ®, L), the universal
m
enveloping algebra of g; := Lie(G) ®, L. In particular, each character 4 : Dist(T) — o induces, via tensor product with

8This property clarifies why they are called "twisted".
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L and the Harish-Chandra homomorphism, a central character y, : 3 — L. We denote by D(G), the p-adic completion
of the central reduction D" (G)/(D")(G) N Ker(y;)) and by D'(G), the inductive limit of the system D"(G), ®, L —
ﬁ(’"/)(G) ; ®, L. Before stating our first result, let us consider the following shift. First, the adjoint representation [38, I,
7.18] induces a T-module structure on g := Lie(G) such that g breaks down as follows

g =Lie() & P g,

aEA

Here A C X(T) represents the roots of G respect to T. We choose a positive root system At C A and we consider the
Weyl character p := % > wen+ @. In chapter 4 we will show the following theorem (theorem 4.2.1).

Theorem 1. Let A : Dist(T) — o be a character of the distribution algebra Dist(T), such that A+p € t’z 1= (Lie(T)@DL)*9
is adominant and regular character of t; := Lie(T)®, L. The global sections functor induces an equivalence of categories
between the category of coherent 9; , modules and the category of finitely presented D(G) ,-modules.

As we will explain later, the theorem is based on a finer version for the sheaves ( of twisted differential operators of level
m) .@(xm/)l o As in the classic case, the inverse functor is determined by the localization functor
)= gt
focx’ﬁ(‘) = @Z'f,/l ®DT(G)/1 (¢

with a completely similar definition for each m € N.

Chapter 1 is dedicated to fixing some arithmetic constructions (they are introduced in [5], [32] and [36]). In Chapter 2 we
construct our sheaf of twisted differential operators of level m on the formal flag o-scheme X. To do this, we will denote by
t := Lie(T) the Lie algebra of the torus T and by t; :=t®, L. These are Cartan subalgebras of g and g; , respectively. Let
us consider N the unipotent radical of the Borel subgroup B and consider the smooth and separated o-schems X :=G /N
and X := G/B (the basic affine space and the flag scheme). The canonical projection & : X > Xisa locally trivial
T-torsor for the Zariski topology of X. As in [11], we will consider the enveloping algebra of level m of the torsor as the
subsheaf of T-invariants of &, D;"):

D = (:f*D;"))T.

As we will explain in the section 2.3, it is a sheaf of D(T)-modules which locally, over an open affine subset U C X that
trivializes the torsor, can be described as the tensor product Dg") ly ®, D(T). On the other hand, if A : Dist(T) — o
is a morphism of o-algebras (which we will call a character of Dist(T)) then, thanks to the properties just announced, in
section 2.5 we define a sheaf of twisted arithmetic differential operators on X by

D()?j)/l 1= Dim) ®D(m)(‘|]') 0. (4)
This defines an integer model of the sheaf of twisted differential operators D, , on the flag variety X; = X Xgpec(o)

Spec(L). The section 2.6 is dedicated to exploring some finite properties of the cohomology of coherent Dg:")ﬂ—modules.
An important case is the one where 4 + p € t} is a dominant and regular character of t;. Under this assumption, the

cohomology groups of any coherent Dg;";-module are of bounded p-torsion, which is a central result in this work. In

chapter 3 we will consider the p-adic completion of (4) which we will denote by @;mi, and we will study its cohomological

properties when the character 4 + p € t} is dominant and regular. Finally, chapter 4 is dedicated to the study of the
inductive limit

oo 2 (m) ASm) L S(m)
Dy =M Py o Do =75, ® L.
meN

9We also denote by A the character of the Lie algebra Lie(T) induced by (2.24)
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and to demonstrate a Beilinson-Berstein theorem for arithmetic 9; A—modules (Theorem 4.2.1).

The work developed by C. Huyghe in [33] and by D. Patel, T. Schmidt and M. Strauch in [47], [48] and [34] shows that
the arithmetic Beilinson-Bernstein theorem is an important tool in the following location theorem [34, Theorem 5.3.8]:
if X denotes the formal flag scheme of the group G, then the theorem provides an equivalence of categories between
the category of admissible locally analytic representations of G := G(L) (with trivial character!) and the category of
admissible G-equivariant arithmetic Z-modules (on the family of formal models of the rigid flag variety). Our motivation
was to study this localization theorem in the twisted case. To do this, in Chapter 5, we will introduce a set of differential
operators @; K with a congruence level k € N (definition 5.20). Morally, we will follow the philosophy described in
[34] to introduce a sheaf of differential operators on each admissible blow-up of X. More specifically, if pr : 9 — X is
an admissible blow-up of ¥ and k >> 0'0, then

%,m = pr*g;s,k,,l = Oy Qy-10, pr_lgge,k,/l ®)
is a sheaf of rings on ¥). In this work we will consider the algebraic case, i.e., A € Hom(T, G,,). In this situation, 4 induces
an invertible sheaf .Z(4) on %) and ‘@;),k, h

will denote this sheaf by .@; k(/i) to take into account the action on .Z(A), and we will assume that A+p € tz is a dominant

becomes the sheaf of differential operators acting on .Z(4). From now on, we

and regular character of t; . In the section 6.2 we will demonstrate that the functor pr,, induces an equivalence of categories
between the category of coherent @; (A)-modules and the category of coherent @; (A)-modules. In addition, we have

pr, 9;, ROE 9;’ ,(4), which implies that
0 T _ 0 T — nt
H°®. 7y () = H'X. 7, (%) = D'(G(K);.

Here, G(k) is the k-th congruence subgroup of G (this is recalled in the section 5.1.2). In particular H 09,)=H 0(%,e) 0 T,

is an exact functor and we have the following theorem.

Theorem 2. Let pr : ¥ — X be an admissible blow-up. Suppose that 2 € Hom(T, G,,) is an algebraic character such
that 4+ p € t] is a dominant and regular character of t;. The H 0(9), ») induces an equivalence between the categories of
coherent 9;) k(/l)-modules and finitely presented DT(G(k)) ,-modules.

As in the previous theorem, the inverse functor is determined by the localization functor
Locg () 1= Ty (D) piay, (-

Let us now describe the most important tools in our localization theorem. On the algebraic side, we will first assume
that G, = G(o) and that D(G, L) is the distribution algebra of the compact analytic group G,,. The key point will be to
build a structure of weak Fréchet-Stein algebra on D(G,, L) (in the sense of [23, Definition 1.2.6]) that will allow us to
localize the coadmissible D(G, L)-modules (relative to this weak Fréchet-Stein structure). To do this, in a first time we
will show that according to the work developped by Huyghe-Schmidt in [37], we can identify the algebra D(G(k)), with
the central reduction D**(G(k)°), of the algebra of analytic distributions D?*(G(k)°) (in the sense of Emerton [23]) of the
rigid analytic group G(k)° (the wide open rigid-analytic k-th congruence subgroup described in subsection 6.4.2). So we

have an isomorphism
D' (G(K)),— D™(G(k)°),.

In a second step we will follow the work of Huyghe-Patel-Schmidt-Strauch in [34] where they show that if C**(G,, L)y

—an
is the vector space of locally analytic vectors of the space of continuous L-valued functions, and D(G(k)°,G,) :=

10This technical condition is clarified in the proposition 6.1.2
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(CB(Gy, L)G(k)o); is its strong dual, then we have an isomorphism

D(Gy, L)— lim D(G(k)°, Go)
keN

which defines a structure on D(G, L) of weak Fréchet-Stein algebra, such that

D(G(k)°,Gy) = @ D*™(G(k)®)d,- (6)
8€Gy /Gy,

Here G, := G(k)(o) is a normal subgroup of G, the direct sum runs through a set of representatives of the cosets of G, in
G and 6, is the Dirac distribution supported in g. We will denote by CGO, , the category of coadmssible D(G(, L)-modules
with central character A (coadmissible D(G), L),-modules, where D(G,, L), denotes the central reduction).

Now, on the geometric side, we will consider pr : %) — X a Gy-equivariant admssible blow-up such that the invertible
sheaf (1) is equipped with a G-action that allows us to define a left Gj-action T}, : .@;) (A= (pg)*.@; (A)on .@;) (s
in the sense that for every g, h € G, we have the cocycle condition T, = (p,), T}, © T,. So, we will say that a coherent
@;’k(/l)—module A is strongly Gy-equivariant if there is a family (@g)ge, of isomorphisms ¢, : A — (pg), M of
sheaves of L-vector spaces, which satisfy the following properties (conditions (7)) :

« Forevery g, h € Gy we have (pg),. @) © @3 = @p,-
« IfU C 9 is an open subset, P € @; (WU and m € .4/ U) then @ (P « m) = T,(P) » ¢, (m).

« ' Forany g € Gy, the application @, : .# — (p,),.# is equal to the multiplication by &, € D*(G(k));.

A morphism between two strongly G-equivariant @;’ ,(A)-modules (A, ((pg” )geGo) and (1, ((ng )geGo) is a morphism
v . M — A& whichis Qg’k(ﬂ)-linear and such that, for every g € G,;, we have (p;V oy = (py)y © (p:g”. We denote by
Coh(@% k(/l), G) the category of strongly G-equivariant @; k(ﬂ)—modules. We have the following result 12

Theorem 3. Let 4 € Hom(T, G,,) be an algebraic character such that A + p € t’l is a dominant and regular character of
t; . The functors .Z oc;) k(/l) and H 0(2), ») induce equivalences between the categories of finitely presented D(G(k)°, G)-

modules (with central character 4) and Coh(@; k(ﬂ), Gy).

Still on the geometric side, let us consider the set £, of couples (%), k) such that ) is an admissible blow-up of X and
k> kg), where

ky :=min min{k €N | wke 7).

This set is ordered by the relationship (2, k') > (%), k) if and only if )’ is an admissible blow-up of 9 and k' > k. As
shown in [34] the group G acts on £, and this action respects the congruence level. This means that for every couple
(9, k) € F, there is a couple (2).g, ky o) € F x with an isomorphism p, : 9 — 9).g and such that kg = kg ,. So we will
say that a family .#Z := (Ay ) 1)e Fe of coherent @;)’ (A)-modules is a coadmissible G-equivariant Z(A)-module on
Jx if for any g € G, with morphism p, : 9 — 9).g, there is an isomorphism

/N %g),g,k - (pg)*‘%g

1T'We identify here Ho(g), 9;) k(A)) with D*(G(k)°), and we use lemma 6.3.3 to give sense to this condition.

12We use the relationship (6) to give a sense to the assertion of the theorem.
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that satisfies the conditions (1) and such that, if (9, k") > (2, k) with z : 9’ — 9, then there is a transition morphism
m My o — My . These morphisms satisfy an obvious transitivity condition that allows to consider the projective limit

L) = lim  HOQ, My,
Q.0eF,

in the sense of the Abelian groups. A morphism .# — .4 between two such a modules is a morphism .#Zy) , — gy ; of

@; . (A)-modules which is compatible with the additional structures. We will note this category Cg"i.

Once the tools are built, we can build a functor to the category of coadmissible D(Gy,, L);-modules. Let us take such a
module M and note V' := M 1: its associated locally analytic representation. The vector space of G(k)°-analytic vectors
V(kyo—an C V is stable under the action of G and its dual M := (Vg()o_,,) is a finitely presented D(G(k)°, Gp)-module.
In this situation, theorem 3 produces a coherent ‘@g‘) k(l)—module

foc;’k(/l)(Mk) = @;‘),k(j) ®'D““(G(k)°)/«h Mk
for each element (2), k) € F x- In the section 6.5 we will demonstrate the following theorem (theorem 6.5.6).

Theorem 4. Let A € Hom(T, G,,) be an algebraic character such that 1 4+ p € tz is a dominant and regular character of

tL.

(i) The family

Gy . T
ZLoch(M) 1= (.,‘focg)’k(/l)(Mk)Xg),k)ezx

induces a coadmissible Gy-equivariant Z(4)-module on F x This means that foch(M ) is an object of C:OA. In

addition, the formation of . 0(:/?0 (¢) is functorial.

(ii) The functors . ocf0 (+) and I'(e) induce equivalences of categories between the category CGO, , (of coadmissible

D(G, L),-modules) and the category Cgoi.

Finally, the last part of this work is devoted to the study of coadmissible D(G, L),;-modules, where G := G(L)B. To
do this, we will consider the Bruhat-Tits building B of G ([16] and [17]). It is a simplicial complex equipped with a
G-action. For any special vertex v € B, the theory of Bruhat and Tits associates a reductive group G, whose generic fiber
is canonically isomorphic to G Xgpe.(o) Spec(L). Let X, be the flag scheme of G, and X, its formal completion along its
special fiber. We consider the set / composed of triples (%), k, v) such that v is a special vertex, ¥),, — X, is an admissible
blow-up of X, and k > k%' According to (6.6.2) F is partially ordered. In addition, for each special vertex v € B, each

element g € G induces an isomorphism pg : X, - X,,, such that if (pg)q : (’)xug - (pg )*Oxu is the comorphism map

vg’
and z : %), — X, is an admissible blow-up along V' (.#), then the (admissible) blow-up along V((pg )1 (pg )..¥) produces

a9),, scheme with an isomorphism pg 09, > Y, suchthat kg = k¥)ug and for every g, h € G we have ng ° pg = p; "

A coadmissible G-equivariant arithmetic 2(4)-module on F, consists of a family (.//l@w k,u))(%,k,u)e £ of coherent 7 k(/l)—
modules satisfying the condition (1) plus some compatibility properties (definition 6.6.4) that allow us to form the projec-

tive limit

L) = lim  HQy My, i)
(g)v’k’v)ez

3Here G is a (maximal) compact subgroup of G. This compactness property allows to define the structure of weak Fréchet-Stein algebra.
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Which, as we will show, has a structure of coadmissible D(G, L),-module. On the other hand, given a coadmissible
D(G, L),-module M, we consider V' := M z: its continuous dual, which is a locally analytic representation of G. Then let

M, ;. be the dual space of the subspace Vg (xyo_an € V' 0f G, (k)°-analytic vectors. For every (9),,k,v) € F, we have a

—an

coherent @; k(/l)-module

gOC;U’k(ﬂ)(MU’k) = @;wk(ﬂ) ®'Da“(61,(k)°)}h Ml),k'

We note this family .2 ocf(M ). We will show the following result (theorem 6.6.5).

Theorem 5. Let A € Hom(T, G,,) be an algebraic character such that A + p € t’]: is a dominant and regular character of
t;. The functors .2 ocf(o) and I'(e) give an equivalence between the categories of coadmissible D(G, L),-modules and
coadmissible G-equivariant arithmetic Z(A4)-modules.

The last task was to study the projective limit

Xy = l(ﬂ 2,
(y,k0)

This is the Zariski-Riemann space associated to the rigid flag variety X"€. We can also form the projective limit Z(4) of
the sheaves @;’k(l) which is a sheaf of G-equivariant differential operators on X . Similarly, if (Z(g) 1))@, k.eF 18 a
coadmissible G-equivariant arithmetic Z(4)-module, then we can form the projection limit .#Z,. The data . Zg) ; er ~
M, induces a faithful functor from the category of coadmissible G-equivariant arithmetic Z(4)-modules on F to the
category of G-equivariant Z(4)-modules on X, (theorem 6.6.7).



Chapter 1

Arithmetic definitions

In this chapter we will describe the arithmetic objects on which the definitions and constructions of our work are based.
We will give their functorial constructions and we will enunciate their most remarkable properties. For a more detailed
approach, the reader is invited to take a look to the references [45], [32], [36] and [5].

1.1 Partial divided power structures of level m

Let p € Z be a prime number. In this subsection Z,) denotes the localization of Z with respect to the prime ideal (p).
We start recalling the following definition [7, Definition 3.1].

Definition 1.1.1. Let A be a commutative ring and I C A an ideal. By a structure of divided powers on I we mean a

collection of maps y; : I — A for all integers i > 0, such that
(i) Forallx € I, yo(x) =1, yy(x) =xand y;(x) € I ifi > 2.
(ii) Forx,y € I and k > 1 we have y;(x + y) = Zi+j=k y,»(x)yj(y).
(iii) For a € A and x € I we have y,(ax) = akyk(x).
(iv) For x € I we have yi(x)yj(x) = ((i,j))yi+j(x), where (i, j)) := (G + NG~ IGHL
(v) We have yp(yq(x)) = Cp’qypq(x), where Cq = (! (pH~YghH>.

Throughout this work we will use the terminology: "(I,y) is a PD-ideal", "(A, I, y) is a PD-ring" and "y is a PD-structure
on I". Moreover, we say that ¢ : (A, 1,y) — (B, J,0) is a PD-homomorphism if ¢ : A — B is a homorphism of rings
such that ¢(I) C J and 6, 0¢|; = ¢poy,, for every k > 0.

Example 1.1.1. [7, Section 3, Examples 3.2 (3)] Let o be a discrete valuation ring of unequal characteristic (0, p) and
uniformizing parameter w. Let us write p = uw®, with u a unit of 0 and e a positive integer (called the absolute ramification
index of v). Then y,(x) := x*/k! defines a PD-structure on (w) if and only if e < p — 1. In particular, we dispose of
PD-structure on (p) C Z - We let xIK1 ;= 7, (x) and we denote by ((p), [ 1) this PD-ideal.

Let us fix a positive integer m € Z. For the next terminology we will always suppose that (A, I,y) is a Z,-PD-algebra
whose PD-structure is compatible (in the sense of [5, subsection 1.2]) with the PD-structure induced by ((p), [ ]) (we recall
to the reader that the PD-structure ((p), [ ]) always extends to a PD-structure on any Z p)—al gebra [7, proposition 3.15] ).

Definition 1.1.2. Let m be a positive integer. Let A be a Z,-algebra and 1 C A an ideal. We call a m-PD-structure on
I a PD-ideal (J,y) C A such that I?") + pI C J, where I'?") is the ideal generated by the powers x?" with x € 1.

23
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We will say that (I, J,y) is a m-PD-ideal of A. Moreover, we say that ¢ : (A,1,J,y) —» (A’,I',J',y") is a m-PD-
morphism if ¢ : A — A’ is a ring morphism such that ¢(I) C I’, and such that ¢ : (A,J,y) = (A", J ,y")isa
PD-morphism.

For every k € N we denote by k = p™q + r the Euclidean division of k by p™, and for every x € I we define x¥lm :=
x’(yq(xpm)). We remark for the reader that the relation g!y,(x) = x4 (which is an easy consequence of (i) and (iv) of
definition 1.1.1) implies that g!xF}m = xk,

On the other side, the m-PD-structure (I, J, y) allows us to define an increasing filtration (I {"})neN on the ring A which is
finer that the I-adic filtration and it is called the m-PD-filtration. It is characterized by the following conditions [6, 1.3]:

A 1'%t =4, 1t =7,
(i) Forevery n > 1, x € I'™ and k > 0 we have x{k} e 1k},
(iii) For every n > 0, (J + pA) n I'"} is a PD-subideal of (J + pA).

Proposition 1.1.3. [7, proposition 1.4.1] Let us suppose that R is a Z ,-algebra endowed with a m-PD-structure (a, b, a).
Let A be a R-algebra and I C A an ideal. There exists an R-algebra P,,(I), an ideal I C P, (I) endowed with a m-
PD-structure (I,[ 1) compatible with (b, a), and a ring homomorphism ¢ : A — P(m)(I) such that ¢p(I) C 1. Moreover,
(P WNARS @) satisfies the following universal property: for every R-homomorphism f : A — A’ sending I to an
ideal 1" which is endowed with a m-PD-structure (J',y") compatible with (b, a), there exists a unique m-PD-morphism
g: (P(m)(I)j, LD = (A, I, Jy) such that gop = f.

Definition 1.1.4. Under the hypothesis of the preceding proposition, we call the R-algebra P, (I), endowed with the
m-PD-ideal (I, L[, the m-PD-envelope of (A, I).

—(n+1
Finally, if we endow P (I) 1= P, (I)/1 U Gith the quotient m-PD-structure [5, 1.3.4] we have

Corollary 1.1.5. [5, Corollary 1.4.2] Under the hypothesis of the preceding proposition, there exists an R- algebra P(?n )(1 )

_ . —{n+1
endowed with a m-PD-structure (I, 1,[ 1) compatible with (b, a) and such that 1 e = 0. Moreover, there exists an R-

homomorphism ¢, @ A — P(”’n)(I) such that ¢(I) C 7 and universal for the R-homomorphisms A — (A’ 1',J',y")
sending I into a m-PD-ideal I' compatible with (b, @) and such that I''"*1} = 0,

1.2 Arithmetic differential operators

Let us suppose that o is endowed with the m-PD-structure (a, b, [ ]) defined in example 1.1.1. Let X be a smooth o-scheme
and Z c Oy a quasi-coherent ideal. The presheaves

UCXw P,y(TWU,T) and UC X P! (NU,T))

are sheaves of quasi-coherent O y-modules which we denote by P,,,(Z) and P{’m) (2), respectively. In a completely analo-
gous way, we can define a canonical ideal Z of P(m)(I), a sub-PD-ideal (f, [ c Z, and the sequence of ideals (Ztn DneN
defining the m-PD-filtration. Those are also quasi-coherent sheaves on X [5, subsection 1.4].

Now, let us consider the diagonal embedding A : X < X X, X and let W C X X, X be an open subset such that

X C W is aclosed subset defined by a quasi-coherent sheaf Z C Oy, . For every n € N, the algebra P} m = P(”m)(I) is

quasi-coherent and its support is contained in X. In particular, it is independent of the open subset W' [5, 2.1]. Moreover,

by proposition 1.1.3 the projections p;, p, : X X, X — X induce two morphisms d;,d, : Ox — P} - endowing P} -

of a left and a right structure of O y-algebra, respectively.



1.3. SYMMETRIC ALGEBRA OF FINITE LEVEL 25

Definition 1.2.1. Let m, n be positive integers. The sheaf of differential operators of level m and order less or equal to n
on X is defined by

(m) . _ n
DX,V! = ﬂomox(PX’(m), Ox)

If n < #’ corollary 1.1.5 gives us a canonical surjection P;’;’(m) - P;’(’(m) which induces the injection D;”L — ’Dg;"’l, and

the sheaf of differential operators of level m is defined by

(m) . _ (m)
DY = DY

neN

We remark for the reader that by definition D(};") is endowed with a natural filtration called the order filtration, and like the

sheaves P} my’ the sheaves Dg;"l are endowed with two natural structures of O y-modules. Moreover, the sheaf D;") acts

onOy: if P € D(;"jl, then this action is given by the composition O 4, ”P;’(,(m)—li Oy.

Finally, let us give a local description of Dg;”; Let U be a smooth open affine subset of X endowed with a family of local
coordinates xy, . ..,xy. Letdx,, ... ,dxy be abasis of Qy(U) and 9y, .. .,0d,, the dual basis of Tx(U) (as usual,
Tx and Qy denote the tangent and cotangent sheaf on X, respectively). Let k € NV. Let us denote by |k| = Zfil k; and
a}"f] = d,,/k;! forevery 1 < i < N. Then, using multi-index notation, we have okl = Hl]\il a}"f] and 9<% = ¢, 19, Tn

this case, the sheaf Dg?"l has the following description on U

DPW) =9 D a0 | g € Oy(U)and k e NN . (1.1)

|k|<n

1.3 Symmetric algebra of finite level

In this subsection we will focus on introducing the constructions in [32]. Let X be an o-scheme, £ a locally free module
of finite rank on X, Sy (L) the symmetric algebra associated to £ and Z the ideal of homogeneous elements of degree 1.
Using the notation of the first section we define

Cxm(L) 1= Psy @) and T (L) = Ty L)/ I, (1.2)

Those algebras are graded [32, Proposition 1.3.3], and if #, ..., 7y is a local basis of £, we have

n _ 1
Dy L) = @ OXE{'}'

|l|<n

As before pl} = Hl]il nl.{l"} and qi!n{l"} = ni. We define by duality

i

Sym(L) 1= ] Homo, (T, Ox ).
keN

By [32, Propositions 1.3.1, 1.3.3 and 1.3.6] we know that Sym™ (L) = EB,,GNSym;’")(E) is a commutative graded algebra
with noetherian sections over any open affine subset. Moreover, locally over a basis 7, ..., 15 we have the following
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description

L <> 1
Sym"(L) = @ OXQ<£>, where q_,l|"i T=nl
!

|1|=n
Remark 1.3.1. By [45, A.10] we have that Sym (L) is the symmetric algebra of L, which justifies the terminology.

We end this subsection by remarking the following results from [33]. Let Z be the kernel of the comorphism A¥ of the
diagonal embedding A : X — X Xgpec(o) X . In [32, Proposition 1.3.7.3] Huyghe shows that the graded algebra associated
to the m-PD-adic filtration of Py, it is identified with the graded m-PD-algebra I'y ,,(Z /I?) =T X’(m)(Qk). More
Q@) — gr.(PL

exactly, we have canonical isomorphisms F’;( - ) which, by definition, induce a graded

Py— n
) T 1ﬂX,(m) »(m)

isomorphism of algebras

Sym®™ (T)—> gr. D, (1.3)

1.4 Arithmetic distribution algebra of finite level

As in the introduction, let us consider G a split connected reductive group scheme over o and m € N fixed. We propose
to give a description of the algebra of (arithmetic) distributions of level m introduced in [36]. Let I denote the kernel
of the surjective morphism of o-algebras e : o[G] — o, given by the identity element of G. We know that /1% is a
free 0 = o[G]/I-module of finite rank. Let #;, . .. ,#; € I such that modulo I 2 these elements form a basis of [ /1 2,

The m-divided power enveloping of I (proposition 1.1.3) denoted by P, (G), is a free o-module with basis the elements
iy — k) (ki {ki}
==

i

= tf", for every k; = p™q; + r;and 0 < r; < p™ [5, 1.3.5.2]. These algebras
are endowed with a decreasing filtration by ideals I{"} (subsection 1.1), such that I'" = @y;|5,0 1'%}, The quotients

, where g;!t

P(’r'n )(G) = P(m)(G) /1 {n+1} are therefore o-modules generated by the elements 5{5’ with |k| < n. Moreover, there exists

an isomorphism of o-modules

~ {k}
Pj©)= ot

|k|<n

Corollary 1.1.5 gives us for any two integers n, n’ such that n < n’ a canonical surjection v P(”‘:l )(G) - P("’n )(G).
Moreover, for every m’ > m, the universal property of the divided powers gives us a unique morphism of filtered o-

algebras y,, .y : P\ (G) > P, (G) which induces a homomorphism of o-algebras q/;’%m, : P(’r‘,1 ,)(G) - 13(7n )(G:). The

module of distributions of level m and order n is D,(qm)(G) = Hom(P(’:n )(G), 0). The algebra of distributions of level m is

D(m)(G) :=li_r)n Dflm)(G)’

n

where the limit is formed respect to the maps Homo(ﬂ",’", o). The multiplication is defined as follows. By universal
property (Corollary 1.1.5) there exists a canonical application s P»(G) - P(’r’,1 )G) ®, P(f:l )(G). If (u,v) € Dﬁ,m)(G) X
DS,")(G), we define u.v as the composition

/

5"’" ’ M®U
uv : Puy(G)— P('I'ﬂ)(G) ®, P(’:n)(G)—> 0.

Let us denote by g := Hom,(I/I?, o) the Lie algebra of G. This is a free 0-module with basis &, . . . , & defined as the

dual basis of the elements 7, . .. ,t;. Moreover, if for every multi-index k € N, |k| < n, we denote by §<'—‘> the dual of

the element 5{5} S P("‘n )(G), then Dg,m)(G) is a free o-module of finite rank with a basis given by the elements E<k> with
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|k| < n[36, proposition 4.1.6].

Remark 1.4.1. ! Let A be an o-algebra and E a free A-module of finite rank with base (x1s . Xn). Let (¥, ..., yN) be the
dual base of EVY := Hom 4(E, A). As in the preceding subsection, let S(EV) be the symmetric algebra and I(EV) the aug-
mentation ideal. Let T'(,,(E") be the m-PD-envelope of (S(EY), I(EY)). As usual we put Fz’m)(EV) = F(m)(EV)/T{nH }.
These are free A-modules with base y{kl} y%(N} with Y k; < n [33, 1.1.2]. Let {£<k>}|§|§n be the dual base of

| <
Hom A(F:’m)(E V), A). We define

Sym™(E) := | Hom, (rg’m)(EV),A).

neN

This is a free A-module with a base given by all the §<’i>. Moreover, it also has a structure of algebra defined as follows.

By [33, Proposition 1.3.1] there exists an application A, : Fz‘;)”,(EV) - FZ’m)(EV) ®4 FE’,;)(EV), which allows to define

the product of u € HomA(F:’m)(EV), A)andv € HomA(FZ’:n)(EV), A) by the composition

’ An.n’ ’ u@u
uu: rg;)” (EV)—— rgm)(EV) ®4 rfm)(EV)—> A.

This maps endows Sym "™ (E) of a structure of a graded noetherian A-algebra [33, Propositions 1.3.1, 1.3.3 and 1.3.6].
We have the following important properties [36, Proposition 4.1.15].
Proposition 1.4.2. (i) There exists a canonical isomorphism of graded o-algebras gr. (D" (G)) ~ Sym™(g).

(ii) The o-algebras gr.(D"(G)) and D™ (G) are noetherian.

1.5 Integral models

We start this subsection with the following definition [5, subsection 3.4].

Definition 1.5.1. Let A be an L-algebra (resp. a sheaf of L-algebras). We say that an o-subalgebra A (resp. a subsheaf
of v-algebras) is an integral model of A if Ay ®, L = A.

Let us recall that throughout this paper g denotes the Lie algebra of a split connected reductive group o-scheme G and
U(g) its universal enveloping algebra. As we have remarked in the introduction, if g; denotes the L-Lie algebra of the
algebraic group G; = G Xgpec(o) Spec(L) and U(g;) its universal enveloping algebra, then it is known that I/(g) is an
integral model of {/(g; ). Moreover, the algebra of distributions of level m, introduced in the preceding subsection, is also
an integral model of U/(g; ) [36, subsection 4.1]. This latest example will be specially important in this work.

In the following discussion we will assume that X is a smooth o-scheme endowed with a right G-action.

Proposition 1.5.2. The right G-action induces a canonical homomorphism of filtered o-algebras
@™ : p"(G) - HX, DY),

Proof. The reader can find the proof of this proposition in [36, Proposition 4.4.1 (ii)], we will briefly discuss the construc-
tion of ®™_ The central idea in the construction is that if p . X X, G = X denotes the action, then the comorphism
P Ox —» Ox ®, o[G] induces a morphism

:05:) Pt

X.m) ~ Ox @ Py (6)

I This remark exemplifies the local situation when X = Spec(A) with A a Z p-algebra [33, Subsection 1.3.1].
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for every n € N. Those applications are compatible when varying n. Let u € D;m)(G) we define @ (u) by

(n)

m id®u
oMw) : PL 0y @, P! (6)— Oy.

,(m)
Again, those applications are compatible when varying n and we get the morphism of the proposition. 0
Remark 1.5.3. (i) If X is endowed with a left G-action, then it turns out that ®™ is an anti-homomorphism.

(ii) In [36, Theorem 4.4.8.3] Huyghe and Schmidt have shown that if X = G and we consider the right (resp. left)
regular action, then the morphism of the preceding proposition is in fact a canonical filtered isomorphism (resp. an
anti-isomorphism) between DY(G) and H(G, 'Dg"))G, the o-submodule of (left) G-invariant global sections (cf.
definition 2.2.7). This isomorphism induces a bijection between Dflm)(G) and HO(G, Da(gn,lr);)ﬁ’ and it is compatible

when varying m.

Let us define A(;(”) =0x®, D™)(G), and let us remark that we can endow this sheaf with the skew ring multiplication (see
(1.5) below) coming from the action of D(G) on O via the morphism @ of proposition 1.5.2. This multiplication
defines over A(;(") a structure of a sheaf of associative o-algebras, such that it becomes an integral model of the sheaf of
L-algebras U° := O x, ® U(gy). To see this, let us recall how the multiplicative structure of the sheaf ¢/° is defined
(cf. [47, subsection 5.1] or [42, section 2]).

Differentiating the natural right action of G; on X; we get a morphism of Lie algebras

v g > H'(X,, Tx) (1.4)
This implies that g; acts on O x, by derivations and we can endow U° with the skew ring multiplication

fRIMER=ftmMg®C+ fg®@nl (1.5)

forn € g;,¢ € U(gy) and f,g € O X, - With this product, the sheaf {/° becomes a sheaf of associative algebras and
given that D/(G) is an integral model of the universal enveloping algebra /(g ), then A(;") is also a sheaf of associative
o-algebras being a subsheaf of /°.

Proposition 1.5.4. [36, Corollary 4.4.6]
(i) The sheaf .A():,") is a locally free O y-module.

(ii) There exists a unique structure over A()’(") of filtered O y -ring, compatible with the structure of algebra of DM(G).
Moreover, there is a canonical isomorphism of graded O x-algebras gr(.A(;(")) =0y ®, Sym™(g).

(iii) The shea A (resp. gr(A(m))) is a coherent sheaf of O -rings (resp. a coherent sheaf of O y-algebras), with
X X X X
noetherian sections over open affine subsets of X.

Remark 1.5.5. If we take the tensor product with L in proposition 1.5.2, then by functoriality we get the following com-
mutative diagram

DI(G) <225 HOX, DY)

L, 4

Uay) — HX,. Dy,

where ¥  is the morphism induced by (1.4) and it is called the operator-representation [10].



Chapter 2

Integral twisted arithmetic differential
operators

In [33] Huyghe introduced sheaves of twisted differential operators on the smooth formal flag o-scheme ¥, which depends
of an algebraic character of t. The objective of this chapter is to use the ideas of Borho-Bryliski in [10] to introduce
(integral) twisted differential operators associated to an arbitrary character of t. In the next chapter we will discuss their
properties when we pass to the formal completion.

2.1 Torsors

Let us suppose that T is a smooth affine algebraic group over o with Lie algebra denoted by t, and that X and X are smooth
separated schemes over o, such that X is endowed with a right T-action o : X Xspec(o) 1 = X. We will also assume that
T acts trivially on X. !

We say that a morphism ¢& : X — X is a T-torsor for the Zariski topology if & is faithfully flat, locally of finite type and

the action of T respects £&. Moreover, the map
X Xspec(o) 1 = X Xx X: (x,h) (x,xh)

is an isomorphism. Let U C X be an affine open subset and pry @ U Xgpeep) I = U the first projection. We say that U

trivializes the torsor & if there is a T-equivariant isomorphism ay; : U Xspec(o) T—> €1 (U), where T acts on U Xgpec(o) T
by right translations on the second factor, and such that pry = &[z-1(¢ © ay.

Remark 2.1.1. As X is separated, the set S of open affine subschemes U of X that trivialises the torsor and such that
Ox(U) is a finitely generated o-algebra, it is stable under intersections. Moreover, if U € S and W is an open affine
subscheme of U, then W € S.

Definition 2.1.2. We say that & is locally trivially for the Zariski topology if X can be covered by opens in S.
Lemma2.1.3. Leté : X - Xbea locally trivial T-torsor and let M be a quasi-coherent O g-module. Then R'E, M =0.

Proof. We recall for the reader that R'&, M is the sheaf associated to the presheaf [28, chapter III, prop. 8.1]

UCXw H'E'U),M.

For example if T C B and X = G/B is the flag variety.

29



30 CHAPTER 2. INTEGRAL TWISTED ARITHMETIC DIFFERENTIAL OPERATORS

As €& is locally trivial, the set S of affine open subsets of X that trivialises the torsor is a base for the Zariski topology of
X. Moreover, if U € S then by definition £~!(U) is an affine open subset of X and given that M is a quasi-coherent
Of—module, we can conclude that H(&~1(U), M) = 0. O

2.2 T-equivariant sheaves and sheaves of T-invariant sections

Let us denote by m @ T Xgpee(o) T — T the group law of T and by
P1 i X Xspeey T = X and py3 0 X Xgpeeo) T Xspeco) T = X Xspec(o) T
the respective projections. We will also denote by

fl’ f2’ f3 X ><Spec(o) T ><Spec(n) T-X

the morphisms defined by f(x,1,,t,) = x, fo(x,1,,t,) = xt; and f3(x,t,t,) = xtt,. Following [44, chapter 0, section
3], we say that a sheaf M of O g-modules is T-equivariant if there exists an isomorphism

PEM— 6 M 2.1)

such that the following diagram is commutative (cocycle condition [30, (9.10.10)])

2984 . , *
(idg xm)*pi M = fi M = p}.p M —= P50 M = fIM = (o Xidy)* p{ M
id  xm)* ¥
(pam (oxidy ¥ 22)
(idg xm)*c* M = f3M = (0% idy)*e* M.

We will need the following lemmas. First of all, we recall for the reader that the category of T-equivariant quasi-coherent
O g-modules is an abelian category [29, Lemma 2.17]. In particular it is complete and cocomplete.

Lemma 2.2.1. Let M be an O g-module filtered by a family (M), ey of T-equivariant O g-modules such that the inclu-
sions M, < M, are T-equivariant. Then M is also T-equivariant.

In fact, under the hypothesis of the lemma, the exactness of the functors ¢* and p’f allows us to conclude that 6*(M)
and p*l‘(./\/l) are endowed with canonical filtrations (6*(M,)),cn and (PT(M))neN’ respectively. Since the components
of this filtration have compatible T-equivariant structures we can conclude that M is also T-equivariant via a filtered
isomorphism.

On the other hand, since the category of T-equivariant quasi-coherent O z-modules is an abelian category, the cokernel
of a T-equivariant morphism M — N between two T-equivariant quasi-coherent O 5-modules is again a T-equivariant
quasi-coherent O g-module. As we will demonstrate below, we can give an independent proof of this result. We will use
the following lemma in subsection 5.1.1.

Lemma 2.2.2. Let (M, ®,) and (N, ®,) be T-equivariant quasi-coherent O g-modules. Let L be a quasi-coherent O g-
module such that

0—>M;¢>N—W>£—>O

is an exact sequence and ¢ is a T-equivariant morphism. Then L is also T-equivariant.
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Proof. To define the right vertical morphism, we consider a basis 7 of X consisting of affine open subsets, which can
be assumed stable under intersections because X is separated. Let us fix U € .o7. As (2?) is a diagram of quasi-coherent
(@) %, 7-modules, the horizontal short exact sequences remains exact if we take local sections on U X, T. To soft the
notation we will assume that M (c) := ¢*(M)(U X, T) (resp. N(o) := o*(N)(U X, T) and L(o) := o*(L)U X, T))
and M(p,) : p’i‘(./\/l)(U X, T) (resp. N(py) := pT(N)(U X, T)and L(p;) := pT(E)(U X, T)). Also, we will suppose
that ¢ 1= p* (@)U X, T) (resp. w; = pr@IU %, 1), ¢y 1= o* (DU %, T) (tesp. y, 1= o* W)U X, T),
D,y :=@;(U X, T)and @, ; := @y(U X, T). In such a way that we have the following commutative diagram

0 — M) —2% Ny —23 Lp,) — 0
\L‘DI,U \L‘bz,u
0 — M(o) -2 N(o) —23% L(c) — 0

Let x € L(p;). By surjectivity of y; we can find y; € N(p;) such that y(y;) = x. We define then @y (x) :=
W, (D, (¥1)) € L(0). Let us see that @, is well-defined, this means that it does not depend of the choice of y; € N(p;).
Lety, € N(p,) such thaty(y,) = x. We wantto see @y (x) 1=y (P, ;(¥1)) = W (P (3)). Lety 1= y;—y, € N(py).
By definition y € Ker(y;) = Im(¢,) and we can find z € M(p;) such that ¢;(z) = y. Let z/ = @, y(z) € M(o). By
commutative of the diagram we have

¢2(Z,) = ¢2(®1,U (2)) = q)z,u ($1(2)) = q’z,u()’) = q’z,u()ﬁ) - ‘Dz,u )

and therefore

0 = wy(y(2) = war(Pyy (1)) — Yo (@o (1)) = Py (x) — Yo (Po 1y (1))

Moreover it is straightforward to see that ®;; is in fact a morphism of O %x,1(U X, T)-modules, which by the well-known
five lemma becomes an isomorphism. From the preceding reasoning, and the quasi-coherence of the sheaves involved we
get an isomorphism &, : pT(N Noust = 65(L)|yxr of sheaves of O -modules, for every U € <.

To complete the construction of the right vertical isomorphism we need to globalize the preceding reasoning. This means
that if we chose U,V € 7 then we have ® |4, = @y |yny- As o is stable under intersections we can construct, in
the same way as before, an isomorphism @, over U N V. Let us see that @y |y = @y (the reader can fallow the
same reasoning to proof that ®; |, = @;y,). We consider the following cube

PLWIUXT)

PEANU %, T) » pHLWU X, T)

res p*(l[/)(UﬂVXT) res

PiMU NV %, T) . > PILU NV X, T) oy
l:bz(UxT)
o* T
oy UNY) S N)U x, T) —L$PCD S o*(L)U %, T)
Dyny
res res
*W)HUNV XT)

SFNYU NV x,T) S e* (LU NV X, T)

Except for the right lateral face, all the other faces form, by construction or hypothesis, commutative diagrams which
implies that also the right lateral face forms a commutative diagram. This shows that ®; |4, = @yn. We have

constructed an isomorphism ©® : p’f(ﬁ) — ¢*(L) of quasi-coherent O XXDT-modules. Let us show that @ defines a



32 CHAPTER 2. INTEGRAL TWISTED ARITHMETIC DIFFERENTIAL OPERATORS

T-equivariant structure. To do that we consider the following diagram

(idg % m)* N —— (o xidp)* piN

/ \Llld Xm) P v

(idg x m)*c* N = (o X idy)* o* N (idg x my*pr L —> (o X idy)*p}

(oxidy)* @

(idg xm)*c*L = (o Xidy)*c*L

The triangle on the top is commutative and by functoriality the lateral faces of the prism are also commutative. Its is

straightforward to show from this that
(idg xm)*® o (idg x m)*pjy = (6 X idy)*® o p5, ¥ o (idg X m)*piw,

and as (idg X m)* th// is surjective we can conclude that the triangle on the bottom is also commutative. Therefore ®

defines a T-equivariant structure for L. O
Lemma 2.2.3. Let (L, ) be a T-equivariant locally free O g-module of finite rank. Then its dual LY is also T-equivariant.

Proof. Given that L is a locally free sheaf of finite rank, we dispose of a canonical and functorial isomorphism

LY %”omoN (6 L, OXX -

This implies that (¥~1)V, the dual of ¥~!, defines the T-equivariant structure on £V. O

Lemma 2.2.4. Let (L, ®) and (L', ®') be two T-invariant quasi-coherent O g-modules, then L ®0)7 L' is a T-equivariant

quasi-coherent O g-module.

Proof. The functorial isomorphisms
pi(L ®(9)7 £H— pi(L) ®05€XT PT(E,) and o*(L ®of L— ¢*(L) ®(9)7>GT (L)
tell us that ® ® @’ defines a T-equivariant structure on £ ®0)? L O

2.2.5. Equivariant sheaves of p-adic complete Ox-modules. We recall for the reader that we have denoted by X ;=
X Xspec(o) SPEC(0/ w'*1) the redaction module w'*'. Under the preceding hypothesis the scheme Y is endowed with a
right action of the (o /w'*)-group scheme T, = 'ﬂ'xspec(n)Spec(o/w’“) Ifx denote the completion ofX along it special
fiber, then we will denote by y; : X, — % and 6, : X, Xspec(o/mith)y Ti < X,H Xspec(o/mi+?) Uiy the closed embeddings,

and by o; : X i Xspec(o/mitly 1i = )? ; the induced action. Let T denote the formal completion of T along its special fiber.
Definition 2.2.6. Let & be a sheaf of complete (’)%—modules for the p-adic topology. We will say that & is T-equivariant,

if for every i € N, the sheaf &; : =y (&) is a T;-equivariant O g -module, and the following diagram is commutative

P} (&) —— b 5T (&)

I )
07 (Diyy),

07 p1iv1(Eip1) e 0Fc 1(é3+1)
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Let (M, ¥) be a T-equivariant O w-module. By the Kiinneth formula [26, Theorem 6.7.8] we have a canonical isomor-
phism

HX %, T, pi M) =~ H'(X, M) ®, o[T]

which composing with the application

~ ~ HOY¥ ~
HX, M) — H'(X x, T, U*M)J> H(X x, T, p{M)
(the first application is induced via the canonical map M — o,.6* M) gives us a morphism
A HY(X, M) —» H(X, M) ®, o[T],

defining a structure of T-module on H (X, M). The co-module relations are given by the cocycle condition [44, chapter
0, definition 1.6].

Definition 2.2.7. The T-invariant elements of HO()?, M) are the elements P € HO()?, M) such that A(P) = P ® 1.
This subspace will be denoted by H 0()? ,M)T,

Now, let us suppose that X can be covered by a family S of affine open subsets, which are stable under finite intersection
and invariant under the right action of T. This means that for every U € S the morphism o, inducing the right T-action on
X, induces a right T-action & :=o|gy 1 : U x, T — U onU. By pulling back ¥ under the inclusion U x, T < X X, T
we get an isomorphism ¥| : 6* My — pTMU which satisfies the respective cocycle condition (2.2), and, as before, we
obtain a comodule map

Ag : TU,M)-TU, M), o[T].
As in definition 2.2.7, we can define the o-submodule of T-invariant sections on U by
L0, M)" :={Pel(U,M)| Ag(P)=P®1}. (2.3)

Finally, let us suppose that M is also quasi-coherent. By [28, Chapter II, Corollary 5.5] on every affine open subset U € S
we can define a subsheaf

(Mlg)" 1= 1O, M)T cT(T, M) = Mlg.

By definition, and giving that S was supposed to be stable under finite intersections, the preceding sheaves glue together
to a subsheaf (M)" c M which does not depend of the covering S. We sum up the preceding construction in the next
definition.

Definition 2.2.8. Let X be a smooth separated o-scheme endowed with a right T-action, and covered by a family of affine
open subsets S stable under finite intersections and the T-action. For every T-equivariant quasi-coherent O g-module
M, the subsheaf (M) is called the subsheaf of T-invariant sections of M.

As an an application of the preceding construction let us point out that if & : X > Xisa locally trivial T-torsor, then
we actually dispose of a subsheaf of T-invariant sections of the direct image sheaf £, M, with M a T-equivariant quasi-
coherent O i-module. In fact, if S denotes the collection of all affine open subsets that trivialises the torsor &, then for
every U € S we know that £~1(U) is stable under the right T-action and, as in (2.3), we can define

(€M) = (MEWY)' c ME©)). (2.4)
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As X is noetherian &, M is quasi-coherent and therefore from (2.4) we have a subsheaf

(EMIY)T = (€M) € (EM) W) = (M) Iy
Since S is stable under finite intersections, those sheaves glue together to define a subsheaf
(&M)" cem. 2.5)
For the rest of this subsection we will always suppose that & : X > Xisa locally trivial T-torsor.
Lemma 2.2.9. The morphism & : X = X induces an isomorphism &% : Oy —» (é*OE)T.

Proof. As this is a local problem, we can take U € S and suppose that & : E~1(U) = U Xspeco) | — U is the first
projection. Since rational cohomolgy commutes with direct limits [38, Part I, Lemma 4.17] and O (U) is a direct limit
of free n-modules, we can conclude that (é* ) U) = (OX(U) ®, D[T])T = Ox (). O

2.3 Relative enveloping algebras of finite level

Let us fix a positive integer m € Z. As in the preceding subsections X and X will denote smooth separated o-schemes,
and T a smooth affine commutative algebraic group over o. We will also assume that & : X > Xisa locally trivial T-
torsor. We start this subsection recalling the construction of the T-equivariant structures of the sheaf of level m differential
operators D;") (cf. [36, Proposition 3.4.1]).

Letp; : X Xspec(o) 1 = X and Dy - X Xspec(o) | = T be the projections. For every n € N the universal property of the
m-PD-envelopes (proposition 1.1.5) gives us two canonical morphisms

n n n . * n n
PX( m) - P)?xspec(n)v,(m) and  d"p, : pzpv,(m) - P)?xspec(o)v,(m)'

Let J be the m-PD-ideal of the m-PD-algebra Py o We have a canonical m-PD-morphism

s P - P /s T
X Xpec(o)T-(m) Xxgpec(oyTo(m)' * 2

and p := sod"p, is am-PD-isomorphism. Then we dispose of a canonical section of d"p;, named q;' 1= p~los [36, (14)].

On the other hand, by functionality, we obtain a morphism d"¢ : ¢*P2 - PL and the T-equivariant structure

X,(m) Xx,T,(m)
for ’P’L is defined by ®@" := gj'od"c [36, Proposition 3.4.1]. Definition 1.2.1 and lemme 2.2.3 allow us to conclude that
for every n € N the sheaf D(X) is T-equivariant and the inclusions D(m) < D(m)+1 are T-equivariant morphisms. In
particular, by lemma 2.2.1, the sheaf of level m differential operators is T equlvarlant

Remark 2.3.1. (Notation as at the end of subsection 1.3) Following the preceding lines of reasoning we can also show

that, for every n € N, there exists a m-PD-morphism

'n .

n
4 - FXXT,(m) —P IFX,(m)‘

which is a section of the canonical m-PD-morphism pIF” T F&XT = induced by p, [36, Subsection 2.2.2]. Let
M) : 6" T, ST be the canonical m-PD-morphism induced by ¢. Then "= q/"or"(a) is a T-equivariant
X (m) XXT (m) 1

structure for T". As before, this implies that Sym"™(Ty) is T-equivariant.

X (m)’
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Remark 2.3.2. Although it is well-known that the tangent sheaf T is a T-equivariant quasi-coherent sheaf, we point out

to the reader that this can be proven using the preceding discussion. In fact as 77%( ) = Oy and P)l? - =030 Q} [36,
\m ,(m

Subsection 2.2.3 (18)], we can apply the lemma 2.2.2 to the sequence

1 1
O—>(’))7—>(9§€BQ)?—>Q)?—>O

and lemma 2.2.3 gives us the T-equivariance of T. In particular, we dispose of the sheaves (Tr)" and (£, T3)".

Let us recall the following discussion from [1, 4.4]. Let us suppose U € S and = € Ti(f_l(U))T. This assumption in
particular implies that 7 is a T-invariant vector field on &~1(U) and therefore a T-invariant endomorphism of O )7(5_1(U)).
Hence it preserves Oy (£~ (U))" and by lemma 2.2.9 it induces a vector field v(r) € Ty (U). We get then a map of

O x-modules
T

On the other hand, differentiating the right T-action on X we obtain an o-linear Lie homomorphism t — 7, which

induces a map of O y-modules

T

t®, Oy - (6,T3) -
We get a complex of O y-modules
T Vv
t®o OX g (5*7;?) — TX

which is functorial in X [1, subsection 4.4].
Lemma 2.3.3. 2 [f¢ : X > Xisa locally trivial T-torsor, then the preceding complex is in fact a short exact sequence

0-t®, 0y — (é*Tg)T—v> Tx = 0.

Before starting the proof we recall for the reader the following relations, which come from the T-equivariant structure of
T+ [11, Lemma 2 ]

HYT,Tp) = o[TI®,t and HOT,TpH' =t. (2.6)
Moreover, by [28, Section II, exercise 8.3] we also dispose of the local description
Tox,m = (T ®, O1) & (Oy ®, Tr) - 2.7

Proof of lemma 2.3.3. As the sheaves in the sequence are quasi-coherent it is enough to check exactness over an affine
open subset U € S. First of all, since Ty (U) is a locally free Oy (U)-module and Oy (U) is a flat o-algebra, we can

conclude that 7y (U) is an inductive limit of free 0-modules. Therefore
(Tx(U) ®, o[TH" = Tx(U) ®, (o[T)' = Tx (V).
This relation, together with (2.6) and (2.7), allow us to conclude that

Tz 'U)' =TxU) ® (Ox(U) ®, ). (2.8)

2The reasoning is as in [1, Lemma 4.4].
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Remark 2.3.4. The preceding lemma and (2.7) show that £, Ty and (tf* 7}()1T are locally free O y-modules of finite rank.
In particular Sym™ (&, Ty) and Sym™ (&, T3)") are well-defined.

Definition 2.3.5. Let & : X > Xbea locally trivial T-torsor. Following [11, page 180] we define the level m relative
enveloping algebra of the torsor to be the sheaf of T-invariants of 5*’1)%") :

D) - ( e, D(m))
The preceding sheaf is endowed with a canonical filtration
p— m\"
Fil, <D<m>> - (5*1) )%"d) . (deN). 2.9)
Proposition 2.3.6. For any U € S there exists an isomorphism of sheaves of filtered o-algebras

D", — DYy ®, D™(T).

Before starting the proof of the proposition let us consider the following facts. Let n € N fix and i < n. For the next few
lines we will suppose that X and Z are smooth o-schemes and that ¥ = X Xgpe () Z- Let p; and p, be the projections.
By following [36] we have defined in page 34 two canonical applications

i kI n—i n—i
' Py my = P1Px (y and 4 Py, m PPy, om)°

Locally, if (¢4, ...,75) and @, ..., t?\/') are coordinated systems on X and Z, respectively, then we obtain a coordinated

system on Y by putting (p} (1), ..., P} (tn ), P5 (1)), .. P5(1Y,). We have

P P o™y @ i=10n-r®@lad :=1@7, -1 @ 1.

Y (m)
11 |+1]<i
In this case [36, subsection 2.2.2]
i 1 I} I}
a| > a i =Y 4 opic')
b = b

(with a similar description for q;‘i) and we have an isomorphism

Pi"’( )—_) @ pT,P}(,(m) ®OY p*,P% (lm) (2.10)
0<i<n
Moreover, since 73;( ) and P (’ ) are locally free O-modules of finite rank, taking duals in (2.10) we get a canonical
isomorphism
(m) * (m) sy (m)
Dy,— @ riDy e, By, @11
0<i<n

Proof of proposition 2.3.6. LetU € S andlet&~1(U) =~ U Xspec(o) | be a trivialization of £ over U. We have the following
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isomorphisms of filtered o-algebras

T
(£P9) @ =DPPE )" = DY UxT) = DY) @, HT. DY) = DY) @, D"(T),

where the first isomorphism follows from the fact that U trivializes the T-torsor &, the second isomorphism becomes from
(2.11) and the Kunneth formula [26, Theorem 6.7.8]), and the third isomorphism is given by (i7) in remark 1.5.3. Since
the previous isomorphisms are compatible with restrictions to open affine subsets contained in U, we obtain the desired
isomorphism of sheaves of filtered o-algebras. O

The inclusions (QD;"L)T C <§*D;"L induce a graded monomorphism gr, (D) < gr,(fﬂ)g%")).
Proposition 2.3.7. If£ : X — X is a locally trivial T-torsor, then there exists a canonical and graded isomorphism
(m) )= Dim)
Sym™ ((&,Tz) | — gr. (D™ ).

Proof. We will divide the proof into two cases. We will first consider the case m = 0 and then we will generalise for all
me Z>0.

Case 1. Let us suppose that m = 0. By the remark given after the proposition 1.2.2 in [32] we know that if £ is a locally
free O z-module of finite rank then Sym(o)(ﬁ) = S(£L) is the symmetric algebra of £. By (1.3), which is true for every
m € N (cf. [32, Proposition 1.3.7.3]), we have a canonical isomorphism of graded O -algebras

S(Ty)— g, (D?) .

Applying the direct image functor &, to the preceding isomorphism and then taking T-invariants sections (both functors
being exact by lemma 2.1.3 and the fact that T is diagonalisable [38, Part I, Lemma 4.3 (b)]) we get an isomorphism

(&8(T3)) = er. <(§*D(§)>T> :

We remark for the reader that the left-hand side of the previous isomorphism is well defined by remark 2.3.1. To complete
the proof of the first case, we need to show that (&, S(T)?))T =S ((S*T);)T). To to that, we start by considering the
canonical map of O y-modules

(&T7) ~ (&8(T3))"

which induces, by universal property of S(s), a canonical morphism of graded O y-algebras

T

S((&72)") > (&5(T7))

Let us see that ¢ is indeed an isomorphism. Let us take U € S. We have a commutative diagram

U:=&'U) —=—— Ux, T
U

which tells us that (cf. [28, Section II, exercise 8.3])

To =Ty @psTr=&Ty ® (O @, t). (2.12)
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By (2.8), we have
S((&70)7) =8 ((&TzW)") =S (ToW) & (OpV) &, 1))

On the other hand, by (2.12) we have the following relation
S(Tz) =8 (£"Ty) ®o, S (O @, t) = &S (Ty) ®o, S (Of @, t) (2.13)

which implies, by the projection formula [28, Chapter II, section 5, exercise 5.1 (d)] that

&S5Tp) =¢. (£ (Ty) ®0, 8 (05 @, t) )
=S(T5) ®o, &S (OF ®, t) (2.14)

Taking T-invariants and sections on U we get
(6*5(7}7))T U) =S (Ty)) ®o,w) S(OyU) ®, ).

Summing up, we have the following commutative diagram

s((&7%)") @) s (68(Tp)

I I

S(Ty) & (OyU) ®,t)) —— S(Ty()) R, w) S(OyU) ®, 1)

which ends the proof of the first case because S is a base for the Zariski topology of X.

Case 2. Let us suppose now that m € Z.,. Exactly as we have done at the beginning of case 1, applying &, to the
isomorphism (1.3) and then taking T-invariant sections, we get a canonical isomorphism of graded O y-algebras

s (1) 2 ((e02)').
We want to see that the map ¢, built in case 1, induces an isomorphism
sym™ ((&.75)") = (&.Sym™ (T5)) "
To do that, we take U € S and we begin by noticing that analogously to case 1 the relation (2.8) gives us
sym®™ ((£.75)") @) = sym™ (Ty (V) & (Oy (V) @, 1)) . 2.15)
Moreover, the relation (2.8) and [32, Proposition 1.3.5] give us
Sym™ (Tg) = Sym™ (£Ty) ® g, Sym™ (Op @, t)
which, following the same arguments that in (2.13) and (2.14), implies that
(&,8ym™ (7)) (U) = Sym™ (Ty (V) ®p, @, Sym™ (Oy(U) @, ). (2.16)

Again, by [32, Proposition 1.3.5], we have that (2.15) and (2.16) are canonically isomorphic, so in order to globalize this
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map, which we denote by (pg"), we need to check that the following diagram is commutative

Sym™ (Ty(U) @ (Oy(U) ®, t)) ————— S (Ty(U) & (OyU) ®, 1)) ®, L

\L{og") \L(PU ®olyL

Sym™ (Ty (1)) ®oy,w) Sym™ (OyU) ®,t) — S (Ty(V)) ®o,w) S (OyU) &, t) ®, L.

Shrinking U if necessary, we can suppose that U is endowed with a set of local coordinates x;, ..., X, in such a way
that if 7;;(U) is generated as Oy (U)-module by the derivations axl, ey OXN, and if {;, ..., {; denotes an o-basis of t,
then Sym™ (T, (U) @ (Oy(U) ®, t)) is generated (as Oy (U)-module) by all the elements of the form 9<&> . <> 3,
In particular, -

(m) ( 1<k Kk kU ol
o) (0% £ ) =gy @ 1, (0% () = = = ok@, -
= = a! 4! =
which shows that the preceding diagram is commutative. This ends the proof of the proposition. O

2.4 Affine algebraic groups and homogeneous spaces

Let us suppose that G is a split connected reductive group scheme over o and T is a split maximal torus in G. As we know,
the Lie algebra ¢ = Lie(G) is a T-module via the adjoint representation [38, I, 7.18] and the decomposition into weight
spaces has the form

Lie(G) = Lie(T) & @(Lie(G)),,.

aEA

Here A is the subset of X(T) = Hom(T, G,,,) of non-zero weights of Lie(G), this means the roots of G with respect to T.

For each a € A there exists a homomorphism x, : G, = G satisfying
t x,(a) 17! = x,(a(?) a), (2.17)

for any o-algebra A and all t € T(A), and such that the tangent map dx, : Lie(G,) — (Lie(G)), is an isomorphism [38,
II, 1.2]. This homomorphism defines a functor A — x,(G,(A)) which is a closed subgroup of G and it is denoted by U,,.
By definition we have Lie(U,) = (Lie(G)), and by (2.17) it is clear the T normalises U,,.

Now, let us choose a positive system A* C A. It is known that A* and —A™ are unipotent and closed subsets of A% [38, 11,
1.7]. Let N be the closed subgroup of G generated by all U, with « € A*. As we have remarked T normalises N. We set

B=NXT (2.18)
a Borel subgroup of G. With this terminology N is called the unipotent radical of B. We put
X :=G/N, X :=G/B

for the corresponding quotients (the basic affine space and the flag scheme of G [1, subsection 4.7]). As o is a discret
valuation ring these are smooth and separated schemes over o [1, Lemma 4.7 (a)].

Remark 2.4.1. For technical reasons (cf. Proposition 1.5.2) in this work we will suppose that the group G, and the schemes

3Here we use the multi-index notation introduced in sections 1.2 and 1.4.
YAt N (=A%) =@ and (Na + NF)N A C A+ forany a, f € A*.
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X and X are endowed with the right regular G-action. This means that for any o-algebra A and gy, g € G(A) we have
80°8=28 "8, 8 N(A)+g=g"g)N(A) and gy B(A)+g =g gy BA).

Under this actions, the canonical projections G - X and G — X are clearly G-equivariant.

Now, as T normalises N we have NT = TN and therefore
(gN(A)).t C gT(A)N(A),

for any o-algebra A, g € G(A) and t € T(A). This defines a right T-action on X which clearly commutes with the right
regular G-action (cf. Remark 2.4.1). Moreover, this right T-action makes the canonical projection & : X - X aT-torsor
for the Zariski topology of X. To see this we recall first that from (2.18) the abstract Cartan group H := B/N is canonical
isomorphic to T. Let us consider the covering of X given by the open subschemes U,,, w € W := Ng(T)/T (the Weyl
group) where

U

w .= image of wNB

under the canonical projection G — X. For every w € W we can find a morphism =, : U,, — G splitting the projection
map G — X. These maps givesamapr,, : U, — X such that om,, = idy, . The map (u,bN)  m,(u)bN is the

required T-invariant isomorphism U, X T = U, X H— &(U,). Now we can apply [43, Chaper III, Proposition 4.1
(b)]. As in definition 2.1.2 we denote by S the set of all affine open subsets of X that trivialise the torsor &. This forms a
base for the Zariski topology of X.

2.5 Relative enveloping algebras of finite level on homogeneous spaces

In this section we adopt the notation of the preceding section. In particular, we recall for the reader that the set S'b, of
all affine open subsets of X that trivialise the torsor & forms a base for the Zariski topology of X. Let us recall that by
proposition 1.5.2 and remark 2.4.1 the right regular G-action on X (introduced in remark 2.4.1) induces a homomorphism
@™ : p(G) - HO ()? , D?) which equals the operator-representation (notation in subsection 2.5)

vy U — H° <)?L7D)?>

if we tensor with L (D %, denotes the usual sheaf of differential operators on X 1)- Let us consider the base change
T, :=T X, Spec(L). We know by [38, Part I, 2.10 (3)] that

HO ()?L,D,;L)TL - H° ()? D%’”)T ®, L. (2.19)

Given that the right regular G-action on X commutes with the right action of the torus T, the vector fields by which g; acts
on X; must be invariant under the T; -action [10, Lemma 4.5]. This means that the operator-representation y ; satisfies

wg(e) € H'(X, Dy )"
The relation (2.19) tells us that for every x € D™)(G) there exists k(x) € N (a natural number that depends of x) such that

wk(x)q)(m)(x) C HO()’Z, D(}%"))T
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Since the T-action on H 0()? , D;")) is o-linear, for every o-algebra A and every t € T(A) we have
T D0 (x) = 1. (@@ (x)) = T (r.dM(x)). (2.20)

Since X is a smooth o-scheme, the local description (1.1) tells us that the sheaf D()f(") is w-torsion free. In particular,

H 0()? , D;")) is also w-torsion free and therefore, from (2.20), we have that @ induces the filtered morphism
~ T T
o™ : p"(G) —» H° <X D(i”)> = H° (X £ D(i”)) .
) X 2 Ok X
From the preceding reasoning we have an O y-morphism of sheaves of filtered o-algebras

o+ AY — D, 221

The sheaf A();") := Oy ®, D™ (G) of associative o-algebras has been introduced in the subsection 2.5. We recall for the
reader that this is an integral model of the sheaf U° := Oy, ®; U(g,).

To twist the sheaves D™ introduced in the subsection 3.3 we consider the classical distribution algebra as in [19, Chapter
II, 4.6.1]. To define it, we suppose that € : Spec(o) — T is the identity of T and we take J := {f € o[T]| f(e) = 0}.
Then o[T] = 0 @ J. We put

Dist,(T) := (o[T1/J™!)" = Hom,(o[T1/J"*!, 0) C o[T*

the space of distributions of order n, and then Dist(T) := li_r)nneN Dist,(T). Moreover, if Ay : o[T] = o[T] ®, o[T]
denotes the comorphism associated to the multiplication of T, e : o[T] — o is the counit associated to the identity
element and iTr : o[T] — o[T] is the coinverse (these maps defining a structure of Hopf algebra on o[T]), then the product

Ay u@u
uv : o[T]— o[T] ®, o[T]—> » u,v €o[T]*

defines a structure of algebra on o[T]* and Dist(T) is a subalgebra with Dist, (T).Dist,,(T) C Dist
Furthermore, Dist,(T) ~ o @ (J/Jn+1)*_

(T) [38, Part I, 7.7].

m+n

Proposition 2.5.1. /36, Subsection 4.1]

(i) The applications Hom,(y,, ,y,0) : D(T) - D(’”')('I]'), with y,, .y as in subsection 1.4, induce an isomorphism
. - m(TY— Di
of filtered o algebras_lg_l)lmeN D" (T)— Dist(T).

(ii) The distribution algebra Dist(T) is an integral model of U(t} ), this means that Dist(T) ® , L = U(t}).

Example 2.5.1. Let us suppose that T = G,, = Spec(o[T,T~']). In this case J is generated by T — 1 and the residue
classesof 1, T —1, ..., (T —1)" form a basis ofo[T]']/J”“. Let 0, € Dist(T) such that 0,(T — D) = 0, By [38, Part
I, 7.8] all 0, with n € N form a basis of Dist(T) and they satisfy the relation

1o, = 0,0, — 1)..(a; — n + 1). (2.22)

Therefore Dist(T) @, L = L[0,]. Since t = (J /J?)* we can conclude that Dist(T) ®, L=U()).

The preceding proposition in particular implies that every morphism of o-algebras 4 : Dist(T) — o induces for every
m € N a morphism of o-algebras A" : D/(T) — o.

2.5.2. Let us clarify the mysterious characters A : Dist(T) — o. Let us suppose first that L = Q,, and that T = G, =
Spec(Zp[T, T-). By the preceding example we know that the set of distributions {6, },en, Wwhere 6,((T — DH =0if



42 CHAPTER 2. INTEGRAL TWISTED ARITHMETIC DIFFERENTIAL OPERATORS

i <nandé,(T —1)") =1, is a basis for Dist(T). Moreover, Dist(T) ®Z,, Q, = Q,[6,]. Now, let us take A € t*, which
induces a morphism of algebras A : U(t) — Z,,. Taking the tensor product with Q, and using the canonical isomorphism
Dist('lT)Qp ~ U (t@p) we obtain a character A . Dist(T) — @p (of course, here we assume Dist(T) C Dist('ﬂ')@p ). To see
that its image is contained in Z ,, we need to check that A(5,) € Z,,. By (2.22) we have

()= (4) =
n n

Where we have used the fact that the binomial coefficients extend to functions from Z,, to Z,, and the fact that 6, € t. In
the case of an arbitrary split maximal torus T = G,, Xspec(z,) +++ Xspec(z,) G,, (n-times), the reader can follow the same
reasoning using the canonical isomorphism Dist(T) = Dis«(G,,) ®Zp ®Zp Dist(G,,) (n-times) [38, Part 1, 7.9 (3)]. We
have therefore, in the case L = Q,, a correspondence between the characters of t (the Lie algebra of a split maximal
torus T C G) and the characters of the distribution algebra studied in this text. Moreover, we have an isomorphism of

Z p-modules
Homyz _nods (t.z,)— Homy (Dis(T), Z,) . (2.23)

Now, let us take a finite extension L|Q,, and let us suppose that T is a split maximal torus of G (and therefore a group
scheme over o). Let T' be a split model of T over Z,. Ift! denotes the Z ,-Lie algebra of T/, then the relation (2.23) gives

us an isomorphism of o-modules
Hom,_,, (t’ ®; 0. o)i Homy_q, (Dist (T’ Xspec(z,) Spec(o)> , o> = Hom,_y, (Dis(T),0),  (2.24)

and we can conclude that we also have the stated correspondence for finite extensions of Q.

2.5.3. Let us consider the positive system At C A C X(T) (X (T) the group of algebraic characters) associated to the
Borel subgroup scheme B C G defined in the preceding subsection. The Weyl subgroup W = Ng(T)/T acts naturally on
the space t; := Homp(t;, L), and via differentiation d : X(T) < t* we may view X(T) as a subgroup of t* in such a
way that X*(T) ®, L = tz. Let p = % Ywent @ Let & be a coroot of a € A viewed as an element of t;. An arbitrary
weight A € t7 is called dominant if A(&) > 0 for all a € AT be the so-calles Weyl vector. The weight A is called regular if

its stabilizer under the W -action is trivial.

We recall for the reader that D)(T) is also an integral model of the universal enveloping algebra L/(t ).

Definition 2.5.4. We say that a morphism of o-algebras A : Dist(T) — o (resp. the induced morphism A™ : DU™(T) — o)
is a character of the distribution algebra Dist(T) (resp. a character of the level m distribution algebra D (T)). We say
that a character A . Dist(T) — o (resp. a character A DTy — o) is a dominant and regular character if the

L-linear map induced by tensoring with L is a dominant and regular character of t;.

Let A : Dist(T) — o be a character of the distribution algebra of T. For every m € N we denote by o the ring o
considered as a D (T)-module via A,

The reader can easily verify the following elementary lemma.

Lemma 2.5.5. Let A be an L-algebra and Ay C A an o-subalgebra such that Ay ® , L = A. If Z(A) denotes the center
of A (resp. Z(A) denotes the center of Ay), then Z(A) = Z(Ay) @, L.

Let us consider Dy, the usual sheaf of differential operators [27, 45] on X, =X Xspec(o) SPec(L) (resp. X =
X Xspec(o) SPec(L) and Ty = T Xgpee(o) Spec(L)). By [38, Part 1, 2.10 (3)] we have

T, N o
HO (XL, Ex, idL)*DXL) = H'(X,. D))" = HX. DY) ®, L. (2.25)
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On the other hand, we know by 1.5.2 that the right T-action on X induces a canonical morphism of filtered o-algebras
o : D"(T) - H(X, D)
and by [3, page 7] d)grm) ®, L factors through the center of H 0X,, (& Xyidp), D X, )Tz, By (2.25) and the preceding lemma
we have the following morphism
Mg

Py L 0p % THNT
DTy & Ul ) ——— Z (H (X. D) ) ®, L

(we recall for the reader that t; := Lie(T) ®, L and that D(T) ®, L =U(t;), for every m € N). Following the same
lines of reasoning that in page 41 we can conclude that CID%'") induce a morphism of filtered o-algebras

o™ 1 D™(T) —» HOX, Z(Dm)).

Here Z (D) is the center of D™ and its filtration is the one induced by (2.9). We have the following definition.
Definition 2.5.6. Let A" : D(T) — o be an integral character. We define the sheaf of level m integral twisted arithmetic
differential operators D;")A on the flag scheme X by

Dg;rfl = D(m) ®D(m)(‘ﬂ') D/{(m) .

Tensor product filtration. Let A be a filtered sheaf of commutative rings on a topological space Y [9, A: III. 2]. Let M
and N be filtered A-modules [9, A: III. 2.5]. The sheaf of .A-modules M ® A N carries a natural filtration called the
tensor product filtration and it is defined as follows. Let n € N fix. For every U C Y we let F,(M(U) ® 4w N(@U)) be
the abelian subgroup of M(U) ® Aw) N (U) generated by elements of type x ® y with x € M, (U), y € N,(U), and such
that / + s < n. This process defines a presheaf on Y and we let F,,(M ® 4 N) be its sheafification. The sheaf M ® 4 N
becomes therefore a filtered sheaf of A-modules

FM@4N)C .. CF MO N)C..C M uN.
Moreover, for every open subset U C Y we have a canonical map
gr.(MU)) ®,,. awy & N (U)) = griMU) ® g N(U))

by putting X, ®y(;) = (X®Y);4,. Where x € FMU)—F,_iMU),y € FNU)-F,_ N (U)and x;, := x+F_; M(U),
Vi) =y + F,_N(U). Furthermore, these morphisms are compatible under restrictions and therefore, by the universal
property of the sheafification, we get a morphism of graded sheaves

gr-(M) ®gr.(A) gr-(N) — gr. (M ®A N) .

Taking stalks, we finally see that the previous morphism is surjective by [31, Section I, 6.13].

If we endow o, with the trivial filtration as a D(T)-module, this means 0 =: F_i0,0m and F;0;um = 0,0 for all
(i > 0), then using (2.9) we can view D(;")l as a sheaf of filtered o-algebras, equipped with the tensor product filtration.

Proposition 2.5.7. LetU € S. Then Dg;")ﬂU is isomorphic to D;") |y as a sheaf of filtered o-algebras.

Proof. Let us recall that by proposition 2.3.6 for every U € S we have an isomorphism of filtered o-algebras

’D(m)|U__, 'D;”)|U ®, D™(T)
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(m)

which induces an isomorphism D X4

o = D§”)|U of filtered o-algebras. 0
Remark 2.5.8. This proposition justifies the name of "twisted arithmetic differential operators".

Let us recall that, as X is a smooth o-scheme, the sheaf of Berthelot’s differential operators Dg;") is a sheaf of O y-rings
with noetherian sections over all open affine subsets of X [5, corollary 2.2.5]. As & is locally trivial, the family S forms
a base for the Zariski topology of X and therefore the preceding proposition implies the following meaningful result (cf.
[35, Proposition 2.2.2 (iii)]).

Proposition 2.5.9. The sheaf Dg;")/l is a sheaf of O y-rings with noetherian sections over all open affine subsets of X.

Proof. Let U C X be an affine open subset. Let us denote by D, : = Dg;"llU, D, :=T(U,D,)and R :=T(U,Oy). Let
U = U;<,U, be a finite cover of U by open U; € S. Since by propositions 2.3.6 and 2.5.7 the sheaf D, is an inductive

limit of coherent (’)U—modules, we have
D, =0y ®rD,,

and D, is a flat D,;-module. Moreover, the preceding proposition tells us that D, (U;) is noetherian for each /. Let (J;) be

an increasing sequence of (left) ideals of D, and let us consider
Ji=D;®p, Ji =0y ®rJ;

which is an increasing sequence of sheaves of (left) ideals of D by flatness of D, over D ;. By noetherianess, the increasing
sequence of ideals I'(U;, J;) of I'(U;, D,) is stationary. Furthermore, given that J; is an inductive limit of finite type R-
modules, 7; is an inductive limit of coherent O -modules, thus for every 1 </ < s we have

Jily, = Oy, @rw,.0,) T, T

which implies that for each 1 < / < s there exists k(/) € N such that jilu[ = Tl Uy for every i > k(I). Therefore,

if k := max{k(/) € N|| 1 <1 < s}, we have that J;, = J, and J;, = J, for every i > k, and thus both sequence are
stationary. This ends the proof of the proposition. O

Definition 2.5.10. We will denote by

¢, :=1im DY /P DY) (2.26)
J

the p-adic completion of D;")ﬂ and we consider it as a sheaf on X. Following the notation given at the beginning of this

work, the sheaf _@;m/)l o will denote our sheaf of level m twisted arithmetic differential operators on the formal flag scheme
Xx.

Proposition 2.5.11. (i) There exists a basis % of the topology of X, consisting of open affine subsets, such that for
every U € A the ring 9?;’";(11) is twosided noetherian.

(ii) The sheaf of rings _@(xmi Q is coherent.

Proof. To show (i) we can take an open affine subset U € S and to consider 2 its formal completion along the special
fiber. We have

01 S\ — 110017 T — 10077 M _ 1701 Sm
HOQL 79 = HOWU, DY) = HOWU, DY) = HOQU, 9"
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The first and third isomorphism are given by [24, (0;, 3.2.6)] and the second one arises from the preceding proposition.
As we have have remarked the ring HO(2I, @(x’")) is twosided noetherian. Therefore, we can take 4 as the set of affine
open subsets of X contained in the p-adic completion of an affine open subset U € S. This proves (i). By [5, proposition
3.3.4] we can conclude that (ii) is an immediately consequence of (i) because HOQL, 2™ )y = HOQI, @x D ®, L[5,

X,4,0
(3.4.0.1)]. O

Using the morphism @g;") defined in (2.21) and the canonical projection from D onto D;")A we can define a canonical

map
(m) . 4(m) (m)
<I>X’/1 : AX — Dx,,r 2.27)
We recall for the reader that if U € S then
Sym(™ ((g;r);)T) U) = Sym™ (Tx (V) ®, Sym™(t). (2.28)

Proposition 2.5.12. (i) There exists a canonical isomorphism S ym(”')(TX) o gr,(Dg;"’)/l).
(ii) The canonical morphism (I)(;(")/l is surjective.
(iii) The sheaf D;")/l is a coherent .Ag;,")-module.

Proof. In the preceding section we have constructed a canonical morphism

gr. (D(’”)> g (Dm(T)) 8T+(0m) — 8T, (Dﬁﬁ"i) -

By proposition 2.3.7 we know that gr,(D™) ~ .S ym('”)((é*T);)T). Moreover, by definition, we know that gr,(0,m) = 0
as a gr,(D"(T)) (= Sym"™(t) proposition 1.4.2)-module. We obtain a morphism of sheaves of graded o-algebras

Sym(m) ((f*T)?)T) ®Sym(m)(t) 0 — gr, (D;rf)})

(the structure of Sym™(t)-module is guaranteed by (2.28)). Using the short exact sequence 0 — O R, t— (5*7')7)T—V>

Tx — 0 of lemma 2.3.3 we see that

Sym™ (11
Sym™ (&, T ® gymimy o——— Sym™(Ty)

is an isomorphism and we get a canonical morphism of p-algebras
. (m) (m)
@ : Sym"™(Ty) — gr. <DX,A> .

By proposition 2.5.7, we have a commutative diagram for any U € S

Sym™ (Tx(0) 2 > e (D))

~

er. (DY),

here the left diagonal arrow is given by (1.3). As S is a basis for the Zariski topology of X we can conclude that ¢ is an
isomorphism.
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(m)

For the second claim we can calculate gr,(®,,). By the first part of the proof and proposition 1.5.4 this morphism is

XA
identified with
Ox ®, Sym™(g) — Sym™(T)
which is surjective by [33, Proposition 1.6.1]. Finally, item (iii) follows from (i) and proposition 1.5.4. O
Remark 2.5.13. (a) By construction DE??/LQ = D,, is the sheaf of usual twisted differential operators on the flag

variety Xy [11, page 170].

(b) Let us recall that the right regular action of G on X induces a natural map ®, : U(g;) — H°(X,D,). This
implies that if dD;m) denotes the canonical map induced by d)(;(")/l by taking global sections, then d)(lm) ®L=d,/[1],
Page 170 and 186].

2.6 Finiteness properties

Let A : Dist(T) — o be a character. In this section we start the study of the cohomological properties of coherent

Dg;")ll-modules. We follow the arguments of [33] to show a technical important finiteness property about the p-torsion of
(m)
X, A
2.6.4). To start with, let us recall the twist by the sheaf O(1). As X is a projective o-scheme, there exists a very ample

the cohomology groups of coherent D)~ -modules, when the character 4 + p € t} is dominant and regular (proposition

invertible sheaf O(1) on X [28, chapter II, remark 5.16.1]. Therefore, for any arbitrary O y-module £ we can consider the
twist

E(r) 1= € ®p, O),

where r € Z and O(r) means the r-th tensor product of O(1) with itself. We recall to the reader that there exists r( € Z,
depending of O(1), such that for every k € Z. and for every s > ry, H kX, O(s)) = 0 [28, chapter II, theorem 5.2 (b)].

We start the results of this section with the following proposition which states three important properties of coherent
A();")-modules [36, proposition A.2.6.1]. This is a key result in this work. Let £ be a coherent A();")-module.

Proposition 2.6.1. (i) H(X, A(Xm)) = D")(G) is a noetherian o-algebra.
Da
(ii) There exists a surjection OfA(Xm)—modules (.A():,")(—r)) — & = 0 for suitable r € Z and a € N.
(iii) For any k > 0 the group H*(X, £) is a finitely generated D" (G)-module.

Inspired in proposition 2.5.12, in a first time we will be concentrated on coherent .A();")—modules. The next two results will

play an important role when we consider formal completions.
Lemma 2.6.2. For every coherent A(;(")-module E, there exists r = r(€) € Z such that H*(X, E(s)) = 0 for every s > r.

Proof. Let us fix ry € Z such that H*(X,O(s)) = 0 forevery k > 0 and s > ro. We have,
H X, AY(5)) = H*(X, O(s)) ®, D™ (G) = 0.

Now, by the second part of proposition 2.6.1 there exist ay € Nand s, € Z together with an epimorphism of .A(;(")-Inodules

g, = (Ag;”(so))@”“ £,
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If r > ry — s we see that
HM(X, Ey(r) = HY(X, O@r + 5¢))®% ®, D'(G) = 0.

We can now end the proof using a classical inductive argument as follows. Let &£, be the kernel of the epimorphism
&y — € — 0 and let us consider the statement (g;): for every coherent A(;") -module F, there exists r;(F) € Z such
that for all r > r;(F) and all i < k one has H k(X,F) =0. Fori > dim(X) the statement follows from Grothendieck’s
vanishing theorem [28, chapter III, theorem 2.7]. Now, let us suppose that (a;, ) holds. Taking r > max{ry—sg, r;;.1(£])}
and regarding the long exact sequence in cohomology we have

0=H(X,E(r) - H(X,E(r) - HY(X,E,(r) = 0.

So we can take as r;(£) any of those r which are larger than the max{r, — s¢, ;1 ()} to obtain the statement (a;). The
statement (a;) shows the proposition. O

Lemma 2.6.3. For every coherent D();")ll-module E, there existr = r(€) € Z, a natural number a € N and an epimorphism

of ’Dgni—modules
(D% (—r))®a S E50
XA :

Proof. Using the epimorphism in proposition 2.5.12 we can suppose that £ is also a coherent A(Xm)-module. In this case,
by the second part of proposition 2.6.1, there exist r = r(£) € Z, a natural number ¢ € N and an epimorphism of
.A()'(")—modules

@
<¢4()'(n)(—r)> ‘ - &-0.
Taking the tensor product with D x4 e get the desired epimorphism of D X, ,-modules

©Da ®a
(m) ~ Tm) (m) (m) N
(DX,A(_r)> _DXJ ®A(;(") <AX (_r)> _)DXJ ®A();n)(€—5 - 0.
O]

We recall to the reader that the distribution algebra of level m, which has been denoted by D"(G) in subsection 2.3,
is a filtered noetherian o-algebra. This finiteness property is essential in the following proposition which we (personal)

consider as the heart of this paper>.

NOTATION: In the sequel we will refer to a character A € tz as an L-linear application induced, via base change, by a
character A4 : Dist(T) — o of the distribution algebra of the torus T.

Proposition 2.6.4. Let us suppose that A + p € t7 is a dominant and regular character (cf. 2.5.3).

(i) Letusfixr € Z. For every positive integer k € Z., the cohomology group H*(X, Dg:")/l(r)) has bounded p-torsion.
(ii) For every coherent Dg:")ll-module &, the cohomology group H*(X, ) has bounded p-torsion for all k > 0.

Proof. To show (i), we recall that Dg")i Q= D4, is the usual sheaf of twisted differential operators on the flag variety

X; (remark 2.5.13). As D;")/l Q(r) is a coherent D ;-module, the classical Beilinson-Bernstein theorem [2] allows us to

conclude that H*(X, D;")A(r)) ®, L = 0 for every positive integer k € Z.,. This in particular implies that the sheaf

SWe follow the same argument given in [32]
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(m)
X,A

(r) is in particular a coherent A(Xm)-module and hence, by the third part

(m) : k
DX’ /l(r) has p-torsion cohomology groups H*(X,D},” (r)), for every k > 0 and r € Z.

hy (m)
Now, by proposition 2.5.12, we know that D X
of proposition 2.6.1 we get that for every k > 0 the cohomology groups H*(X, D&"l(r)) are finitely generated D™ (G)-
modules. Consequently, of finite p-torsion for every integer 0 < k < dim(X) and r € Z.

To show (ii) we may use before lemma 2.6.3 to obtain a surjective morphism of Dg}"l-modules

Cy i= (D%(—@)eaai £50

for suitable r € Z and @ € N. As in lemma 2.6.2, we will follow an inductive argument to end the proof. For every i > 0
we consider the statement (g;): if £ is a coherent D(}Zl-module, there exists a positive integer r; = ri(£) € Z. such
that for every i < k the cohomology group H¥(X, £) is annihilated by p’i. For i > dim(X) the statement follows from
Grothendieck’s vanishing theorem [28, chapter III theorem 2.7]. Now, let us suppose that (a;, ;) holds and let us denote by
C, the kernel of the morphism «. This is a coherent Dg?f)/l-module by [5, proposition 3.1.3 (i)]. The long exact sequence

in cohomology gives us the short exact sequence
, : 5 .
Hi(X,CL HI(X, 6 H*(X,C)). (2.29)

Let ¢ € Nsuch that p¢ annihilates the image of f (of finite p-torsion by (i)) and, according to (a; ), letus take r;, ;(C;) € Z
such that p"i+1C1) annihilates the image of 6. So we may take r;(£) := max{r;;1(E),c+r;;(C;)} to obtain the statement
(a;). In particular (a,) proves the proposition. 0



Chapter 3
Passing to formal completions

From now on, we consider 4 : Dist(T) — o a character of Dist(T) such that A+p € t”il is a dominant and regular character
of t; (we point out to the reader that A induces via tensor product with L a character of t; (2.5.3)). We have introduced
the following sheaves of p-adically complete o-algebras on the formal p-adic completion X of X

Zm . _ (m) /s j+1gy(m)
Dy, =MDy 3 /P Dy
J

The sheaf @(xm/)l o is our sheaf of level m twisted arithmetic differential operators on the smooth formal flag scheme X.

3.1 Cohomological properties

Our objective in this subsection is to prove an analogue of proposition 2.6.4 for coherent @(xm/)l—modules and to conclude

that HO(X, ) is an exact functor over the category of coherent 9;’"/)1 Q—modules.

(m)

Proposition 3.1.1. Let & be a coherent D" -

module and € := Lﬂ E/p/E its p-adic completion, which we consider

as a sheaf on X.
(i) Forall j > 0 one has H/(%,E) = lim, HI(X,E/pH1E),
(ii) Forall j > 0 one has H/(%,&) = HI(X, E).
(iii) The global section functor HO(X, ) satisfies HO(%, é\) = I(Ek HYX,&)/p* " HO(X, E).

Proof. The arguments exhibit in this proof follow word for word the arguments given in [32, Proposition 3.2] and we do
not claim any originality here. Let &, denote the torsion subpresheaf of £. This is, for any open subset U C X we have
EW), := EU )y, where the right-hand side denotes the group of torsion elements of £(U). As X is a noetherian space,

(m) (m)
X’A—submodule of £. Because the sheaf Dx,a

over open affine subsets of X (proposition 2.5.9), the submodule &, is a coherent Dg;"l-module. This submodule is thus

this is indeed a sheaf and furthermore a D has noetherian rings of sections

generated by a coherent O y-module which is annihilated by a power p of p, and so is £,. The quotient G := £/&, is

again a coherent D(;")/I-module and therefore we can assume, after possibly replacing ¢ by a larger number, that p°&, = 0

and p° H/(X,E) = p°H/(X,G) =0, forall j > 0.

We abuse of the notation and we denote again by 4 the character of t; specify by (2.24).

49
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Let k, [ be integers which are great or equal to ¢ and let v, : G — & be the map induced by multiplication by p'*. We have
the following exact sequence

0—»g—”’—>5—>5,—>0

where & := £ /p'*t1E. Now, let us consider the complex

g \ \
l”" id i 3.1)

=
~
Q
~
™
~
Ln
~
o

which induces a morphism of long exact sequences

Hix,G) L0 micx, ey Ly Hix.€,,) ——3 H(X.0)

\ka \Lid \Lal+k,1 \ka 3.2)

H(v))

HI(X.G) ——s gix,&) — 2 Hi(X.&) — 21— HI(X.Q).

Given that k > c the right-hand vertical map is zero, and hence 7; o «; skt =0, which implies, by exactness, that
im(a; ) € im(v,). Since i,y © a;4,, = v; we find that im(e;, ;) = im(v)) for all k¥ > c. In consequence, the projective
system (H’(X, &;));, with transition maps given by a4 With k' > k, satisfies the Mittag-Leffler conditions for any j > 0.
Furthermore, the transition maps of the system (£, ), are clearly surjective and if U C X is an affine open subset, then
HI(U, &) = 0for j > 0, because &, is in particular a quasi-coherent O y-module. Hence, the exact sequence

k
0—’51L’511+k—>5k—’0

stays exact after taking sections over U, and therefore the projective system (H(U, &) satisfies the Mittag-Leffler
conditions. The preceding lines imply that we are under the hypothesis of [26, Chapter 0, 13.3.1], which implies that for
allj >0

j AT j k+1
Hf(x,é')—l(lkﬂHf(X,S/p &).

We have proved the first assertion. For the second assertion we may consider the diagram (3.2) and the fact that H/ (vp=0
for j > O and / > 0. In consequence, f; is an isomorphism onto its image for these j and /. Therefore, the projective limit
of the system (H/(X, &)y 18 equal to H/(X,E) when j > 0. This property together with (i) gives us (ii). Finally, to

verify (i) we take two integers /, k > c. We consider the short exact sequence

p1+l
0-&->E— & -0

which splits into two exact sequences
0—»5,—»5—”>g—>0 and 0—>gi>5—>5,—>0
inducing long exact sequences in cohomology

0— HX,E) - H'(X,E)— H'X,G) » H'(X,E)
0 - HYX,G)—5 HOX,E) — HYX.&) - H'(X,G).
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From the second exact sequence and the morphism of exact sequences (3.1) we obtain the following morphism of exact

sequences

0 —3 HOX,E) —5y HOX, &) 2 HOX,&,,,) — HO(X.G)

1» lid Lo l”k (3.3)

0 — HOX, &) =23 HOX, &) —2y HOX, &) —3 HOX,Q).

I+1

Given that v; o v = p'™", we get a canonical surjection

v HOXCEO M HYX,E) - HOX, ) /o, (H(X,G)).
These morphisms form a morphism of projective systems. Now, as v; is injective, we have a canonical isomorphism

ker(y) = v, (H'(X, Q) /p H'X, &)
= v, (H'X,Q)) [v; (v (H'(X,E)))
~ H'X,0)/v(H(X,&))
= coker(H(u)),

and coker(H(u)) embeds into H'(X, G) which is annihilated by p¢. Moreover, the morphism of exact sequences

pl+k+l

0 > & > & > & > Elek > 0
C b b
pl+1
0 > & > & > & > Elek > 0

induces a morphism of short exact sequences

0 — coker(H(v)) — H(X,&)/pH M HOX,E) — HOX,&) /v (H'(X,G)) —> 0

I y "

0 — coker(H’(w)) —— H(X,&)/p*'HO(X, &) —— H(X,E) /v, (H'(X.G)) —— 0.
Thus, the projective limit l(gl ker(y;) vanishes and the system (y;); induces an isomorphism

lim HO(X, &)/ HO(X, &) [v, (H'(X,9)) .
i

Looking at (3.3), we can conclude that right-hand side is canonically isomorphic to l(ﬂl HO(X, E)=H 0%, 3 ), by the

first assertion. ]

The next proposition is a natural result from lemmas 2.6.2 and 2.6.3. Except for some technical details, the proof is exactly
the same that in [34, proposition 4.2.2].

Proposition 3.1.2. Let & be a coherent @;mi-module.

(i) There exists ry = ry(&) € Z such that, for all r > r, there is a € Z and an epimorphism o 2 modules
2= 2 X4

(9;,?;(_r)>®a - & - 0.
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(ii) There exists r3 = r3(&) € Z such that, for all r > r3 we have HI(X,£(r) =0, foralli > 0.

Proof. We start the proof of the part (i) by remarking that the torsion subsheaf &, of & is a coherent @a(emj-module. As X
is quasi-compact, there exists ¢ € N such that p°&; = 0. Defining ¥ := &/, %, := 9 /9, and &; := &P+ &, we have
for every j > c an exact sequence

j+1
O—)%O——)é’j_'_]—)é;—)O_

Viewing X as a closed subset of X and denoting by y this topological embedding, we can suppose that v, %, is a coherent

Dg”l-module via the canonical isomorphism of sheaves of rings Dg")ﬂ ng;")/l ~ oy, (@;mz / p@é’"ﬁ) (similarly, we can

consider &, as a coherent D;")/l—module). By using the fact ¥, is also a coherent A(;")—module, lemma 2.6.2 gives us an
integers r’2 (%) such that the canonical maps

HY%,8,,,(") » HY X, &6,")) (3.4)

are surjective for ' > /(%) and j > c. Moreover, lemma 2.6.3 gives another integer r}(&,) such that, for every ' > r’ (&)
there exists a € N and a surjection

®Da
b1 (DY /DY) = 60" = 0.

Letusfixr>ry 1= max{r;(éac), rg(%)} and let e, ..., e, be the standard basis of the domain of ¢. We use (3.4) to lift
each ¢(e;), 1 <1 < s, to an element of

lim HO(X, &,(r) = HO(X, &),
J

by the first assertion of the preceding proposition. By [5, 3.2.3 (v)] we have 67(7) = IZ"\a(r) and & = &, and therefore we
have a morphism

(7)) = 6w o,

which is surjective because, modulo p, it is a surjective morphism of sheaves coming from coherent D;"}-modules by
redaction modulo p¢. To show the part (ii), we remark that if we fix ry € Z such that H kK(X,O@)) = 0 for every k > 0
and r > rg, exactly as we have done in lemma 2.6.2, then via the second part of proposition 3.1.2 we also have that

H*(x%, .@;mi(r)) = 0 and the rest of the proof can be deduced exactly as in the proof of lemma 2.6.2. O

Corollary 3.1.3. Let & be a coherent @(xmjl-module. There exists ¢ = ¢(&) € N such that for all k > 0 the cohomology
group H*(¥, &) is annihilated by p°.

Proof. Letr € Z. By the first assertion of proposition 3.1.1 we have for k > 0

k Z5(m) ~ Ik (m)
H*X, 9)(=r) = H*(X, D (=)
which is annihilated by a finite power of p, by part (i) of proposition 2.6.4. The proof now proceeds by descending induction
exactly as we have done in the proof of part (i7) of proposition 2.6.4. O
Now, we want to extend the part (i) of the preceding proposition to the sheaves 9?;”’/)1 o To do that, we need to show that

the category of coherent ‘@(xmi @—modules admits integral models (definition 1.5.1).
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Let Coh(@;m;) be the category of coherent @(xmz-modules and let Coh(_@(xmi)@ be the category of coherent @;mi—modules

up to isogeny. This means that Coh(@;mz)Q has the same class of objects as Coh(@;mi) and, for any two objects M and
N in Coh(@;mj)Q one has

H (M. N) = Homg, som (M N) @, L.
A

om ~
Coh(@;"ji)@ Coh(

Proposition 3.1.4. The functor M — M®, L induces an equivalence of categories between Coh(.@;m/)l)@ and Coh(@(xm/)1 @)'

Proof. By definition, the sheaf _@;m/)l o satisfies [5, conditions 3.4.1] and therefore [5, proposition 3.4.5] allows to conclude

the proposition. O

The proof of the next theorem follows exactly the same lines than in [34, theorem 4.2.8]. We will reproduce the proof

because it is a central result for our goal.

Theorem 3.1.5. Let & be a coherent @;mi @—module.

(i) There is r(&) € Z such that, for every r > r(&) there exist a € N and an epimorphism of @(xm/)l Q-modules

(@;’f’i@(—r)>$a - & - 0.

(ii) Foralli > 0 one has H(X,&) = 0.

Proof. By the preceding proposition, there exists a coherent @;m/){-module F such that # ®, L ~ &. Using the first part
of proposition 3.1.2 we can find r(F) € Z, such that for all » > r(.%) there exist a € N and a surjection
A~ @a
(m)
(@x’i(—r)) - Z > 0.

Tensoring with L we get the desired surjection onto &. Furthermore, as X is a noetherian space, the corollary 3.1.3 allows
us to conclude that

H'(¥,6)=H'Z*,7)®,L=0

for every k > 0[5, (3.4.0.1)]. L]

3.2 Calculation of global sections

We recall for the reader that throughout this chapter A : Dist(T) — o denotes a character of the distribution algebra Dist(T)
such that A + p € tzz is a dominant and regular character of t; (cf. (2.24)). In this subsection we propose to calculate
the global sections of the sheaf @;miQ Inspired in the arguments exhibited in [37], we will need the following lemma (cf.
[37, lemma 3.3]) whose conclusion is an essential tool for our goal.

Lemma 3.2.1. Let A be a noetherian o-algebra, M, N two A-modules of finite type, w : M — N an A-lineal application
and - M > N the morphism obtained after p-adic completion. If y @ ,1 : M @, L - N ®, L is an isomorphism,
then ®,1: M\ ®,L— N ®, L is an isomorphism as well.

Proof. Let K be the kernel (resp. the cokernel) of y. Since the w-adic completion is an exact functor over the finitely
generated A-modules [5, 3.2.3 (ii)], the w-completion K is the kernel (resp. the cokernel) of . But K = K because K
is of w-torsion, and therefore K ®, L = K ®, L = 0. O

2p =1 Tpeps a,of. 25.3).
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Let us identify the universal enveloping algebra /(1) of the Cartan subalgebra t; with the symmetric algebra S(t; ), and
let Z(g; ) denote the center of the universal enveloping algebra {/(g; ) of g;. The classical Harish-Chandra isomorphism
Z(g;) =~ S(t;)" (the subalgebra of Weyl invariants) [20, theorem 7.4.5], allows us to define for every linear form 4 € tz
a central character [20, 7.4.6]

X, - Z(@g)—~ L

which induces the central reduction U(g; ), := U(g;) ®z,).z, L- If Ker(y,), := D"(G) N Ker(y;,), we can consider
the central redaction

D(G), := D™ (G)/D™(G)Ker(y,),

and its p-adic completion ﬁ(m)(G) ;- Itis clear that D(G) ; is an integral model of U/(g; ).

Theorem 3.2.2. The homomorphism of o-algebras @E{m) : D(G) - HOX, Dg;")i), defined by taking global sections in

(2.27), induces an isomorphism of v-algebras

@), ®, 1= H (2.9 ).

Proof. The key of the proof of the theorem is the following commutative diagram, which is an immediate consequence of
remark 2.5.13

(m)

D(G) — 43 HOX, D™
(@) ——— HX.D}")

L 2" ®1 i:/m)
D™(G)®, L —— H(X,Dy") ®, L
| b

Ugy) # HY (X, D))

By the classical Beilinson-Bernsein theorem [2] and the preceding commutative diagram, we have that CDE{") factors through
the morphism 65{”) : D(G), - HOX, Dg,")/l) which becomes an isomorphism after tensoring with L. The preceding
lemma implies therefore that 63’” gives rise to an isomorphism

b6, ®, L— HYX,DI") ®, L,

and proposition 3.1.1 together with the fact that X is in particular a noetherian topological space end the proof of the

theorem. O

3.3 The localization functor

In this section we will introduce the localization functor. For this, we will first fix the following notation which will make
more pleasant the reading of the proof of our principal theorem. We will consider
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Now, let E be a finitely generated ]A)(xmi1 0

defined by

-module. We define . oc(xml){(E) as the associated sheaf to the presheaf on X

S5(m)
UCX - .@x%@(l[) ®ﬁ¥”l@ E.

(m)
x4

(m)

is a functor from the category of finitely generated ﬁx 10

It is clear that Zoc

@;m/)l o-modules.

-modules to the category of coherent

3.4 The arithmetic Beilinson-Bernstein theorem

We are finally ready to prove one of the main results of this work. To start with, we will enunciate the following proposition.
3

Proposition 3.4.1. Let & be a coherent 9™ _module. Then & is generated by its global sections as 2 _module.

X.,4,0Q x.4,Q
Furthermore, every coherent .@;m/)l @-module admits a resolution by finite free .@(xmi Q—modules.
A~ a
Proof. By theorem 3.1.5 we know that & is a quotient of a module (.@(xm/)l D(—r)) for some r € Z and some a € N.
We can therefore assume that & = (@(xm/)l Q(—r)) for some r € Z. Let F := HO(X, D;")A(—r)), a finitely generated

(m)

D (G)-module by proposition 2.6.1. Let us consider the linear map of D X

-modules equal to the composite
(m) (m) (m)
Dy, ®pm) F = Dy, ® ocxpimy F = Dy (=1 (3.5)

where the first map is the surjection induced by the map CD(;") of theorem 3.2.2. Let F be the cokernel of the composite map.
(m)
XA

torsion because D();")A(—r) ®, L is generated by its global sections [2]. Now, let us take a linear surjection (D™ (G))

Since D™ (G) is noetherian, the source of this map is a coherent D" -module and so is F. Moreover, this module is of p-

@Da
=

F. By tensoring with Dg")i we obtain the exact sequence of coherent modules

m @(l m
(D;D ~ DY (=r) = F = 0.

Passing to p-adic completions (which is exact in our situation [28, chapter II, proposition 9.1]) and inverting p yields the
linear surjection. O

Theorem 3.4.2. Let us suppose that A . Dist(T) — o is a character of Dist(T) such that A + p € tz is a dominant

and regular character of t;. The functors £ oc(xmi1 and H(X, ) are quasi-inverse equivalence of categories between the

" modules and coherent @(m) -modules.

abelian categories of finitely generated Dx’ 20 X0

Proof. Letus take E a finite generated ]3;"1 Q-module and & a coherent @(xm; @-module. There exist canonical morphisms

E - HY(%, & oc;m;(E)) and ¥ oc;m}(H 0(%,&)) — &. Moreover, given that E is a finitely generated ]5;"; Q-module,

the third part of both propositions 2.6.1 and 3.1.1 allow us to find a resolution of

@b ®a
. ([ Rm) ~(m)
E: <D3€,A,@> - <Dx,1,@) - E-0

Therefore, by the preceding proposition, we get an exact sequence

A ®b A ®Da
<@(x"f/1’@> — (@(xmi@> — foc(x"ji(E) - 0.

3This proof is exactly as in [34, proposition 4.3.1].
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From this resolution we derived the following diagram of short exact sequences

Nm @b s Am  \@®a \
(Dae,/l,@) (Dx,a,@) 7 E

| ) |

B )8 — B )8 —3 HOE. Loc)(E) — 0.

~
o

By the preceding proposition, we know that the first two arrows are in fact isomorphisms thus, the canonical map £ —

H%, & oc(xml(E )) is an isomorphism as well. To see that the another canonical morphism is an isomorphism, the reader

can follow a completely analogous reasoning.

;mi is fully and faithful. It is enough to show that it is faithful. Lety : E — F be

an injective morphism between two finitely generated ﬁ(xmi @—modules and let JZ be the coherent ﬁ@(xm/)l @—module which

is the kernel of the morphism . oc;" i(q/). By the preceding proposition, we know that H(%, %) is the kernel of the

Finally, let us show that the functor .Zoc

application HO(¥, ¥ oc(xm;(q/)) which is zero. But %" is generated by global sections and therefore % = 0. O

Given that any equivalence between abelian categroies is exact, theorems 3.2.2 and 3.4.2 clearly imply

Theorem 3.4.3. (Principal theorem) Let us suppose that A . Dist(T) — o is a character of Dist(T) such that A+ p € tz

is a dominant and regular character of t.

(i) The functors £ oc(xmj1 and H°(X, ) are quasi-inverse equivalence of categories between the abelian categories of

finitely generated (left) ﬁ(”’)(G:) 1 ®, L-modules and coherent ‘@(xm/)l Q-modules.

(ii) The functor £ oc(xmj1 is an exact functor.



Chapter 4

.}.
The sheaves @x, )

In this chapter we will study the problem of passing to the inductive limit when m varies. Let us recall that & : X :=
G/N — X := G/B is a locally trivial T-torsor (subsection 2.4). For every couple of positive integers m < m’ there exists

a canonical homomorphism of sheaves of filtered rings [5, (2.2.1.5)]
P D;”) - D;” ), @.1)
Let us fix a character A : Dist(T) — o. As we have remarked for m < m’ we have a commutative diagram

DU(T) o
| w> 0. (42)

D("’/)('I]')

. . . " "
Moreover, by [5, (1.4.7.1)] we dispose of a canonical morphism PX,(m’) - PX,(m)'

In section 3.3 we have defined a T-equivariant structure C[J?m) : p’l‘P;‘? - 0*73;’? on P;’? (w recall for the reader
Sh S N

that o denotes the right action of T on X and p, is the first projection). By universal property of 73;‘2 - the preceding
(m
T-equivariant structures fit into a commutative diagram

q)"
("),
PP = P

X,(m") X, (m')

l l 4.3)
o

p* pn (m) O'*P(m)
1P H "

X,(m) X (m)

This implies that the morphisms P;’? o 73;’? oy 2T T-equivariant and therefore by lemma 2.2.1 and lemma 2.2.3, we
can conclude that the canonical maps in (4.1) are T-equivariant. In this way, we dispose of morphisms D™ — D) The

(m)

() : :
X4~ D X and therefore an inductive system

diagram (4.2) implies that we also have maps D

)T 2 T P, (44)

57
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Definition 4.0.1. We will denote by 9; 1 the limit of the inductive system (4.4), tensored with L

A TS ()]
Dy = (h_r>n@x,x> ®, L.

m

4.1 The localization functor . oc; A

As in the subsection 4.3 let us denote by D; ,=H 0%, 9; ,)- Ina completely analogous way as we have done in the
subsection referred above, we define the localization functor .# oc; , from the category of finitely presented D; ,-modules

to the category of coherent @; A—modules. This is, if E denotes a finitely presented D; A—module, then .2 oc; J(E) denotes
the associated sheaf to the presheaf on X defined by

UCX— T, 8, E

¥
DI,A

It is clear that .Z oc; 1 is a functor from the category of finitely presented D; ,-modules to the category of coherent 9; i

modules.

4.2 The arithmetic Beilinson-Bernstein theorem for the sheaves .@; .

In this subsection we will concentrate our efforts to show the following Beilinson-Bernstein theorem for the sheaf of rings
@; I To do that, we will fix throughout this section a character A : Dist(T) — o of the distribution algebra Dist(T) such

that 4 + p € t is a dominant and regular character of t;. We want to show

Theorem 4.2.1. Let us suppose that A : Dist(T) — o is a character of Dist(T) such that A + p € tz is a dominant and

regular character of t.

(i) The functors £ oc; ; and HO(¥, ) are quasi-inverse equivalence of categories between the abelian categories of

finitely presented (left) D; A-modules and coherent 9; A-modules.
(ii) The functor £ oc; , is an exact Sfunctor.

To do this, we recall the following facts.

Remark 4.2.2. (i) Let us recall that in remark 1.5.3 we have stated that DY (T) is isomorphic to the subspace of T-
invariants HO(T, D%m))r. The isomorphism is in fact induced by the the action of T on itself by right translations
[36, theorem 4.4.8.3] and is compatible with m variable. This means that if Q,, and Qin denotes those isomorphisms

for m < m', then we have a commutative diagram

DTy =25 HO(T, DI

\L‘ﬁm’,m \L(ym’,m)T

O
DTy =L HO(T, D%M'))v
where the morphisms ¢,y , are obtained by dualizing the canonical morphisms y,y ,, in subsection 1.4 and the
morphisms y,, ,, are defined in (4.1).
(ii) Again by remark 1.5.3 the isomorphism of proposition 2.5.7 are compatible for varying m.

Let us recall the following proposition.
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Proposition 4.2.3. [5, Proposition 3.6.1] Let Y be a topological space, and {D,};cy be a filtered inductive system of
i

coherent sheaves of rings on Y, such that for any i < j the morphisms D; — D; are flats. Then the sheaf DF :=_1i_r_r)1ie] D

is a coherent sheaf of rings.

Proposition 4.2.4. The sheaf of rings @; LIS coherent.

Proof. The previous proposition tells us that we only need to show that the morphisms &, m)T o are flats. As this is a
local property we can take U € S and to verify this property over the formal completion 2. In this case, remark 4.2.2 and
the argument used in the proof of the first part of proposition 2.5.11 give us, by functoriality, the following commutative

diagram
o EGw ) ToM
(m) rmm @ s (m")
QX,A,Q(u) QX,A,Q(H)
\bl \bl
A ﬁmrm@(u) A
Znan > J¢ QD
The flatness theorem [5, theorem 3.5.3] states that the lower morphism is flat and so is the morphism on the top. O

Notation: From now on we suppose that A : Dist(T) — o induces a dominant and regular character of t;, under the
correspondence (2.24).

Lemma 4.2.5. For every coherent 9; ,-module & there exist m > 0, a coherent 9™

M Q-module &,, and an isomorphism
s
of @x, A-modules

.ot =
T:9. Qrm &,— &.
X2 " P "

Moreover, if (m', &,y,7') is another such triple, then there exist | > max{m,m'} and an isomorphism of 9;51)/1 Q-m()dules

.50 = 50
% Z2a0 ®sm = 720 ® " St

5
'@x, Q

)

such that v’ o (id@+ ® T,) =T

Proof. This is [5, proposition 3.6.2 (ii)]. We remark that X is quasi-compact and separated, and the sheaf 9?(;1/)1 Q satisfies

the conditions in [5, 3.4.1]. O
Proposition 4.2.6. Let & be a coherent 9;; ,-module.

(i) There exists an integer r(&) such that, for all r > r(&) there is a € N and an epimorphism of @; A-modules
i Ba
(@m(—r)) &0

(ii) Foralli > 0 one has H(X&) = 0.

Proof. ! Let & be a coherent 9; ,-module. The preceding proposition tells us that there exist m € N, a coherent @(xm/)l Q

IThis is exactly as in [34, theorem 4.2.8]
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module &), and an isomorphism of .@; ,-modules
. gt =
T:D,, Qsm Ep— &.
EN L

Now we use theorem 3.1.5 for &), and we get the desired surjection in (i) after tensoring with @; ;- To show (ii) we use
the fact that, as ¥ is a noetherian topological space, cohomology commutes with direct limites and

_ ot 1 D
&= -@x,/l ® Em —ﬂlgx,z,@ ®@;le® S

Z(m)
2.
%,1,0 I>m

&,, 1s a coherent 29 _module for every I > m.

Being &, a coherent 2™ _module we can conclude that 79 ® X0

Z(m)
X140 X,1,0Q 93“@

Then for every i > 0

i — 1 i 70 —
H (x, éa) —}I?IEH <&’, QX,A,@ ®@(xmi@ gm) = 0,

by part (i) and theorem 3.1.5. 0

Proposition 4.2.7. Let & be a coherent 9; ,-module. Then & is generated by its global sections as .@; ,-module. More-
over, & has a resolution by finite free .@; ,-modules and HY%,8)isa D; ,-module of finite presentation.

Proof. % Theorem 3.1.5 gives us a coherent 2™ -module &,, such that & ~ .@; . ® &,,. Moreover, &, has a

)
x40 1.0

resolution by finite free _@;m; Q-modules ( proposition 3.4.1). Both results clearly imply the first and the second part of
the lemma. The final part of the lemma is therefore a consequence of the first part and the acyclicity of the the functor

HO(X, ). O

Proof of theorem 4.2.1. Allin all, we can follow the same arguments of [33, corollary 2.3.7]. We start by taking (D; l)@“ -
(D; A)éBb — E — 0 afinitely presented D; ,-module. By localizing and applying the global sections functor, we obtain a

commutative diagram

~
S

(D} )® — (D ,)® S E

| | |

(D} )® — (D} )® — HO¥, Loc, ,(E)) — 0.
which tells us that E —» HO9(X, .i”oc; A(E)) is an isomorphism. To show that if & is coherent @; A—module then the

canonical morphism @; . ® HO(%,&) — & is an isomorphism the reader can follow the same argument as before.

DT

. )
As we have remarked, the second assertion follows because any equivalence between abelian categories is exact. O
Calculation of global sections

Let us recall that in the subsection 4.2 we have used the fact that associated to the linear form A € tz there exists a central
character y; : Z(g;) — L, where Z(g;) denotes the center of the universal enveloping algebra /(g; ). In this case, if
Ker(y,), := D")(G) n Ker(y,), we can consider the central redaction

D™(G), := D"(G)/ D" (G)Ker(x,),

2This is exactly as in [32, theorem 5.1]
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and its p-adic completion D™ (G),. Following the notation introduced in subsection 3.1 we have D(G),®, L = U(g;);.
We have shown that there exists a canonical isomorphism of o-algebras

b"©), ®, L= 1" (2,90 ).

Taking inductive limits we can conclude that if

D), = li_r)nﬁ(m)(G)g ®, L,

m

then we also have a canonical isomorphism of o-algebras
D(6),— H(X,7; ).

Theorem 4.2.1 and the preceding calculation complete the Beilinson-Bernstein correspondence. We end this chapter with
the following remark.

In [33] and [37] Huyghe and Schmidt studied the algebraic case. This means that A is induced via derivation by a character
A € Hom(T, G,,). In this setting, they consider arithmetic differential operators acting on the line bundle £(4) induced by
A (cf. section 5.4). Let us denote those sheaves by @(x'%(/l) and the inductive limit by 9;(/1). They have showed analogous
results to theorems 3.4.2 and 4.2.1,if A+ p € t*L is a dominant and regular character of t; ([37, Theorem 3.2.5] and [33,
Theorem 3.1]). This in particular implies that if A’ : Dist(T) — o is the character of the distribution algebra Dist(T)

induced via the correspondence (2.24), then
0 i _pf _ 0 T
H (x %(A)) = D'G), = H (35 @M).
forA+p=Ai+pe t, domiant and regular 3. Therefore, we have the following equivalence of categories

HO(Y, . ffocT’
{Coherent @;(/1’) — modules} ®- {Finitely presented D'(G) , — modules} — {Coherent @; 1= modules}.

3By construction, if we tensor with L the caracters A and A/, then they induces the same character of t 1, cf. (2.24).
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Chapter 5

Arithmetic differential operators with
congruence levels

In this chapter we will introduce congruence levels to the constructions given in the preceding chapters. This means,
deformations of our (integral) twisted differential operators. This notion will be a fundamental tool to define differential
operators on an admissible blow-up of the flag o-scheme X. We also point out to the reader that we could have started
this work by considering differential operators with congruences levels because, as we will explain later, the case "k = 0"
naturally recovers all our preceding definitions. We have decided to treat this case apart because this is already a meaningful
constructions which generalizes [33] and [37]. Many of the results in this chapter are analogues to the results obtained in
our previous work and their proofs follow the same lines of reasoning. In all these cases we will refer to the respective

analogue.

5.1 Congruence levels

In this section we retake the notations of section 2.1. This means that X and X will denote smooth separated schemes over
o, such that X is endowed with a right T-action 6 : X Xgpec(o) T = X. We will also denote by & : X — X alocally trivial
T-torsor for the Zariski topology and by S the set of open affine subschemes U of X that trivialises the torsor (Remark
2.1.1).

Finally, as usual, we will denote by D?) (resp. by ’Dg;")) the usual sheaf of level m differential operators on X (resp. on

X). As we have remarked in the first chapter, those sheaves come equipped with a filtration

0z cDY c..cD? c..c DY,
X,1 X,d X

with D;"L the sheaf of level m differential operators of order less or equal that d.

5.1.1 Associated Rees rings

! Let A be a sheaf of o-algebras endowed with a positive filtration (F,.A),cy and such that o C Fy.A. The sheaf A gives
rise to a subsheaf of graded rings R(A) of the polynomial algebra .A[¢] over .A. This is defined by

RA) =P FA-7

ieN

I This digression can be found before the proof of [34, Proposition 3.3.7].
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its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves of subgroups

R,(A) ;== FA-1 C R(A).

d
i=0

Specializing R(.A) in an element u € o we get a sheaf of filtered subrings .4 u of A. More exactly, A , equals the image
under the homomorphism of sheaves of rings ¢, : R(A) — A, sending t — p, and it is equipped with the filtration
induced by A. Moreover, if the sheaf of graded rings gr(A), associated to the filtration (F,;.A) ¢y is flat over o, then?

d
FiA, =Y WFA 5.1)
i=0
If y : A — B is a morphism of positive filtered o-algebras (with 0 C F,.A and o C FB3), then the commutative diagram

agt®yagt?

R(A) —— R(B)
12 12
A—X B
gives us a filtered morphism of rings y/,, : A 4 = B, This in particular implies that for 4 € o fixed, the preceding process

is functorial.

Remark 5.1.1. The previous digression is well-known for rings. In this setting we have results completely analogues to

the ones presented so far ([41, Chapter 12, section 6]). We will use these results in the next sections.

Finally, under the hypothesis (5.1), if we endow Ker(¢ ”) with the filtration induced by R(.A), then for every d € Z, we
have F;Ker(¢,) = (1 — p)Ry_, (A). To see this, we take a local section p(t) = Z?:o a;it’ € F,Ker(¢,) and a polynomial
q(t) = Zd_l b;#/ such that p(t) = (t — u)q(t) + ¢, with ¢ € A. As 0 = p(u) = c, we conclude that

j=0 i
d-1 d-1
Py =t = wa@) = Y bt/* = ubjt.
i=0 Jj=0
The previous relation implies for example that aq = —ub, and therefore by € Fy.A. Furthermore, an inductive argument

allows us to conclude that b; € F; A for every 0 < j < d — 1. In other words ¢(t) € R;_;(A).

The short exact sequence

by
0 - Ker(¢,) = Ry (A)— F;A, =0

implies that F;(A,) = R;(A)/(t — w)R,_,(A) for every d € Z. Of course, by (5.1), we have Fy(A,) = Fy(A).
The following lemma is completely formal.

Lemma 5.1.2. Ler f : Y — Z be a morphism of schemes and let A be a sheaf of algebras on Z. Then there exists a

canonical isomorphism of sheaf of algebras on'Y
FAM= AL 18 (Y ar) - Ydaear.

Letp, : X Xspec(o) 1 = X denote the first projection. Let us retake the notations in 5.1.1 and let us also assume that
(A, @) is a T-equivariant quasi-coherent O y-module ((2.1) and (2.2)) via a filtered isomorphism ®. By lemma 5.1.2 and

2This is [34, Claim 3.3.10.].
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the T-equivariant structure of .4 we have a canonical isomorphism
@y 1 pl (Al — o (Alf); 1® (2 aiti> - 1® (2 @(ai)ti), 5.2)

which defines a T-equivariant structure on A[f]. Moreover, the positive filtration (Fd.A) gen Of A induces two positive
filtrations (p%(F,.Alt])) Jen A0d (o*(FyAltD)) sen» OVer pi(Alr]) and o*(Al1]), respectively. Those filtrations make of @,
a filtered isomorphism, and therefore it induces T-quivariant structures over the Rees ring R(A), the ideal (t — u)R(A),
and the subgroups R;(A) and (t — p)R;_; (A).

5.1.2 Congruence subgroups

Let us denote by [, := o/(w) the quotient field of 0. We start this subsection by recalling the following notion.

5.1.3. Dilatations In the following digression we will suppose that X = Spec(A) is an affine o-scheme of finite type. Let
us recall the following definition [58, Definition 2.1].

Definition 5.1.4. Let X = X Xgp, o) Spec(L) = Spec(A @, L) be the generic fiber. We say that an o-scheme Y =
Spec(B), such that B C A ®, L is an o-subalgebra of finite type, is a model of X; if Blw™']1 = A®, L. A model Y is
smooth if Y — Spec(v) is smooth.

Let us recall the construction of the dilatation of a closed subscheme Y of the special fiber X F, = X Xspec(o) Spec(F,)
[13, Chapter 3, Section 3.2]. Let J C A be the proper ideal of A defining Y. As A is noetherian, we can suppose that
J is generated by finitely many elements f, = @, f, ..., f,, of A. We define the dilation of Y as the affine A-scheme
X (@) = Spec(A(y), where

A = (A[Ty.... T, /(f} = @Ty,...f, — @T,)) /(w-torsion).

In particular, we see that X, is always flat over o, it is a model of the generic fiber X [57, Proposition 1.1] and we have

a canonical morphism
Xy = X. (5.3)

As before, we denote by G; 1= G Xgpee(o) Spec(L) the generic fiber of G and by G[Fq = G Xgpec(o) Spec(F,) the special
fiber of G. For every k € N, there exists a smooth model G(k) such that Lie(G(k)) = w*g. In fact, we take G(0) := G
and we construct G(1) as the dilatation of the trivial subgroup of G[Fq on G. By the preceding construction, this is a smooth
model of G;. Moreover, if we write o[G] = o[ f/, ..., f,,] with f;(e) = 0 for every 1 <i < n (e being the identity element),
then (f; mod @), .;, is the ideal of the trivial subgroup of G[Fq. By construction

G(1) = Spec <0 [ﬁ, - &]> .
w w

This in particular implies that Lie(G(1)) = wg.

We can now construct G(k) inductively as follows. As before, we put G(0) = G, and G(k + 1) equals the dilatation of the
trivial subgroup of G(k)[pq. For every k € N the o-group scheme G(k) is again smooth, its Lie algebra is w*g and it is a

smooth model of G;. We also point out to the reader that, by (5.3), we have for every k € N a canonical morphism
Gk + 1) -» G(k). (5.4)

5.1.5. Arithmetic distribution algebras of finite level.
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Let us start this digression by recalling the following two facts from [36]. Let N € N. Let G, = Spec(o[t]) be the additive
group o-scheme and let us consider the group Gflv endowed with coordinates ¢, ....,t5. If f1,..., fy denotes a base of
Lie(G sz ), then using the notations introduced in section 1.4 we have the following relation. For every multi-index k € NV
we have [36, Proposition 4.1.11]
k!

=& =rk (5.5)
dr 1= -
On the other side, let us consider the multiplicative group o-scheme G,, = Spec(o[t,#']) and let us take the group Gﬁ CIf
hy, ..., hyy denotes a base of Lie(Gg ), then using the preceding notation, we have the following relation [36, (50)]

h
h<&> = q&! <E> . 5.6)

Now, let us recall that in this work B C G denotes a Borel subgroup of the split connected reductive group o-scheme
G, that T C B denotes a split maximal torus of G and N C B the unipotent radical of B (Section 2.4). Let N be the
opposite unipotent radical.® By [36, Proposition 4.1.11, (ii)] the open immersion N Xspec(o) T Xspec(oy N = G induces an

isomorphism of filtered o-modules
D™(G)= D™(N) ®, D" (T) ®, D™ (N).

By construction (section 2.4), there exist N;, N, € N such that N and N are isomorphic to Givl and by definition T =~ G,],\,rz.
Moreover, if we fix basis elements (f);<;<n,> (h;)1<j<n, and (e));<<n, of the o-Lie algebras n, t and n, respectively,
then by (5.5) and (5.6) we can conclude that D™ (G) equals the o-subalgebra of I/(g; ) generated as an o-module by the
elements

!ig | h VEE,/
qg.gqyl. <£,>q2/r.—. (57)

2//!

This relation and the fact that Lie(G(k)) = w*g = wkn @ w*t @ w*n imply that D" (G(k)) equals the o-subalgebra of
U(g;) generated as an o-module by the elements

fz h evl/
klol = ko'l 2 klp"| =
qﬂ!w = U!qy/!w <U,>qg//!w U"!' (58)

An element of the preceding form has order d = |v| + |v|’ + |v|"”, and the o-span of elements of order less or equal that d
forms an o-submodule D(dm) (G(k)) € D"™(G(k)). In this way D" (G(k)) becomes a filtered o-algebra. This construction
also tells us that

D(G(0)) gk = D™(G(K)). (5.9)

5.1.3 Level m relative enveloping algebras of congruence level &

Now, let k be a non-negative integer called a congruence level [35, Subsection 2.1]. By using the order filtration (Dg%")) deN

of the sheaf D%"), we can define the sheaf of arithmetic differential operators of congruence level k, Di%"’k), as the subsheaf

31n the notation of section 2.4 N is the closed subgroup of G generated by all U, with a € —At.
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of D%") given by the specialization of R(D;") )in w* € o. This means

DU = Y kD
X deN Xd

By (1.3) and [32, Proposition 1.3.4.2] we can also conclude that, if (D(Xi"f) )aen denotes the order filtration induced by
DY then
X

(m, k) ki y(m)
D Zw D)?,i'

In local coordinates we can describe the sheaf D;"’k) in the following way. Let U C X be an open affine subset endowed

with coordinates xi, ..., xy. Let dx, ...,dxy be a basis of Qz(U) and 9, , ..., d, the dual basis of T5(U). By using the

XN
notation in section 1.2, one has the following description [35, Subsection 2.1]

<oo
DIOW) = { Y @"l%a,0%| a, € O X(U)}.
v

Of course, we have analogue definitions on X.

On the other hand, using the short exact sequence

0 (t— wk)R(D;T)) - R(Dg(’f’)) - R(D;"))/(t k)R(D(’")) D("' K S0, (5.10)

and the fact that all the terms in the sequence are quasi-coherent O z-modules, we can use proposition 2.2.2 and the final
commentary of subsection 5.1.1 to get the following result.

Proposition 5.1.6. For every non-negative integer k, the sheaf of arithmetic differential operators of congruence level k,

D ’k), is a T-equivariant quasi-coherent O g-module.
X

Remark 5.1.7. If X is also equipped with a right G-action, then we can use the preceding reasoning to show that the

sheafD(i"’k) is a G-equivariant quasi-coherent O g-module.
X

Furthermore, for every d € Z the short exact sequence
0= (1= @Ry (DY) = Ry(DY) = Ry(DL)/(t = w")R, 1(D“")) D(’" Y50

and again the final commentary in subsection 5.1.1 Imply that every term in the filtration (D(m )) Jen (being D(m ® =0 %)

is a T-equivariant coherent O g-module.

Definition 5.1.8. Let & : X - Xbea locally trivial T-torsor. Following 2.3.5 we define the level m relative enveloping
algebra of congruence level k of the torsor to be the sheaf of T-invariants of &, D(}?’k):

—_—

T
(mk) - — (m.k)
D = (@'D}? )

The preceding sheaf is endowed with a canonical filtration

—_— T
Fy (D0 2= (5*7);”’:)) . (deN.
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Proposition 5.1.9. For any U € S there exists an isomorphism of sheaves of filtered v-algebras

Db, = DI, @, DT (K)).

Proof. Let U € S. We recall for the reader that this means that there is a T-invariant isomorphism &~1(U) Svu Xp T
such that the diagram

&) ————= UX,T

S,

is commutative. We apply the same reasoning that in proposition 2.1.2 to get
D) = DIOE W)
~ (DIw) @, D)
= D"OW) @, ((D%””(T))wk)T

~ DIV U) @, ((Dﬁ{”m)“) k

~ DY) ®, (D™(M)
~ DY) ®, D™ (T (k).

The first equality is by definition. By (2.11) the isomorphisms in proposition 2.1.2 preserves the subsheaves D(}?"’k) and

D%m’k) which gives the first isomorphism. The second equality is again by definition. The second isomorphism is just the

fact wk € o and the T-action is o-linear. The last two isomorphisms are given by the first assertion in remark 1.5.3 and

(5.9), respectively. O

Let us recall that the tangent sheaf 7 is a T-equivariant coherent O ¢-module (remark 2.3.2) and therefore we can consider
the subsheaf wk (S*T)?)T of the sheaf of invariant sections (S*TE)T. If U € S, then applying the same reasoning as in
2.3.3 we have

ot (£,Tz) () = o*T; (') = o* T () ® (Ox(U) ®, wt).

Here t = Lie(T). As X is smooth, the preceding relation implies that w* (é*T;z)T is a locally free O y-module of finite

rank, and therefore we can consider the level m symmetric algebra .Sym (w" (é*TX)T) Moreover, for U € S, we
have

Sym™ (wk (&.T; X)T) U) = Sym™ (@ T, (U)) @, Sym™ (w*t). (5.11)

The proof of the following proposition follows word for word the arguments given in the proof of proposition 2.3.7.

Proposition 5.1.10. If¢ : X — X is a locally trivial T-torsor, then there exists a canonical and graded isomorphism

Sym™ (wk (f*TX)T> = gr. <D<’"~")) .
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5.2 Relative enveloping algebras with congruence level on homogeneous spaces

We recall for the reader that in this work G denotes a split connected reductive group scheme over o, B C G is a Borel
subgroup, T C B is a split maximal Torus of G and N C B is the unipotent radical subgroup of B. We have also denoted
by X=6 /N, the basic affine space, and by X := G/B, the flag o-scheme. Those are smooth and separated schemes
over o (section 2.4). As we have remarked X is endowed with right commutating (G, T)-actions (resp. X is endowed with
right commutating (G, T)-actions, being trivial the right T-action). We also recall that & : X — X denotes the canonical

projection, which is a locally trivial T-torsor (Subsection 2.4).

Let us consider the morphism given by proposition 1.5.2
o™ : pm(G(0)) - HO(X, D(}%")).

We recall for the reader that this comes from functoriality from the right G-action on X. This map induces a morphism

between the associated constant sheaves of filtered o-algebras

D™ (G(0)) —» HO(X, D;'”).

By composing with the canonical map of sheaves H 0(X, D%")) - ’D;”), we get a homomorphism of sheaves of filtered
o-algebras D' (G(0)) — D;") . Specialising in w* € o gives rise, by functoriality, to a filtered morphism of sheaves of

filtered o-algebras

p"@Oy , ~ (DY)

e
By (5.9) we have that D/(G(0)),,« = D" (G(k)) as filtered subrings of /(g ). We thus obtain a morphism

D™ (G(k)) — D;"’k), (5.12)
which induces a homomorphism of filtered o-algebras

o™h : D(G(k) — HOX. DL

Now, if X L= X Xspec(o) SPec(L) , then given that D%"’k) | %, = D %, is the usual sheaf of differential operators on X I
we can apply the same reasoning that in section 2.5 to show that ®(™K) factors through the homomorphism of filtered

o-algebras

~ T T
@™ : DGk - HO (X, D0) = 1O (x,6,D) (5.13)

Let us put Ag'("’k) := Oy ®, D™ (G(k)), and we equip this sheaf with the skew ring multiplication coming from the action
of D™(G(k)) on Oy via ®™K) (we recall that, by lemma 2.2.9, we have an action of D% on (£,05)" = Ox). The

map @K induces a unique O y-linear map
mk) . Amk) _ mk)
R (S
which is also a morphism of sheaves of filtered o-algebras (the filtration on .A();"’k) is given by proposition 1.5.4).

Let 4 : Dist(T) — o be a character of the distribution algebra (2.5.2) and for every level m € N, let us also denote
by 4 : D")(T) — o the induced character of D™ (T). As before, we endow o with the trivial filtration (0 = F_io
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and F;0, = o forall i > 0) and we consider it as a filtered D (T)-module via A. By remark 5.1.1 and the fact that
D(T) .« = D™ (T(k)), (5.9), we have a character A : D (T(k)) — o. 4

As in (42) we have
T, 5 T, > v
HO (XL»(f X, idL)*D)?L> L= HO (XL,D)?L> L= HO (X,D%”M) ®, L.

By proposition 1.5.2 and the same reasoning that we have given at the beginning of this section, the right T-action on X
induces a canonical morphism of filtered o-algebras d)grm’k) : D(T(k) - H 0()? , D(Xi"’k) ) and exactly as in page 42, we

can show that d)%m’k) factors through a morphism
T —
o0 ; p(T) 7 <HO <X, @D%”’“) ) — H° (X, z (D(m»k))).

Here Z (DK denotes the center of D"k, We have the following definition.

Definition 5.2.1. Let 4 : DY (T(k)) — o be a character of the distribution algebra DU(T(k)). We define the sheaf of
(m,k)

level m integral twisted arithmetic differential operators with congruence level k, D X 42

on the flag scheme X by
DY 1= D) @ ey 0-

By 5.1.9 we have the following result.

Proposition 5.2.2. Let U € S. Then Dg:'f’f)IU is isomorphic to Dg"’k) | as a sheaf of filtered o-algebras.

By using the preceding result, we can conclude as in proposition 2.5.7.

Proposition 5.2.3. The sheaf ’DE:””;‘) is a sheaf of O x-rings with noetherian sections over all open affine subsets of X.

Definition 5.2.4. We will denote by

Smk) . _ 1 (m,k) s _j+1y(m,k)
Des = LEDX,A /P Dy
j

the p-adic completion ofD;"f) and we consider it as a sheaf on X. Following the notation given at the beginning of this

work, the sheaf ‘@(xm/lkép will denote our sheaf of level m twisted differential operators with congruence level k on the formal

flag scheme X.

Using proposition 5.2.2, we can conclude, as in proposition 2.5.11, that

Proposition 5.2.5. (i) There exists a basis A of the topology of X, consisting of open affine subsets, such that for every
U € A the ring @;m/’lk)(l[) is twosided notherian.

(ii) The sheaf of rings @;tm,l% is coherent.

Using the morphism dbg;"’k) and the canonical projection from D) onto Dg:"’f) we can define a canonical map

(k) . gmk) _ )
oY) T AY - DY (5.14)

The same reasoning given in proposition 2.5.12 shows the following result.

4We have abused of the notation and we have called all this maps 1. The reasons is that by 2.5.2 all these maps induce the same character of t; .
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Proposition 5.2.6. (i) There exists a canonical isomorphism Sym"™ (w*Ty) ~ gr,(Dgn’f)).
(m,k)

(ii) The canonical morphism @'~

is surjective.
(iii) The sheaf D;"’f) is a coherent A(;(n’k)-module.

Notation: From now on, we will fix again a character 4 : Dist(T) — o of the distribution algebra Dist(T), such that

A+ p € t7 is a dominant and regular character of the Lie algebra t; (cf. 2.5.3). By abuse of notation we will denote by
A : DY(T(k)) — o the character induced by specialising in the parameter t = w*.

(m,k)
XA
X ;. The preceding proposition and the same arguments given in proposition 2.6.4 give us the following result

By construction, we know that D lx, = D,, is the usual sheaf of twisted differential operators on the flag variety

Proposition 5.2.7. Let us suppose that A . Dist(T) — o is a character of the distribution algebra Dist(T), such that
A+ p €t} is a dominant and regular character of 1.

(i) Letusfixr € Z. For every positive integer | € Z., the cohomology group H' (X, D;"’k)

(1) has bounded p-torsion.

(ii) For every coherent Dg:"’f)—module &, the cohomology group H (X, £) has bounded p-torsion for all | > 0.

5.2.1 Passing to formal completions and cohomological properties

Let & be a coherent @;mik) -module. By applying the same result as in proposition 3.1.2 we can find r{(&’) € Z such that,
for all » > r;(&) there is a € Z and an epimorphism of ﬁ@;m/’lk)-modules
A @a
(.@;mi’”(—r)) ~ & 0. (5.15)
Moreover, there exists (&) € Z such that, for all r > r,(&£’) we have
H'(%,8(r) =0 forall >0,

The same inductive argument exhibited in the second part of proposition 2.6.4 and (5.15) give us (cf. corollary 3.1.3)

Corollary 5.2.8. Let & be a coherent @;mik) -module. There exists ¢ = ¢(&) € N such that for all | > 0 the cohomology
group H'(X, &) is annihilated by p°.

Let us fix a coherent .@;’"/’l%—module % . By definition, the sheaf @;m/l% satisfies [5, Conditions 3.4.1] and therefore by [5,
Proposition 3.4.5] we can find a coherent @;m/’lk)—module & such that # = & ®, L. This relation and (5.15) allow us to

find r(.%#) € Z such that, for every r > r(.%) there exist a € N and an epimorphism of 20 _modules

%40
PN Sa
(m,k)
(7% m(—r)) =7 =0 (5.16)
Moreover, corollary 5.2.8 implies that
H'(X,.7)=H'(X%,6 ®, L)= H(X,6)®, L =0 forall I>0. (5.17)

5.2.2 Calculation of global sections

Let y; : Z(g;) — L be the central character induced by 4 € t* via base change and the classical Harish-Chandra
isomorphism (section 3.2). As before, we denote by Ker(y;), := D™(G(k)) N Ker(y 1), and we consider the central
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redaction
D™(G(k)), := D" (G(k))/ D" (G(k))Ker(x;),,

which is clearly an integral model of U(g;); :=U(g;) ® Z(a1)x, L. Let ﬁ(m)(G(k)) , be the p-adic completion.

Let us consider @E{m’k) : DU(G(k)) - HO(X, Dg;"f) ) defined by taking global sections in (5.14). This morphism induces,

by construction, the following commutative diagram

@(mvk)
DG —— HO (X, DY)

| [

Ug)) —2 HO (X, D).

As before, by the classical Beilinson-Bernstein theorem [2] and the preceding commutative diagram, we have that CI);m’k)
—(m,k . . . . .
factors through a morphism d);m ) : DI(G(k)) ,— H Ox, D;"f) ) which becomes an isomorphism after tensoring with

NN . . .
L. Then lemma 3.2.1 implies that 61’” ) gives rise to an isomorphism

~ =~ - ,k
D™ (G(k)), ®, L— HO <X, D@Q’j/) ®, L.
Proposition 3.1.1 together with the fact that X is in particular a noetherian topological space gives us

™Gk, ®, L— H® (2.57%). (5.18)

5.2.3 The arithmetic Beilinson-Bernstein theorem with congruence level

5.2.9. Let E be a finitely generated ﬁ(m)(G(k)),L@ = ﬁ(’")(G(k))A ®, L-module. As in section 4.1 we define .i”ocgl;{k)(E)
as the associated sheaf to the presheaf on X defined by

—(m,k)
UC X Ty, oD ®pmeuy, o E-

(m,k)
k)

_ Smk)
coherent @x, 10 modules.

It is clear that £ oc is a functor from the category of finitely generated ﬁ(’")(G(k)) L.q-modules to the category of

Following the same lines of reasoning in theorem 3.4.2 we have

Theorem 5.2.10. Let us suppose that A : Dist(T) — o is a character of the distribution algebra Dist(T), such that
A+pe€ t’i is a dominant and regular character of t.

(i) The functors £ oc;m;lk)

finitely generated ﬁ(’”)(G(k)) 1.0-modules and coherent .@;m/’l%—modules.

and H(X, ») are quasi-inverse equivalences of categories between the abelian categories of

(ii) The functor £ oc(xm;lk) is an exact functor.

;
5.3 The sheaves ‘@x,k ;

Thorough this section we will suppose that A : Dist(T) — o induces, under the correspondence (2.24), a dominant
and regular character of t;. We recall for the reader that the induced character of D)(T(k)) will also be denoted by
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0. We will study the problem of passing to the inductive limit when m varies. First of all, let us recall that the canonical
morphism D(),;") - Dg;"“) is T-equivariant (5.35) and by construction, the induced map between the Rees rings R(D;")) —

R(D;”H)) is T-equivariant. We have the following diagram

i (4() (77°)

Lk
i (P)

=
—_
/N
=
/N
)
<y
R
N
/

- (r(27)) > o (D)
)/ /

o (D19)
X

~

o (in (o)

Except for the right lateral face, the other faces of the cube form commutative diagrams either by T-equivariance of the

map R(D;T)) — R(D%"H)) or by functoriality on the commutative diagram (which comes from the exact sequence (5.10))

(m) (m,k)
(o) — o8

! l

(m+1) (m+1,k)
R(o2) — 5

but, by construction (cf. proposition 5.1.6), this forces the commutativity on right lateral face, which means that the
canonical map Dg"’k) - D;"’k) is also T-equivariant. We dispose therefore of a morphism DK} — Dm+lL.k)  The
commutativity of the diagram

D™ (T (k)) ,
=2
DmD(T (k)

N (m.k) (m+1,k) . : :
implies that we also have maps D Xa = D XA and in consequence an inductive system

Smk) | Smrlk)
‘@x,/l e@x’ﬂ . (5.19)

Definition 5.3.1. We will denote by DL the limit of the inductive system (5.19), tensored with L

X k,A
Dy, = (h_r)n @gg’”) ®, L. (5.20)
m

Let & be a coherent 2. -module. As in lemma 4.2.5 we can find m > 0, a coherent @;’"&%

Xk -module &), and an isomor-
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. +
phism of .@x,k’ ,-modules

D @ & — &
Xk, A @x,&@ m

Using this isomorphism and (5.16) we can conclude that there exists (&) € Z, such that for all r > r(&) there is a € N

and an epimorphism of 9; . ;-modules

+ ®a
(@x’“(—r)) & 0.
Moreover, by (5.17) we have for every i > 0

i T i (k) —
H (x, é[)) —_}g_}an <x, ‘@x,/l,Q ®@(xm/1k“)I éom) =0.

Let I)T(G(k))/1 ;=li_r)nmeN ﬁ(’")(G:(k))A ®, L. By (5.18) and using the same reasoning that in theorem 4.2.1 we have

Theorem 5.3.2. Let us suppose that A . Dist(T) — o is a character of the distribution algebra Dist(T), such that A+p € tz

is a dominant and regular character of t.

(i) The functors £ oc; o, and H O(X, *) are quasi-inverse equivalence of categories between the abelian categories of

coherent (left) @; X A-modules and finitely presented DY (G(k)) ,-modules.

(ii) The functor foc; i I8 an exact functor.

5.4 Linearization of group actions

Let us start with the following definition from [28, Chapter II, exercise 5.18] (cf. [14, Definition 3.1.1]).

Definition 5.4.1. Let Y be an o-scheme. A (geometric) line bundle over Y is a scheme L together with a morphism
7w . L =Y such thatY admits an open covering (U,);c satisfying the following two conditions:

(i) Forany i € I there exists an isomorphism y; : n_l(Ui)i U, x A}J.

(ii) Foranyi,j € I and for any open affine subset V- = Spec(A[xy, ...x,]) C U; N U, the automorphism 6;; lI/jolI/,-_l :

A%, - A%, ofA%, is given by a linear automorphism 0?j of Alxy,...x,].

In the preceding definition, the scheme L is obtained by glueing the trivial line bundles p; ; : U; X A}J — U, via the linear
transition functions (g; j). Thus, each fibre L, is a line, in the sense that it has a canonical structure of a 1-dimensional
affine space.

Definition 5.4.2. Given a line bundle n : L — Y and a morphism ¢ : Y' — Y, the pull-back ¢*(L) is the fiber product
L xy Y’ equipped with its projection to Y.

Now, let 7 : L = Y be a line bundle over Y, then a section of 7 over an open subset U C Y is a morphisms : U — L

such that wos = idy;. Moreover the presheaf £ defined by
UCY — {s:U—->L| s isasectionover U}

is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf (i.e., a locally free sheaf of rank 1).
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On the other hand, if £ is a locally free sheaf of rank 1 on Y and we let

V(©) :=Spec, (Symo, (©))

be the line bundle over Y associated to £ [25, 1.7.8], then we have a one-to-one correspondence between isomorphism
classes of locally free sheaves of rank 1 on Y and isomorphic classes of (geometric) line bundles over Y [28, Chapter II,
Exercises 5.1 (a) and 5.18 (d)]

{Isomorphism classes of locally free sheaves of rank 1} <« {Isomorphic classes of line bundles}
& — V(EY) (5.21)
L “ L

Let 7 : L — Y be a line bundle over Y, let £ be its sheaf of sections and ¢ : Y’ — Y a morphism of schemes. Let
us calculate the sheaf of sections of the pull-back line bundle ¢*(L) := L Xy Y’ — Y’. First of all, under the previous

correspondence we have L = V(LV). Therefore by [25, Proposition 1.7.11 (iv)] there exists canonical isomorphisms
¢ (L) = ¢*(V(LY)) = V(" (LY) = V(§" (L)),
where the third isomorphism is just the fact that L is free of finite rank. Again, by the preceding correspondence we can

conclude that the sheaf of sections L ) equals ((¢* (L))" = ¢*(L).

We end this digression about line bundles by pointing out to the reader that if # : L — Y is a line bundle over Y and
@1, d, 1 Y' = Y are two morphisms from a scheme Y’ to Y such that ¢} (L) = ¢5(L), then ¢7(L) = ¢5(L,).

Let us suppose now that Y is endowed with a right G-action, this means that we have a morphism a : Y Xgyec0) 6 = Y.
In the next lines we will study (geometric) line bundles which are endowed with a right G-action.

Definition 5.4.3. Let 7 : L — Y be a line bundle. A G-Linearization of L is a right G-action p @ L X,y G — L
satisfying the following two conditions:

(i) The diagram

B
L XS[JEC(O) G H L

\L}TX[dG \L”

Y ><Spec(n) G % Y

(ii) The action on the fibers is linear.
Let g € G(o) and let us suppose that ¥ : a*(L) — pj(L) is a morphism of line bundles over Y Xgp. (o) G. Let us consider

the translation morphism

idyXg a
Pg Y=Y Xspec(o) Spec(p) —— Y Xspec(o) G—Y.

We have the relations (idy X g)*a*(L) = pZ(L) and (idy X g)* pT (L) = L. So every morphism of line bundles ¥ : a*(L) -
pT(L) induces morphisms ‘I’g : pZ(L) — L for all g € G(0). The following reasoning can be found in [21, Page 104] or
[14, Lemma 3.2.4].

Proposition 5.4.4. Let # : L — Y be a line bundle over Y endowed with a G-linearization B @ L Xg,,.;) G = L. Then
there exists an isomorphism

¥ a*(L) - piL)
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of line bundles over L X,y G, such that ¥y, = \Pg°l’§(lph) forall g, h € G(p).
Proof. By definition of linearization we have the following commutative diagram

IIXidG

4 « P

I I

L—- Y.

By universal property there exists a unique morphism of line bundles y : p’lk (L) - a*(L), which is linear on the fibers
since so is f. Let g € G(o). To see that y is an isomorphism we can use the correspondence (5.21). In this case,

if Wg © Lx — Ly, denotes the morphism between the stalks at the point (x,8) € Y Xgpec(o) G, then i, o) is an
isomorphism being /., ,-1) the inverse.

Let g,h € G(o). Applying (idy X g)* to y we get the morphism y, : L — p;‘(L) and given that f is a right action

(Pn © Pg = pgp), it fits into the following commutative diagram

L —— L)

Wgh \Lo;(ll/h)

Pep (L) = pi, (L.

Moreover, since y, : L — pZ(L) is an isomorphism for every g € G(») (the fiber over x € Y coincides with y, ,)) then
we can consider the morphism ¥, := y/g‘l : pz(L) — L which coincides with the fibers of the morphism

Y=y a*(L) - piL).

By construction, these morphism satisfy the cocycle condition of the proposition. This means that for every g, h € G(o),
we have

LPgh = ‘Pg o pZ(Th)

O

Remark 5.4.5. Let ¢ : L — Y be a line bundle endowed with a G-linearization. Let L be the sheaf of section of L.
The morphism of the preceding proposition induces in a canonical way an isomorphism ® : a*(L) = p1(L), and the
cocycle condition for ¥ implies that ® makes commutative the diagram (2.2) (to see the discussion at the beginning of [36,
Subsection 3.2]).

Let us suppose now that X := G/B is again the smooth flag o-scheme. Let us recall that by (2.17) we have a canonical
isomorphism T ~ B/N. This in particular implies that every algebraic character A € Hom(T, G,,) induces a character of
the Borel subgroup 4 : B — G,,. Let us consider the locally free action of B on the trivial fiber bundle G X o over G given
by

b.(g,u) = (gb', Abu); (g €G, beB, u€ o).

We denote by L(4) := B\ (G X o) the quotient space obtained by this action.
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Let # : G — X be the canonical projection. Then the map G X o0 — X, (g,u) — x(x) is constant on B-orbits, hence
it induces a morphism 7, : L(1) = X. Moreover, given that r is locally trivial [38, Part I, 1.10 2)] ; : L(4) = X
defines a line bundle over X [38, Part I, 5.16]. Furthermore, the right G-action on G X o given by

(o) e g~ (g 'gou) (g €G, (gy,u) € G X o)

induces a right action on L(4) for which L(1) turns out to be a G-linearized line bundle on X. By the preceding remark, the
sheaf of sections £(A) of the line bundle L(A) is a G-equivariant invertible sheaf. In fact, we can give a local description
of the sheaf £(A). If U C X is an affine open subset, then [38, Part I, 5.8 (2) and 5.15 (1)]

L) = (0, ®, olz~ (U)])"

Here 0, = o is viewed as a B-module and the B-action is given by the action on o via 4 and the operation on o[z~ U]
derived from the action on z7~1(U) C G.

5.5 Arithmetic differential operators acting on a line bundle
We start this section with the following definition.

Definition 5.5.1. Let 2 € Hom(T, G,,) be an algebraic character. For every congruence level k € N, we define the sheaf
of level m arithmetic differential operators acting on the line bundle L(A), by

DYRW) = L) @0, DY @0, L.

The multiplicative structure of the sheaf Dg:"’k)(/l) is defined as follows. If «¥, B € L(A)V, P,0O € Dg:"’k) anda, f € L(A)
then

*@PQa"+fROR®P =a®P(a'.f)0®p". (5.22)
Moreover, the action of Dg"’k)(ﬂ) on L(A) is given by
(1@P®@1")es = (Pe<it¥,s>)t (s,t € L(A) and t¥ € L(DY).

Remark 5.5.2. Given that the locally free Oy-modules of rank one L(A)Y and L(A) are in particular flat, the sheaf
D(m k)(/l) is filtered by the order of twisted differential operators. This is, the subsheaf D(m k) of Dg;"’k) , of differential
operators of order less that d, induces a subsheaf of twisted differential operators of order less than d defined by

(m,k) (m.,k)
D “ (A = = L(4) ®o, D - 4 ®o, L)Y,
and given than the tensor product preserves inductive limits, we obtain

DY) = lim D(”’ O(4).

Moreover, the exact sequence

o) (mk) (k) (k)
0Dy 1> DPxy =Dy /Pxy =0



78 CHAPTER 5. ARITHMETIC DIFFERENTIAL OPERATORS WITH CONGRUENCE LEVELS

induces the exact sequence

0= DY () = DY ~ L) 8o, DYJ/DY| @0, LA =0

which tells us that
gr (D;"’k)(/l)) ~ L(A) o, &r <D§"’k)> R0, LAY ~gr <D§”’k)> .

The second isomorphism is defined by a ® P ® a¥ — a"(a)P. This is well defined because gr (D;"’k)) is in particular

a commutative ring.

Proposition 5.5.3. There exists a canonical isomorphism of graded sheaves of algebras
gr. (DY) = sym™ @ Ty).

Proof. By (1.3), and the fact that Dg;"’k) and w"TX are locally free sheaves (and therefore free w-torsion) we have the
following short exact sequence

(m,k) (m,k) (m) k
0Dy, = Dyy — Sym, (@"Tyx) =0,

which gives us the isomorphisms
sym®™ (@*Ty) = gr. (DY) = gr. (DY)

O

Proposition 5.5.4. Let A € Hom(T, G,,) be an algebraic character. For every congruence level k € N, the sheaf D();"’k)(/l)

is a G-equivariant quasi-coherent O y-module.
Proof. The proposition is an immediately consequence of remarks 5.1.7, 5.4.5 and proposition 2.2.4. 0

5.5.5. Sheaf of differential operators.

Let us briefly recall the construction of the sheaf of differential operators over the smooth o-scheme X [27, 16.8.4].> If T
is the ideal of the diagonal embedding X — X X, X, we denote by P := @ Xx, X /Z™*! the sheaf of principal parts. We
put

Dy := ] Homp, (P, Ox).

neN

The reader can take a look to [27, 16.8.10] to check that Dy is in fact a sheaf of rings. What will be important for us is
the following local description. As before, let us suppose that U C X is an affine open subset endowed with coordinates
X1, ..., X Let axl - axM be the dual base of the sheaf of derivations, and for every 1 <i < M and ! € N we denote by
a;’} € Dy (U) the differential operator defined by l!a)[fi I = ai x Finally, using multi-index notation, for = (I,...1;;) € NM,

we put ol = Hf\;[ | ())[(ll_ . One has the following description [27, 16.11.2.2]

<oo
Dyx(U) =4 a0 | a, € Ox(U)
]

SThis construction is in fact more general and is made for an arbitrary smooth o-scheme.
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Furthermore, if p, : X X, X — X denotes the second projection, then we have a canonical map d, : Oy — PY which
induces a structure of (left) Dy-module on Q. This is given by

dy P

Finally, by [5, Proposition 1.4.5] we dispose of canonical morphisms 73;'( - 77;’( (my’ from the sheaf of principal parts to

the sheaf of level m divided powers. Taking duals we get O y-linear homomorphisms Dg:"l — Dy and passing to the
inductive limit we get a canonical morphism of filtered rings [, (2.2.1.5)]

DY - Dy. (5.23)
In particular, by construction, we have a canonical homomorphism of filtered rings

D - Dy (5.24)

Let .Z(4) be the formal w-adic completion of the sheaf of section £(4) of the fiber bundle L(A). We regard this sheaf as
an invertible sheaf on Oy. As before, we will consider the following sheaves of w-complete algebras

70 = 1im DY fo DY, gL = (E)n _@;’"”‘)) ®, L and Ty :=1imDy/w/*'Dy,  (5.25)
JjEN meN JEN
Let U C X be an affine open subset of X endowed with local coordinates x, ..., x, and let I/ be the formal completion

of U along the special fiber U[Fq. By using multi-index notation, every section P € @;m’k)(l/[) (resp. P € éx(u )) can be
written in a unique way [5, (2.4.1.2)]

P=) w"lq, 0¥ (resp. P=) a,0) (5.26)

=8
|cM8

where the sequence (a;) € ', Ox) tends to 0 for the w-topology. Furthermore, if | ¢ | is a Banach norm on the affinoid
algebra OX,Q [5, 2.4.2] then by [35, Subsection 2.1] we have

75 U) = {Zwkli’lal@@ | a, € Ox o), and 3C >0, <1 ||a,] < cnlﬁl}.
1%

The sheaves (5.25) define the twists
P00 1= L) ®p, T3 ®p, L)Y and Dy 1= L) ®p, Tx ®0, L)',
and we can define
@;ku) = Z(Ng ®0,, @;k ®0y o LW

Remark 5.5.6. The preceding sheaves can also be defined as the w-completion of the sheaf of arithmetic differential

operators acting on the line bundle L(A). This means that

P (W) = lim <1£ Dg”’“u)/wf“pﬁg"’k)(,u) ®, L.

meN \jeN

We will use this isomorphism in the next subsection.
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Remark 5.5.7. IfU C X is an open affine subset of X, then proposition 5.5.3 tells us that the graded algebra gr, <D(;"’k)(i)(U ))

is isomorphic to Sym(’") (wk’7}((U )) which is known to be noetherian (subsection 1.3). Therefore, the sheaf Dg'("’k)(/l) has
noetherian section over all open affine subset. By using the same reasoning that in lemma 2.5.11 we can conclude that the
sheaf @(xmcl; )(/1) is coherent.

5.5.1 Local description

Let us recall the sheaf of arithmetic differential operators acting on the line bundle £(4)
DY) 1= L) @, DY ®0, L)
We recall for the reader that the action is given by

(1QP®1")es = (Pe<it¥,s>)t (s,t € L(A) and ¥ € LD)Y).

We have the following property.

Lemma 5.5.8. There exists a covering % of X by affine open subsets such that, over every open subset U € A the rings
D;]m’k)(ﬂ) and Dg"’k) are isomorphic.

Proof. Let’s first recall the following relations from [5]. First of all, for v = v/ + 0", with v/, v € N, letv = p™q +r,
v = p"q +r and v = p™q" + r" be the euclidean division of v, v’ and v"’ by p™. We define the modified binomial

coefficients [5, 1.1.2.1]
vl ._ 4!
o q/!q//!‘

For multi-indexes v, v/, v"" € NM such that v = v/ + v” we can define v! = H,M1 v;! and

v 2!
Y T q/!q//!'

Finally, if U C X is an affine open subset endowed with local coordinates xy, ..., x s, for every v € NM and f € Ox(U)

we have the following relation [5, proposition 2.2.4, iv]

<> _ U 5<v/> <> (m,0) _ q~(m)
ITf= ) {U,}g— (9> e Dy = DY
o=

Now, let’s take an affine covering % of X such that for every U € 4, U is endowed with local coordinates and there
exists a local section & € L(A)(U) such that L(1)|y = aOy and L (1)Y |y = a¥ Oy, where a¥ denotes the dual element
associated to a. Let’s show that

Dgn,k)(/l) _ @ wk|£|(9ua ® 0% ®a. (5.27)
v

It is enough to show that for every v € N™ and f, g € O, the section a ® ‘wk|9|fg<5> ® ga" belongs to the right side
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of (5.27). In fact, from the first part of the proof

a®wk|g|fg<y> ® gav
=a @ w0 g ®a¥
U ’ "
=a@wllf 3 {&}fp(g)fy " Qa

v+u'=v

Z wk|l)|f{ }a<v >(g)a®a<l) >®a

v'+v=v

Let’s define 6 : Dg"’k)(ﬂ) - Dg”’k) by 0 (w"lY fa ® <2 @ @) = w12l f9<2> and let’s see that 6 is a homomorphism
of rings (the multiplication on the left is given by (5.22)). By (5.27), the elements in Dg"’k)(l) are linear combinations of
the terms w* fa ® 0°Y> ® a" and therefore, it is enough to show that 6 preserves the multiplicative structure over the

elements of this form. So, let’s take v,u € Nand f, g € Oy. On the one hand

9(wk|2|f(x ®Q<g> Ra e wklﬂlga ®Q<g> ® av)
— e(wk|2|fa ®Q<g>wk|l£|gg<li> ® aV)

=0 Z wklvlf{ }a<l} >(wk|u|g)a ® a<l} >a<u> ® a

v'+u=v
v
Z wk|2|f{ = }6<U >(,w_k|u| )a<v >a<u>
£/+2//=2 2

and on the other hand
0@ fa ® 05 ® a¥) « 0(w " ga @ 9% @ aV)

— wk|£|fg<2> o wk|z_4|ga<g>

Z wk|v|f{ }a<l) >(wk|u| )a<v >a<u>

v'+v=v

Both equations show that 6 is a ring homomorphism.
Finally, a reasoning completely analogous shows that the morphism 6! : D(L;"’k) - Dg"’k)(l) defined by

_l(wk|2|fg<y>) — wklylfa ®Q<y> ® (IV

is also a homomorphism of rings and #of~! = =10 = id. This ends the proof of the lemma. O

By [35, Proposition 2.2.11] the morphisms of sheaves @;’"g ) are left and ri ght flat. Using this fact and the same arguments
given in proposition 4.2.4 we can conclude the following result.

Proposition 5.5.9. The sheaf of rings _@; (4 is coherent.

Remark 5.5.10. The cohomological properties of the sheaves @(m O)(/l) and ;0(/1) have been studied in [33] and [37].
By definition D(};"’k)(i)le = L(4;) ®oy, Dy, ®oy, E(AL)V, where A; = A ®, 1;. Then in order to apply the
arguments of Huyghe-Schmidt in [33] and [37], as we have done in section 5.1.3, we need to find an explicitly description
ofgr,(Dg;”’k)(ﬂ)) and a canonical epimorphism of filtered o algebras .A();"’k) - Dg:,"’k)(/l) asin(5.12).
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Proposition 5.5.11. There exists a canonical homomorphism of filtered v-algebras

dmk) - D(’")(G(k)) - H° <X, D;n’k)(/l)) :

Proof. By proposition 1.5.2, there exists a morphism of sheaves of filtered o-algebras
AP — DO, (5.28)

Let’s first show that after specialising in w* the Rees ring associated to the twisted order filtration of Dg;"’(;) we get Dg;"’k)(/l).
0>

To do that, we consider Dg"’o) filtered by the order of differential operators and we define the following homomorphisms

of O x-modules

0
LW ®o, k(DY) @0, L) T; R (Dgg”’(”u)), (5.29)

by

0<a®21’iti®av>=2(a®}’i®av)ti

with ord(P;) = i for every i in the sum, and

07! <Z(a,- ®F® an):/‘> =Y 4 ®PY®ad
J j

with ord(Pj) = j for every j. It’s clear that 000~! = 0~'0 = id and therefore (5.29) is an isomorphism of O y-modules.
We remark that an easy calculation shows that (5.29) is in fact an isomorphism of rings.

Let’s denote by oy : R (D(;("’O)(ﬂ)> — D;"’k)(ﬂ); t > wk and byo, : R <D§;"’O)> - D(;"’k); t — wk, and let’s consider
the following diagrams

m % m
L) ®o, R(DY”) @0, LY ——— R(D}O)

DY)

It is straightforward to check that both diagrams are commutative and given that  and #~' are isomorphisms we can

conclude that

(PLO@) | =1m(oy) = Imlidpy ® 0 ® id )
= L(1) ®0, Im(6,) @0, LA
= L) ®0, (D‘;”‘”) ®0, L)

=D (A).
On the other hand, taking the natural filtration of .A();"’O) we have

R (A(;("’O)) = Oy ®, R (D™ (G(0)))
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and therefore (A(Xm’o))wk = Ag'("’k). The above two calculations tell us that passing to the Rees rings and specialising in

w* the map (5.28), we get a homomorphism of filtered sheaves of o-algebras
(mk) . p(m.k) (m.k)
() x - A x D b (A).
Taking global sections we obtain the morphism ®"*X)(1) of the proposition. O

We recall that the right G-action on X (cf. remark 2.4.1) induces a canonical application
Ox®,a—> Ty (5.30)

which is surjective by [33, Subsection 1.6]. By using proposition 5.5.3 and the fact that gr(.A(;("’k)) =0x ®, Sym™(g)
imply that CD(;("’k) is also a surjective morphism.

By using the preceding proposition we can apply the arguments in [37, Subsection 3.2.4] (exactly as we have done in
sections 3.2 and 5.2.2) to obtain

Proposition 5.5.12. Let A € Hom(T,G,,) be an algebraic character such that A + p € t’z is a dominant and regular

character of t;. Then
0 Z(m.k) — pm 0 i — pf
H (X, ‘@x,@ (ﬂ)) = D" (G(k)), ®, L and H (%, Qx(l)> = D'(G(k)),

Remark 5.5.13. The preceding proposition implies that the operators introduced in this section and the ones introduced
in the preceding section have the same global sections if A € Hom(T,G,,) is an algebraic character such that A+ p € t*

is a dominant and regular character of the Lie algebra t*L.

By replying the same lines of reasoning given in section 5.3 we can define the localization functors ﬁoc; (4 and

Eoc;ml’ck)(ﬂ) in the setting of this section and we have the following central result.

Theorem 5.5.14. Let A € Hom(T, G,,) be an algebraic character which induces, via derivation, a dominant and regular
character of the L-Lie algebra t;.

(i) The functors .i”oc(xm’k)(/l) and HO(X,s) (res. goc; k(l) and HO(%,+)) are quasi-inverse equivalence between the
abelian categories of finitely generated ﬁ(m)(G(k)) 2 ®, L and coherent @;mg )(A)—modules (resp. finitely presented
DT(G(k))A-modules and coherent :@; k(/l)).

(ii) The functor .i”oc;"’k)(/l) (resp. foc; k(/l)) is an exact functor.
Remark 5.5.15. Let A € Hom(T, G,,) be an algebraic character such that A+ p € t] is a dominant and regular character
of ty. Let A . Dist(T) — o be the character of the distribution algebra induced by the correspondence (2.24). The

preceding theorem and theorem 5.3.2 imply that the sheaves 9; i and @; () are the same.

5.6 Group actions

We start this section with the following notation (cf. 2.2.5).

We recall that G acts on the right on the flag 0-scheme X = G/B. Letus denote by a @ X Xgpe.(5) & — X this action. Asin
22.5,let X; 1= X Xgpec(n) Spec(o/w'*!). The scheme X; is endowed with a right G;-action @; : X; Xspec(o/with) B = X
Let us denote by y; : X; & X and 6; : X; Xgpeco/mit) Gi = Xig1 Xspec(o/wi+2) Gig1 the closed embeddings. Let ©

denote the formal completion of G along its special fiber G[Fq.
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For every i € N let L(4); := y(L(4)). By remark 5.4.5 the sheaf £(4) is endowed with a G-equivariant structure
® : pi(L(A)— a*(L(A)) such that

P L) ———— o7(L()

b I
0: (@

)
07 p1 i1 (L)) ——> 9;"a;‘+](£(/1)i+1).

is a commutative diagram. This implies that -Z(1) = LmeN yi*(E(/l)) is a ®@-equivariant line bundle over X.

As we have done in proposition 5.4.4 (cf. [36, 3.3.2]), for every g € ®(o) = G(o) there exists an isomorphism

idyxg a
Py i X—— X Xgpee(o) X— X.

This morphism and the ®-equivariant structure of .#(4) induces an O-linear isomorphism D, : L) - (pg)*(,i” 1)
verifying the cocycle condition

Dy = (p,),(@)) 0 @, and (g, h € G(0)). (5.31)

Now, as X is locally noetherian its ideal of w-torsion is locally annihilated by a power of @ . By (5.26), for every m < m’

the morphisms @x Q < @x Q induced by functoriality on the canonical morphisms D~ — D, ", are injective as

well as the morphism @;’"g ) o @x induced by (5.24) and we get the injections ([5, 2.4.1.5])

£(0,k) 5(1,k) £0m,k) t 5

‘@x,@ < @x,@ S LS ‘@x,@ oS ‘@x,k < Y% 0 (5.32)
On the other hand by passing to the projective limit, the sheaf @x acts on Og g (resp. Ox C Og ) and therefore
Dxo(A) 1= L (Mg ®(9x,@ %0 ®(9x,@ A (/1)6 acts on the line bundle .Z(4)q (resp. the line bundle £ (1) € £ (1)q) by

(s®@P®s")et:=Pe(s,1)s (PETDgq. s.1€L(N)q and sV € LAY). (5.33)

By lemma 5.5.8 and (5.32) we can conclude that .@; k(ﬂ) C @x,@(/l) and therefore the line bundle £ (1)q is also a (left)
@; k(/l)-module (resp. Z(4) € £ (A)g). In particular, we have an induced G(po)-action on the sheaf @; (D

Tyt Dy (D) = (0 Ty (D, Pr>®yoPo(®@) (5.34)
Locally, if Y C X and P € .@; k(/l)(l/{ ) then T, (U)(P) is given by the following commutative diagram
1 T 1
LAHUg) ——=--- > ZMNU.g™)

-1
Jost ouil]

LUy —E—— 2.
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The cocycle condition (5.31) tells that the diagram

LU gy ™) = LYU.g h) o D s LU )
l‘bllu.g—l = (@}, ®, 111 = (0P, UT
LU.g™) LUg (5.35)
\L(D;.lu @, MT
LU s A

is commutative and we get the relation

Thg = (pg), Tho T, (8,7 € Gy). (5.36)
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CHAPTER 5. ARITHMETIC DIFFERENTIAL OPERATORS WITH CONGRUENCE LEVELS



Chapter 6

Twisted differential operators on formal
model of flag varieties

Through out this chapter X = G/B will denote the smooth flag o-scheme and 4 € Hom(T, G,,) will always denote an
algebraic character. As before, we will denote be L£(4) the (algebraic) line bundle on X induced by A. In this chapter
we will generalize the construction given in [34] by introducing sheaves of twisted differential operators on an admissible
blow-up of the smooth formal flag o-scheme X. The reader will figure out that some reasoning are inspired in the results
of Huyghe-Patel-Strauch-Schmidt in [34].

6.1 Differential operators on admissible blow-ups

We start with the following definition.

Definition 6.1.1. Let Z C Oy be a coherent ideal sheaf. We say that a blow-up pr : Y — X along the closed subset
V(Z) is admissible if T is an open ideal sheaf of O . This is, if there exists k € N such that w*Oy C T.

Let us fix Z C Oy an open ideal and pr : Y — X an admissible blow-up along V' (Z). We point out to the reader that Z is
not uniquely determined by the space Y. In the sequel we will denote by

ky :=mIin min{k € N | w* € T},

where the first minimum runs over all open ideal sheaves 7 such that the blow-up along V' (Z) is isomorphic to Y.

Now, as Z is an open ideal sheaf, the blow-up induces a canonical isomorphism Y; =~ X; between the generic fibers.

Moreover, as w is invertible on X;, we have Dg;"’k)| x, = Dxlx, = Dy, the usual sheaf of (algebraic) differential

operators on X ; . Therefore pr~! (D;"’k)> ly, = Dy, . Inparticular, OYL has a natural structure of (left) pr—! (D;"’k)) ly, -
module. The idea is to find those congruence levels k € N such that the preceding structure extends to a module structure
on Oy over pr! (Dg;"’k)) Let us denote by

Dyt = (DY) = 0y @0, e DY @

The problem to find those congruence levels was studied in [34] and [35]. In fact, we have the following condition [34,
Corollary 2.1.18].

Proposition 6.1.2. Let k > ky. The sheafD;m’k) is a sheaf of rings on Y. Moreover, it is locally free over Oy.

87
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Explicitly, if 9;, d, are both local sections of pr‘1 (D(};"’k)>, and if f}, f, are local sections of Oy, then

(f1®01)+(f2®0y) = [10,(f2) ® 0, + [/, ® 0,0,.

We have all the ingredients that allow us to construct the desired sheaves over Y, this is, to extend the sheaves of rings
defined in the preceding chapter to an admissible blow-up of X. Let k > ky fix. Let us first recall that taking arbitrary
sections P, 0 € Dg:"’k), s,t € L(A)and sV,1¥ € L(A)V (the last two not necessarily the duals of s and ¢) over an arbitrary
open subset U C X, the multiplicative structure of the sheaf Dg"’k)(l) is defined by (cf. (5.22))

SOP®s"+1Q0®1"=s®@P(s',1)0Q1".
Now, if pr: Y — X denotes the projection, we put
DI () 1= pr* (D;"’k)(/l)) .
By the adjointness property of pr* and pr, we have a canonical isomorphism of O y-modules
pr.# omg (pr'&, F) =~ Homp (€, pr,F)
where £ is an O y-module and F is an Oy-module. In particular, we have the following isomorphism

Hom (pr*Dg;"’k) ®0, prL(A)Y, .7:> = Hom <pr* (Dg:"’k) ®o, E(/l)v) , .7:> ,

which tells us that pr* Dg;"’k) ®p, pr*L(4)" and pr (Dg;"’k) ®o, ﬁ(/l)v> are canonically isomorphic. By applying once

again the preceding reasoning we get
'D(m’k)(/l) = pr* L(4 *rD(mJC) =LY
Y =pr L) ®p, pr'Dy" Qp, prL(4)".

In consequence, the preceding isomorphism and proposition 6.1.2 allow us to endow the sheaf of Oy -modules D;m’k)(/l)
with a multiplicative structure for every k > ky. On local sections we have

SOP®s'+1®0Q®1" =s@P(s',1)0®1",

where 5,7 € pr*L(4), sV, 1V € pr*L(4)” and P,Q € Dgfm’k)'
Let %) be the completion of Y along its special fiber Yqu =Y Xspec(o) SPEC(0/@).

6.1.3. In this work we will only consider formal blow-ups %) arising from the formal completion along the special fiber of
an admissible blow-up Y — X (cf. proposition 6.3.1 below). Under this assumption we will identify k, = k).

Definition 6.1.4. Let pr : Y — X be an admissible blow-up of the flag variety X and let k > ky. The sheaves
A0mk . . & ‘ Kk e T SOmk
@;TQ)(A) = (m DO e DY >(,1)> ®, L and %’ku) 1= lim %"f@)(/l).
ieN meN
are called sheaves of twisted arithmetic differential operators on 9).

Proposition 6.1.5. (i) The sheaves Dg,m’k)(/l) are filtered by the order of twisted differential operators and there is a

canonical isomorphism of graded sheaves of algebras

g (DY) = Sym™ (wprTy)
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where k > ky.

(ii) There is a basis for the topology of Y, consisting of affine open subsets, such that for any open subset U € Y in this
basis, the ring Dg,m’k)(ﬁ) (U) is noetherian. In particular, the sheaf of rings Dg,m’k)(l) is coherent.

(iii) The sheaf @;méf )(/1) is coherent.

Proof. We have an exact sequence of O y-modules

0= D, = Dt Syl (T =0

Taking the tensor product with £(A) and £(A)" on the left and on the right, respectively, and applying pr* we obtain the

exact sequence (since Sym;m)(wk Tx) is a locally free O y-module of finite rank)
0— Dg/"zk_)l(/l) - D(Y"”(’jk)(i) - pr'L(d) ®p, Symfim) (w*pr*Ty) ®o, PriL(d)Y =0,
which implies (i) because

pr*L(A) ®p, Sym™ (w*pr*Ty) ®p, prL(A)" =~ Sym™ (w*pr*Ty)

by commutativity of the symmetric algebra.

Let U C X be an affine open subset endowed with local coordinates x, ..., x, and such that L(1)|; = sOy for some
s € L(A)(U). Then, by lemma 5.5.8 we have the following local description for Dg,m’k)(l) onV =pr-(U)

<o
DY) = {Z @Ma,0(0) v= (v)....v5) €NM and a, € (’)Y(V)} .

By (i), the graded algebra gr, (Dg,m’k)(i)(V)> is isomorphic to Sym('") (wkpr*TX(V)) which is known to be noetherian
[32, Proposition 1.3.6]. Therefore, taking as a basis the set of affine open subsets of Y that are contained in some pr~!(U)
we get (ii). We also remark that, as Dg,m’k)(i) is Oy -quasi-coherent, and by (ii) in the actual proposition, it has noetherian
sections over the affine open subsets of Y (cf. [35, Proposition 2.2.2 (iii)]), it is certainly a sheaf of coherent rings [5,
proposition 3.1.3]. Finally, by definition, we see that @g"’k)(/l) satisfies the conditions (a) and (b) of 3.3.3 in [5] and hence
[5, Proposition 3.3.4] gives us (iii). O

Let us briefly study the problem of passing to the inductive limit when m varies.

Let U C X such that D;"’k)(/l)w ~ Dg;”’k)h] and let us take V' C Y an affine open subset such that V' C pr‘l(U ). We
have the commutative diagram

<
~

U

iy
pr pr
iy

—

S
S

s

which implies that D;m’k) D]y = D;m’k)lV, as sheaves of rings. In particular, if 8 denotes the formal p-adic completion
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along the special fiber V[Fq we have the commutative diagram (cf. proposition 2.5.11)

Ty D) — Tyt (a)®)

@ \bz (6.2)

T —— e,

Given that the morphism of sheaves ‘@é)mcf ) S .@g’g 1) is left and right flat [35, Proposition 2.2.11], the preceding diagram

m,k)

allows us to conclude that the morphism .@(2 Q A1) - @g’g ]’k)(/l) is also left and right flat. By proposition 4.2.3 we have

the following result.

Proposition 6.1.6. The sheaf of rings @; (A is coherent.
As we will explain later, there exists a canonical morphism of sheaves of filtered o-algebras!
k) . k
A = 0y ®, D™ (G(K) - DI (4)

which allows to conclude the following proposition exactly as we have done in the proof of proposition 3.4.1 (cf. [34,
Proposition 4.3.1]).

Proposition 6.1.7. Let A € Hom(T,G,,) be an algebraic character such that A + p € tz is a dominant and regular

character of t.

m,k)

(i) Let & be a coherent @é)m@lf )(ﬂ)-module. Then & is generated by its global sections as @é’ o
X ) .
(A)-modules.

& has a resolution by finite free @é) Q

(A)-module. Furthermore,

(ii) Let & be a coherent @; k(/l)-module. Then & is generated by its global sections as @; k(l)-module. Furthermore,
& has a resolution by finite free 9;) (A-modules.

6.2 An Invariance theorem for admissible blow-ups

Let pr : 9 — X be an admissible blow-up along a closed subset V(.#) defined by an open ideal sheaf .# C Oy. Using
(6.1.3), we can suppose that ) is obtained as the formal completion of an admissible blow-up Y — X (we will abuse of
the notation and we will denote again by pr : Y — X the canonical morphism of this (algebraic) blow-up) along a closed
subset V(Z) defined by an open ideal sheaf Z C Oy, such that .7 is the restriction of the formal p-adic completion of Z.
i+1

Let us denote by Y; 1=Y Xgyec(o) Spec(o/ w'™*1) the redaction module @' and by y; : Y; = Y the canonical closed

embedding. In [35] the authors have studied the cohomological properties of the sheaves

Hmk) . 1. #y(m,k) T i Mk
92)’@ = lfl_r_n_yi DY ®, L and 92)’1( .—EI_I)I 92),@ .

ieN meN

Let us consider the commutative diagram

I'We construct this morphism in (6.38). The arguments given there are independent and we won’t introduce a circular argument.
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Here pr; : Y; — X; denotes the redaction of the morphism pr module w'*!. We put £(1)V := lﬂ yipr*L(4)" and
L) = 1(1__11_1‘ y;pr*L(A). By using the preceding commutative diagram we have

7 DY) = (pr*ﬁ(/l) ®0, DI ®0, pr*ﬁ(/l)v>
=77 (Pr"LW) ®o, 17Dy @0, 17 (PrLA)).

Taking the projective limit we get the following description of the sheaves @(m k)(ﬂ)
5 (m,k) Zy(m.k) \
Dy = L), ®oya Ty’ B0y, LA,
and by taking the inductive limit we get the characterization
] _ ¥ \%
‘@@,ku) - &@ ®O$,@ ‘@@,k ®Og),@ &Q' (6.3)
As in the preceding chapter, the sheaf & (/I)Q is endowed with the following (left) .@; k(/l)—action

(1QP®1")es = (Pe<tV,s>)t (s, €Z(A) and 1¥ € L(A)Y).

We end this first discussion by remarking that the relation pri o y* =y’ o pr*, which comes from the preceding
commutative diagram, implies that
Ty B =P T (D). (6.4)

Let us suppose that # : Y’ — Y is a morphism of admissible blow-ups (abusing of the notation, we will also denote by
7 %Y — 9 the respective morphism of formal admissible blow-ups in the sense of [12, Part II, chapter 8, section 8.2,
definition 3]). This means that we have a commutative diagram

Y 5y Y ——9
7 or resp. o’ pr
Ny T

Let k > {ky/, ky}. Let us denote by D(m k)(/l) ;"’k)(/l) / p"“D;m’k)(/l) (we will use the same notations over Yi’ and

Y,) and by z; : Y/ — Y, the redaction module witl

. The preceding commutative diagram implies that
1

Dy () = (o)) DY () = 27 DY), (6.5)

In this way, she sheaf D(m k)(/l) can be endowed with a structure of right zri‘] Dg,'_”’k)(ﬂ)—module. Passing to the projective
limit, the sheaf @gf k)(/l) is a sheaf of right ﬂ_lé(ym’k)(/l)-modules. So, passing to the inductive limit over m we can

conclude that @;, (D is a right 77! @; k(/l)-module. For a @; k(ﬂ)-module &, we define
_ gt ) -1
- ggl’k(/l) ®ﬂ_—l Qi),k(ll) T éa,

with analogous definitions for @(m k)(/l) We will need the following lemma whose proof can be found in [35, Lemma
2.3.5].

Lemma 6.2.1. There exists N € N such that
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(i) Foralli > 0, the kernel and the cokernel of the canonical map OY, - n'i*(’)yl_/ is killed by @™ .

(ii) Foralli >0, forall j > 1, w" Rjni*(’)yif =0.
We have the following theorem whose proof follows word for word the reasoning given in [35, Theorem 2.3.4].
Theorem 6.2.2. Let & : Y' — Y be a morphism over X of admissible blow-ups. Let k > max{ky:, ky }.

(i) If & is a coherent @T,’k(/l), then Riz,& = 0 for every j > 0. Moreover, K*@T,’k(ﬂ) = .@;,k(i), so 7, induces an

exact functor between coherent modules over @T, k(/l) and 9;) (), respectively.

(ii) The formation ©' is an exact functor from the category of coherent @; k(/l)—modules to the category of coherent

)
Dy -

(iii) The functors m, and n* are quasi-inverse equivalences between the categories of coherent QT, k(ﬂ)-modules and

coherent .@; k(i)-modules.

We remark for the reader that this theorem has an equivalent version for the sheaves @g’b’f )(/1) and @gﬁl’g(ﬂ).

Proof. The question being local on ) we can suppose that 9) is affine. Let us first assume that & = .@T, (4). Since Rz,

commutes with inductive limits, we can even restrain our attention on the sheaves @;’g ) (4). By [56, Lemma 20.32.4]

Rl(i_'m_ D;","k)(,l) = m D;"/"k)(/l), and we have

S(m,k . Lk . k
Rn*%"} )(1) ~ R, R 1(93N1_ D‘Y'I_'} )(4) = Rl(l_n’\‘i Rz, *D;'i'} o
ie ie

the last isomorphism is [56, Lemma 20.32.2]. By the projection formula, there is a canonical isomorphism
k k
Rn,.*D(Y’:f () = Rz, Oy ®0, D(Y',-n (A
and the canonical map OYi — Rx;,, Oy induces a canonical map of complexes
. pmk) (m,k)
h: DY[ 1) - <R7ri*DY’/ (/1)) .
By applying Rl(i_lmEN to h, we get also a canonical map @é)m’k)(/l) - Rzr*@g/"k)(/l). Moreover, for every j > 0 and for
every i € N, we have
j k j k
an*D(Y’? )(A) =~ Ri7; Oy ®o, D%" (A),

which implies by the preceding lemma that the kernel and cokernel of 4 are annihilated by w?”, as well as the projective
systems (R/ x; *D;",Z’k)(ﬂ)) if j > 1. Let C := (C,) be the cone of A, then we have the exact sequence of projective systems

of sheaves

0~ (K7€) — (DY) = (2, DY () — HC)) = 0,

Yl
i

and for all j > 1

(Rm; DY () = (H/(C).
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In particular the cohomology of C is annihilated by @ so by [35, Lemma 2.3.3] we obtain a quasi-isomorphism

9“" “(2) = Rx 9;1)"7 o).

By passing to the cohomology sheaves we get the second part of (i) for the sheaf 9;',' g) (A) and hence for the sheaf 7 3 (A
To handle with the second part let us consider the following assertion for every j > 1. Let a;: for any coherent 7 'k (A)-
module & and for all I > j, R'z,& = 0. The assertion is true for j = dim(%)) + 1. Let us suppose that a j+1 18 true and
let us take a coherent @;)/, , (A)-module &. By proposition 6.1.7 there exists b € N and a short exact sequence of coherent

;
92),, (A)-modules

0—>ff—>< g),k(/l)) &0
Since Rz, 9;), k(/l) = 0, the long exact sequence for z, gives us
jﬂ'*g ~ Rj+17[*§,

which is 0 by induction hypothesis. This ends the proof of (i).

Let us show (ii) for the sheaves @;’ . (4). The case for the sheaves @(m k)(ﬂ) being equal. Given that 7' ; (A= @;,’ AN

and since the tensor product is right exact, we can conclude that 7' preserves coherence.

Now, we have a morphism 7~'& — 7'& sending m — 1 ® m. This maps induces the morphism & — z,z'&. To

show that this is an isomorphism is a local question on 9. If B C %) is the formal completion of an affine open subset

V Cpr-!(U),and U C X is an affine open subset such that D();"’k)(/l)w ~ D(;("’k)lu (lemma 5.5.8), then by (6.2) and [35,

Corollary 2.2.15] we can conclude that the previous map is in fact an isomorphism over . Finally, if .% is a coherent
(/1) module, then we have the map z'7z,.# — .Z, sending P ® m — Pm. To see that this is an isomorphism we can

use the preceding reasoning. O
Let us recall that if A € Hom(T, G,,) is an algebraic character such that A + p € t’i is a dominant and regular character of
t;, then by proposition 5.5.12 we have

H (2.7} (1)) = D'(G(k);.

The previous theorem implies

Corollary 6.2.3. Let A € Hom(T,G,,) be an algebraic character such that A+ p € tz is a dominant and regular character

of t;. In the situation of the preceding theorem we have
H(9.9},(0) = H* (%9, = DG, = H* (9. 75, ).

Theorem 6.2.4. Letpr: Y — X be an admissible blow-up. Let us suppose that A € Hom(T, G,,) is an algebraic character
such that A + p € t7 is a dominant and regular character of t.
(i) For any coherent 993 (A)-module & and for all ¢ > 0 one has H1(9), &) =
(ii) The functor H(9), ) is an equivalence between the category of coherent .@; k(l)—moa’ules and the category of
finitely presented D%(G(k))/l-modules.

The same statement holds for coherent modules over .@(m k)(/l)

Proof. The first part of the theorem follows from the fact that H%(9),¢) = H(X,+) o z,. Now we only have to apply the

preceding theorem and theorem 5.5.14.
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Let us denote by Coc; (4) the exact functor defined by the composition

ZLoc! . ! )
Finitely presented DT(G(k)) P modules——'g Coherent .@; k(/l) — modules — Coherent@;) k(l) — modules.

Let us compute this functor. To do that, we may fix a finitely presented D (G(k));-module E. Then
! i _ ot ~1 gt _ T
x (.i”ocx’ l(E)) = 7, D8 151 ()7 T Bpiainy, E = Locy ,(E)
Now, to show that
O (9.7 (Loc, (1)) = HO (9.7, (D ® ey, E) = E.
we can take a resolution
& @b + @
(D¥(G(k)),;)™" - (D' (G(k)),)"" = E -0,

to get the following diagram

(D(G(k)),)® — (D¥(G(k)),)®* S E )

l l l

(D'(6*KN,)®" — (D'(Gh),)® — H (9.2 () ®praay, E) — 0.

where the sequence on the top is clearly exact. By definition .# oc; (A)() is an exact functor and by (i) the global section
functor H%(9), ) is also exact. This shows that the sequence at the bottom is also exact and we end the proof of the
theorem. O

In the sequel we will denote by G, the compact locally L-analytic group G, := G(o).

6.3 Group actions on Blow-ups

We start this section with the following proposition whose proof is given in [34, Proposition 2.2.9].

Proposition 6.3.1. Let 9 — X be an admissible blow-up, obtained by blowing up an open ideal sheaf .% C Ox. Then
there is an open ideal sheaf T C Oy such that .7 is the restriction to X of the w-adic completion of T, and ) is therefore
the completion of the blow-up Y of L along its special fiber.

Letus denote by @ : XXgp5,) @ — X the induced right G-action on the formal flag 0-scheme X. For every g € G(0) = G,
we have an automorphism p, of X given by

idgXg a
pg X=X XSpf(D) Spf(l))—) ). 4 XSpf(D) G— X.
As & acts on the right, we have the following relation

(pe). <Pi) op = pf,g (g, h € Gy). (6.6)

Here pg : Ox = (py), O denotes the comorphism of p,.



6.3. GROUP ACTIONS ON BLOW-UPS 95

Let H C G, be an open subgroup. We say that an open ideal sheaf .# C Oy is H-stable if for all g € H the comorphism

pz maps ¥ C Oy into (p,),-¥ C (p,),Ox. In this case pi,

D~ (pg)*<€|9fd>

deN deN

induces a morphism of sheaves of graded rings

on X. This morphism of sheaves induces an automorphism of the blow-up ¥ = Proj (EB den? d), let us say p, by abuse
of notation, and the action of H on ¥ lifts to a right action of H on %), in the sense that for every g, h € G the relation
(6.6) is verified and we have a commutative diagram

9 59

\Lpr lpr (6.7)

x s x
Definition 6.3.2. Let H C G be an open subgroup and = . %) — X and admissible blow-up defined by an open ideal

subsheaf ¥ C Og. We say that %) is H-equivariant if . is H -stable.

We will need the following result in the next sections. The reader can find its proof in [34, Lemma 5.2.3].

Lemma 6.3.3. Let pr : 9 — X be an admissible blow-up, and let us assume that k > ky = kg (this notation is justified
by proposition 6.3.1). Then 9 is G, = G(k)(0)-equivariant and the induced action of every g € G, on the special fiber
of Y is the identity. Therefore, G, acts trivially on the underlying topological space of ).

Let us recall that in the preceding chapter we have defined a G-action on .Z’(4). This means, for every g € G, we have an
isomorphism dbg AP (pg)*.f(/l) satisfying the cocycle condition dbhg = (pg)*QDh o dDg, for every g, h € G. Let
us consider the isomorphism (pg)*f (A) = Z(A) given by adjonction on ®,. Pulling back this isomorphism, via (p,)*,
and using the preceding commutative diagram we get pr*(p,)*-£ (1) = (p,)*pr* L (1) = (pg)*& (notation given at the
beginning of the preceding section). By adjontion we get the map

R, : L(V)— (p,), L)
which satisfies, by functoriality, the cocycle condition
As in (5.34) we can define (from now on we will work on admissible blow-ups of ) so we will use the same notation)

il ¥
Ty Dy (D = (pg), Zg, (D)

(6.9)
P = RgoPoR].

Locally, if 4 C 9) is an open subset and P € .@;)’ (ADU) then T, 14 (P) is given by the following diagram
LU —====== e > LU

-1
\L gU l/Rgu 5

LAWU) s s LU).
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and exactly as we have done in (5.35) we can conclude that

Thg = (pg), Th o Ty,

forevery g,h € H.

6.4 Complete distribution algebras and locally analytic representations

6.4.1 Locally analytic representations and locally analytic distributions

Let us recall that in this work L denotes a finite extension of Q,,. In particular, L is a nonarchimedian spherically complete
field in the sense that for any decreasing sequence of closed balls B; 2 B, 2 ...in L, the intersection N,¢p B, is nonempty.
We thus assume throughout this section that the so-called coefficient-field, over which the topological vector will be
defined, is equal to our base field L.

Let V' be an L-vector space. Let us start by recalling that a lattice M in V is an o-submodule satisfying: for any vector
v € V there exists a nonzero scalar a € L* such that av € M. This means that the natural map L ® , M — V sending

a ® v+~ av, is a bijection.

Definition 6.4.1. Let V' be a Hausdor{f locally convex topological L-vector space. We say that V is a BH-space if it

admits a complete metric defined by a norm, such that this induces a locally convex topology finer that its given topology.

In the preceding definition, if the metric topology equals the given locally convex topology, we say that V' is a Fréchet
space. Furthermore, if W is another locally convex L-vector space, then a continuous linear map between Hausdorff
topological L-vector spaces f : V' — W is called a BH-map, if there exists an L-Banach space U such that f admits a
factorization of the form V' - U — W.

On the other hand, the continuous map f : V' — W is called compact if there is an open lattice M C V such that m

is compact.

Definition 6.4.2. A locally convex vector space V' is called of compact type if it is the locally convex inductive limit of a

sequence
Jk
Vi— . »Vi— Vg — .

of L-Banach spaces with injective and compact transition maps (the topology on the inductive limit is the finest locally

convex topology such that all the natural maps V), — V are continuous [53, Chapter I, section 5 E.]).

We can define now an important class of topological L-algebras ([22, Definition 1.6] or [50, Section 3]).

Definition 6.4.3. Let A be a topological L-algebra. We say that A is a nuclear Fréchet-Stein algebra if there exists a
sequence (Aj)ren 0f Notherian Banach L-algebras satisfying the following conditions.

(i) We can find an isomorphism

A— lim A,
—
keN

with flat and compact transition maps Ay — Ay.

(ii) The maps A — Aj have dense image.
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If V is locally convex L-vector space, then we say that V' is a nuclear Fréchet space over L if there exists a sequence
(Vi)ken of Banach spaces , such that

V— limV,
lim
keN

and the transition maps are compact (the right side is equipped with the projective limit topology [53, Chapter I, section 5
D]). We have [52, Theorem 1.3]

Proposition 6.4.4. Passing to strong duals yields an anti-equivalence of categories between the category of spaces of
compact type and the category of nuclear Fréchet spaces.

We say that a locally convex L-vector space V' is hereditarily complete if any quotient of V" is complete. In this work we
will use the following weaker version of the preceding definition.

Definition 6.4.5. Let A be a locally convex topological L-algebra. We say that A is a weak Fréchet-Stein L-algebra if
there exists a sequence (Ay)en 0f locally convex L-algebras satisfying the following properties.

(i) Forevery k € N the L-algebra A, is hereditarily complete.
(ii) For each k € N there exists an L-algebra homomorphism A, — A, which is a BH-map.

(iii) An isomorphism of locally convex topological L-algebras

A= lim A,
lim
keN

It is posible to show that any two weak Fréchet-Stein structures on A are equivalent [23, Proposition 1.2.7].

Definition 6.4.6. Let A be a weak Fréchet-Stein algebra, and let A = l(iﬂkeN Ay, be a choice of a weak Fréchet-Stein
structure on A. If M is a locally convex topological A-module, we say that M is coadmissible (with respect to the given

weak Fréchet-Stein structure on A) if there exists a sequence (M), ey satisfying the following conditions.

(i) Forevery k € N, M, is a finitely generated locally convex topological Aj-module.

(ii) An isomorphism of topological A;-modules Ak® Aot Mt =M, « (the tensor product is understood in the sense
of [23, Lemma 1.2.3]).

(iii) An isomorphism of topological A-modules M — l(iEkeN M,.

Let X be an affinoid rigid analytic space over L. We will denote by C*"(X, L) := O(X) the Tate L-algebra of L-valued
rigid analytic functions on X. This is an Banach L-algebra [12, Part I, chapter 3, section 3.1, proposition 5].

Example 6.4.1. Let r € |LX| and a € L? be a fixed point. Let us consider the closed ball of radius r,
B.(a) := {xELd | |x —al Sr}.

This can be identified as the set of L-points of a rigid analytic ball B,, and therefore the algebra of all L-valued rigid
analytic functions on B,(a) is the Tate algebra

]

O@,) := {f(x): Zci(x—a)£ | ¢ €L and |Allirn |c£|rIZI =O}.
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This is a Banach L-algebra if we endow it with the norm

|f] := miax |c£|r|£|.

Here i € N is a multi-index and (x — a)- := (x; — a))"1..(x, — ay)".

6.4.7. In the following digression we follow the reasoning given in [51, Lecture IlI, section 9]. Let M be a paracompact
topological space.

A chart for M is an open subset M; € M together with a map
@ 1 M;—> B, cL’
where B, isa closed ball. We say that two charts (M, ¢;) and (M, ¢;) are compatible if the map
piop;! B, — B,
is given by a collection of convergent power series (locally L-analytic function).
(i) An atlas for M is a covering of compatible charts.
(ii) Compatible charts have the same d. This is called the dimension of the atlas.
(iii) It is always possible to enlarge the collection of compatible charts in order to find a maximal atlas.
(iv) The space M together with a maximal atlas of dimension d is called a locally L-analytic manifold of dimension d.
A function f : M — L is called locally L-analytic iffO(pl._1 S O(B,i)for any chart (M, @;, B,i).
Lemma 6.4.8. [55, 8.6] Any locally L-analytic manifold is strictly paracompact.

Definition 6.4.9. If X is an affinoid rigid analytic space over L, and if W is an L-Banach space then we write C*"(X, W) :=
(X, L)® LW, for the space of W -valued rigid analytic functions on X.

In fact, if X is a closed ball centered at zero and || « || denotes the norm of W then

]

CMX, W) = {Z aLxL | a; € W and |illi_r)nm ||a£||r|£I = O.} )

Let M be a locally L-analytic manifold and V' a locally convex L-vector space. We say that a function f : M — V is
locally analytic if for each point x € M there is a chart (M;, ¢;, B,.) containing x, a Banach space W; equipped with a
continuous L-linear map y; : W; — V and a rigid analytic function f; € C“"(B,’_, W) such that f |y, = w; o f; o ;.
We let C“"(M, V') denote the space of locally analytic L-valued functions on M. We have therefore an isomorphism

coM, vy tim ] cmom,wy.
(M;,p;,W;) i€l

We have the following result [51, Proposition 10.3].

Proposition 6.4.10. if M is compact and V' is of compact type, then C*"*(M, V) is again of compact type.

Let G, be a compact locally L-analytic group (or any compact open subgroup of a locally L-analytic group). By the
preceding proposition the space C*(Gy, L) of locally L-analytic functions on Gy is a compact type convex L-vector
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space, and hence its strong dual is a nuclear Fréchet space by proposition 6.4.4. The space of V-valued locally analytic
distributions is denoted by 2

DGy, V) := (C™(Gy. V),

In particular, if V' = L then any element g € G, gives rise to a Dirac delta function 6, supported at g. This is defined by
5g( f) = f(g). In this way, if L[G] denotes the group ring of G, over L, we obtain an embedding L[G(] = D(G, L)
whose image is dense [52, Lemma 3.1]. This implies that the L-algebra structure on L[G] extends, in a unique way, to a
topological L-algebra structure on D(G,, L).

Definition 6.4.11. A locally convex L-vector space V is called barrelled if every closed lattice in V' is open.

Examples of barrelled spaces are Fréchet spaces and vector spaces of compact type.
We can finally give one of the central definitions in this work.

Definition 6.4.12. Let V' be a locally convex barrelled L-vector space, equipped with an action of Gy by continuous
L-linear automorphisms. We say that V' is a locally analytic representation of G, if for any v € V, the orbit map

GO - 14
g = 8y

lies in C*(G, L).

In order to relate locally analytic representation with modules over the ring of locally analytic distributions we need to
introduce the exponential map. More exactly, the tangent space g := T,(G) to the identity of the locally analytic group
G has a structure of Lie algebra [54, Corollary 13.13]. The Campbell-Baker-Hausdorff formula converges p-adically in a
neighborhood U of zero in g, defining an analytic map [54, Corollary 18.19]

exp : U = G,.
In particular, to each # € g we can associate a linear continuous form

f o nf@ =L fexply (f € DGy L)
which induces a morphism of rings
U(g) —» D(Gy, L). (6.10)

Now, if V' is a locally analytic representation of G, then V has a structure of D(G, L)-module [52, Section 3]. For
example, if g € G, and &, is the Dirac distribution supported at g, we have 6, « v = gv. We have the following result [52,
Proposition 3.2]

Proposition 6.4.13. The map (g, v) — g * v is separately continuous. This structure extends the action of U(g) on V and

any continuous linear Gy-map between locally analytic Gy-representations gives rise to a D(G, L)-morphism.

Let us denote by Rep:"(G) the category of locally analytic G- representations on L-vector spaces of compact type with
continuous linear G,-maps and by ./\/l}zr(Go) the category of continuous D(G,, L)-modules on nuclear Fréchet spaces with
continuous D(G, L)-module maps.

2 As in [51] the subscript indicates the dual endowed with its strong topology.
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Definition 6.4.14. An admissible G- representation over L is a locally analytic Gy-representation on an L-vector space
of compact type V' such that the strong dual Vb’ is a coadmissible D(G,, L)-module (cf. (6.12)) equipped with its canonical
topology.

Let us denote by Repadm(Go) the category of all admissible G -representations with continuous linear Gj-maps and by CGO
the full subcategory of Mod(D(G,), L)) consisting of coadmissible modules. We have the following commutative diagram
of functors ([52, Corollary 3.4] and [51, Theorem 20.1])

Rep™(Gy) —— MET(Gy)

T T 6.11)

Rep™™(Gy) —— Cg, .

The horizontal maps are the anti-equivalences of categories defined by V' Vb’ and the structure of D(G(, L)-module on

V, is given by
(Gem)v) :=5 (g m(g ev)) (6 € DGy, L), meV,)andv € V). (6.12)

Finally, let us explain the concept of locally analytic vectors in an admissible representation. Let us suppose that G is
a locally L-analytic group and H C G is a compact open subgroup which is a chart. As we have seen, this means that
H = H(L) with H a rigid analytic closed ball. Let us take now an L-vector space V' endowed with a continuous G-action.
We put

Vitcan = {vEV |0, : H->V €C™H,V)}.

Let us suppose for the moment that G is a rigid analytic group defined over L, which admits an admissible cover

6= |J 6,

n€Zy

where (G,,)nez>0 is a decreasing sequence of admissible affiinoid open subgroups of G. We write G := G(L) and G, :=
G, (L) for every n € Z. ;. We also assume that G,, is Zariski dense in G,, for each n € Z,, and thus G is Zariski dense in

G. In this case, we define 3

Vo—an = U VGn—a.n'

I’IEZ>0

6.4.2 Complete arithmetic distribution algebras and distribution algebra of an analytic group

Let k € N be a natural number. Through this section & (k) will denote the formal group o-scheme defined by the formal p-
adic completion of the congruence group G(k) along its special fiber G[Fq (k) = G(k) Xgpec(o) SPEC(o /@) (being G(0) = G).
As before, we will also denote by G;(k) := G(k) Xspec(o) Spec(o/w”l) the redaction modulo w'*!. The morphisms
G;,1(k) = G;(k) induce a morphism D(’")(GiH (k)) —» D(”‘)(Gi(k)) [37, Proposition 4.1.11]. As before we will consider

D"(®(k)) :=1im D™(G;(k)) = lim D™ (G(k)/w"*' D™ (G(k)) and D'(®(k)) = lim D™ (®(K)) ®, L.

ieN ieN meN

By [37, Corollary 5.3.2] we have

3This is a consequence of the remark preceding the definition 2.1.18 in [23].
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Lemma 6.4.15. Let e be the index of ramification of L over Q,,. If e < p — 1, then the ring DT (®(k)) is coherent.

By construction, the group o-scheme ®(k) is topological of finite type. Let ©° be the completion of G(k) along its unit
section Spf(o) — ®(k). This is a group scheme over o, but not a formal o-scheme because w(’)@(k)o is not necessarily an
ideal of definition. Let us denote by G(k)° its associated rigid-analytic space in the sense of [4, (0.2.6)]. This is an analytic
group over L with Lie(G(k)°) = g;, which is not affinoid in general. This can be built as follows. Let # be the closed
point of o and let 7, ..., f;y be a sequence of regular generators for the unit section of G(k) such that o[G(k)] = o[?, ..., f 5]
and o[G(k)] = o {tl, vy } ‘We have that o[@°] = o[[t}, ...,y ]] and the space G(k)° is isomorphic to an open disk of
dimension N. In fact, if

A, = o[ty Ty, Ty ) [ = @y, oty — ©Ty)

then A, in an o-algebra topologically of finite type and therefore B, := A, ®, L is a Tate algebra [18, Lemma 7.1.2 (b)].
Moreover, for n’ > n we have a canonical isomorphism

B, (T|,...Ty) [} —&T|,...th —@T}) — B,

7/ - i/w
identifying G(k); := Spm(B,,) with the special domain of G(k):, defined by the equations [t;(x)| < || 1/n (this means a
closed ball of radius r, = |@|'/") [18, Lemma 7.1.2 (c)]. We define G(k)° as the rigide analytic space defined by glueing
the affinoid spaces (G(k)Z)nez>0~ By construction, the space G(k)° is the unit open ball. Furthermore, given that G(k):,
is already a closed ball of radius |w|!/ " we can conclude that the inclusion G(k), & G(k)ZH is relatively compact ([53,
Final example of section 16]) and the algebra of analytic functions on G(k)° is given by [23, definition 2.1.18]

C*™(G(k)°, L) := O(G(k)?) = l(ﬂ B,.

neZy

By [23, Proposition 2.1.6] and [53, Page 107 and proposition 19.9] we have that O(G(k)°) is a nuclear Fréchet algebra
over L (cf. [22, Example 1.7]).

Remark 6.4.16. By construction, ror any k' > k the canonical map G(k") — G(k) induces an open embedding of rigid
analytic spaces G(k')° < G(k)°. In particular, G(k)° is a rigid analytic subgroup of G° for every k € Z,.

Definition 6.4.17. The strong continuous dual
DMG(k)°) 1= O(G(k)%),
is called the analytic distribution algebra of the rigid analytic group G(k)°.
By [53, Proposition 16.5], if (Bn);) (the strong dual of the Banach algebra B,)) is endowed with the Banach topology ([53,
Remark 6.7]) we have a canonical topological isomorphism

!’

lim B, — lim (B,)}-

n€Z n€Zy

b

This means that D*"(G(k)°) is a locally convex space which is in fact a topological L-algebra of compact type (proposition
6.4.4). This reference also gives us a canonical ring morphism § : G(k)° < D*(G(k)°)*, where 0, :=6(g) is a "Dirac
delta function" supported on g. Furthermore, to each n € Lie(G(k)°) we can associate a linear continuous form

fenfe) = %f(exp(mm,:o
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which induces a morphism of rings
ULie(G(k)%)) — D*™(G(k)°). (6.13)
We have the following result from [37, Proposition 5.2.1].
Proposition 6.4.18. The application U(Lie(G(k)°)) - D (G(k)°) induces a topological isomorphism of rings
DI (k) — D"(G(K)°).

Let A € Hom(T, G,,) be an algebraic character and y,; : Z(g;) — L the central character induced by A via the Harish-
Chandra isomorphism. We put

D*™(G(k)°), 1= D*™(G(k)°)/(Ker(x;))D*(G(k)°).
So, if A € Hom(T, G,,) denotes an algebraic character we have an isomorphism
DY (®(k),— D™(GK)°),. (6.14)

By proposition 5.5.12 we have
Corollary 6.4.19. Now, let A € Hom(T,G,,) be an algebraic character such that A + p + t”i is a dominant and regular
character of t;. Then

H° <x’ @;,k(/l)> = Dan(G(k)o)A'

6.4.3 Locally analytic representations and coadmissible modules

Let us recall that G, denotes the compact locally L-analytic group G, = G(o). In subsection 6.4.1 we have introduced
the following notations. Let C**(G,, L) be the space of L-valued locally L-analytic functions on G and D(G,, L) the
continuous strong dual of C* (G, L). Given that G, is compact, this space carries a structure of nuclear Fréchet-Stein
algebra.

The following digression is an adapted version of the proof of [23, Proposition 5.3.1] to our work. First of all, let us recall

that G, acts on the space CCtS(GO, L), of continuous L-valued functions, by the formula

(g+ ) := f(g7'x) (g.x € Gy, f €C™(Gy, L)).

Letus consider the sequence (G(k)°)iez_, of o-affinoid rigid analytic open subgroups of G°* (remark 6.4.16). We recall for
the reader that this notion was introduced in [23, Definition 2.1.17]. It states that if X is a rigid analytic space over L, then
X'is a o-affinoid if there exists an increasing sequence (X,),cz_, of affinoid open subsets of X such that X = U, X,
is an admissible covering.

By definition, for each k € Z, there are continuous injections
C™(Gy, L)y —an < C(Go. L)kt 1) —an (6.15)
and

C%(Gy» Ly —an < C*™(Gy, L) (6.16)

4In fact, strictly o-affinoid, meaning that the transition maps G(k); < G(k);+l are relative compact in the sense of [12, Part I, chapter 6 section 6.3,
definition 6].
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The latter being compatible with the former. Passing to the inductive limit we get an isomorphism

lim C(Go, Ly —an— C*"(Gy, L). (6.17)
kEZ.

As in [23, Proposition 5.3.1], for each k € Z, we put
D(G(K)°, Gy) 1= (C(Go. L)gy—an) -
Given that G, is compact, we can use [23, Proposition 3.4.11] to conclude that the restriction map induces
C(Go. giop—an = CGy. e —an— CM(G(K)°, L) = OG(K)°).

This yields a closed embedding D*"(G(k)°) < D(G(k)°, Gy). The ring structure on D*"(G(k)°) extends naturally to a
ring structure on D(G(k)°, Gy), such that

D(G(k)°,Gy) = @ Dan(G(k)°)5g. (6.18)
8€G, /Gy

Dualizing the isomorphism (6.17) yields an isomorphism of topological L-algebras

D(Gy, L)— lim D(G(K)°, Gy). (6.19)

kEZs

Let us show that this defines a weak Fréchet-Stein structure on D(Gy, L). Each of the algebras D(G(k)°, G;) are of compact
type [23, Proposition 3.4.11] and the transition morphisms D(G(k+1)°, Gy) — D(G(k)°, G) are compact [23, Proposition
2.1.16]. Finally, for each k € Z. the map (6.17) is a continuous injection of reflexive spaces, therefore the dual map
D(G, L) - D(G(k)°, Gy) has dense image. This proves that D(G,), L) is a weak Fréchet-Stein algebra.

Let V € Rep™™(Gy) and M := Vb’. By [23, Lemma 6.1.6] the subspace Vi x)o_yn € V' is a nuclear Fréchet space and
therefore its strong dual M, := (VG(k)o_an); is a space of compact type and a finitely generated topological D(G(k)°, Gy)-
module by [23, Lemma 6.1.13]. By [23, Theorem 6.1.20] and the diagram (6.11) the module M is a coadmissible D(G, L)-
module relative to the weak Fréchet -Stein structure of D(G, L) defined in the previous paragraph.

We have the following result from [34, Lemma 5.1.7].
Lemma 6.4.20. (i) The D(G(k)°, Gy)-module M, is finitely generated.

(ii) There are natural isomorphisms
D(G(k - 1)°,Gp) ® p6rye,Gp) Mk— My—1-

(iii) The natural map D(G(k — 1)°, Gy) ® DGy, L) M — M, is bijective.

Now, let A € Hom(T, G,,,) be an algebraic character such that A + p + t’z is a dominant and regular character of t;. Let us
recall that we have an isomorphism

DU(G(k)°), — DOk, — lim (D™(GK), ) ®, L.

meN

The preceding relation and the fact that the ring structure of D?"(G(k)®) extends naturally to a ring structure on D(G(k)°, Gy)
allow us to consider the ring

D(G(k)°, Gy),; := D(G(k)°, Gy)/Ker(y;) D(G(k)°, Gy).
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From now on, we will denote CGO the full subcategory of Mod(D(G,, L)) consisting of coadmissible modules, with respect
to the preceding weak Fréchet-Stein structure on D(Gy), L).

Definition 6.4.21. We define the category CGO, ; 0f coadmissible D(Gy, L)-modules with central character A € Hom(T, G,,)
by

Cgyp i= Mod (D(Gy, L)/ Ker(;;) D(Gy, L)) N Cg, .

We point out that the preceding definition is completely legal because the center Z(g; ) of the universal enveloping algebra
U(gy) lies in the center of D(G), L) [52, Proposition 3.7]. We also recall that the group G, := G(k)(o) is contained in
D*(G(k)°) as a set of Dirac distributions. For each g € G, we will write 6, for the image of the Dirac distribution
supported at g in

H (9. 25,()) = D60,

(cf. corollaries 6.2.3 and 6.4.19). Inspired in [34, Definition 5.2.7] we have the following definition.

Definition 6.4.22. Let H C G be an open subset and %) an H -equivariant admissible blow-up of X. Let us suppose that
k > kg (notation as in 6.1.3). A strongly H -equivariant 993 k(/l)-module isa @; k(/l)-module M together with a family

(®g)gen of isomorphisms
(pg : % - (pg)*'%
of sheaves of L-vector spaces, satisfying the following conditions:

(i) Forall g,h € H we have (p,), (@p) 00, = @pg-

(ii) For all open subsetU C 9, all P € @; k(/l)(L{), and all m € A (U) we have @ (P «m) = Ty(P) * ¢,(m).
(iii) 3 Forallg € H N Gy themap @, @ M — (/’g)* M = M is equal to multiplication by 6, € H° (2}, @; k(i)).

A morphism between two strongly H-equivariant @;’k(i)-modules (A, ((Pg/[)ge y) and (A, (¢?/)g€ ) is a @;’k(/l)
linear morphism y : .# — .4 such that for all g € H, the following diagram is commutative

v’ o @) oy =(p). ) o p).

Commentary 1. Let # € COh(.@;) k(/l), GO)- In what follows we will use the notation gm := @, 1,(m) € AMU.g™H,
forU C 9 an open subset, g € Gy and m € A (U). This notation is inspired in property (ii) of the previous definition. In
fact, if g, h € Gy, then by (ii) we have h(g m) = (hg) m.

We denote the category of strongly H-equivariant coherent .@; k(/l)—modules by Coh(@; k(ﬂ), Go).

Theorem 6.4.23. Let 2 € Hom(T,G,,) be an algebraic character such that A + p € 1t is a dominant and regular
character of t;. Let pr © 9 — X be a Gy-equivariant admissible blow-up, and let k > kg). The functors foc;,k(/l)
and H°(9), ) induce quasi-inverse equivalences between the category of finitely presented D(G(k)°, G) ,-modules and
Coh(Zy ,(4), Gy)

SThis conditions makes sense because the elements g € G, acts trivially on the underlying topological space of ), cf. Lemma 6.3.3.
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Before starting the proof, we recall for the reader that the functor .Z oc; (D) has been defined in the proof of theorem
6.2.4. An explicitly expression is given in (6.20) below.

Proof. If # € Coh(@;) (A, Go), then in particular ./ is a coherent @; (A)-module. Since by theorem 6.2.4, corollary
6.2.3 and proposition 6.4.19 we have that H(9), .#) is a finitely presented D*(G(k)°) ,-module, then by (6.18) we can
conclude that H%(), .#) is a finitely presented D(G(k)°, Gyp) ;-module.

On the other hand, let us suppose that M is a finitely presented D(G(k)°, G) ,-module. By (6.18) we can consider
M = Locy (ANM) = Dy (3 @pucye), M- (6.20)
For every g € G, we want to define an isomorphism of sheaves of L-vector spaces
Py 2 M~ (pg)* M

satisfying the conditions (i), (if) and (iii) in the preceding definition. As we have remarked, the Dirac distributions induce
an injective morphism from G, to the group of units of D(Gy), L), since by (6.19) M is in particular a G,-module, we have
an isomorphism

% - ((pg)* @;),k(ﬂ)) ®Da“(G(k)°)A M,

which on local sections is defined by ¢, /(P @ m) :=T, 1,(P) ® gm. Here P € @; k(/l)(L{), U C 9 is an open subset,
m € M and Ty, is the isomorphism defined in (6.9).

One has an isomorphism

(pg)* (%)—:—) ((pg)* @;},k(i)> ®Dan(@(k)o)/1 M.

Indeed, (pg)* is exact and so choosing a finite presentation of M as D*"(G(k)°),;-module reduces to the case M =
D*(G(k)°), which is trivially true. This implies that the preceding isomorphism extends to an isomorphism

(Pg . %_)(pg)*%

Letg,h € Gy, Y C 9 an open subset, P,Q € @; k(ﬂ)(Z/I) and m € M. Then

On g (9g.0) PO M) = @y -1 (Ty y(P) ® g m)
=T}, 141 (Ty, 4/ (P)) ® hg m
= Tje. u(P) ® (hg) m
= Qpg, (P @ m),

which verifies the first condition. Now, by definition T, ;,(PQ) = T, 1,(P)T, ,(Q) and therefore @, /(PO ® m) =
T, 1/(P)@g 14(Q ® m), which gives (ii). Finally, given that the delta distributions 6, for g in the normal subgroup G, of
G, are contained in D*"(G(k)°) we have g.P := T,(P) =6, P 6,-1, and therefore

Qo u(P®Om)=g.PQ g.m
=0,P5,-15, ® m
= 5gP ® m.

and condition (iii) follows. O
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Remark 6.4.24. If A € Hom(T,G,,) denotes the trivial character, then @; k(/l) = @; i U the sheaf of arithmetic dif-
ferential operators introduced in [34]. Moreover, by construction, if pr : %) — X denotes an H -equivariant admissible
blow-up, then .@g) k(/l) = .@g) X and for every g € H the isomorphism T, equals the isomorphism Ad(g) defined in [34,
(5.2.6)].

Now, let us take 7 : ¥’ — 9 a morphism of G-equivariant admissible blow-ups of X (whose lifted actions we denote
by pg)’ and p¥), and let us suppose that k > kg) and k' > max{k. ,k}. By (6.5) and theorem 6.2.2 we have an injective

morphism of sheaves

. T _ ot ¥
Vi 2Dy (D =Dy /(D) = Dy (D). (6.21)
Moreover, if g € G, we have the commutative diagram
95 (D=9 (1)< ¥ s g5 (A
77'-* g)l’k/( ) 2)’1(/( ) I4 ¥),k( )

/
\Lﬂ'* ng) \LT;D

2
V) i —(,2\ 4t (0g)s(P) A
w (1) T =(0}) 74,00 === (o¥) 74,0
which implies that ¥ : z, 9;,’ oA = @;)’ (A = @;),k(/l) is Gy-equivariant, i.e. it satisfies
1 ow=(pd) W on (7).

Now, let us suppose given two modules .#y € Coh (@;, o (A G()) and .#y € Coh (@g’ AN G()) together with a

morphism
7/ ﬂ*%gy d %2)

linear relative to ¥ : =, @;, oA = @; (4) and which is Gy-equivariant, i.e. satisfying

ﬂ'*%gf 4 > %g)

. M My
lfr*((pg k8 lfpf@ Py oy = </’§)>*‘V © Ty <(pg ! )

2
/ (,0 )*
7[*(,0? )*%2) = (ﬂ?)*ﬂ*///gy # (P?)*///g)
for all g € G,. By using ¥ we obtain a morphism of 9;) (A)-modules

i .
@2)’]{(/1) ®”*@;)/’k/('l) 75*%2)/ g %2)

Let us denote by % the submodule of @;) (D, ) m, Mgy locally generated by all the elements of the form
s Tyl k!

e
Pé, @ m — P @ (h+m), where h € G, mis alocal section of n*l//lgy and P is a local section of @; k(/l). As in [34,
Page 35] we will denote the quotient 9;;’ () ®”* @; o My / J by

i .
‘@2),k(i) ®n* @T, v (). Gy ﬂ'*%g)/ . (622)
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Let us see that this module lies in Coh(@; (A Gy). To do that let us first show that

(/’g)* @;,k(@ ®(pg)*ﬂ'*@;, e (/’g)* 7 My = (/’g) (/1) ], g), ”*///2% (6.23)

As Myy is a coherent @T, () we can find a finite presentation of My
@
(Zayar D)™ = (g, y NS — My — 0

which induces, by exactness of (p,), and z,, the exact sequence

((pe), %k,u)f}a = ((ns), gg’k,(z)fb — (pg), Tutlyy = O.

By base change over the preceding exact sequence we obtain the following commutative diagram

. ®Da . ®b
((e), 79, D) — ((0), 2, D) —— (0e). 2 L

k Lﬂ !

@b

T ®a T
((e), 79, D) — ((05), 7, D) > (0:). 7. DBy i o (P Tty — 0

(of course, here we have used theorem 6.2.2 to identify n*@-}-, k,(/l) = @; k,(l)). This shows (6.23) and therefore the
diagonal action

(/1) ®*n’*@$ ,( ﬂ ’%?)’ - (Pg) (/1) ®*75*9‘% ﬂ '/%2)/
defined on simple tensor products by
ge(P@m):=gePQgem, (6.24)

for g € G, and P and m are local sections of _@; (4) and 7 ///gy respectively (in order to soft the notation we use the
accord introduced in the commentary 1 after the definition 6.4.22). Now to see that (6.22) is a strongly G(-equivariant
g) k(ﬂ)—module, we only need to check that d)g(% ) € . This is, the diagonal actions fix the submodule .Z". We have

ge(P6,@m—PQ@hem)=ge(P6))Q@gem—gePQ@ge(hem)
=(g+P)g+8,)@gem—geP®(ghg™")e(gem)
= (g P)3ype1 ®gem—gePQ®(ghg™")e(gem)

and G, is a normal subgroup we can conclude that ghg™! € G, and G, fix .#. Moreover, since the target of
the preceding morphism is strongly G(-equivariant, this factors through the quotient and we thus obtain a morphism of
9;) k(ﬂ)-modules

e ¥
By construction ¥ € Coh(.@g)’k(/l), Gy).
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6.5 Admissible blow-ups and formal models

The following discussion is given in [34, 3.1.1 and 5.2.13]. Let us start by considering the generic fiber of the flag variety
X1 1= X Xgpec(o) Spec(L) (the flag variety). For the rest of this work X2 will denote the rigid-analytic space associated
via the GAGA functor to X; [12, Part I, chapter 5, section 5.4, Definition and proposition 3]. Any admissible formal
o-scheme %) (in the sense of [12, Part II, chapter 7, section 7.4, Definitions 1 and 4]) whose associated rigid-analytic space
is isomorphic to X" will be called a formal model of X"2. For any two formal models %), and ), there exists a third
formal model §)’ and admissible formal blow-up morphisms )’ — 9); and 9’ — 9, [12, Part II, chapter 8, section 8.2,
remark 10].

Now, let us denote by Fy the set of admissible formal blow-ups 9 — X. This set is ordered by 9’ > 9 if the blow-up
morphism )’ — ¥ factors as the composition of a morphism %)’ — %) and the blow-up morphism ¥) — X. In this case,
the morphism %)’ — 9) is unique [12, Part I, chapter 8, section 8.2, proposition 9], and it is itself a blow-up morphism [39,
Chapter 8, section 8.1.3, proposition 1.12 (d) and theorem 1.24]. By [12, Part II, chapter 8, section 8.2, remark 10] the set
Fx is directed and it is cofinal in the set of all formal models. Furthermore, any formal model 2) of X"¢ is dominated by
one which is a Gy-equivariant admissible blow-up of X [34, Proposition 5.2.14]. In particular, if X, denotes the projective

limit of all formal models of X'¢, then

X, = 1(@2)
Fx

We will be interested in the following directed subset of Fy.

Definition 6.5.1. We denote by F y the set of pairs (), k), where 9) € Fyx and k € N satisfies k > ky. This set is ordered
by (Y, kK) >, k)ifand only if Y = Y and k' > k.

We will need the following auxiliary result. We will follow word for word the reasoning given in [34, Lemma 5.2.12]
when A € Hom(T, G,,) is equal to the trivial character. Our case is completely analogous.

Lemma 6.5.2. Let Y, Y € Fx be Gy-equivariant admissible blow-ups (definition 6.3.2). Suppose (Y, k') = (9,k)
with canonical morphism n © ) — %) over X and let M be a coherent D(G(k")°, G,y) ,-module with localization .4 =
foc;), k,(ﬂ)(M) S Coh(.@;), k,(/l), GO). Then there exists a canonical isomorphism in Coh(gg) k(/l), GO) given by

WO N 5, .G "o = ZLoch (D) (D(G(k)°, Go) ® ety Gy M) .

Proof. Let X be a system of representatives in G ; for the cosets in Gy ;/G/,;. By (6.18) we have a canonical map
D™(G(k)%),; = D(G(k)°, Gy), (6.26)

which is compatible with variation in k. Now, let us take M a D(G(k')°, G,),-module and let us consider the free
D*(G(k)°) -module

DG 1= @ DGR, e
(m,h)EM XZ

whose formation is functorial in M. In fact, if M is another D(G(k')°, G) andif f : M — M'isa D(G(k")°, G,),-linear
map, then

Dan(G(k)O)il\/IXE N 'Dan(G(k)O)ﬁ\/['XE

€m,h = € f(m),h
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induces a linear map between the corresponding free modules. Me make the convention Da“(G(k)°)30} xZ - {0} is the

trivial submodule of Dan(G(k)")iw XX Moreover, the free module Dan(G(k)")i"’ XZ comes with a linear map
fM . Dan(G(k)°)ﬁwX2 - 'Z)an(G(k)o)}L ®'Da"(G(k/)°)/1 M
OmmAmnemn > (Aupop) @ m— 4, & (65.m).

Here M is considered as a D*(G(k)°) ,-module via the canonical map (6.26). Let us note that, since M is a D(G(k")°, Gy) ;-
module, and because Gy is contained in D(G(k')°, Gy, the expression &;,.m is defined forany h € G;.|. If f : M —

M’ is a linear map of D(G(k')°, G)) ;-modules, then we have a commutative diagram

o f an o
DM(G(k)*) ) — D™G(K)*); ®pm(ary), M

! !

fM’ /

DN(G(k)?)M>E s DIG(K)°); @ paniryey, M
and we have a sequence of linear maps
o f o can o
Dan(G(k) )iV[XZ—M) Dan(G(k) )/1 ®’Da“(G(k’)°)A M_M) D(G(k) s GO)A ®D(G(k’)°,G0)A M g 0

The final map being surjective by (6.26).

Claim 1. If M is a finitely presented D(G(k’), G;y) ,-module, then the above sequence is exact.

Proof. Let us start by remarking that if 4,, , e, , € Da“(G(k)°)i” X% then

CanM(fM(Am’h em’h)) = CanM(im’héh ® m — Am,h ® 5hm)
= Amnbp @ M = Ay ® 6m
=0.

For the last equality we have used the fact that §, € D(G(k"), G,),. Let us show now that ker(can,,;) C im(f,,). Let us

take a finite presentation of the D(G(k'), G) ;-module M

M, := (DG(K'), Gy),;)®' = M, := (DG(K'), Go)ﬂ)ﬂ"’—’i M =0

which, by functoriality, induces the following commutative diagram

0 0 0

T AN AN

D (G(k)*)ME —— DM™G(K)°); ®punaryy, M —— DGK)®. Gy); ® paurye 6y, M — 0

T AN AN

D™(G(k)°)} > —— D™G(K)°); ®pueirye)y, Ma — DGK)°. Gp); ® pcrys 6y, Ma — 0

T AN AN

Myx%

Dan(G(k)o)ﬂ H Dan(G(k)O)/‘L ®Dan(@(k/)o)l Mb H D(G(k)o, GO)/I ®D(G(k’)°,G0)/1 Mb H 0

The 3 x 3-lemma reduces us to the case of a finitely presented module of the form M, := D(G(k")°, GO)GB”, and since

we need to show that ker(cany, ) lies in the submodule generated by the images of the elements e, , for generators
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my,....m, € M, and h € X we can even suppose that a = 1. In this case the claim follows from (6.18). O

Claim 2. If M is a finitely presented D(G(k")°, G,) ,-module and we let .7 := £oc;5, k,(/l)(M ), then the natural morphism

Loc})  (NDGK), Go); @ pury.ay, M) = Py (D) @ gy ity Tl
is bijective.

Proof. By theorem 6.2.2 the functor z,, is an exact functor on coherent QT, k,—modules. Taking a finite presentation of M
reduces to the case M = D(G(k')°, Gy),; which is clear. O

Now, let M be a finitely presented D(G(k")°, G;y) ;-module. Let my, ..., m, be generators for M as a D*(G(k")°),-module.
We have a sequence of D*(G(k)°),-modules

o fa o can o
D P GW0°); e 1> DV (GKR)); @), M— D(GK)°. Gy); ® pswrye 6o, M = 0
s

where f, denotes the restriction of the map f, to the free submodule of D**(G(k)°) i" XX generated by the finitely many

Vectors e, p, with 1 <i <aandh € Z. Since im(f,) = im(f},) the sequence is exact by the first claim. Since it consists
of finitely presented D*"(G(k)®),-modules, we can apply the localisation functor Eoc; (A toit. As

Locy ,(2) <@ D™ (G(k)°), em[_’h> = Dy D @), D DG ey = Dy (W
(i,h) (i,h)

the second claims gives us the exact sequence

.@;),k(l)e;lllzl - ‘@;},k(i) ®7[*@‘D’,k’(}”) ﬂ'*% - goc;’k(l) <D(G:5(k)o7 G())/l ®D(G(k!)o’GO)A M) N 0
emn®P > (P5,@m;—P®5,m)

where .# := Loc, (A)(M). The cokernel of the first map in this sequence equals by definition

2)/,]{/
i ,
92),1((/1) ®”*9‘l},k'(’1)’ Gyt oM
whence an isomorphism
i ~ il °
Tgs P8, g1 1 6 Tl = L0y (0 <D(G(k) . Go) ® iy o) M) .

O

Now, let .# be an open ideal sheaf on X, and let g € G(,. Then ¢ := (pg)‘l((pg)*(ﬂ)) is again an open ideal sheaf on X.
Let 9) be the blow-up of .# and 9).g the blow-up of _#, with canonical morphism pr, : ¥).g — X. We have the following
result from [34, lemma 5.2.16].

Lemma 6.5.3. There exists a morphism p, : %) — 9).g such that the following diagram is commutative

¥

Ly 9.8
R

Ty x

pr

*
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Moreover, we have ky) , = kg) and for any two elements g, h € G, we have a canonical isomorphism ().g).h =~ 9).(gh),
and the morphism ) — 9.g — (9.8).h = 9.(gh) is equal 1o p,y. This gives a right action of the group G, on the family
Fx.

Letpr : 9 — X be an admissible blow-up and let us denote by .Z’(4) the invertible sheaf on ) induced by pulling back the
invertible sheaf on X induced by the character A. This is .Z(4) := pr*.Z(A). Furthermore, for g € G, if Py Y —>9sg
is the morphism given by the previous lemma and pr., : 9).g — X is the blow-up morphism, then we will denote

Zy(A) 1= pr;i”(/l).

The notation being fixed, we prevent the reader that in order to simplify the notation, in the rest of this work we will avoid
to underline these sheaves if the context is clear and there is not risk to any confusion.

Let us recall that in section 5.6 we have built for any g € G, an Ox-linear isomorphism o, : L) — (pg)*.i” (4),
being p, 1= a o (idg X g) the translation morphism (a the right G-action on X). By pulling back this morphism

and using the commutative diagram in the previous lemma (p: ) prZ = prfo p;) we an Og)-linear isomorphism

(pg)* prz.i” (1) » pr*Z(A). By adjointness and following the accord established in the previous paragraph, we get an
Oy ¢-liner morphism

Ry © Zy(3) = (). L.

By construction R, satisfies the cocycle condition (6.8). This means that for every g, h € G, we have

Rg (pg)*Rh
Rpg = Zyg(N—> () Ly D —— (py). L (D). (627)
In particular R, is an isomorphism for every g € G,

Exactly as we have done in (6.9), and given that by construction @;) (4) acts on Z(4) (resp. .@;) . (4) acts on L, (A),
we can build an isomorphism

Tyt Dy ) = (0, (D
P = RgoPoR.

Locally, if f C 9).g is an open subset and P € .@; . k(/l)(l/{ ) then T, 1 (P) is defined by the following diagram

Ty

P)
LUy -LE2S 2(yU.g™h)

-1
U Fail]

Z,U) ———— L)
Exactly as we have done in (5.35) we get the following cocycle condition
The = (pg) Ty o T, (g, h € Gy). (6.28)
From the previous lemma we get [34, Corollary 5.2.18]

Corollary 6.5.4. Let us suppose that (', k') = (9,k) for Y, ' € Fy andlet © : Y — Y be the unique morphism over
X. Let g € Gy. Then (Y .g, k') = (9.8, k) and if we denote by n.g : 9'.g — 9).g the unique morphism over X, we have a
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commutative diagram

9 5 9.

l,z lﬂ.g

pJJ L> .g.

Based on [34, Definition 5.2.19] we have the following definition.

Definition 6.5.5. A coadmissible Gy-equivariant P (4)-module on Fy consists of a family M := (///g)k)

@0 of coherent

@; ((A)-modules My for all (9., k) € F y, with the following properties:

(a) For any g € G with morphism p, : %) — 9).g, there exists an isomorphism

Py My i~ (0g), My
of sheaves of L-vector spaces, satisfying the following properties:

(i) Forall g,h € Gy we have (pg).(@p) © Qg = Qpg.
(ii) For all open subsetUd C 9).g, all P € @;g,k(l)(?/l), and all m € My ,  (U) one has @ (P em) =T, 1,(P)+
(pg,z/{(m)'

(iii) © For all g € Gy, the map g+ Myg = My — (pg)s My = My is equal to multiplication by
5, € H(, %k(A)).

(b) Suppose 9,9 € Fy are both Gy-equivariant, and assume further that (%), k') > (9,k), and that = : Y - 9

is the unique morphism over X. We require the existence of a transition morphism yyy ¢ @ m, My 1 — My,
linear relative to the canonical morphism¥ : =, @;, I e @?B (D). By using the commutative diagram in the

preceding corollary, we required

(Pg)* (Wg)/,g))

(7.8)5(pg) My 11 = (o) T My o (Pg) Ay k
<n.g>*<pgT a)gT Vg O Wy o9 ¢ = (Pg)(Way g) © (7.8),(@y).
VY g.9.
(ﬂ.g)*%g)/_g,k/ &7 > ‘%y.g,k
The morphism induced by yyy g
— gt
l[/g)/’g) . Qg),k(ﬂ) ®”*@;/‘kru)’ Gras ﬂ'*%gy - .%2) (629)

is required to be an isomorphism of @; k(/l)-modules. Additionally, the morphisms yyy g are required to satisfy
the transitivity condition yyy g o 7, (Wyr gy) = Wy 9) for Q" k") = Y, k) = (. k) in F . Moreover, vy =
id 4 .

e @’k

A morphism .# — .4 between such modules consists of morphisms .#Zy , — Ay ; of @93 (A)-modules compatible with

the extra structures. This means, such that the following diagrams are commutative

%Q.g,k H (pg)**%g),k ”*%@’,k’ H '%‘D,k
‘/V@.g,k H (pg)w/‘/g),k 71'*(/1/2)/’](/ H </V2),k~

©As is remarked in [34, Definition 5.2.19 (iii)], if ¢ € G, 1, then 9.¢ = %) and g acts trivially on the underlying topological space |2)].
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We denote the resulting category by C:OA.

Let us build now the bridge to the category Cg, ; of coadmissible D(Gy, L),-modules. Given such a module M we have
its associated admissible locally analytic Gy-representation V' := M ; together with its subspace of G(k)°-analytic vectors
Veiyo—an S V. As we have remarked, this is stable under the Gj-action and its dual M; := (VG(k)o_an)l is a finitely
presented D(G(k)°, G);-module. In this situation we produce a coherent 9;)’ k(ﬂ)-module

foc;’ (DM = Dy (D) @), Mi

for any element (2), k) € F x On the other hand, let .# be an arbitrary coadmissible G,-equivariant arithmetic Z(4)-
module on Fy. The restriction morphisms yyy o) @ 7, Mgy ;o — My ; induce maps H (2)’, ///g)’,k') - H° (2) ///g),k)
on global sections. We let

L) = lim  H°(9..dy,).
Q.)EF,

The projective limit is taken in the sense of abelian groups. We have the following theorem. Except for some technical

details the proof follows word for word the reasoning given in [34, Theorem 5.2.23].

Theorem 6.5.6. Let us suppose that A € Hom(T,G,,) is an algebraic character such that A + p € t} is a dominant and
regular character of t;.

(i) The family

Gy . ’r
Loc (M) := (.,%cg)’k(,l)(Mk))(%e£3£

‘orms a coadmissible Gy-equivariant arithmetic P(A)-module on Fy. This means that £ ocGO(M ) is an object o
0 x A
Cg(’l. The formation offoch(M) is functorial in M.

(ii) The functors .,Sfocfo and T'(s) induce quasi-inverse equivalences between the categories CGO’ 4 (of coadmissible
D(G,, L) ,-modules) and C:OA.

Proof. Letustake M € CGO, ,and A € Cg‘;. As in [34, Proof of theorem 5.2.23] we will organise the proof in four steps.

Step 1. We have .i”ocf“(M K= Cg(’/l and ,,Sfocf"(M ) is functorial in M.

Proof. Let us start by defining
@y 1 ZLocy  (DM) = (pg), Locy (M) (g € Gy)
satisfying (¢), (ii) and (iii) in the preceding definition. We recall for the reader that

T — g
D‘Zacg).g’k(ﬂ)(Mk) - ‘@@.g,k(ﬂ) ®Da“(G(k)°)/1 Mk‘

Let ¢, : My — M), denote the map dual to the map Vgyyo_an = Veryo—an given by w g !

Pp © Py = Ppg. LetU C Y.g be an open subset and P € @;gyk(/l)(U), m € M. We define

w. By definition

0 u(P@®m) i=T, 1,(P) ® {py(m).
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Given that (pg)* is exact we can choose a finite presentation of M, as a D*"(G(k)°),;-module to conclude that we have a

canonical isomorphism
(pe), (-i” oc;,ku)(Mk)) — ((pg)* @;,ku)) ® ey, M-
This means that the above definition extends to a map
(. @;.g,k(ﬂ) Qpan(Giy), Mk — (pg)* (ﬁoc;’k’i(Mk)> .

For the first condition we need to show that the following diagram is commutative

T Pg T
Doy (hg k) @DnGkyey, M ——7 (pg)« (‘gg)h,k(/l)> ®pm(Ge), Mk

Ph,
¢ \L(pg)*(ph

(Pg) (P (9;,,,((/1)) QpanGiie); M-

Let U C 9).(hg) be an open subset, P,Q € @;) (A)U) and m € M. We have

.(hg),k

On,u.g 1 (@gu(P @ m) = @y 1y o1 (T, 1y(P) ® §g(m))
=T 1151 Ty 14(P)) @ @ (Py(m))
= The 1/(P) @ Ppg(m)
= Qpg, (P @ m).

Which implies that the diagram is commutative, and therefore the condition (i) is satisfied. Second condition follows from

0(Q+ P@m) =T, 1y(OP) ® py(m) = Ty 1, (Q)T, 1y(P) ® po(m) = T, 1/(Q)w, 1y (P ® m).

Finally, condition (iii) follows from the fact that if g € G, then ¢g(m) = Bgm. Let us verify condition (b). We suppose
that 9)’, 9 are G-equivariant and that (%), k) > (9, k) with canonical morphism 7 : 9’ — 9 over X. As =, is exact we
have an isomorphism

7, (Loch, M) = 7, (Y D) @paa), My

(This is an argument already given in the text for the functor (p,),). On the other hand, we have remarked that G(k"° C
G(k)° and we have a map yrgy 9) : My — M, obtained as the dual map of the natural inclusion Vi xyo_an <= Vk/yo—an-
Let U4 C 9) be an open subset and P € n*@T, k,(l)(l/l), m € M,;,. We define

wyy 9 (P @ m) 1= Wy 9)(P) @ Wy 9(m),

where W is the canonical injection x,, @T, oA = @; (D). By using the preceding isomorphism we can conclude that
this morphisms extends naturally to a map

Yy 7 <$oc;,’k,(ﬂ)(Mk,)> ~ Zocj (D(My).
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The cocycle condition translates into the diagram

(). v

(1) 7. (Zocy DM)) = ). (0F) (Lo DM)) ——— (pF) (Locy, (M)

(n-g)*(pgT %T (6.30)

. vy, .
(7.8). (foc;,,vg,k,(ﬂ(Mk/)) 22 > Lol (DM

By construction, the diagrams

(ﬂ?)*wg)’.g)

). (o) 7y =(07) w0 0 (2) F b gy 2R

<n‘g>*rgT TgT 17 o 17 (6.31)

¥, .
+ W e t My —2 M
(T Ty D) > 7 D) k/ .

are commutative and therefore (6.30) is also a commutative diagram. The transitivity properties are clear. Let us see that
the induced morphism gy 9) is in fact an isomorphism. As in [34, Page 42] the morphism y gy g corresponds under the
isomorphism of lemma 6.5.2 to the linear extension

D(G(k)°, Gy) @ p6iry.,) Miw = My

+
9,k,4°
We conclude that .Z och(M ) € Cgf’i. Given a morphism M — N in CGO, ;» We get, by definition, morphisms M; — N,

T

for any k € Z,; compatible with @, and fyy 9. By functoriality of .& ocy, (A, they give rise to linear maps

of gy g via functoriality of £ oc By lemma 6.4.20 this linear extension is an isomorphism and hence, so is gy g).

Locy (D(M) = Locy (AN}
which are compatible with the maps ¢, and yyy g).
Step 2. I'(.#) is an object in CGO,A-

Proof. For k € N we choose (), k) € Fx and we put N, := H(Y), M9 1)) By (6.25), lemma 6.5.2 and the fact that

VA= C;;O/{ we get linear isomorphisms
D(G(k)o, Go) ®D(G(k/)°,Go) Nk/ g Nk

for k¥ > k. This implies that the modules N, form a (D(G(k)°, GO)) ren-Sequence and the projective limit is a coadmissible
module.

Step 3. T o Loc (M) = M.
Proof. ItV =M ;, then we have by definition compatible isomorphisms

!

HO (g) zoch(M)@,k)) = H° (g) foc;)’k(ﬂ)(Mk)) = (Vo) -

which imply that the coadmissible modules I" o ¥ ocf0 (M) and M have isomorphic (D(G(k)°, Go)) -sequences.

keN

Step 4. Zocfo oI M)~ .M.
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Proof. Let N :=I'(#)and V := N é the corresponding admissible representation. Let 4" := focf"(N ). According
to the lemma 6.4.20

N, 1= D(G(k)°, Gy) ®pGy.) N > N

produces a (D(G(k)°, GO)) ren-sequence for the coadmissible module N which is isomorphic to its constituting sequence

(H 0, %@,k)) @ 0Fy from step 2. Now let (2), k) € Fx. We have the following isomorphisms
Ny = foc;’k(/l)(Nk) ~ .,Sfoc;’k(/l) (HO, Ay ,)) = My .

By T,-linearity the action maps ¢, 2% and ®q 2% constructed in step 1, are the same. Similarly if (%), k") > (9, k) are

G -equivariant then the transition maps w9 and w9 coincide, by Wyy g-linearity. Hence 4" ~ .# in Cg”}l. O

6.5.1 Coadmissible G-equivariant Z(1)-modules on the Zariski-Riemann space

Let us recall that X, denotes the projective limit of all formal models of X"* (the rigid-analytic space associated by the
GAGA functor to the flag variety X ;). The set Fy of admissible formal blow-ups 9 — X is ordered by setting 9’ > 9
if the blow-up morphism 9)’ — X factors as 9’ R %) — X, with 7 a blow-up morphism. The set F is directed in the
sense that any two elements have a common upper bound, and it is cofinal in the set of all formal models. In particular,
X, = l(iﬂ}_3E 9). The space X, is also known as the Zariski-Riemann space [12, Part II, chapter 9, section 9.3]7. In
this subsection we indicate how to realize coadmissible G-equivariant Z(4)-modules on F as sheaves on the Zariski-
Riemann space X . We start with the following proposition whose proof can be found in [34, Proposition 5.2.14].

Proposition 6.5.7. Any formal model %) of X"¢ s dominated by one which is a G-equivariant admissible blow-up of X.

Remark 6.5.8. As Fy is cofinal in the set of all formal models, the preceding proposition tells us that the set of all G-
equivariant admissible blow-ups of X is also cofinal in the set of all formal models of X. From now on, we will assume

that if ) € Fy, then 9 also Gy-equivariant, and we will denoted by p? 1 Y — 9 the morphism induced by every g € G,,.

For every 9 € Fy we denote by spg) @ X, — %) the canonical projection map. Let 9’ > 9 with blow-up morphism

7’ 9 — 9 and g € G. Let us consider the following commutative diagram coming from the G,-equivariance of the

family Fy
£,y Ly
@/
This diagram allows to define a continuous function
Pyt X, - X

(6.32)
(aylger, = (7 (ay)ger,-

which defines a G,-action on the space X .

In this reference this space is denoted by (X > cf. [35, subsection 3.2].
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Let U4 C 9 be an open subset and let us take V' := Sp_gol (U) c X. Using the commutative diagram

we see that

sp gy (V) = 5p g (spy (L)
= 5p g/ (spgy ('~ U))
="' WU),

" /
which implies that sp g (V) is an open subset of 9)'. Now, let us suppose that 9" = 2’ N %) are morphisms over %).

The commutative diagram

X, 2V = sp_g)l(l/l)
Spgy
Sp gy 2), Py
=" \
2" > 92U
implies that
7" (sp g (V) = 77" (sp 9(V))) = sp g (V). (6.33)

In this situation, the morphism (6.21)
. T T
IP$”,2)' : ﬂ;,ggu,ku(/l) g @@’,k’(l)

induces the ring homomorphism

‘I’g)//,;y/
Dgr 1P g V) = 7 Dy (AsP gy (V) ——— Ty, (AP g (V)

*

and we can form the projective limit as in [34, (5.2.25)]

IANWV) 1= lim Zy, (AP y (V).
2'-9

By definition, the open subsets of the form V' := sp ¢)(V) form a basis for the topology of X, and Z(4) is a presheaf on
this basis. The associated sheaf on X to this presheaf will also be denoted by Z(A).
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Now, relation (6.33), and commutativity of the diagrams

Y
g}/l g ; 2)//
l/n,// pg}, l/n,//
Yy —— Y

and the first one in (6.31) tells us that

Psp gy )

Daygr 11D (0 90 (V) = 7 Dy (D) (5P 9y (V) > Dy oD (5P (V)

2)!/ g)l
ng’ sp g (V) ng, spgy (V)

=1 / ‘Psu(pg“(v» / 4
@;,,,k,,w((p? ) (Spgyl(V))> = (o) 7T, (99 ) = () 73, /W (sp 9 )

is also a commutative diagram. Let us identify

- - i -
DAV)=1P := (P$,7k,)(¥)’,k’)€fx S H QQ’J(’(/I) (Sp 2)/(V)) | ng)//g)/(Pg)n,ku) = P@’,k’
k) Fy

and let us consider the sequence

-1

. 2" T 9"’

g.P = (T , (Pyy ,,)) € 78 ,,(1)((,) ) s ,,(V)>.
&Py (V) 7K Q" k"eFx " ge]:x D7k 8 Py

Using the commutativity of the preceding diagram we see that

/!

¥

Yspg (o107 (Tg, (s gy v D 2)",k/')> =T oy ) (‘I’sp y (P 2)”,k”)>
¥
=T i Porr)

and therefore, for g € G, the actions ng) assemble to an action
T, : D)= (0. 2(A).
This action is on the left, in the sense that if g, A € G, then

(pg)*Th ° Tg = Thg'

Let us suppose now that .27 = (.#y ) € %f(; We have the transition maps wey gy : @l Mgy jn — Mgy Which are
linear relative to the morphism (6.21). As before, we have the map

Vsp g (V)

%Q”,k” (Sp gu(V)> = ”;’%@/l’kﬁ (Sp @/(V))—> %@’,k’ (Sp @/(V))
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which allows us to define .Z_, as the sheaf on X associated to the presheaf

Mo(V) 1= lim Myy o (spgy (V).
9'-9

By definition, we have the following commutative diagram

" Vsp gy (V)
./”2)//’,(// (Sp sg)u(V)) =r, //@//’k//((sp 2)/(V)) > ng’k/ (Sp g)/(V))

2)” %,
l"’g P g1 (V) l(”g, spgy (V)

- my—1 ’ Yspgyr (71 (V) ’
//lg')”,k” ((p? ) (Sp Q//(V))) = < ?;) >*ﬂ'g%¥)/r,k1/ (Sp g)l(V)) & (ﬂ? )*%2)/,](/ (Sp @/(V)) .

Identifying

%OO(V) =<{im .= (mgy’k/)(g,’k,)e}_x S H %@’,k’ (Sp @/(V)) | l//g)//q@/(mg)n’ku) = Mmyy
K Fx

we see as before that if

1

(D 97\~
g.m (= ((p (m ”,k”)) (S M N <<p ) Sp N(V)) s
&, Sp g)"(V) 2 Q" k"MeFx (2)”,!%6]‘—; b g 2

then the preceding commutative diagram implies that

g)l! _ 2)[
Wspg)r (pgl ) <(pg, (”//—1 )(SP g (V))(mg)”’k" )) - (pg, Spg)l W) <Wsp 9/ (V)(mg)//’k// ))
/

g Spgy(V)(msg"'k')’

and therefore we get a family (¢,) 2€G, of isomorphisms

119

(6.34)

of sheaves of L-vector spaces. By definition 6.5.5 we have that if g,h € G then ¢;, = (pg).®, © @,. Further-
more, under the preceding identifications, if P = (ng’k/) € PANV)and m = (m 2)’,k’) € M,(V), then P.m =

(Pyy jr-m gy 11}y ir)er, and therefore
— (Y )
Ge v (P.m) = (0? oy Pramy)
— (7Y bl >
- (Tg? Spg’/ (V)(ng’k,).(pg, Spg)’ (V)(mg),’k,) (2),’](,)6]:2
=T v(P).gg y(m).

In particular, .#, is an equivariant Z(4)-module on the topologial G-space X . Let us see that the formation of .Z is
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functorial. Lety : .# — .4 be a morphism in CK; (; Then, in particular we have the following commutative diagram

" W;’!"W
T, %2)//’](!/ % .%2)/’1(/

lﬂ';’(yg//’ku ) l}’gy,k/

N
Yy syt

E*J/Q),k % Jl/g)’k.
Let m = (mg ) per; € Mo (V) and

s 2= (rgrwr Omg o) o imere € T Ayraer (s (1)
(2)”,k”)e]—‘x

Commutativity in the preceding diagram implies that

N N
WSng(V) (Sgy/’ku) - ll/sp g1 (V) <YSp¥)/(V) (mg)”,k"))
— M
= yspg),(V) <lI/Sp @/(V)(mg)”,k")>
= Vspy (V) (may )
= Sg)/’kl,

therefore s € 4, (V) and y induces a morphism y,, : .#, — #..This shows that the preceding construction is
functorial. The next proposition is the twisted analogue of [34, Proposition 5.2.29].

Proposition 6.5.9. Let A € Hom(T, G,,) be an algebraic character which induces, via derivation, a dominant and regular

character of t} . The functor M > M, from the category ‘5; (; to Gy-equivariant P (A)-modules is a faithful functor.

Proof. We start the proof by remarking that sp ¢ (X ) = ¥ for every ) € Fx. By remark 6.5.8, the global sections of
M, equal to

HYX ., M) = lim  HOY,.My,) =T(A).
D.0EFy

Now, let f, h.#/ — ¥ be two morphisms in CK;‘; such that f = h.,. By theorem 6.5.6, it suffices to verify ['(f) = I'(h)
which is clear since HY(¥X, f..) = HY(%X . ho,)- O

If (), denotes the previous functor, the we will denote by Eocgo(i) the composition of the functor Cocfo with (e), i.€.,

LocZ0
{Coadmissible D(G, L), — modules}L» {G, — equivariant Z(A) — modules}.
0> L)i 0

Since ﬁocfo is an equivalence of categories, the preceding proposition implies that £ocoGo°(A) is a faithful functor.

6.6 G-equivariant modules

Thorough this section we will denote by G = G(L) and by B the semi-simple Bruhat-Tits building of the p-adic group G
([16] et [17]). This is a simplicial complex endowed with a natural right G-action.

The purpose of this section is to extend the above results from G,-equivariant objects to objects equivariants for the whole
group G.
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We start by fixing some notation.® To each special vertex v € B the Bruhat-Tits theory associates a connected reductive
group o-scheme G, whose generic fiber (G,); = G, Xgpec() Spec(L) is canonically isomorphic to G;. We denote
by X, the smooth flag scheme of G, whose generic fiber (X,); is canonically isomorphic to the flag variety X;. We
will distinguish the next constructions by adding the corresponding vertex to them. For instance, we will write Y, for
an (algebraic) admissible blow-up of the smooth model X, G, for the group of points G,(o) and G, , for the group
of points G,(k)(0). We will use the same conventions if we deal with formal completions. This means that we will
denote by X, the smooth formal flag o-scheme obtained by formal completion of X, along its special fiber (X U)[Fq i=
X, Xspec(o) SPec(o/m@). Moreover, 9),, will always denote an admissible formal blow-up of X,,. We point out to the reader
that the blow-up morphism ), - X, will make part of the datum of 9),,, and that even if for another special vertex v’ # v
the formal o-scheme %), is also a blow-up of the smooth formal model X,,, we will only consider it as a blow-up of X,.
We will denote by F, := .7-"35”, the set of all admissible formal blow-ups 9, — X, of X, andby / : F, the respective
directed system of definition 6.5.1. By the preceding accord, the sets F, and F, are disjoint if v ;é v Let

F=||F

where v runs over all special vertices of B. We recall for the reader that X is equal to the projective limit of all formal
models of X",

Remark 6.6.1. The set F is partially ordered in the following way. We say that 9, > 9, if the projection sp 9, - X, -
9) s factors through the projection sp 9, - X,—-9,

S'pU

—)2)0

Definition 6.6.2. We will denote by F := ||, F » Where v runs over all the special vertices of BB. This set is par-
tially ordered as follows. We say that (9,k") > (9,.k) if 9, > 9, and Lie(G, (k")) C Lie(G,(k)) (or equivalent
wk/Lie(GU/) C wkLie(G,), cf. subsection 5.1.2) as lattices in g .

For any special vertex v € B, any element g € G induces an isomorphism
Pyt Xy = Xpg
The isomorphism induced by p; on the generic fibers (X)) ~ X ~ (X, ,) coincides with right translation by g on X

ldXL Xg
D X = X1 Xspee(r) SPec(L)——— X Xgpee(r) Spec(Gy) “ox L

where we have used G(L) = G (L). Moreover, pg induces a morphism X, — X, ,, which we denote again by pg, and

0.8
which coincides with the right translation on X, if g € G, (of course in this cjse vg = v). Let (pg)n : OBEUg -
(pg )*(’)xu be the comorphism of pz, Ifx 9, = %X, is an admissible blow-up of an ideal Z C (’)xv, then blowing-up
((pg)”)‘l((pg)*l) produced a formal scheme 9),,, (cf. lemma 6.5.3), together with an isomorphism pg Yy = Yy
As in lemma 6.5.3 we have kg = k?h-g' For any g,h € G and any admissible formal blow-up %), — X,, we have
ng ) pg = pgh © 9y = Yygn- This gives a right G-action on the family / and on the projective limit X,. Finally, if
Yy = 9, with morphism = : 9, > 9, and g € G, then 9,5, > 9,,,, and we have the following commutative diagram

8This is exactly as in [34, 5.3.1].
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(cf. corollary 6.5.4)

2)1)’ # @u

1 17 (6.35)

Qu’g ”Hg 2)Ug‘

Now, over every special vertex v € B the algebraic character A induces an invertible sheaf £,(4) on X, such that for

every g € G there exists an isomorphism
RV L,g(2) > (90, L),
satisfying the cocycle condition

R = ( pgh)* RUO R (hge€G). (6.36)

As usual, for every special vertex v € B3, we will denote by .Z,(4) the p-adic completion of the sheaf £,(4), which is
considered as an invertible sheaf on X,. Let (¥,,k) € F with blow-up morphism pr : %, — X,. At the level of

differential operators, we will denote by @; (4) the sheaf of arithmetic differential operators on %), acting on the line
bundle .%,(1)° we have the following important properties. Let g € G. As in (6.9) the isomorphism (6.36) induces a left

action

. gt = i
T Ty = () 79,0

P — RUP(RY)L
8 8

Now, we identify the global sections I'(9),,, .9; k(/l)) with D*(G,,(k)°); and obtain the group homomorphism

Gopy1 — F<¥)u»9;wk(/1)>x

g bg

Where G, ;.1 = G, (k)°(L) denotes the group of L-rational points (or o-points of G,(k + 1)). We will follow the same

lines of reasoning given in [34, Proposition 5.3.2] to prove the following proposition.

Proposition 6.6.3. Suppose (), k") > (9, k) for pairs (9 ,,k"), (D,,k) € F with morphismz : 9, — 9,. There
exists a canonical morphism of sheaves of rings

gt i
Vi Ty wW) = Dy ()

which is G-equivariant in the sense that for every g € G the following diagram is commutative

.25 k4 s g1 (A
(7[ g)* ng'g’k’( ) 4 @vg’k( )

l(n.gmrg) ng

(.20 Dy (A = (p0), 7, D) (A)MHU) 25 ()
”'g*pg * gv,,k/ - pg *7[* @U”k, pg* g)u,k .

Proof. Let us denote by pr’ : 9, — X, and pr : 9, — X, the blow-ups morphisms, and let us put pr := pr o 7. We

9Here we abuse of the notation and we denote again by .%,(A) the invertible sheaf pr*.Z,(1) on 9),,.
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have the following commutative diagram

2)1/ # 2)0
pr
l‘”’\ lp '
X, X,
Letus fix m € N. Asin [34, Proposition 5.3.6] we show first the existence of a canonical morphism of sheaves of o-algebras

(m,k) ~ % y(m,k)
Dy, " () = pr'Dy " (A). (6.37)

Here Y/, Y,, X, and X, denote the o-scheme of finite type whose completions are )/, 9),, X,» and X, respectively.
The morphisms between these schemes will be denoted by the same letters, for instance pr : Y, = X,. We recall for the
reader that the sheaf Dg,m,’k )(A) is filtered by locally free sheaves of finite rank

' k! i
Dy () =p"* Ly ®o, , b DY @0, , b Lu(D)”
R (m.k")
=pr (DY),

and therefore by the projection formula [28, Part II, Section 5, exercise 5.1 (d) ] and given that pr’, OYU/ =0 X, (cf. [34,
Lemma 3.2.3]) we have for every d € N

pr, (D)) =pr! (Oy, @0, , P DY)
= p(Oy,) ®0, , D))
= Dg'("u’,’f:j(/l),
which implies that

!/ !’
o, (DY) ) = DY)

because the direct image commutes with inductive limits on a noetherian space. By proposition 5.5.11 and the preceding
relation we have a canonical map of filtered o-algebras

DGy (k') — H° (XU,,Dg;"’,k,)(/l)) = H° (XU,,pr; (D;m,’k/)(/l)» - H° <Y D‘Y"j"”(,l)) ,
in particular we get a morphism of sheaves of filtered o-algebras (this is exactly as we have done in (2.21))

’ ’ ’
O AT 1= 0y, @, DG (K = DY (). 638)

v

Applying Sym™(s) o w"/pr’ *(») to the surjection (5.30) we obtain a surjection

Oy, ®, Sym™ (Lie(G, (k) = Sym™ (@*'pr* Ty, )

which equals the associated graded morphism of (6.38) by proposition 6.1.5. Hence <D(Ym”k,) is surjective. On the other

hand, if we apply pr” to the surjection

oFY L AT = Oy, ®, D(G,(k) — DY ()
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we obtain the surjection OYU' ®, D(m)(GU(k)) — ﬁr*Dgz"’k)(/l). Let us recall that (9),s, k') > (9, k) implies, in particular,
that Lie(G, (k")) C Lie(G,(k)) and therefore wk'Lie(GU,) C kaie(GU). By (5.8), the preceding inclusion gives rise to
an injective ring homomorphism D(’")(Gv,(k’ ) & D(’”)(Gv(k)). Let us see that the composition

Oy, ®, DG, (K) = Oy, ®, D™ (G, (k) » prDy " (4)

factors through D;"U’,kl)(ﬁ)-

OY/ ®, D(m)(GU/ (k") ——> pr 'D(m k)(/l)

-1
~
-
—
-
_-

D(mk)(/l)

Since by lemma 5.5.8 all those sheaves are w-torsion free, this can be checked after tensoring with L in which case we
have that D(m K ®, L ~ pr D(m %) ®, L is the (push-forward of the) sheaf of algebraic differential operators on the
generic ﬁber of w (cf. d1scuss10n given at the beginning of section 6.1). We thus get the canonical morphism of sheaves

(6.37). Passing to completions we get a canonical morphism @é)m;k,)(/l) - pr 9("’ k)(/i) Taking inductive limit over all
m and inverting w gives a canonical morphism @; ) oA = pr* @; (4). Now, let us consider the formal scheme 9),,

as a blow-up of ¥, via pr. Then 7 becomes a morphism of formal schemes over ¥, and we consider pr* @; ’ (A) as the
sheaf of arithmetic differential operators with congruence level k defined on 9,/ via pr*. Using the invariarice theorem
(theorem 6.2.2) we get «,, (ﬁr*@;mk(ﬂ)> = @;wk. Then applying z,, to the morphism 9;0/’)(,(2) - er*@;wk(ﬂ) gives
the morphism

. 7l T
¥ ﬂ*gg)v/,k’(/l) -9

of the statement. As in [34, Proposition 5.3.8], making use of the maps dD(m ®)as above, the assertion about the G-

equivariance is reduced to some obvious functorial properties of the rings D(’")(G (k)). O

Definition 6.6.4. A coadmissible G-equivariant arithmetic 2(2)-module on F consists of a family M = (My ) x)er
of coherent @; k(/l)-modules with the following properties:

(a) For any special vertex v € B and g € G with isomorphism pg 09, = Yy there exists an isomorphism

U . v
by - My, k= (Pg)* My i
of sheaves of L-vector spaces, satisfying the following conditions:

(i) Forall h,g € G we have '°
(02" ), 0 ¢ = ¢ .

(ii) For all open subsets U C 9,,, all P € .@;)Ug’k(ﬂ)(L{), and all m € //lg)ug,k(u) one has ¢Z’U(P.m) =
1% 12
TV, (P).¢°, (m).
(iii) For all g € Gy, the map qﬁg DMy — (P;)*J//g),k = My is equal to the multiplication by 6, €
HYD,. 7y (W)

10Here we use the fact the action of G on /3 is on the right and therefore (pg")* o (pZ)* = (ng)x.
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(b) For any two pairs (9),,k") = (9,,k) in F with morphism = : 9, — ), there exists a transition morphism
vy, 9, ﬂ*///g,v, - ///%’ linear relative to the canonical morphism ¥ ﬂ*@; ) k,(/l) - 9;) k(/I) (in the

preceding proposition) and making commutative the following diagram

W?)U/gsg)vg N
(ﬂ-g)*'%g)v;g 7 %2)%
o0 l ¢ 0wy, 9, =Py, y, © (1.8).8) 639

, (Pv)*lllg)v,,gjv
(P, My, = (1.8), (P! )y, ———— (p!), My,

for any g € G (where we have use the relation (pg)* orx,=(n.g),o (pg/)* coming from the commutative diagram
(6.35)). If V) = v, and (Y, k') = (Y. k) in F, and if Y, Y, are G, y-equivariant, then we require additionally
that the morphism induced by Wy g, (cf- (6.25))

— - g
l[/g}:ﬂg}u . Qg)u,k(/l) ® (DG osrt *%@L’k, - %wwk (640)

;D/ k!

. ; . $ . . .
is an isomorphism of .@gjwk(/l)—modules. As in theorem 6.5.6, the morphism vy, 9, - n'*//lg)u,’k/ - t//lg)v’k are
required to satisfy the transitive condition

' oy W?)wh?h
@U” % g)v/ Ty ”*///2)0//,k” =7 %2) 7,k /4 %@L,,k
W@M/
\t x/ ”*”’m
T .ﬂg):/ K

¥9,,.9, ° ”*(Wg)v,,,g)v/) =Y 1.9,
whenever (9,1, k") = (9,1, k') = (9, k) in F. Moreover, yy o =id 4, .

A morphism M — N between two coadmissible G-equivariant arithmetic 9(A)-modules consists in a family of mor-
phisms My ;. —> Ny i of @;) k(l)-modules which are compatible with the extra structures. This means, for any couple of
special vertex v, v’ € B we have the following commutative diagrams

%g)upk H (pg)*%g),k ﬂ'*%g)u/’k/ H %2)11’]‘
Ny, ok —> (PN k TNy, 1 > Ny, ke

We denote the resulting category by CKG}— e

We recall for the reader that the algebra of distribution D(G,,, L) carries a weak Fréchet-Stein structure which allows us to
localize locally analytic representations of Gy (cf. (6.19)). In the following we will always be considering this structure.
Let us construct now the bridge to the category of coadmisible D(G, L);-modules. Let M be such a module and let
V=M 12- We fix v € B a special vertex. Let Ve, (ke —an 1 be the subspace of G, (k)°-analytic vectors and let M, vk bEts
continuous dual. For any (%), k) € F we have a coherent QTU’ k(ﬂ)-module

ocy ) (DM, ) = g) D Bpng, w0y, My k-

"Here we use the fact that (G,); = G, .
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According to theorem 6.2.4. On the other hand, given an object .Z &€ %Gf

,» We may consider the projective limit

T(dt) = lim  HQ, y)
@.ek

with respect to the transition maps yyy 9. Here the projective limit is taken in the sens of abelian groups and over the
cofinal family of pairs (9),, k) € £ with G, j-equivariant 9),, , cf. remark 6.5.8.

Theorem 6.6.5. Let us suppose that A € Hom(T,G,,) is an algebraic character such that A+ p € tz is a dominant and

regular character of t;. (and therefore, a dominant and regular character on every special vertex of BB).

(i) The family

G . T
LocS(M) := (coc@wk(/l)(MU,k))@)wk)ej_r

forms a coadmissible G-equivariant arithmetic 2(A)-module F. This is, it gives an object of %G]: 4 The formation
of ﬁocf(-) is functorial.

(ii) The functors Eocf(o) and I'(s) induce quasi-inverse equivalences between the category of coadmissible D(G, L) ;-
modules and %(?-,1'

The proof follows the same lines of reasoning given in [34, Theorem 5.3.12].

Proof. The proof is an extension of the the proof of theorem 6.5.6, taking into account the additional G-action. Let M be
a coadmissible D(G, L);-module and let .# € ‘fg I The proof of the theorem follows the following steps.

Claim 1. One has Eocf(M) € ‘55/1 and Cocf(-) is functorial.

Proof. Let g € G, v € B a special vertex and pg : 9, - 9, the respective isomorphism. For conditions (a) for
Eocf(M ) we need the maps

¢ 1 Loc§(M)y, i 1= Locy (D(Myp) = (p),Locf (M)y
satisfying the properties (i), (if) and (iii). Let @% : Mz, — M, denote the dual map to '*

VGv(k)°—an - VGUg(k)"—an

w ~ g lw.

LetU C 9, be an open subset and P € 7 Ug’k(/i)(Z/l), me€ M,, ;. We define

&, (P@m) =T, (P)® Py(m). (6.41)

Exactly as we have done in theorem 6.5.6, the family (qﬁg) satisfies the requirements (i), (ii) and (iii). Let us verify
now condition (b). Given (9),,k") > (9,,k) in F, we have G, (k')° C G,(k)° in G"¢ and we denote by Wy, 9, :
My — M, the map dual to the natural inclusion Vg )o_an S Vi ,(kr)o—an- Let U C 9, be an open subset and
Pe ”*%U,,k“)(u)’ m € M, ;. We then define '3

vy, 9, (P®m) =Yy o (P)Q Wy, g (M)

"2Here we use G, (k)° = g7'G,(k)°g in G"E.
13We avoid the subscript I in order to soft the notation.
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where ‘P%,’% D, .@; ) oA = .@; (D) is the canonical morphism given by the preceding proposition. This definition
extends to a map ’

vy,9, n*[:ocf(M)g)U,’k/ — Eocf(M)g)mk

which satisfies all the required conditions. The functoriality of Eocf(-) can be verified exactly as we have done for the
functor L'ocf"(-). O

Claim 2. I'(.#) is a coadmissible D(G, L);-module.

Proof. We already know that I'(.#) is a coadmissible D(G,,,, L),-module for any v (theorem 6.5.6). So it suffices to
exhibit a compatible G-action on I'(.#). Let g € G. The isomorphisms ¢§ : //%g’k - (pg)*//lg)’k, which are compati-
bles with transitions maps, induce isomorphisms at the level of global sections (which we denote again by ‘f’; to soft the
notation)

Oy 1 HOD g My, 1) — H DMy ).
Let us identify

D)= lim  HY Dy My, 1)
Do k)EL,,

— 0 )
= (mg)ug,k )(2) k)e]: € H H (2)ug,k ’ %g)ug,k) | Wg)i‘g’g)vg (mg)/”g,k) B mg)ug’k
vg’ —uvg (Qvg’k)ezb'g

Where we have abused of the notation and we have denoted by yygy o . the morphism obtained by taking global sections
vg* ¥,

U,

on the morphism Wy 9, : (ﬂ.g)*@Zg’k,(/l) - nggsk(/l). Forge Gandm := (m’ZJug,k)@)ug,k)Givg € I'(.#) we define

gm .= <¢;(m%g’k)) Ho(g)v,///%’k), gmy, per, ‘= d’;(m%g,k) (6.42)

(S
(g)ug’k)efl}g (g)v’k)eflf

_ . 0 . . _ .
We want to see that g.m € I'(A#) = 1(@( v, beF, H”(Y),, ,///2)1” ) and that this assignment defines a left G-action on I'(.#).

Taking global sections on (6.39) we get the commutative diagram

Y90 Dug

Ho(g)zgv %g)zg,k’) % Ho(g)ugv %@U,k)

V!9,

HO(?)'U,///Q)/U,JC’) —— H°Q,. 4y i)
which implies that

vy 9, (8myy k) = ll/g)z,g)v@g(mgyug,k'))
= ¢g(ll/g);,g,g)vg (mgyug,kf))
= 4’;(’”% g,k)

=g.m g)wk.
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We obtain an isomorphism

() = lim HO(D,, My, )= lim HD,, My, 1) = T(A0).

Lo Ly
According to (i) in (a) we have the sequence

Peh oY

¢}U1g : Ho(g)uhg’(%g)yhgak)—g) Ho(g)uh"%g)uh’k)—) Ho(g)w%g)l”k)

which tells us that h.(g.m) = (hg).m, for h,g € G and m € I'(.#). This gives a G-action on I'(.#') which, by construction,
is compatible with its various D(G,, 5, L)-module structures. O

Claim3. T o Eocf(M) ~ M.

Proof. By theorem 6.5.6 we know that this holds as a coadmissible D(G,,, L) -module, so we need to identify the G-action
on both sides. Let v be a special vertex. According to (6.41), the action

I'o Loc¥(M) ~ lim M, — lim M, ~T o LocS (M)
k v

of anelement g € GonI o Eocf(M) is induced by (]52 : My > M, . By dualizing

V= U VG, (0°—an = U Ve, (ke -an

keN keN
we obtain the identification
M ~ Hm M, ~ im M, ,
k k
and therefore we get back the original action of g on M. O

Claim 4. Cocf oI'( M)~ A.

Proof. We know that ﬁocf(l“(///))g)wk = //{%,k as 9; k(l)-modules for any (%), k) € F, cf. theorem 6.5.6. It remains
to verify that these isomorphisms are compatible with the maps ¢§ and vy 9, on both sides. To do that, let us see that
the maps (i)g on the left-hand side are induced by the maps of the right-hand side. Given

(b; : %2)0’]( - (pg)*%gwk’
the corresponding map
¢+ Loc (T(A)y, k= ()«(Locf T(A )y, 1)

equals the map
%Ug,k('l) ®pun(G,, ), H' <¥’ug’ J//z)ug,k) = (). (‘@;)U,k(’l) ®puns, ), H' (@v//@k»

given locally by Tg”’%u ® Ho(g)vg,rbg), cf. (6.41). Let U C 9, be an open subset and P € Qg)wk(/l)(Z/[), meM,, =

Ho(g)ug,//lg)ug’k). The isomorphism Eocf(l“(///))g)wk ~ ///g)wk are induced (locally) by P ® m — P.(m|;;). Condition
(ii) tells us that these morphisms interchange the maps d); , as desired. The compatibility with transitions maps vy, 9, for



6.6. G-EQUIVARIANT MODULES 129

two models (9),s, k) > (%), k) in F is deduced in a entirely similar manner as we have done in theorem 6.5.6 and the fact
that yy) , ¢ is linear relative to the canonical morphism VY., @; oA = @; o O

This ends the proof of the theorem. O

As in the case of the group G, we now indicate how objects from ‘Kg , can be realized as honest G-equivariant sheaves
on the G-space X . The following discussion is an adaptation of the discussion given in [48, 5.4.3 and proposition 5.4.5]
to our case.

Proposition 6.6.6. The Gy-equivariant structure of the sheaf P(4) extends to a G-equivariant structure.

Proof. Let g € G and let v,0' € B be special vertexes. Let us suppose that (9),s, k") > (2, k) in F. The isomorphism

p;/ : Yy — 9, induces a ring isomorphism
Voo oot v i
7y, ) - (pg ) Dy D).

On the other hand, and exactly as we have done in (6.32), the commutative diagram

x P9y

o0 @u > @ug

g)u’ p% g)u’g'

defines a continuous function

Pt Xy = X
(@) = (a,).

which fits into a commutative diagram

X, — 5 %,

\Lpryu/ , \Lprg) g
pg

2)1/ —_— @U/g'

In particular, if V' C % is an open subset of the V' := pr; ! (U) with & C ), an open subset. Then

(p;’)_l (pry,,, ) =pry,, (s5'®))

and so the map Tg”’ induces the morphism

29 (pra,,, 1)) = 74 ) (pra,, (5'®))). (6.43)

Moreover, if (Y1, k") = (9, k") = (D, k) in F, and as before V' := pri)i U) C X, withUd C 9, an open subset, then
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the commutative diagram

‘@;)ng,kw(@ (Prg;u,,g (V)> — 9;)0”,,(,,(/1) (prg)v,, <p;l(V)>> .

! !

Ty, 0@ (pry,, 00) — 74, (pry, (57 01)).

. . . . . . T ¥ .. ..
implies that if, by cofinality, we identify Z2(1)(V') = m@),;g,k)eiug @%g’ k(ﬂ) (prg)ug(V)) and we take projective limits in

(6.43), then we get a ring homomorphism
Tyy @ Z(DV) = (p) Z(MV)

which implies that the sheaf (1) is G-equivariant. Furthermore, from construction this G-quivariant structure extends
the G-structure defined in (6.34). ]

Finally, let us recall the faithful functor
M > My,

from coadmissible G,-equivariant arithmetic Z(4)-modules on Fy to Gy-equivariant Z(1)-modules on X . If .# comes
from a coadmissible G-equivariant Z(4)-module on F, then .Z_ is in fact G-equivariant (as in (6.34), this can be proved
by using the family of L-linear isomorphisms (qb; )ge- As in proposition 6.5.9, the preceding theorem gives us

Theorem 6.6.7. Let us suppose that A € Hom(T, G,,) is an algebraic character such that A + p € t} is a dominant and
regular character of t;. The functor M -~ M, from the category ‘ggﬂ to G-equivariant 9(A)-modules on X, is a
faithful functor.

We summarize the main results of this work with the following commutative diagrams of functors (cf. [48, Theorem
5.4.10])

Coadmissible Loc§ Coadmissible G — equivariant
D(G, L), — modules = arithmetic Z(A4) — modules

Coadmissible Loc}® Coadmissible G, — equivariant
D(Gy, L); — modules = arithmetic Z(A) — modules
Here the left-hand vertical arrow is the restriction functor coming from the homomorphism

D(Go, L)/{ b D(G, L)ll

and the right-hand vertical arrow is the forgetful functor.
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