Derived completions

Erik Barinaga

April 2023

In this text, we closely follow [1, Lecture III, §2]. For theory on derived categories, we use [2, Chapter 05QI].

Throughout this text, A denotes a commutative ring and we work in the derived category $D(A) := D(Mod_A)$.

1 Derived Completeness

An element $M \in D(A)$ is a complex $M = (\dots \to M^{-1} \to M^0 \to M^1 \to \dots)$ of A-modules.

For $M \in D(A)$ and $f \in A$, define

$$T(M, f) := R \lim(\cdots \xrightarrow{f} M \xrightarrow{f} M \xrightarrow{f} M) \in D(A).$$

Definition 1. Let $I \subset A$ be a finitely generated ideal. We call $M \in D(A)$ derived *I*-complete if for all $f \in I$ we have T(M, f) = 0. This is equivalent to requiring that the map

$$\varphi_f \colon \prod_{n \ge 0} M \to \prod_{n \ge 0} M,$$

where $(k_n) \mapsto (k_n - fk_{n+1})$, is an isomorphism in D(A).

Proposition 2. If T(M, f) = 0 for all f in a generating set of I, then M is derived I-complete.

An A-module M is derived I-complete if it is so when regarded as a complex $(\dots \to 0 \to M \to 0 \to \dots) \in D(A)$ sitting in degree 0. Such a module is classically I-complete if $M \cong \lim_n M/I^n M$.

If $I = (f_1, \ldots, f_r)$ then for $M \in D(A)$ we can define

$$\widehat{M} := R \lim_{n} (M \otimes_{\mathbb{Z}[x_1, \dots, x_r]}^L \mathbb{Z}[x_1, \dots, x_r] / (x_1^n, \dots, x_r^n))$$

where x_i acts by f_i on M. The complex \hat{M} is called the *derived I-completion* of M. More on this in Section 4.

2 Derived completion of a module with respect to a principal ideal

Let $I = (f) \subset A$ be a principal ideal, and let $M \in Mod_A$ be viewed as a complex in D(A). We use the standard resolution

$$(\mathbb{Z}[x] \xrightarrow{x^n} \mathbb{Z}[x]) \longrightarrow \mathbb{Z}[x]/(x^n),$$

to compute

 $M \otimes_{\mathbb{Z}[x]}^{L} \mathbb{Z}[x]/(x^{n}) \cong (\cdots \longrightarrow 0 \longrightarrow M \xrightarrow{f^{n}} M \longrightarrow 0 \longrightarrow \cdots)$

sitting in degrees -1 and 0. The inverse system (K_n, f_n) that we can use is now

and the derived limit $K := \hat{M} = R \lim K_n$ is part of a distinguished triangle

$$K \longrightarrow \prod K_n \xrightarrow{\varphi} \prod K_n \longrightarrow K[1]$$

which induces a long exact sequence

$$\cdots \longrightarrow H^{i-1}(\prod K_n) \longrightarrow H^i(K) \longrightarrow H^i(\prod K_n)$$

$$\longrightarrow H^i(\prod K_n) \longrightarrow H^{i+1}(K) \longrightarrow \cdots$$

As $\prod K_n$ sits in degrees -1 and 0, we have that $H^i(K) = 0$ for $i \ge 2$ and $i \le -2$. Hence, we can focus our attention to

$$\cdots \longrightarrow 0 \longrightarrow H^{-1}(K) \longrightarrow H^{-1}(\prod K_n)$$
$$\longrightarrow H^{-1}(\prod K_n) \longrightarrow H^0(K)$$
$$\longrightarrow H^0(\prod K_n) \longrightarrow H^0(\prod K_n) \longrightarrow H^1(K) \longrightarrow 0 \longrightarrow \cdots$$

Note that $H^0(\prod K_n)$ is the cokernel of the non-trivial transition map in $\prod K_n$. Hence, we have a commutative diagram

showing that the bottom horizontal map is surjective, so $H^1(K) = 0$.

Lemma 3. The long exact cohomology sequence associated to the distinguished triangle breaks up into short exact sequences

$$0 \to R^1 \lim H^{p-1}(K_n) \to H^p(K) \to \lim H^p(K_n) \to 0$$

Proof. Omitted. See [2, Lemma 0CQE].

Hence, we have

$$0 \to R^1 \lim M[f^n] \to H^0(K) \to \lim M/f^n M \to 0$$

and

$$H^{-1}(K) \cong \lim H^{-1}(K_n) = \lim M[f^n].$$

Lemma 4. If for $C \in D(A)$ we have $H^i(C) = 0$ for all $i \neq i_0$, then we have that $H^{i_0}(C)[-i_0] \cong C$.

Lemma 5. Let $f \in A$. If $M \in Mod_A$ has bounded f^{∞} -torsion (there exists some n > 0 such that $M[f^{\infty}] = M[f^n]$), then the dervied f-completion of M as a complex is concentrated at degree 0 and coincides with the classical completion.

Proof. The projective system $\{M[f^n]\}$ is essentially zero, i.e. any large enough composition of transition maps is zero. Hence, $\lim M[f^n] = 0 = R^1 \lim M[f^n]$. To see the second equality, let n be such that $M[f^n] = M[f^{\infty}]$ and note that

$$R^{1} \lim_{k} M[f^{k}] = R^{1} \lim_{k} M[f^{kn}] = \operatorname{coker}((m_{kn}) \mapsto (m_{kn} - f^{n} m_{(k+1)n}) = 0.$$

By Lemma 4, we have $\hat{M} \cong H^0(\hat{M}) \cong \lim M/f^n M$.

2.1 Example

Let $A = \mathbb{Z}$, I = (p) and $M = \mathbb{Q}/\mathbb{Z} \in D(A)$. Explicitly, $M = (\dots \to 0 \to \mathbb{Q}/\mathbb{Z} \to 0 \to \dots)$. We want to compute \hat{M} .

In order to do this, we compute the cohomology groups of \hat{M} . With what was discussed above, we see that

$$H^{-1}(\hat{M}) = \lim_{n} M[p^{n}] = \lim_{n} (p^{-n}\mathbb{Z}/\mathbb{Z}) = \lim_{n} \mathbb{Z}/p^{n}\mathbb{Z} = \mathbb{Z}_{p}.$$

On the other hand, we have that all the other cohomology groups are zero because $\lim M/p^n M = 0$ and $R^1 \lim M[p^n] = 0$. Indeed, to see the first equality note that any fraction can be written as the multiple of p^n for any n. To see the second equality, note that $R^1 \lim M[p^n]$ is the cokernel of the map $\prod \mathbb{Z}/p^n \mathbb{Z} \to \prod \mathbb{Z}/p^n \mathbb{Z}$ where $(x_n) \mapsto (x_n - \overline{x_{n+1}})$. This map is surjective, as for every $(y_n)_n \in \prod_n \mathbb{Z}/p^n \mathbb{Z}$, we can construct the following preimage. We set $x_1 = 0$, and we choose $x_2 \in \mathbb{Z}/p^2 \mathbb{Z}$ such that $y_1 = x_1 - \overline{x_2} = \overline{x_2}$, where $\overline{x_2} \in \mathbb{Z}/p\mathbb{Z}$. Now we choose $x_3 \in \mathbb{Z}/p^3 \mathbb{Z}$ such that $y_2 = x_2 - \overline{x_3}$, and we can continue like this for every $n \in \mathbb{N}$.

Hence, Lemma 4 gives us that $\hat{M} \cong \mathbb{Z}_p[1]$. This is interesting, because we have shown above that the classical (p)-adic completion of M is equal to zero.

3 Derived complete vs classically complete

Let $M \in Mod_A$ be viewed as a complex in D(A). By abuse of notation, we denote this complex by $M \in D(A)$. Let $f \in A$.

Proposition 6. If M is classically (f)-complete, then M is derived (f)-complete. The converse is true when M is (f)-adically separated.

Proof. Suppose that M is classically (f)-complete. Requiring the map φ_f to be an isomorphism is equivalent to requiring $\ker(\varphi_f) = \operatorname{coker}(\varphi_f) = 0$. We examine these two conditions.

For the kernel, we have the following. For $(m_n)_n \in \ker(\varphi)$, we have $m_n = fm_{n+1} = f^r m_{n+r}$ for all $r \ge 0$. Hence, $\bigcap_r f^r M = 0$ implies $\ker \varphi = 0$. For the cokernel we note that φ is surjective if and only if for all $(m_n)_n \in \prod M$ there exists a $(x_n)_n \in \prod M$ such that $m_n = x_n - fx_{n+1}$. For this we can take $x_n = \sum_{r=0}^{\infty} m_{n+r} f^r$, which exists because M is classically f-adically completed, i.e. $M = \lim_{t \to r} M/f^r M$.

For the converse, note that *I*-adically separated implies that $\{M[f^n]\}$ is essentially zero, so $R^1 \lim M[f^n] = 0$. This finishes the proof by what was discussed in Section 2.

Proposition 7. Suppose that M is an A-module that is classically I-complete, so $\hat{M} = M$. Then M is also derived I-complete. The converse is true if M is I-adically separated.

In fact, we have the following.

Proposition 8. If A is Noetherian and M is finitely generated, then the notions of derived I-complete and classically I-complete are equivalent.

Proof. By Proposition 7, we only need to show that if a A-module M is derived I-complete, then it is classically I-complete. This uses *Krull's intersection Theorem*:

Theorem 9. Let $N = \bigcap I^n M$. Then there exists an $a \in A$ such that $a \equiv 1 \mod I$ and aN = 0.

Let $f := a - 1 \in I \subset A$ and $m \in \bigcap_n I^n M$. Consider

$$a\left(\sum_{j=0}^{N}(-f)^{j}\right)m = m - (-f)^{N+1}m.$$

On the one hand, it is equal to zero, because am = 0 but on the other it approaches m as $N \to \infty$ (here we use that φ_f is an isomorphism). Hence, m = 0 in M, so M is I-adically separated.

4 Adjunctions

The derived *I*-complete *A*-complexes form a full triangulated subcategory

$$D_I(A) \subset D(A)$$

closed under inverse limits. This inclusion has a left adjoint $M \mapsto \hat{M}$.

In particular, this adjunction says that

$$\operatorname{Hom}_{D(A)}(M, E) \cong \operatorname{Hom}_{D(A)}(M, E)$$

where $E \in D_I(A)$ and the bijection is given by composition with the natural map $M \to \hat{M}$.

The derived *I*-complete *A*-modules form an abelian subcategory

$$\operatorname{Mod}_A^I \subset \operatorname{Mod}_A$$

closed under kernels, cokernels and images. This inclusion has a left-adjoint $M \mapsto H^0(\hat{M})$.

In particular, this adjunction says that

$$\operatorname{Hom}_{\operatorname{Mod}_A}(H^0(\hat{M}), N) \cong \operatorname{Hom}_{\operatorname{Mod}_A}(M, N)$$

where $N \in \operatorname{Mod}_A^I$ and the bijection is given by composition with the natural map $M \to H^0(\hat{M})$.

If M is an A-module, we get two notions of the derived I-completion of M. For the first one, we regard M as a complex in D(A) and we complete it: $\hat{M} \in D(A)$. For the second one, we need to take the cohomology group $H^0(\hat{M})$. Note the these may be different.

5 Properties

Proposition 10. A derived I-complete A-complex $M \in D(A)$ is zero if and only if $M \otimes_A^L A/I \cong 0$.

Proof. We follow [2, Lemma 0G1U] and [2, Lemma 0G1T].

Let $M \in D_I(A)$ and suppose $M \otimes_A^L A/I = 0$ where $I = (f_1, \ldots, f_r)$. We have that $M = \hat{M} = R \lim(M \otimes_{\mathbb{Z}[\underline{x}]}^{L} \mathbb{Z}[\underline{x}]/(\underline{x}^{n})) = R \lim(M \otimes_{A}^{L} K_{n})$ where K_{n} is the Koszul complex on $f_1^n \dots f_r^n$ over A. We want to show that $M \otimes_A^L K_n = 0$. We will first show that $M \otimes_A^L N = 0$ where N is an A-module with $N = \bigcup N[I^n]$. Denote $A' := A/I^n \oplus N$. It suffices to show that $M' := M \otimes_A^L A' = 0$. Indeed,
$$\begin{split} M \otimes^L_A A' &= (M \otimes^L_A A/I^n) \oplus (M \otimes^L_A N). \\ \text{The map } A' \to A/I \text{ where } (x,y) \mapsto x \text{ has nilpotent kernel } J. \text{ We have } \end{split}$$

$$0 = M \otimes_A^L A/I = (M \otimes_A^L A') \otimes_{A'}^L A/I = M' \otimes_{A'}^L A/I$$

because the derived tensor product is associative. Note that this also means that $M' \otimes_{A'}^{L} A'/J = 0$ as $A'/J \cong A/I$.

Claim: M' is bounded from above and if $H^b(M')$ is the right-most non-vanishing cohomology module, then it is a finite A'-module.

Proof. This is discussed in [2, Lemma 07LU].

As $M' \otimes_{A'}^{L} A'/J = 0$, we have $H^{b}(M')/JH^{b}(M') = H^{b}(M') \otimes_{A'}^{L} A'/J = 0$. To see the first equality, tensor the exact sequence $0 \to J \to A' \to A'/J \to 0$ with $H^b(M')$. Hence, $H^b(M') = JH^b(M')$ and we have that J is nilpotent, so $H^b(M') = 0$ by Nakayama and so M' = 0.

Now we can show by induction that $M \otimes_A^L K_n = 0$ by noting that the cohomology modules of K_n are *I*-power torsion (annihilated by I^{nr}). We omit the details.

Proposition 11. Let M be a derived complete A-module. If M/IM = 0, then M = 0.

Proof. Suppose $I = (f_1, \ldots, f_r)$ and that $M \neq 0$. Let $0 \leq i < r$ be maximal such that $N := M/(f_1, \ldots, f_i)M \neq 0$. The map $f_{i+1} \colon N \to N$ is a surjective map of derived *I*-complete modules. Hence $\lim(\dots \xrightarrow{f_{i+1}} N \xrightarrow{f_{i+1}} N) \neq 0$ as the limit must map surjectively to N. Contradiction, because N is derived *I*-complete.

Proposition 12. Let $f: : M \to N$ be a map in $D_I(A)$. If $\overline{f}: M/IM \to N/IN$ is surjective, then f is surjective.

Proof. Take W to be the cokernel of \overline{f} and apply Proposition 11.

Why is this important for prisms? 6

Proposition 13. Let A be a δ -ring, and let $I \subset A$ be a finitely generated ideal containing p (A is dependent on a prime p). Then the derived I-completion $H^0(\hat{A})$ (as a module) admits a unique δ -structure compatible with the one on A.

Proof. Let $w : A \to W_2(A)$ be the section classifying the δ -structure on A. Then we have a commutative diagram

where the dotted arrow is uniquely determined by the universal property of $A \to H^0(\hat{A})$. Explicitly, we have $W_2(H^0(\hat{A})) \in \operatorname{Mod}_A^I$ (because $W_2(H^0(\hat{A})) = H^0(\hat{A}) \times H^0(\hat{A})$ as a set), we have that

$$\operatorname{Hom}_{\operatorname{Mod}_{A}}(H^{0}(\hat{A}), W_{2}(H^{0}(\hat{A}))) \cong \operatorname{Hom}_{\operatorname{Mod}_{A}}(A, W_{2}(H^{0}(\hat{A})))$$

where a map is sent to the composition with $A \to H^0(\hat{A})$ (see [2, Lemma 091V]). The dotted arrow is now determined, and the diagram commutes.

References

- [1] Bhargav Bhatt. Geometric aspects of prismatic cohomology. https://www.math.ias.edu/ bhatt/teaching/prismatic-columbia/.
- [2] The Stacks project authors. The stacks project, 2023.