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In this text, we closely follow [1, Lecture III, §2]. For theory on derived
categories, we use [2, Chapter 05QI].

Throughout this text, A denotes a commutative ring and we work in the
derived category D(A) := D(Mod4).

1 Derived Completeness

An element M € D(A) is a complex M = (- — M~t — M° — M! — ...) of
A-modules.
For M € D(A) and f € A, define

T(M, f) == Rlim(--- & M L M L My e D(A).

Definition 1. Let I C A be a finitely generated ideal. We call M € D(A)
derived I-complete if for all f € I we have T'(M, f) = 0. This is equivalent to

requiring that the map
er: [ M= [] M,
n>0 n>0

where (k,,) — (kn, — fkn+1), is an isomorphism in D(A).

Proposition 2. If T(M, f) = 0 for all f in a generating set of I, then M s
derived I-complete.

An A-module M is derived I-complete if it is so when regarded as a complex
(+++—=>0—=M—0— ---) € D(A) sitting in degree 0. Such a module is
classically I-complete if M = lim,, M/I"M.

If I =(f1,...,fr) then for M € D(A) we can define

M = Rlim(M ®£[I1 0] Zlxy, ... xp)/ (2], ... 20))

»r

where x; acts by f; on M. The complex M is called the derived I -completion
of M. More on this in Section 4.



2 Derived completion of a module with respect
to a principal ideal

Let I = (f) C A be a principal ideal, and let M € Mod 4 be viewed as a complex
in D(A). We use the standard resolution

to compute

M ek Zlal ™) = (o —— 0 — M L 0 )

sitting in degrees —1 and 0. The inverse system (K, f,) that we can use is now

and the derived limit K := M = Rlim K, is part of a distinguished triangle
K —— [[K, — [1K, — K][1]
which induces a long exact sequence

- —— H"Y[]K,) —— HY(K) —— HY{([]K,)

s ([ Ky) —— H(K) ——

As [ K, sits in degrees —1 and 0, we have that H'(K) = 0 for i > 2 and
1 < —2. Hence, we can focus our attention to

S 0 —— HY(K) —— HY([[ K,)

—— HYJ]K,) —— H%K)

— H(J]K,) —— H(]K,) —— HY(K) —— 0 —— -



Note that H(]] K,,) is the cokernel of the non-trivial transition map in [] K.
Hence, we have a commutative diagram

MK, —>—— [] K.

l |

MK, —9%— [ K,

| |

HO(H Kn) — HO(H Kn)

showing that the bottom horizontal map is surjective, so H*(K) = 0.

Lemma 3. The long exact cohomology sequence associated to the distinguished
triangle breaks up into short exact sequences

0 — R'lim HPY(K,,) — H?(K) — lim H?(K,) — 0
Proof. Omitted. See [2, Lemma 0CQE]. O
Hence, we have
0 — R'lim M[f"] — H°(K) — lim M/f"M — 0

and

H YK)=limH '(K,) = lim M[f"].
Lemma 4. If for C € D(A) we have H (C) = 0 for all i # ig, then we have
that H (C)[—io] = C.

Lemma 5. Let f € A. If M € Moda has bounded f*-torsion (there exists
some n > 0 such that M[f°] = M[f"™]), then the dervied f-completion of M as
a complex is concentrated at degree O and coincides with the classical completion.

Proof. The projective system {M[f"]} is essentially zero, i.e. any large enough
composition of transition maps is zero. Hence, lim M[f"] = 0 = R lim M[f"].
To see the second equality, let n be such that M[f™] = M[f°°] and note that

R! lilzn M[f¥] = R! lilgnM[fk"] = coker((mgn) = (Min — [ Mg1)n) = 0.
By Lemma 4, we have M = HO(N) 2 lim M/ f" M. O

2.1 Example

Let A=7Z,1 = (p) and M = Q/Z € D(A). Explicitly, M =(--- - 0— Q/Z —
0— ---). We want to compute M.

In order to do this, we compute the cohomology groups of M. With what
was discussed above, we see that

H=Y(M) =lim M[p"] = lim(p~"Z/Z) = im Z/p"Z = Z,.



On the other hand, we have that all the other cohomology groups are zero
because lim M /p" M = 0 and R! lim M[p"] = 0. Indeed, to see the first equality
note that any fraction can be written as the multiple of p™ for any n. To see the
second equality, note that R!lim M[p"] is the cokernel of the map [[Z/p"Z —
11Z/p"Z where (x,) — (xz, — Tny1). This map is surjective, as for every
(Yn)n € [1,,Z/p"Z, we can construct the following preimage. We set z; = 0,
and we choose z3 € Z/p?Z such that y; = x1 — 73 = T3, where T3 € Z/pZ. Now
we choose x3 € Z/p3Z such that yo = x2 — T3, and we can continue like this for
every n € N.

Hence, Lemma 4 gives us that M =~ Zp[1]. This is interesting, because we
have shown above that the classical (p)-adic completion of M is equal to zero.

3 Derived complete vs classically complete

Let M € Mody be viewed as a complex in D(A). By abuse of notation, we
denote this complex by M € D(A). Let f € A.

Proposition 6. If M is classically (f)-complete, then M is derived (f)-complete.
The converse is true when M is (f)-adically separated.

Proof. Suppose that M is classically (f)-complete. Requiring the map ¢y to
be an isomorphism is equivalent to requiring ker(yps) = coker(yps) = 0. We
examine these two conditions.

For the kernel, we have the following. For (my,), € ker(y), we have m, =
fmpy1 = ffmpq, for all r > 0. Hence, (), f"M = 0 implies kerp = 0. For
the cokernel we note that ¢ is surjective if and only if for all (m,), € [[M
there exists a (), € [[ M such that m,, = z,, — fz,+1. For this we can take
Ty = Z;fio My f7, which exists because M is classically f-adically completed,
ie. M =lim,, M/f"M.

For the converse, note that I-adically separated implies that {M][f"]} is
essentially zero, so R!lim M[f"] = 0. This finishes the proof by what was
discussed in Section 2. O

Proposition 7. Suppose that M is an A-module that is classically I-complete,
so M = M. Then M is also derived I-complete. The converse is true if M is
I-adically separated.

In fact, we have the following.

Proposition 8. If A is Noetherian and M is finitely generated, then the notions
of derived I-complete and classically I-complete are equivalent.

Proof. By Proposition 7, we only need to show that if a A-module M is derived
I-complete, then it is classically I-complete. This uses Krull’s intersection The-
orem:

Theorem 9. Let N = (\I"M. Then there exists an a € A such that a =
1mod I and aN = 0.



Let f:=a—1€IC Aand me(),I"M. Consider

N .
a| Y (=1 | m=m—(=)""m.

Jj=0

On the one hand, it is equal to zero, because am = 0 but on the other it
approaches m as N — oo (here we use that ¢y is an isomorphism). Hence,
m =0 in M, so M is I-adically separated. O

4 Adjunctions
The derived I-complete A-complexes form a full triangulated subcategory
D;(A) Cc D(A)

closed under inverse limits. This inclusion has a left adjoint M — M.
In particular, this adjunction says that

Homp4)(M, E) & Homp(a) (M, E)

where E € pI(A) and the bijection is given by composition with the natural
map M — M.
The derived I-complete A-modules form an abelian subcategory

Mod’, € Mod 4

closed under kernels, cokernels and images. This inclusion has a left-adjoint
M — HO(M).
In particular, this adjunction says that

Homppoa , (H°(M), N) = Homypoa,, (M, N)

where N € Modﬁ\ and the bijection is given by composition with the natural
map M — HO(M).

If M is an A-module, we get two notions of the derived I-completion of
M. For the first one, we regard M as a complex in D(A) and we complete it:
M € D(A). For the second one, we need to take the cohomology group HO(M).
Note the these may be different.

5 Properties

Proposition 10. A derived I-complete A-complex M € D(A) is zero if and
only if M @& A/I 0.



Proof. We follow [2, Lemma 0G1U] and [2, Lemma 0G1T].

Let M € D;(A) and suppose M ®4 A/I = 0 where I = (f1,...,f,). We
have that M = M = Rlim(M ®£@] Zlz)/(2™)) = Rlim(M ®% K,,) where K, is
the Koszul complex on fJ*... f* over A. We want to show that M ®% K,, = 0.
We will first show that M ®% N = 0 where N is an A-module with N = UN[I"].
Denote A’ := A/I" & N. It suffices to show that M’ := M ®4 A’ = 0. Indeed,
M@ A= (M @5 A/I") ® (M @4 N).

The map A" — A/I where (x,y) — = has nilpotent kernel .J. We have

0=M®e%4A/I= (M5 Aok A/ = M' o4 A/I

because the derived tensor product is associative. Note that this also means
that M’ @%, A'/J =0as A’')J = A/I.

Claim: M’ is bounded from above and if H?(M’) is the right-most non-vanishing
cohomology module, then it is a finite A’-module.

Proof. This is discussed in [2, Lemma 07LU]. O

As M' ®@%, A'/J = 0, we have H*(M')/JH*(M') = H*(M') ®%, A'/J = 0.
To see the first equality, tensor the exact sequence 0 — J — A" — A’/J — 0
with H®(M'). Hence, H*(M') = JH®(M’) and we have that J is nilpotent, so
H*(M') = 0 by Nakayama and so M’ = 0.

Now we can show by induction that M ®%4 K, = 0 by noting that the
cohomology modules of K,, are I-power torsion (annihilated by I™"). We omit
the details. O

Proposition 11. Let M be a derived complete A-module. If M/IM = 0, then
M =0.

Proof. Suppose I = (f1,..., fr) and that M # 0. Let 0 < ¢ < r be maximal
such that N := M/(f1,...,fi)M # 0. The map f;y1: N — N is a surjective

map of derived I-complete modules. Hence lim(- - - ELAENG NN N) # 0 as
the limit must map surjectively to N. Contradiction, because N is derived
I-complete. O

Proposition 12. Let f: : M — N be a map in Dy(A). If f: M/IM — N/IN
18 surjecive, then f is surjective.

Proof. Take W to be the cokernel of f and apply Proposition 11. O

6 Why is this important for prisms?

Proposition 13. Let A be a d-ring, and let I C A be a finitely generated ideal
containing p (A is dependent on a prime p). Then the derived I-completion
H°(A) (as a module) admits a unique 5-structure compatible with the one on A.



Proof. Let w: A — W5(A) be the section classifying the d-structure on A. Then
we have a commutative diagram

zj — Y Wy(A) —— Wa(HO(A))
HO(A) ~

where the dotted arrow is uniquely determined by the universal property of
A — H°(A). Explicitly, we have W(H°(A)) € Mod!, (because Wy(H?(A)) =
HO(A) x HY(A) as a set), we have that

Hompod 4 (HO(A)’ WQ(HO (A))) = Homwod 4 (A’ WQ(HO (A)))

where a map is sent to the composition with A — H?(A) (see [2, Lemma 091V]).

The dotted arrow is now determined, and the diagram commutes. O
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