Assumptions:

- Fix a prime *p*.
- All rings are *p*-local, i.e. *p* is an element of the Jacobson radical.
- All ideals are finitely generated.

Distinguished Elements

Definition 1. Let $(A, \delta) \in \operatorname{Ring}_{\delta}$. An element $x \in A$ is said to be *distinguished* if $\delta(x) \in A^{\times}$.

Remark. An alternative definition exists, which states that $x \in A$ is distinguished if $(p, x, \delta(x)) = A$. We will almost exclusively look at distinguished elements which lie in Rad(A), in which case both definitions are equivalent.

Proposition 2. Let $f: (A, \delta) \to (A', \delta')$ be a morphism in $\operatorname{Ring}_{\delta}$ and let $x \in A$ be distinguished. Then $f(x) \in A'$ is distinguished. In particular, if $(A, \delta) = (A', \delta')$ and $f = \varphi$, the p-locality of A implies that $x \in A$ is distinguished if and only if $\varphi(x) \in A$ is distinguished. **Example 3.** We discuss two examples:

- Let $A = \mathbb{Z}_{(p)}$ (localisation), with a delta structure given by $\delta \colon x \mapsto \frac{x-x^p}{p}$. Then $\delta(p) = 1 p^{p-1} \in \mathbb{Z}_{(p)}^{\times}$. As $\delta(n) = \frac{n-n^p}{p}$ for any integer *n* and delta ring (A, δ) , *p* is distinguished for any *p*-local delta ring. In particular (the case where the ring has *p*-torsion), zero divisors can be distinguished.
- Let $A = \mathbb{Z}_p[[q-1]]$, with a delta structure uniquely determined by $\delta(q) = 0$ (or $\varphi(q) = q^p$). Let $d = \frac{q^p 1}{q 1} = \sum_{i=0}^{p-1} q^i$, then *d* is mapped to the distinguished element *p* under the δ -map $A \to \mathbb{Z}_p$ given by $q \mapsto 1$. As the ring is (q 1)-adically complete, *d* is distinguished as well.

Lemma 4. Let R be a perfect \mathbb{F}_p -algebra.

- (i) An element $d = \sum_{i>0} [d_i] p^i \in W(R)$ is distinguished if and only if $d_1 \in R^{\times}$.
- (ii) Distinguished elements in W(R) are not zerodivisors.
- (iii) For distinguished elements $d \in W(R)$, we get $(W(R)/d)[p^{\infty}] = (W(R)/d)[p]$.
- *Proof.* (i) Let $d = \sum_{i \ge 0} [d_i] p^i \in W(R)$; we have $\varphi(d) = \sum_{i \ge 0} [d_i^p] p^i$ and $d^p = [d_0^p] \mod p^2$. Hence $\delta(d) = \frac{\varphi(d) - d^p}{p} = [d_1^p] \mod p$. As $p \in \operatorname{Rad}(W(R))$, the result follows.
- (ii) Suppose $d \in W(R)$ is distinguished and df = 0 for some nonzero f. Then $0 = \delta(df) = d^p \delta(f) + \delta(d) f^p + p \delta(d) \delta(f) = f^p \delta(d) + \delta(f) \varphi(d)$. Multiplying with $\varphi(f)$ yields $f^p \varphi(f) \delta(d) = 0$, and as d is distinguished $f^p \varphi(f) = 0$. It follows that $f^{2p} = 0 \mod p$, and as W(R)/p is reduced, $f = 0 \mod p$, say f = pf'. As W(R) is p-torsionfree, df' = 0. We see that f must be zero, otherwise it would be an 'infinite power of p', which is not possible as W(R) is p-adically separated.
- (iii) It suffices to show that $(W(R)/d)[p^2] = (W(R)/d)[p]$. Hence, let $f, g \in W(R)$ such that $p^2f = gd$; we show that $pf \in dW(R)$. As $gd \in p^2W(R)$, the image $\delta(gd) = g^p\delta(d) + \delta(g)\varphi(d) \in pW(R)$. Multiplying this by $\varphi(g)$, we get that $g^p\delta(d)\varphi(g) \in pW(R)$. Again, as $\delta(d)$ is a unit, $g^{2p} = 0 \mod p$, hence $g = 0 \mod p$. This shows that $pf \in dW(R)$.

Example 5 (Universal distinguished element). We construct a universal *p*-local δ -ring equipped with a distinguished element. Localise $\mathbb{Z}\{d\}$ along the multiplicative subset generated by the elements $\{\delta(d), \varphi(\delta(d)), \varphi^2(\delta(d)), \ldots\}$, then localise the resulting ring along V(p).

As long as $x \in \text{Rad}(A)$, we have the following:

The distinguishedness of x is purely dependent on the ideal (x).

Lemma 6. Let $(A, \delta) \in \operatorname{Ring}_{\delta}$. Let $f \in \operatorname{Rad}(A)$ be distinguished and let $u \in A^{\times}$, then uf is distinguished.

Proof. Plainly use the definition of δ to get

$$\delta(uf) = u^p \delta(f) + \delta(u) f^p + p \delta(f) \delta(u).$$

The first term is a unit and the latter two terms lie in Rad(A), hence $\delta(uf)$ is a unit, hence uf is distinguished.

Lemma 7. Let $(A, \delta) \in \operatorname{Ring}_{\delta}$. Let $f \in \operatorname{Rad}(A)$ and $h \in A$ be such that fh is distinguished, then f is distinguished and $h \in A^{\times}$.

Proof. Another writing exercise:

$$\delta(fh) = f^p \delta(h) + \delta(f)h^p + p\delta(f)\delta(h)$$

By the same argument as in Lemma 6, $\delta(f)h^p$ is a unit. Of course this is only possible if f is distinguished and h is a unit.

Proposition 8. Let $(A, \delta) \in \operatorname{Ring}_{\delta}$ and let $f \in \operatorname{Rad}(A)$. Then f is distinguished if and only if $p \in (f, \varphi(f))$.

Proof. (\implies) This follows directly from $\varphi(f) = f^p + p\delta(f)$.

(\Leftarrow) We show that $(p, f, \delta(f)) = A$ (which is equivalent to showing that $\delta(f)$ is a unit, considering $p, f \in \text{Rad}(A)$). Assume this is not the case; we may then even assume that $\delta(f) \in \text{Rad}(A)$ (by replacing A with its localisation along $V(p, f, \delta(f)) \subseteq \text{Spec}(A)$). However, the assumption $p \in (f, \varphi(f))$ implies the existence of $x, y \in A$ such that $xf + y\varphi(f) = p$. Rewriting this expression yields $p(1 - y\delta(f)) = f(x + yf^{p-1})$. However, the left hand side is now distinguished by Lemma 6 and the fact that $\delta(f) \in \text{Rad}(A)$. Lemma 7 in turn implies that f must be distinguished, so the assumption that it was not distinguished was nonsense. \Box

We generalise this idea from principal ideals to *locally principal ideals*.

Definition 9. Let $R \in \mathbf{Ring}$. An ideal *I* is *locally principal* if $I_{\mathfrak{m}} = IR_{\mathfrak{m}}$ is principal for all maximal ideals $\mathfrak{m} \subseteq R$.

Corollary 10. Let $(A, \delta) \in \operatorname{Ring}_{\delta}$ and let $I \subseteq A$ be an ideal such that $I \subseteq \operatorname{Rad}(A)$. Then the following are equivalent:

- (i) $p \in I + \varphi(I)A$;
- (ii) There exists a faithfully flat δ -map $A \to A'$, where A' is a finite product of localisations of A along φ -stable multiplicative subsets and IA' = (f) for some distinguished $f \in \text{Rad}(A')$.

If both conditions are satisfied, then $p \in I^p + \varphi(I)A$ *.*

Proof. There are elements $g_1, \ldots, g_r \in R$ such that $(g_1, \ldots, g_r) = A$ and all $I_{g_i} = IA_{g_i}$ are principal (this can be shown using compactness of Spec(A) and the fact that we can cover Spec(A) by distinguished opens on which I is trivial). Write $B = \prod_i A_{g_i}$, then the canonical map $A \rightarrow B$ is faithfully flat and IB is principal, say IB = (f). Localise B along the closed subset $V(p, f) \subseteq$ Spec(B); the resulting ring A' will be (p, f)-local and a finite product of localisations of A along φ -stable multiplicative subsets. Hence, it is will inherit a unique δ -structure from A such that $A \rightarrow A'$ is a δ -map. It remains to show that this map is faithfully flat. The composite of flat maps $A \rightarrow B \rightarrow A'$ is flat. It is faithfully flat as the induced map Spec(A') \rightarrow Spec(A) is surjective: the image contains V(p, I), hence all closed points as $(p, I) \subseteq$ Rad(A) and it is closed under generalisation by flatness. The fact that f is distinguished follows from Proposition 8.

Suppose now that both conditions are satisfied. The property that $p \in I^p + \varphi(I)A$ may be checked after a faithfully flat base change, so assume I = (f) is principal. Then $\delta(f)$ is a unit, and $\varphi(f) = f^p + p\delta(f)$ implies that $p \in (f^p, \varphi(f))$.

Prisms

Definition 11. Define the category of δ -pairs \mathscr{P} : its objects are pairs (A, I), where $A \in \operatorname{Ring}_{\delta}$ and $I \subseteq A$ is an ideal; its morphisms $(A, I) \to (B, J)$ are δ -morphism $A \to B$ that map I into J.

Definition 12. A pair $(A, I) \in \mathscr{P}$ is a *prism* if

- (i) I is locally principal, generated by a nonzerodivisor (i.e. *I* defines a Cartier divisor on Spec *A*, *I* is invertible);
- (ii) A is derived (p, I)-complete;

(iii)
$$p \in I + \varphi(I)A$$
.

Remark. Derived (p, I)-completeness of A means in particular that $(p, I) \subseteq \text{Rad}(A)$, hence also $\varphi(I) \subseteq \text{Rad}(A)$. The property $p \in I + \varphi(I)A$ can be interpreted in a geometric way: the closed subschemes $\varphi^{-1}V(I)$ and V(I) of Spec A only meet in characteristic p.

Definition 13. A map $(A, I) \rightarrow (B, J)$ of prisms is *(faithfully) flat* if $A \rightarrow B$ is (p, I)-completely (faithfully) flat (which means that $A/(p, I) \rightarrow B \otimes_A^L A/(p, I)$ is (faithfully) flat). **Definition 14.** A prism (A, I) is called

- *perfect* if *A* is perfect;
- *bounded* if *A*/*I* has bounded *p*-torsion;
- *crystalline* if I = (p).
- **Example 15.** A pair $(A, (p)) \in \mathcal{P}$ is a (crystalline, bounded) prism if and only if A is *p*-adically complete and *p*-torsionfree;
 - Both cases in Example 3 give rise to a (bounded) prism A, (d)). [NB: We might need to complete A.]

Proposition 16. Let $(A, I) \in$ **Prism**. The ideal $\varphi(I)A$ is principal, generated by a distinguished element.

Proof. By Corollary 10, write p = a + b, with $a \in I^p$ and $b \in \varphi(I)A$. We show that $\varphi(I)A = bA$, in other words the map $A \to \varphi(I)A$ given by $1 \mapsto b$ is surjective. We may do so after faithfully flat base change, so by Corollary 10 we may assume that I is principal; say I = (f) with $f \in \operatorname{Rad}(A)$ distinguished. After writing $a = xf^p$ and $b = \varphi(f)y$, it remains to prove that y is a unit. Suppose this is not the case, then we may assume $y \in \operatorname{Rad}(A)$ by localising along $V(p, f, y) \subseteq \operatorname{Spec} A$. Writing out $\varphi(f)$ we find that p = a + b is equivalent to $p(1 - y\delta(f)) = f(f^{p-1}(x + y))$. The fact that p, f are distinguished and $y \in \operatorname{Rad}(A)$ imply (with Lemma 7) that $f^{p-1}(x + y)$ is a unit. This is impossible, as $f \in \operatorname{Rad}(A)$.

The following corollary is now obvious.

Corollary 17. *If* (*A*, *I*) *is a perfect prism, then I is principal, generated by a distinguished element.*

Finally we discuss rigidity of prisms.

Theorem 18. Let $(A, I) \rightarrow (B, J)$ be a morphism of prisms. Then $I \otimes_A B \cong J$. In particular, IB = J. Conversely, if B is a derived (p, I)-complete A-algebra with δ -structure, then $(B, IB) \in \mathbf{Prism}$ if and only if B[I] = 0.

Proof Sketch. As $I \otimes_A B$, J are invertible, it suffices to show that $I \otimes_A B \to J$ is surjective, or equivalently that IB = J. By faithfully flat descent and Corollary 10, it suffices to prove the theorem for prisms (A, d) and (B, e), where $d \in \text{Rad}(A)$ and $e \in \text{Rad}(B)$ are distinguished. However, now d = ex for some $x \in B$, which is a unit by Lemma 7. Hence, (d)B = (e).

Note that B[I] = 0 if and only if the map $I \otimes_A B \to IB$ is an isomorphism. If (B, IB) is a prism $I \otimes_A B \to IB$ is an isomorphism by the previous part. If $I \otimes_A B \to IB$ is an isomorphism, then IB is invertible, and checking the definition yields that (B, IB) is a prism.