
Assumptions:
• Fix a prime p.
• All rings are p-local, i.e. p is an element of the Jacobson radical.
• All ideals are finitely generated.

Distinguished Elements
Definition 1. Let (A, δ) ∈ Ringδ. An element x ∈ A is said to be distinguished if δ(x) ∈
A×. y
Remark. An alternative definition exists, which states that x ∈ A is distinguished if (p, x, δ(x)) =
A. We will almost exclusively look at distinguished elements which lie in Rad(A), in which
case both definitions are equivalent.
Proposition 2. Let f : (A, δ) → (A′, δ′) be a morphism in Ringδ and let x ∈ A be distinguished.
Then f (x) ∈ A′ is distinguished. In particular, if (A, δ) = (A′, δ′) and f = ϕ, the p-locality of A
implies that x ∈ A is distinguished if and only if ϕ(x) ∈ A is distinguished.
Example 3. We discuss two examples:

• Let A = Z(p) (localisation), with a delta structure given by δ : x 7→ x−xp

p . Then δ(p) = 1−
pp−1 ∈ Z×

(p). As δ(n) = n−np

p for any integer n and delta ring (A, δ), p is distinguished
for any p-local delta ring. In particular (the case where the ring has p-torsion), zero
divisors can be distinguished.

• Let A = Zp[[q− 1]], with a delta structure uniquely determined by δ(q) = 0 (or ϕ(q) =
qp). Let d = qp−1

q−1 = ∑
p−1
i=0 qi, then d is mapped to the distinguished element p under the δ-

map A→ Zp given by q 7→ 1. As the ring is (q− 1)-adically complete, d is distinguished
as well. y

Lemma 4. Let R be a perfect Fp-algebra.

(i) An element d = ∑i≥0[di]pi ∈W(R) is distinguished if and only if d1 ∈ R×.

(ii) Distinguished elements in W(R) are not zerodivisors.

(iii) For distinguished elements d ∈W(R), we get (W(R)/d)[p∞] = (W(R)/d)[p].

Proof. (i) Let d = ∑i≥0[di]pi ∈ W(R); we have ϕ(d) = ∑i≥0[d
p
i ]p

i and dp = [dp
0 ] mod p2.

Hence δ(d) = ϕ(d)−dp

p = [dp
1 ] mod p. As p ∈ Rad(W(R)), the result follows.

(ii) Suppose d ∈ W(R) is distinguished and d f = 0 for some nonzero f . Then 0 = δ(d f ) =
dpδ( f )+ δ(d) f p + pδ(d)δ( f ) = f pδ(d)+ δ( f )ϕ(d). Multiplying with ϕ( f ) yields f p ϕ( f )δ(d) =
0, and as d is distinguished f p ϕ( f ) = 0. It follows that f 2p = 0 mod p, and as W(R)/p
is reduced, f = 0 mod p, say f = p f ′. As W(R) is p-torsionfree, d f ′ = 0. We see that
f must be zero, otherwise it would be an ‘infinite power of p’, which is not possible as
W(R) is p-adically separated.

(iii) It suffices to show that (W(R)/d)[p2] = (W(R)/d)[p]. Hence, let f , g ∈ W(R) such that
p2 f = gd; we show that p f ∈ dW(R). As gd ∈ p2W(R), the image δ(gd) = gpδ(d) +
δ(g)ϕ(d) ∈ pW(R). Multiplying this by ϕ(g), we get that gpδ(d)ϕ(g) ∈ pW(R). Again,
as δ(d) is a unit, g2p = 0 mod p, hence g = 0 mod p. This shows that p f ∈ dW(R).
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Example 5 (Universal distinguished element). We construct a universal p-local δ-ring equipped
with a distinguished element. Localise Z{d} along the multiplicative subset generated by the
elements {δ(d), ϕ(δ(d)), ϕ2(δ(d)), . . . }, then localise the resulting ring along V(p). y

As long as x ∈ Rad(A), we have the following:

The distinguishedness of x is purely dependent on the ideal (x).

Lemma 6. Let (A, δ) ∈ Ringδ. Let f ∈ Rad(A) be distinguished and let u ∈ A×, then u f is
distinguished.

Proof. Plainly use the definition of δ to get

δ(u f ) = upδ( f ) + δ(u) f p + pδ( f )δ(u).

The first term is a unit and the latter two terms lie in Rad(A), hence δ(u f ) is a unit, hence u f
is distinguished.

Lemma 7. Let (A, δ) ∈ Ringδ. Let f ∈ Rad(A) and h ∈ A be such that f h is distinguished, then f
is distinguished and h ∈ A×.

Proof. Another writing exercise:

δ( f h) = f pδ(h) + δ( f )hp + pδ( f )δ(h).

By the same argument as in Lemma 6, δ( f )hp is a unit. Of course this is only possible if f is
distinguished and h is a unit.

Proposition 8. Let (A, δ) ∈ Ringδ and let f ∈ Rad(A). Then f is distinguished if and only if
p ∈ ( f , ϕ( f )).

Proof. ( =⇒ ) This follows directly from ϕ( f ) = f p + pδ( f ).
( ⇐= ) We show that (p, f , δ( f )) = A (which is equivalent to showing that δ( f ) is a unit,
considering p, f ∈ Rad(A)). Assume this is not the case; we may then even assume that
δ( f ) ∈ Rad(A) (by replacing A with its localisation along V(p, f , δ( f )) ⊆ Spec(A)). However,
the assumption p ∈ ( f , ϕ( f )) implies the existence of x, y ∈ A such that x f + yϕ( f ) = p.
Rewriting this expression yields p(1− yδ( f )) = f (x + y f p−1). However, the left hand side is
now distinguished by Lemma 6 and the fact that δ( f ) ∈ Rad(A). Lemma 7 in turn implies that
f must be distinguished, so the assumption that it was not distinguished was nonsense.

We generalise this idea from principal ideals to locally principal ideals.
Definition 9. Let R ∈ Ring. An ideal I is locally principal if Im = IRm is principal for all
maximal ideals m ⊆ R. y
Corollary 10. Let (A, δ) ∈ Ringδ and let I ⊆ A be an ideal such that I ⊆ Rad(A). Then the
following are equivalent:

(i) p ∈ I + ϕ(I)A;

(ii) There exists a faithfully flat δ-map A→ A′, where A′ is a finite product of localisations of A along
ϕ-stable multiplicative subsets and IA′ = ( f ) for some distinguished f ∈ Rad(A′).
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If both conditions are satisfied, then p ∈ Ip + ϕ(I)A.

Proof. There are elements g1, . . . , gr ∈ R such that (g1, . . . , gr) = A and all Igi = IAgi are prin-
cipal (this can be shown using compactness of Spec(A) and the fact that we can cover Spec(A)

by distinguished opens on which I is trivial). Write B = ∏i Agi , then the canonical map
A → B is faithfully flat and IB is principal, say IB = ( f ). Localise B along the closed subset
V(p, f ) ⊆ Spec(B); the resulting ring A′ will be (p, f )-local and a finite product of localisations
of A along ϕ-stable multiplicative subsets. Hence, it is will inherit a unique δ-structure from A
such that A→ A′ is a δ-map. It remains to show that this map is faithfully flat. The composite
of flat maps A → B → A′ is flat. It is faithfully flat as the induced map Spec(A′) → Spec(A)

is surjective: the image contains V(p, I), hence all closed points as (p, I) ⊆ Rad(A) and it is
closed under generalisation by flatness. The fact that f is distinguished follows from Proposi-
tion 8.

Suppose now that both conditions are satisfied. The property that p ∈ Ip + ϕ(I)A may be
checked after a faithfully flat base change, so assume I = ( f ) is principal. Then δ( f ) is a unit,
and ϕ( f ) = f p + pδ( f ) implies that p ∈ ( f p, ϕ( f )).

Prisms
Definition 11. Define the category of δ-pairs P : its objects are pairs (A, I), where A ∈ Ringδ

and I ⊆ A is an ideal; its morphisms (A, I) → (B, J) are δ-morphism A → B that map I into
J. y
Definition 12. A pair (A, I) ∈P is a prism if

(i) I is locally principal, generated by a nonzerodivisor (i.e. I defines a Cartier divisor on
Spec A, I is invertible);

(ii) A is derived (p, I)-complete;

(iii) p ∈ I + ϕ(I)A. y
Remark. Derived (p, I)-completeness of A means in particular that (p, I) ⊆ Rad(A), hence also
ϕ(I) ⊆ Rad(A). The property p ∈ I + ϕ(I)A can be interpreted in a geometric way: the closed
subschemes ϕ−1V(I) and V(I) of Spec A only meet in characteristic p.
Definition 13. A map (A, I)→ (B, J) of prisms is (faithfully) flat if A→ B is (p, I)-completely
(faithfully) flat (which means that A/(p, I)→ B⊗L

A A/(p, I) is (faithfully) flat). y
Definition 14. A prism (A, I) is called

• perfect if A is perfect;

• bounded if A/I has bounded p-torsion;

• crystalline if I = (p). y
Example 15. • A pair (A, (p)) ∈ P is a (crystalline, bounded) prism if and only if A is

p-adically complete and p-torsionfree;

• Both cases in Example 3 give rise to a (bounded) prism A, (d)). [NB: We might need to
complete A.] y

Proposition 16. Let (A, I) ∈ Prism. The ideal ϕ(I)A is principal, generated by a distinguished
element.
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Proof. By Corollary 10, write p = a + b, with a ∈ Ip and b ∈ ϕ(I)A. We show that ϕ(I)A = bA,
in other words the map A→ ϕ(I)A given by 1 7→ b is surjective. We may do so after faithfully
flat base change, so by Corollary 10 we may assume that I is principal; say I = ( f ) with
f ∈ Rad(A) distinguished. After writing a = x f p and b = ϕ( f )y, it remains to prove that y
is a unit. Suppose this is not the case, then we may assume y ∈ Rad(A) by localising along
V(p, f , y) ⊆ Spec A. Writing out ϕ( f ) we find that p = a + b is equivalent to p(1− yδ( f )) =
f ( f p−1(x + y)). The fact that p, f are distinguished and y ∈ Rad(A) imply (with Lemma 7)
that f p−1(x + y) is a unit. This is impossible, as f ∈ Rad(A).

The following corollary is now obvious.
Corollary 17. If (A, I) is a perfect prism, then I is principal, generated by a distinguished element.

Finally we discuss rigidity of prisms.
Theorem 18. Let (A, I) → (B, J) be a morphism of prisms. Then I ⊗A B ∼= J. In particular, IB = J.
Conversely, if B is a derived (p, I)-complete A-algebra with δ-structure, then (B, IB) ∈ Prism if and
only if B[I] = 0.

Proof Sketch. As I ⊗A B, J are invertible, it suffices to show that I ⊗A B → J is surjective, or
equivalently that IB = J. By faithfully flat descent and Corollary 10, it suffices to prove the
theorem for prisms (A, d) and (B, e), where d ∈ Rad(A) and e ∈ Rad(B) are distinguished.
However, now d = ex for some x ∈ B, which is a unit by Lemma 7. Hence, (d)B = (e).

Note that B[I] = 0 if and only if the map I ⊗A B→ IB is an isomorphism. If (B, IB) is a prism
I ⊗A B→ IB is an isomorphism by the previous part. If I ⊗A B→ IB is an isomorphism, then
IB is invertible, and checking the definition yields that (B, IB) is a prism.
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