Group rings, etc.

May 12, 2021

Definition 0.1. Let G be a finite group and let R be a commutative ring. We set the group algebra R[G] to be the ring generated over R by x_g , $g \in G$, with the multiplication rule $x_g * x_h = gh$ for $g, h \in G$. If R is a topological ring, we equip R[G] with the topology from R.

The utility of this definition is the following: if R is a field, then the category of finite dimensional R representations of G is equivalent to the category of finite left modules over R[G].

In general, there is a natural ring homomorphism:

 $\varepsilon \colon R[G] \to R,$

the augmentation homomorphism, that maps $x_g \mapsto 1$ for all $g \in G$. The kernel of ε , I, is often called the augmentation ideal and is generated by elements of the form $x_g - 1$.

Definition 0.2. Let G be a profinite group. The completed group algebra, $\mathbb{Z}_{\ell}[G]$ is set to be:

$$\mathbb{Z}_{\ell}\llbracket G \rrbracket := \lim_{\lambda} \mathbb{Z}_{\ell}[G/N_{\lambda}]$$

where N_{λ} is the (filtered) set of open normal subgroups, each $\mathbb{Z}_{\ell}[G/N_{\lambda}]$, being a finite free \mathbb{Z}_{ℓ} -module, is given the ℓ -adic topology, and $\mathbb{Z}_{\ell}[G]$ is given the inverse limit topology.

The ring $\mathbb{Z}_{\ell}\llbracket G \rrbracket$ is compact. There is a natural embedding $G \hookrightarrow \mathbb{Z}_{\ell}\llbracket G \rrbracket^{\times}$. It is easy to see that the augmentation homomorphism extends to a continuous augmentation map:

$$\varepsilon \colon \mathbb{Z}_{\ell}\llbracket G \rrbracket \to \mathbb{Z}_{\ell}$$

with augmentation ideal \mathscr{I} . The augmentation ideal is not necessarily topologically nilpotent if G is not pro- ℓ ; however, if we assume G is pro- ℓ , it is topologically nilpotent. Even in this case, the \mathscr{I} -adic topology is clearly *coarser* than the profinite topology, as one may see from the following example (for instance).

When G is a free pro- ℓ group on k generators g_1, \ldots, g_k , then

$$\mathbb{Z}_{\ell}\llbracket G \rrbracket \to \mathbb{Z}_{\ell} \ll u_1, \dots, u_k \gg,$$

where the latter is the non-commutive power series ring over \mathbb{Z}_{ℓ} , given by $x_{g_i} - 1 \mapsto u_i$, is an isomorphism.

Definition 0.3. Let G be a pro- ℓ group. The \mathbb{Q}_{ℓ} -unipotent group ring is the following inverse limit.

$$\mathbb{Q}_{\ell}\llbracket G
rbracket := \lim_n \left(\mathbb{Z}_{\ell}\llbracket G
rbracket / \mathscr{I}^n \otimes \mathbb{Q}_{\ell}
ight)$$

Here is the basic property of the unipotent group ring: the category of modules over $\mathbb{Q}_{\ell}[\![G]\!]$ that are finite dimensional as \mathbb{Q}_{ℓ} -vector spaces is equivalent to the category of finite dimensional unipotent \mathbb{Q}_{ℓ} representations of G^{1}

Finally, we have the following basic result.

¹A representation $\rho: G \to \operatorname{GL}_n(\mathbb{Q}_\ell)$ is unipotent if for all $g \in G$, $\rho(g)$ has characteristic polynomial $(x-1)^n$. Equivalently, ρ is unipotent if it is conjugate to a representation valued in the subgroup $U \subset \operatorname{GL}_n(\mathbb{Q}_\ell)$ of upper-triangular matrices with 1s on the diagonal.

Proposition 0.4. Let G be a topologically finitely generated pro- ℓ group. Let R be \mathbb{Z}_{ℓ} or \mathbb{Q}_{ℓ} . Then the map $g \mapsto g-1$ induces an isomorphism:

$$G^{ab} \otimes_{\mathbb{Z}_{\ell}} R \to \mathscr{I}/\mathscr{I}^2.$$

This applies in the following situation. Let X/k be a smooth variety over a perfect field of characteristic prime-to- ℓ . Let $G := \pi_1(X)_{\bar{k}}^{(\ell)}$ be the pro- ℓ completion of the geometric fundamental group. Then $G^{ab} \otimes_{\mathbb{Z}_{\ell}} R \cong H_1(X_{\bar{k}}, R)$, i.e., the left hand side of the above equation is the first ℓ -adic homology group of $X_{\bar{k}}$. This isomorphism is compatible under Gal_k .