DEFORMATIONS OF REPRESENTATIONS FOR PROFINITE GROUPS

YINGYING WANG

ABSTRACT. In this talk, we show the existence of a universal deformation ring.

Contents

1.	Profinite groups and representations	1
2.	Finiteness condition Φ_p for profinite groups	2
3.	Category of deformations of Galois representations	3
4.	The tangent space	4
5.	Traces	5
6.	Representability revisited	6
References		7

1. PROFINITE GROUPS AND REPRESENTATIONS

We first recall some basic definitions from [Ser97]. Another reference is [RZ00].

Definition 1.1. A group G is called a p-group if $|G| = p^r$ for some $r \in \mathbb{N}$.

Definition 1.2. Let G be a topological group.

(i) We call G a profinite group if

$$G = \varprojlim_i G_i$$

as topological groups, where G_i are finite groups with discrete topology. (ii) Let p be a prime number. If we have

$$G = \varprojlim_i G_i$$

as topological groups, where G_i are finite groups with cardinality p^{r_i} , $r_i \in \mathbb{N}$ for each *i*, and discrete topology, then we call G a pro-p group.

Remark 1.3. (i) Closed subgroups $H \subseteq G$ are profinite and G/H is compact and totally disconnected. (ii) Let L/K be an extension of commutative fields, then Gal(L/K) is a profinite group.

Definition 1.4. Let p be a prime number.

- (i) Let G be a profinite group. If a subgroup $H \subseteq G$ is a pro-p-group and the index (G : H) is prime to p, then we call H a Sylow p-subgroup of G.
- (ii) Let G be a profinite group, G' a subgroup. Then a pro-p quotient of G' is a group of the form G'/H, which is a pro-p group. We call G'/H a maximal pro-p quotient if G'/H is the largest possible quotient that is a pro-p group.

We would like to further more define the profinite completion and pro-p completion of a group.

Definition 1.5. Let G be a group.

(i) The profinite completion of G is defined as

$$\hat{G} = \varprojlim_{\substack{N \lhd G \\ G/N \ finite}} G/N$$

Date: June 9, 2021.

(ii) The pro-p completion of G is defined as

$$G_{\hat{p}} = \varprojlim_{\substack{N \lhd G \\ G/N \text{ is a p-group}}} G/N$$

Example 1.6. (i) A profinite completion of \mathbb{Z} is

$$\hat{\mathbb{Z}} = \varprojlim_{n \in \mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$$

(ii) A pro-p completion of \mathbb{Z} is the p-adic integers

$$\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$$

(iii) Now consider the multiplicative subgroup $\mathbb{Z}_p^* \subseteq \mathbb{Z}_p$. We have the identification

$$\mathbb{Z}_p^* = \varprojlim_n \left(\mathbb{Z}/p^n \mathbb{Z} \right)^{\diamond}$$

This is a profinite group but not a pro-*p* group. In fact, for $p \neq 2$, we have $\mathbb{Z}^* = \mu_{p-1} \times \mathbb{Z}_p$, and $\mathbb{Z}_2^* = \{\pm 1\} \times \mathbb{Z}_2$. Thus it has a pro-*p* subgroup.

(iv) $GL_n(\mathbb{Z}_p)$ is a profinite group but not a pro-p group. However, the congruence subgroup

$$\Gamma_1 := \{ A \in GL_n(\mathbb{Z}_p) | A \equiv \mathrm{Id} \mod p \}$$

is a pro-p group.

Remark 1.7. Let G be a profinite group. When we say a representation $\rho : G \to \operatorname{GL}(V)$ is continuous, we mean that it is continuous with respect to the profinite topology on G and the discrete topology on GL(V). This implies that ρ being continuous means $\operatorname{stab}(v) = \{g \in G | \rho(g)v = v\}$ is open in G for all $v \in V$.

2. Finiteness condition Φ_p for profinite groups

Fix p a prime number.

Definition 2.1. A profinite group G satisfies the finiteness condition Φ_p if the following equivalent conditions hold for all $G_0 \subseteq G$ open subgroups of finite index.

- (i) The maximal pro-p quotient of G_0 is topologically finitely generated.
- (ii) The set of continuous group homomorphisms $Hom(G_0, \mathbb{F}_p)$ is a finite dimensional \mathbb{F}_p -vector space.

Remark 2.2. A topological group G is topologically finitely generated means that G has a dense subgroup that is finitely generated. The equivalence of the conditions follows from Burnside basis theorem. Also note that a finite dimensional \mathbb{F}_p -vector space has finite cardinality.

Example 2.3. (i) Let K/\mathbb{Q}_p finite, then $\operatorname{Gal}(\overline{K}/K)$ satisfies Φ_q for all primes q.

- (ii) Let F/\mathbb{Q} finite, so F is a number field. Let S be a finite set of places in F. Let F_S be the maximal extension of F that is unramified ouside of S in an algebraic closure \overline{F} of F. Then $\operatorname{Gal}(F_S/F)$ satisfies Φ_p for all p.
- *Proof.* (i) Let K/\mathbb{Q}_p be a finite extension of degree d and its residue field k has cardinality q a power of p. Since $\operatorname{Hom}(G_0, \mathbb{F}_p) \cong \operatorname{Hom}(G_0^{\operatorname{ab}}, \mathbb{F}_p)$, we may check this on K^{ab}/K , as the maximal abelian subgroup of $\operatorname{Gal}(\overline{K}/K)$ is isomorphic to $\operatorname{Gal}(K^{\operatorname{ab}}/K)$. By local class field theory, we have

$$\operatorname{Gal}(K^{\operatorname{ab}}/K) \xrightarrow{\sim} \mathcal{O}_K^{\times} \times \widehat{\mathbb{Z}} \xrightarrow{\sim} \mu_{q-1} \times \mu_{p^a} \times \mathbb{Z}_p^d \times \prod_{\ell \text{ prime}} \mathbb{Z}_\ell \xrightarrow{\sim} \mu_{q-1} \times \mu_{p^a} \times \mathbb{Z}_p^{d+1} \times \prod_{\ell \neq p} \mathbb{Z}_\ell$$

where μ_{p^a} is the subgroup of all roots of unity in K. Now take a finite index open subgroup $G_0 \subseteq \text{Gal}(K^{ab}/K)$. Since G_0 is open, it contains a subgroup H_0 of the form

$$H_0 = p^{r_1} \mathbb{Z}_p \times \dots \times p^{r_{d+1}} \mathbb{Z}_p \times \prod_{l \neq p} \ell^{s_\ell} \mathbb{Z}_\ell$$

Now let $f : G_0 \to \mathbb{F}_p$ be any continuous group homomorphism. Since $p^{r_i}\mathbb{Z}_p$ and $\ell^{s_\ell}\mathbb{Z}_\ell$ are neighborhood of zero in \mathbb{Z}_p and \mathbb{Z}_ℓ respectively, we must have $f(H_0) = 0$. Hence every continuous group homomorphism $f \in \text{Hom}(G_0, \mathbb{F}_p)$ factorise through G_0/H_0 . Since for $\ell \neq p$, there is no nontrivial group homomorphism between $\mathbb{Z}/\ell^{s_{\ell}}\mathbb{Z}$ and \mathbb{F}_p , we know that $f \in \text{Hom}(G_0, \mathbb{F}_p)$ are zero on the subgroup

$$H = p^{r_1} \mathbb{Z}_p \times \dots \times p^{r_{d+1}} \mathbb{Z}_p \times \prod_{l \neq p} \mathbb{Z}_{\ell}$$

We also know that G_0 has finite index in $\operatorname{Gal}(K^{\operatorname{ab}}/K)$, so H has finite index in G_0 . Therefore every continuous group homomorphism $f \in \operatorname{Hom}(G_0, \mathbb{F}_p)$ factorise a finite group G_0/H , and hence $\operatorname{Hom}(G_0, \mathbb{F}_p)$ is a finite dimensional \mathbb{F}_q -vector space.

(ii) The number field case uses global class field theory

$$\widehat{\mathbb{I}_K/K^{\times}} \xrightarrow{\sim} \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

We leave this as an exercise.

3. Category of deformations of Galois representations

The references for the following sections are [Böc13], [Lee], [Maz89], and [Kis]. Fix a prime p and a finite field \mathbb{F} with characteristic p. For example, \mathbb{F}_q with $q = p^r$ for some positive integer r. Then the ring of Witt vectors $W(\mathbb{F})$ is the ring of integers \mathcal{O}_K for a finite extension K/\mathbb{Q}_p with degree r (K is in fact unique).

Let G be a profinite group, $V_{\mathbb{F}}$ a finite dimensional \mathbb{F} -vector space with a continuous G-action. Recall that this means that the stabliser stab(v) for each $v \in V_{\mathbb{F}}$ is an open subgroup in G.

Let $\mathfrak{UR}_{W(\mathbb{F})}$ be the category of finite local Artinian $W(\mathbb{F})$ -algebras with residue field \mathbb{F} .

Definition 3.1. Let $A \in \mathfrak{UR}_{W(\mathbb{F})}$ and G be a profinite group. Let $V_{\mathbb{F}}$ be a finite dimensional \mathbb{F} -vector space with a continuous G-action.

- (i) A defomation of $V_{\mathbb{F}}$ to A is the datum (V_A, ι) , where
 - V_A is a free A-module with a continuous G-action,
 - $\iota: V_A \otimes_A \mathbb{F} \xrightarrow{\sim} V_{\mathbb{F}}$ is a G-equivariant isomorphism of \mathbb{F} -vector spaces.
- (ii) Fix a F-basis β of V_F, a framed deformation of (V_F, β) to A is the datum (V_A, ι, β_A), such that
 V_A is a free A-module with a continuous G-action,
 - $\iota: V_A \otimes_A \mathbb{F} \xrightarrow{\sim} V_{\mathbb{F}}$ is a *G*-equivariant isomorphism of \mathbb{F} -vector spaces.
 - β_A is a A-basis of V_A such that $\iota(\beta_A) = \beta$.

Naturally we may define a functor from $\mathfrak{UR}_{W(\mathbb{F})}$ to the category of isomorphism classes of deformations (resp. framed deformations) of $V_{\mathbb{F}}$ (resp. $(V_{\mathbb{F}}, \beta)$).

Definition 3.2. (i) Given $V_{\mathbb{F}}$, we have

 $D_{V_{\mathbb{F}}}(A) := \{ \text{isomorphism classes of deformations of } V_{\mathbb{F}} \text{ to } A \}$

(ii) Given $(V_{\mathbb{F}}, \beta)$, we have

 $D_{V_{\mathbb{R}}}^{\square}(A) := \{ \text{isomorphism classes of framed deformations of } (V_{\mathbb{R}}, \beta) \text{ to } A \}$

Remark 3.3. Let $\overline{\rho} : G \to GL_n(\mathbb{F})$ be a continuous representation of a profinite group G, then a framed deformation of $\overline{\rho}$ is of the form $\rho : G \to GL_n(A)$. We also have that

$$D_{\overline{\rho}}(A) = D_{\overline{\rho}}^{\sqcup}(A) / \ker(GL_n(A) \to GL_n(\mathbb{F}))$$

as sets, where $\ker(GL_n(A) \to GL_n(\mathbb{F}))$ acts on $D_{\overline{\rho}}(A)$ by conjugation.

Proposition 3.4. Let p be a prime number and let G be a profinite group that satisfies the finiteness condition Φ_p . Let $V_{\mathbb{F}}$ be a finite dimensional \mathbb{F} -vector space with a continuous G-action.

(i) The functor $D_{V_{\mathbb{F}}}^{\square}$ is pro-representable by a complete local Noetherian $W(\mathbb{F})$ -algebra $R_{V_{\mathbb{F}}}^{\square}$. Namely, for all $A \in \mathfrak{UR}_{W(\mathbb{F})}$, there exists an isomorphism

$$D_{V_{\mathbb{F}}}^{\sqcup}(A) \xrightarrow{\sim} \operatorname{Hom}_{W(\mathbb{F})} \left(R_{V_{\mathbb{F}}}^{\sqcup}, A \right)$$

functorial in A.

(ii) If $End_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, then $D_{V_{\mathbb{F}}}$ is pro-representable by a complete local Noetherian $W(\mathbb{F})$ -algebra $R_{V_{\mathbb{F}}}$.

Definition 3.5. We call such $R_{V_{\mathbb{F}}}^{\square}$ the universal framed deformation ring and $R_{V_{\mathbb{F}}}$ the universal deformation ring for $V_{\mathbb{F}}$.

- **Remark 3.6.** (i) The proposition for framed deformations holds when G doesn't satisfy Φ_p , but $R_{V_{\pi}}^{\Box}$ might not be noetherian.
 - (ii) When a finite dimensional G-representation $V_{\mathbb{F}}$ over \mathbb{F} satisfies $\operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, we call $V_{\mathbb{F}}$ Schur. Schur's lemma says that if a finite dimensional G-representation over \mathbb{F} is absolutely irreducible (remains irreducible after base change to the algebraic closure of \mathbb{F}), then it is Schur.

Proof of Proposition 3.4 (i). Let $\dim_{\mathbb{F}} V_{\mathbb{F}} = n$, so we can write $V_{\mathbb{F}}$ as the continuous *G*-representation $\overline{\rho}: G \to GL_n(\mathbb{F})$. Since *G* is a profinite group, we may write $G = \varprojlim_{\alpha} G/H_{\alpha}$, where H_{α} are open normal subgroups of *G* with finite index and $H_{\alpha} \subseteq \ker(\overline{\rho})$. Now for each $\alpha, G/H_{\alpha}$ is a finite group and has a group representation of the form $\langle g_1, ..., g_s | r_1(g_1, ..., g_s), ..., r_t(g_1, ..., g_s) \rangle$. We define the following $W(\mathbb{F})$ -algebra:

$$\mathcal{R} := W(\mathbb{F}) \left[X_k^{i,j} | k = 1, ..., s, i, j = 1, ..., n \right] / \mathcal{I}$$

where $\mathcal{I} := (r_1(X_1, ..., X_s), ..., r_t(X_1, ..., X_s))$ is the ideal generated by the relations. We have the reduction map defined by

$$\begin{array}{ccc} \mathcal{R} & \longrightarrow & \mathbb{F} \\ X_k^{i,j} & \longmapsto & (i,j) - \text{th entry of } \overline{\rho}(g_k) \end{array}$$

Let $\mathcal{J} := \ker(\mathcal{R} \to \mathbb{F})$ be the kernel and we may take the \mathcal{J} -adic completion of \mathcal{R} . Define $R_{\alpha}^{\Box} := \widehat{\mathcal{R}}^{\mathcal{J}}$. Let the matrix \mathbf{X}_k be the image of X_k in $GL_n(R_i^{\Box})$. Then there exists an unique representation ρ_{α}^{\Box} defined by the following:

$$\begin{array}{cccc} \rho_{\alpha}^{\Box}: G/H_{\alpha} & \longrightarrow & GL_n(R_{\alpha}^{\Box}) \\ g_k & \longmapsto & \mathbf{X}_k \end{array}$$

In particular, for each framed deformation $\rho_A : G \to GL_n(A)$ together with its restriction $\rho_A^{\alpha} : G/H_{\alpha} \to GL_n(A)$ to G/H_{α} , there exists a unique map $\phi : R_{\alpha}^{\Box} \to A$

$$\begin{array}{cccc} \phi: GL(R_{\alpha}^{\Box}) & \longrightarrow & GL(A) \\ & X_k & \longmapsto & \rho_A^{\alpha}(g_k) \end{array}$$

such that $\rho_A^{\alpha} = \phi \circ \rho_{\alpha}^{\Box}$. Thus the pair $(R_i^{\Box}, \rho_i^{\Box})$ is universal for all *i*. By the profinite structure of G, we already have an inverse system determined by the index set I of *i*'s. Thus we may take the projective limit

$$\left(R_{V_{\mathbb{F}}}^{\square},\rho_{V_{\mathbb{F}}}^{\square}\right):=\varprojlim_{i}\left(R_{i}^{\square},\rho_{i}^{\square}\right)$$

It is clear that $\left(R_{V_{\mathbb{F}}}^{\Box}, \rho_{V_{\mathbb{F}}}^{\Box}\right)$ satisfies the desired universal properties. We are left to show that $R_{V_{\mathbb{F}}}^{\Box}$ is Noetherian. By construction, $R_{V_{\mathbb{F}}}^{\Box}$ is a complete local ring. Denote its maximal ideal by \mathfrak{m} . It suffices to show that $\mathfrak{m}/(\mathfrak{m}^2, p)$ is a finite dimensional \mathbb{F} -vector space.

We postpone the proof for (ii) until Section 6.

4. The tangent space

Let $\mathbb{F}[\epsilon] = \mathbb{F}[X]/(X^2)$ be the ring of dual numbers over \mathbb{F} .

Definition 4.1. We call $D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon])$ the Zariski tangent space of $D_{V_{\mathbb{F}}}$. Similarly, we call $D_{V_{\mathbb{F}}}^{\square}(\mathbb{F}[\epsilon])$ the Zariski tangent space of $D_{V_{\mathbb{F}}}^{\square}$.

Remark 4.2. By representability from Proposition 3.4, we have an isomorphism of F-vector spaces

$$D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon]) = \operatorname{Hom}_{W(\mathbb{F})}(R_{V_{\mathbb{F}}}, \mathbb{F}[\epsilon]) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}_R/(p, \mathfrak{m}_R^2), \mathbb{F}) = t_{R_{V_{\mathbb{F}}}}$$

where $t_{R_{V_{\mathbb{F}}}}$ is the tangent space of the local ring $R_{V_{\mathbb{F}}}$.

Lemma 4.3. Denote the *G*-representation $End_{\mathbb{F}}V_{\mathbb{F}}$ by $adV_{\mathbb{F}}$.

(i) There exists a canonical isomorphism

$$D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon]) \xrightarrow{\sim} H^1(G, \mathrm{ad}V_{\mathbb{F}})$$

(ii) If G satisfies Φ_p , then $D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon])$ is a finite dimensional \mathbb{F} -vector space. (iii) $\dim_{\mathbb{F}} D_{V_{\mathbb{F}}}^{\square}(\mathbb{F}[\epsilon]) = \dim_{\mathbb{F}} D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon]) + n^2 - h^0(G, \operatorname{ad} V_{\mathbb{F}})$ *Proof.* (i) Let $W_{\mathbb{F}}$ be any \mathbb{F} -module with G-action, then we have isomorphisms functorial in $W_{\mathbb{F}}$

$$\operatorname{End}_{\mathbb{F}}(W_{\mathbb{F}})^G \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{F}[G]}(W_{\mathbb{F}}, W_{\mathbb{F}})$$

Take the first derived functors of $\operatorname{End}_{\mathbb{F}}(-)^{G}$ and $\operatorname{Hom}_{\mathbb{F}[G]}(-,-)$ and we obtain an isomorphim

$$\operatorname{Ext}^{1}_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}}) \xrightarrow{\sim} H^{1}(G, \operatorname{ad} V_{\mathbb{F}})$$

Take $V_{\mathbb{F}[\epsilon]} \in D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon])$. Since $V_{\mathbb{F}[\epsilon]}/\epsilon V_{\mathbb{F}[\epsilon]} \cong V_{\mathbb{F}}$, we have an exact sequence

$$0 \longrightarrow \epsilon V_{\mathbb{F}[\epsilon]} \longrightarrow V_{\mathbb{F}[\epsilon]} \longrightarrow V_{\mathbb{F}} \longrightarrow 0$$

Via $\epsilon \mapsto 1$ we have the identification $\epsilon V_{\mathbb{F}[\epsilon]} \cong V_{\mathbb{F}}$. Thus $V_{\mathbb{F}[\epsilon]}$ is an extension of $V_{\mathbb{F}}$ by $V_{\mathbb{F}}$, and $V_{\mathbb{F}[\epsilon]} \in \operatorname{Ext}^{1}_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}}) \cong H^{1}(G, \operatorname{ad} V_{\mathbb{F}})$. Conversely, take $E \in \operatorname{Ext}^{1}_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}}) \cong H^{1}(G, \operatorname{ad} V_{\mathbb{F}})$, we have an exact sequence equivariant under continuous *G*-action:

$$0 \longrightarrow V_{\mathbb{F}} \longrightarrow E \longrightarrow V_{\mathbb{F}} \longrightarrow 0$$

Identify $V_{\mathbb{F}}$ on the left with $\epsilon V_{\mathbb{F}[\epsilon]}$ via $1 \mapsto \epsilon$. Thus E is a $\mathbb{F}[\epsilon]$ -module with continuous G-action, that reduce to $V_{\mathbb{F}}$ by the map on the right. Hence $E \in D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon])$.

(ii) Let G be a profinite group that satisfies Φ_p , and fix $\overline{\rho} : G \to GL(V_{\mathbb{F}})$. Take $G' = \ker(\overline{\rho})$, which is an open subgroup in G with finite index.

Let $r: GL(V_{\mathbb{F}[\epsilon]}) \to GL(V_{\mathbb{F}})$ be the reduction morphism. Notice that ker(r) is a pro-p group. Let $(V_{\mathbb{F}[\epsilon]}, \rho_{\mathbb{F}[\epsilon]})$ be a deformation of $\overline{\rho}$. Then $\overline{\rho} = r \circ \rho_{\mathbb{F}[\epsilon]}$ and similarly for their restrictions to G'. Since $\operatorname{Im}(\rho_{\mathbb{F}[\epsilon]}|_{G'}) \subseteq \operatorname{ker}(r)$, we know that $G'/\operatorname{ker}(\rho_{\mathbb{F}[\epsilon]}|_{G'})$ is a pro-p group. Then there exists a maximal pro-p quotient G'/H of G', through which $\rho_{\mathbb{F}[\epsilon]}|_{G'}$ factorizes.

Since G satisfies Φ_p , G'/H is topologically finitely generated. Thus G/H is topologically finitely generated. We know that all deformations $\rho_{\mathbb{F}[\epsilon]}$ factorizes through G/H, so we may conclude that $D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon])$ is a finite dimensional \mathbb{F} -vector space.

An alternate proof for this uses the inflation-restriction exact sequence

$$0 \to H^1(G/G', \mathrm{ad}V_{\mathbb{F}}^{G'}) \to H^1(G, \mathrm{ad}V_{\mathbb{F}}) \to H^1(G', \mathrm{ad}V_{\mathbb{F}})^{G/G'} \to \cdots$$

Now $H^1(G/G', \operatorname{ad} V_{\mathbb{F}}^{G'})$ is clearly a finite dimensional \mathbb{F}_p -vector space, and $H^1(G', \operatorname{ad} V_{\mathbb{F}})^{G/G'}$ is finite dimensional due to G satisfying Φ_p . Here we use the equivalent condition that $\operatorname{Hom}(G', \mathbb{F}_p)$ is a finite dimensional \mathbb{F}_p -vector space.

(iii) Fix $V_{\mathbb{F}}$ with a fixed basis and a deformation $V_{\mathbb{F}[\epsilon]}$. The set of $\mathbb{F}[\epsilon]$ -basis lifting the basis of $V_{\mathbb{F}}$ has \mathbb{F} -dimension n^2 . Let β, β' be two bases of $V_{\mathbb{F}[\epsilon]}$ lifting the fixed basis of $V_{\mathbb{F}}$. Compare them on the short exact sequence

$$0 \to \epsilon V_{\mathbb{F}[\epsilon]} \to V_{\mathbb{F}[\epsilon]} \to V_{\mathbb{F}} \to 0$$

Let $\iota : (V_{\mathbb{F}[\epsilon]}, \beta) \to (V_{\mathbb{F}[\epsilon]}, \beta')$. Then ι mod ϵ is the identity in $\mathrm{ad}V_{\mathbb{F}}$, and $\iota(\beta) \cong \beta'$ corresponds to elements in $(\mathrm{ad}V_{\mathbb{F}})^G$. Therefore, $\dim_{\mathbb{F}} D_{V_{\mathbb{F}}}^{\square}(\mathbb{F}[\epsilon]) = \dim_{\mathbb{F}} D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon]) + n^2 - h^0(G, \mathrm{ad}V_{\mathbb{F}})$. Furthermore, we may conclude that fibres of

$$D_{V_{\mathbb{F}}}^{\sqcup}(\mathbb{F}[\epsilon]) \longrightarrow D_{V_{\mathbb{F}}}(\mathbb{F}[\epsilon])$$

are $\mathrm{ad}V_{\mathbb{F}}/(\mathrm{ad}V_{\mathbb{F}})^G$ -torsors.

Corollary 4.4. Lemma 4.3 (ii) shows that in Proposition 3.4, $R_{V_{\mathbb{F}}}$ and $R_{V_{\mathbb{F}}}^{\Box}$ are Noetherian.

5. Traces

Theorem 5.1 (Mazur '87, Carayol '91). Suppose that $V_{\mathbb{F}}$ is absolutely irreducible and $A \in \mathfrak{UR}_{W(\mathbb{F})}$. Let V_A and V'_A be two deformations such that

$$\operatorname{tr}(\sigma|V_A) = \operatorname{tr}(\sigma|V_A')$$

for all $\sigma \in G$. Then V_A and V'_A are isomorphic deformations.

6. Representability revisited

Here we present the proof of Proposition 3.4 (ii) by Mark Kisin as in [Kis, §3]. See [Kis09, Appendix A] for more details on the language of groupoids.

Recall that $\mathfrak{UR}_{W(\mathbb{F})}$ is the category of finite local Artinian $W(\mathbb{F})$ -algebras with residue field \mathbb{F} .

Definition 6.1. We define $D_{V_{\mathbb{F}}}$ as a groupoid over $\mathfrak{UR}_{W(\mathbb{F})}$ as follows.

- (i) Objects: For all A ∈ 𝔐𝔅_{W(𝔅)}, D_{V𝔅}(A) is a category whose objects are pairs (V_A, ι) such that
 V_A is a free A-module with a continuous G-action,
 - $\iota: V_{\mathbb{F}} \xrightarrow{\sim} V_A \otimes_A \mathbb{F}$ is a G-equivariant isomorphism of \mathbb{F} -vector spaces.

The morphisms in $D_{V_{\mathbb{F}}}(A)$ are A-linear isomorphisms compatible with the G-action and the datum (V_A, ι_A) .

(ii) Let $A \to A'$ be a morphism in $\mathfrak{UR}_{W(\mathbb{F})}$. A cover $(V_A, \iota_A) \to (V_{A'}, \iota_{A'})$ of $A \to A'$ in the 2category $D_{V_{\mathbb{F}}}$ consists of an equivalence class $[\alpha]$, where $[\alpha] : V_A \otimes_A A' \xrightarrow{\sim} V_{A'}$ is an A'-linear isomorphism, compatible with the G-action as well as the datum (V_A, ι_A) and $(V_{A'}, \iota_{A'})$. Two morphisms $[\alpha], [\alpha'] : V_A \otimes_A A' \xrightarrow{\sim} V_{A'}$ are equivalent if they differ by multiplying an element of A'^{\times} .

Now let $\mathfrak{UR}_{W(\mathbb{F})}$ be the category of complete local Noetherian $W(\mathbb{F})$ -algebras. The opposite category $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^{\circ}$ is then equivalent to the category of formal spectra of $W(\mathbb{F})$ -algebras.

Definition 6.2. An equivalence relation $R \Longrightarrow X$ in $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^{\circ}$ consists of a pair of morphisms $R \to X$ and $R \to X$ such that

- (i) $R \to X \times X$ is a closed embedding,
- (ii) For all $T \in \widehat{\mathfrak{UR}}_{W(\mathbb{F})}$, $R(T) \subseteq (X \times X)(T)$ is an equivalence relation.

Consider the $W(\mathbb{F})$ -group scheme PGL_n . Let $\operatorname{id} : \operatorname{PGL}_n \to \operatorname{Spec}\mathbb{F}$ be the composition of the reduction map $\operatorname{Spec}W(\mathbb{F}) \to \operatorname{Spec}\mathbb{F}$ and the identity section of the counit map $e : \operatorname{Spec}W(\mathbb{F}) \to \operatorname{PGL}_n$. Now ker(id) is a closed subscheme of PGL_n . Thus we may take the formal completion of the $\operatorname{PGL}_n/W(\mathbb{F})$ along ker(id). Denote this formal completion by PGL_n , and this is a formal $W(\mathbb{F})$ -scheme. Thus PGL_n is a group object in the category $(\widehat{\mathfrak{UR}}_{W(\mathbb{F}}))^\circ$.

Recall from Proposition 3.4 (i) that $D_{V_{\mathbb{F}}}^{\square}$ is representable by $R_{V_{\mathbb{F}}}^{\square}$. Take the formal spectrum $X_{V_{\mathbb{F}}} := \operatorname{Spf} R_{V_{\mathbb{F}}}^{\square}$, and so $D_{V_{\mathbb{F}}}^{\square}$ is representable by $X_{V_{\mathbb{F}}}$.

Proposition 6.3 (Proposition 3.4). *(ii) If* $End_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, then $D_{V_{\mathbb{F}}}$ is pro-representable by a complete local Noetherian $W(\mathbb{F})$ -algebra $R_{V_{\mathbb{F}}}$.

Proof of Proposition 3.4 (ii). For $A \in \mathfrak{UR}_{W(\mathbb{F})}$, $\widehat{\mathrm{PGL}}_n(A)$ acts on each deformation V_A via conjugation. This action is functorial, and so we have a $\widehat{\mathrm{PGL}}_n$ -action on $X_{V_{\mathbb{F}}}$. We would like to construct the quotient $X_{V_{\mathbb{F}}}/\widehat{PGL}_n$. To start, we want to consider the equivalence relation on $X_{V_{\mathbb{F}}}$ coming form the $\widehat{\mathrm{PGL}}_n$ -action. We have an equivalence relation in $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^{\circ}$:

$$\begin{array}{ccc} X_{V_{\mathbb{F}}} \times \widehat{\mathrm{PGL}_n} & \Longrightarrow & X_{V_{\mathbb{F}}} \\ (x,g) & \longmapsto & (x,gx) \end{array}$$

Indeed, by assumption $\operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, $\widehat{\operatorname{PGL}_n}$ acts freely on $X_{V_{\mathbb{F}}}$. Thus the induced map

4

$$\begin{array}{rccc} X_{V_{\mathbb{F}}} \times \widehat{\mathrm{PGL}_n} & \longrightarrow & X_{V_{\mathbb{F}}} \times X_{V_{\mathbb{F}}} \\ & (x,g) & \longmapsto & (x,gx) \end{array}$$

is a closed immersion. Then we apply the theorem from [SGA3, VIIb, Thm 1.4] to the equivalence relation $\widehat{\mathrm{PGL}}_n \times X_{V_{\mathbb{F}}} \Longrightarrow X_{V_{\mathbb{F}}}$. We formulate it for our specific case as below.

Theorem 6.4. Let $R \xrightarrow[d_1]{d_1} X_{V_{\mathbb{F}}}$ be an equivalence relation in $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^{\circ}$ such that d_0 is flat. Then the

quotient $X_{V_{\mathbb{F}}}/R$ exists in $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^{\circ}$, and the canonical projection of $X_{V_{\mathbb{F}}}$ on $X_{V_{\mathbb{F}}}/R$ = Coker (d_0, d_1) is surjective and flat. The morphism $R \to X_{V_{\mathbb{F}}} \times_{X_{V_{\mathbb{F}}}/R} X_{V_{\mathbb{F}}}$ induced by d_0 and d_1 is an isomorphism.

REFERENCES

Now we have obtained a quotient $X_{V_{\mathbb{F}}}/\widehat{PGL_n}$ in $(\widehat{\mathfrak{UR}}_{W(\mathbb{F})})^\circ$, which is the formal spectrum of a ring $R_{V_{\mathbb{F}}} \in \widehat{\mathfrak{UR}}_{W(\mathbb{F})}$. Now it follows from the construction of the quotient that for all $A \in \mathfrak{UR}_{W(\mathbb{F})}$, the category $D_{V_{\mathbb{F}}}(A)$ is determined by the functors $D_{V_{\mathbb{F}}}(R_{V_{\mathbb{F}}}) \to D_{V_{\mathbb{F}}}(A)$. Thus the groupoid $D_{V_{\mathbb{F}}}$ is representable by $R_{V_{\mathbb{F}}}$.

References

- [Böc13] Gebhard Böckle. "Deformations of Galois representations". In: Elliptic curves, Hilbert modular forms and Galois deformations. Adv. Courses Math. CRM Barcelona. Birkhäuser/Springer, Basel, 2013, pp. 21–115.
- [SGA3] Michel Demazure and Alexander Grothendieck, eds. Schémas en groupes. I: Propriétés générales des schémas en groupes. Exposés I à VIIb. Séminaire de Géométrie Algébrique 1962/64, dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint. French. Vol. 151. Springer, Cham, 1970.
- [Kis09] Mark Kisin. "Moduli of finite flat group schemes, and modularity". In: Ann. of Math. (2) 170.3 (2009), pp. 1085–1180. ISSN: 0003-486X.
- [Kis] Mark Kisin. Lectures on deformations of Galois representations. URL: https://www.claymath.org/sites/default/files/kisin.pdf.
- [Lee] Hao Lee. General Galois deformations. URL: https://math.uchicago.edu/~haolee/ Universal_Deformation_Rings.pdf.
- [Maz89] B. Mazur. "Deforming Galois representations". In: Galois groups over Q (Berkeley, CA, 1987). Vol. 16. Math. Sci. Res. Inst. Publ. Springer, New York, 1989, pp. 385–437.
- [RZ00] Luis Ribes and Pavel Zalesskii. Profinite groups. Vol. 40. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2000, pp. xiv+435. ISBN: 3-540-66986-8.
- [Ser97] Jean-Pierre Serre. *Galois cohomology*. Translated from the French by Patrick Ion and revised by the author. Springer-Verlag, Berlin, 1997, pp. x+210. ISBN: 3-540-61990-9.