DEFORMATIONS OF REPRESENTATIONS FOR PROFINITE GROUPS

YINGYING WANG

ABSTRACT. In this talk, we show the existence of a universal deformation ring.
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1. PROFINITE GROUPS AND REPRESENTATIONS
We first recall some basic definitions from [Ser97]. Another reference is [RZ00].
Definition 1.1. A group G is called a p-group if |G| = p" for some r € N.

Definition 1.2. Let G be a topological group.
(i) We call G a profinite group if
G = @ GZ
i

as topological groups, where G; are finite groups with discrete topology.
(ii) Let p be a prime number. If we have

G:@Gi

as topological groups, where G; are finite groups with cardinality p™, r; € N for each i, and
discrete topology, then we call G a pro-p group.

Remark 1.3. (i) Closed subgroups H C G are profinite and G/H is compact and totally disconnected.
(ii) Let L/K be an extension of commutative fields, then Gal(L/K) is a profinite group.
Definition 1.4. Let p be a prime number.
(i) Let G be a profinite group. If a subgroup H C G is a pro-p-group and the index (G : H) is prime
to p, then we call H a Sylow p-subgroup of G.
(ii) Let G be a profinite group, G' a subgroup. Then a pro-p quotient of G’ is a group of the form
G'/H, which is a pro-p group. We call G'/H a mazximal pro-p quotient if G'/H is the largest
possible quotient that is a pro-p group.

We would like to further more define the profinite completion and pro-p completion of a group.

Definition 1.5. Let G be a group.
(i) The profinite completion of G is defined as

G= lm G/N
N<G
G/N finite
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(ii) The pro-p completion of G is defined as

Gy= lm  G/N

N<G
G/N is a p-group

Example 1.6. (i) A profinite completion of Z is
7= Jim Z /nZ
nez
(ii) A pro-p completion of Z is the p-adic integers
Ly = I&HZ/ p"Z
n
(iii) Now consider the multiplicative subgroup Z; C Z,. We have the identification
Z; = lim (Z/p"2)"
n

This is a profinite group but not a pro-p group. In fact, for p # 2, we have Z* = y,_1 x Z,, and
Zy = {£1} x Zy. Thus it has a pro-p subgroup.
(iv) GLyn(Zy) is a profinite group but not a pro-p group. However, the congruence subgroup

I':={AeGL,(Z,)|A=1d mod p}
is a pro-p group.

Remark 1.7. Let G be a profinite group. When we say a representation p : G — GL(V') is continuous,
we mean that it is continuous with respect to the profinite topology on G and the discrete topology
on GL(V). This implies that p being continuous means stab(v) = {g € G|p(g)v = v} is open in G for
allv e V.

2. FINITENESS CONDITION ®, FOR PROFINITE GROUPS
Fix p a prime number.

Definition 2.1. A profinite group G satisfies the finiteness condition ®,, if the following equivalent
conditions hold for all Gy C G open subgroups of finite index.

(i) The mazximal pro-p quotient of Gy is topologically finitely generated.
(it) The set of continuous group homomorphisms Hom(Go,Fp) is a finite dimensional IF,-vector space.

Remark 2.2. A topological group G is topologically finitely generated means that G has a dense
subgroup that is finitely generated. The equivalence of the conditions follows from Burnside basis
theorem. Also note that a finite dimensional Fp-vector space has finite cardinality.

Example 2.3. (i) Let K/Q, finite, then Gal(K/K) satisfies ®, for all primes q.
(ii) Let F/Q finite, so F'is a number field. Let S be a finite set of places in F'. Let Fg be the maximal
extension of F that is unramified ouside of S in an algebraic closure F' of F. Then Gal(Fg/F)
satisfies ®,, for all p.

Proof. (i) Let K/Qy be a finite extension of degree d and its residue field k has cardinality ¢ a power
of p. Since Hom(qo, F,) = Hom(G&P,F,), we may check this on K?P/K, as the maximal abelian
subgroup of Gal(K/K) is isomorphic to Gal(K?P/K). By local class field theory, we have

Gal(K™/K) = 0% X Z =5 pig—1 X pipa X 74 x H Zp = pg—1 X pipe X ZET x HZ@
£ prime l#£p
where p,q is the subgroup of all roots of unity in K. Now take a finite index open subgroup
Go C Gal(K?P/K). Since Gy is open, it contains a subgroup Hy of the form

Hy=p""Zy X -+ X pr+1Z, X HWZ@
l#p

Now let f : Go — F, be any continuous group homomorphism. Since p"iZ, and (*¢Z, are
neighborhood of zero in Z,, and Z, respectively, we must have f(Hp) = 0. Hence every continuous
group homomorphism f € Hom(Gy,F,) factorise through Go/Hy. Since for ¢ # p, there is no
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nontrivial group homomorphism between Z/¢**Z and F,, we know that f € Hom(Go,F),) are
zero on the subgroup

H=p"Zyx - xp*Z, x [[ Z
l#p
We also know that G has finite index in Gal(K®?/K), so H has finite index in Gy. Therefore
every continuous group homomorphism f € Hom(Go,F,) factorise a finite group Go/H, and

hence Hom(Gy, F)) is a finite dimensional Fg-vector space.
(ii) The number field case uses global class field theory

T /K% = Gal(K™ /K)

We leave this as an exercise.

3. CATEGORY OF DEFORMATIONS OF (GALOIS REPRESENTATIONS

The references for the following sections are |Bocl3|, [Lee|, [Maz89|, and [Kis|. Fix a prime p and a
finite field F with characteristic p. For example, IF, with ¢ = p" for some positive integer r. Then the
ring of Witt vectors W (F) is the ring of integers Ok for a finite extension K/Q, with degree r (K is
in fact unique).

Let G be a profinite group, V& a finite dimensional F-vector space with a continuous G-action. Recall
that this means that the stabliser stab(v) for each v € Vg is an open subgroup in G.

Let URyy (k) be the category of finite local Artinian W (F)-algebras with residue field F.

Definition 3.1. Let A € YRy ) and G be a profinite group. Let Vi be a finite dimensional F-vector

space with a continuous G-action.

(i) A defomation of Vg to A is the datum (Va, 1), where
o V4 is a free A-module with a continuous G-action,
o 1:Via®RaF = Vi is a G-equivariant isomorphism of F-vector spaces.
(ii) Fix a F-basis B of Vi, a framed deformation of (Vi,3) to A is the datum (Va,t,B4), such that
o V4 is a free A-module with a continuous G-action,
o L:Vi®4F 5 Vi is a G-equivariant isomorphism of F-vector spaces.
e (34 is a A-basis of V4 such that 1(B4) = B.

Naturally we may define a functor from 4%y ) to the category of isomorphism classes of deformations
(resp. framed deformations) of Vg (resp. (Vf,f)).

Definition 3.2. (i) Given Vg, we have
Dy, (A) := {isomorphism classes of deformations of Vg to A}
(ii) Given (Vg, ), we have
D‘D/IF (A) := {isomorphism classes of framed deformations of (Vg,3) to A}

Remark 3.3. Let p : G — GL,(F) be a continuous representation of a profinite group G, then a
framed deformation of p is of the form p: G — GL,(A). We also have that

Di(4) = DI(A) /ker(GL(A) = GLo(F)
as sets, where ker(GLy,(A) = GL,(IF)) acts on D5(A) by conjugation.

Proposition 3.4. Let p be a prime number and let G be a profinite group that satisfies the finiteness
condition ®,. Let Vi be a finite dimensional F-vector space with a continuous G-action.

(i) The functor D‘E'/]F is pro-representable by a complete local Noetherian W (IF)-algebra R‘D/F. Namely,
or a € , there exists an isomorphism
for all A € URy (), th ph
Dy (A) = Homyy(r (R, A)
functorial in A.
(ii) If Endgic(Vr) = F, then Dy, is pro-representable by a complete local Noetherian W (F)-algebra
Ry;.
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Definition 3.5. We call such R‘D/F the universal framed deformation ring and Ry:, the universal de-
formation ring for Vp.

Remark 3.6. (i) The proposition for framed deformations holds when G doesn’t satisfy ®,, but
R‘Dfm might not be noetherian.
(i) When a finite dimensional G-representation Vi over F satisfies Endp(g) (V) = IF, we call V¢ Schur.
Schur’s lemma says that if a finite dimensional G-representation over F is absolutely irreducible
(remains irreducible after base change to the algebraic closure of F), then it is Schur.

Proof of Proposition (i). Let dimpVy = n, so we can write Vg as the continuous G-representation
p: G — GL,(F). Since G is a profinite group, we may write G = @a G/H,, where H, are open
normal subgroups of G with finite index and H, C ker(p). Now for each a, G/H, is a finite group and
has a group representation of the form (g1, ..., gs|71(g1, -+, gs), -+, 7¢(g1, ---, gs)). We define the following
W (F)-algebra:

R := W(F) [X,jj\k — 1,80, = 1n} Yas
where Z := (r1(X1,..., Xs), .o, 7e(X1, ..., X)) is the ideal generated by the relations. We have the

reduction map defined by
R — F

X,i’j — (4,7) — th entry of 5(gx)
Let J := ker(R — F) be the kernel and we may take the J-adic completion of R. Define RY := R .
Let the matrix Xy be the image of Xy in GL,(R}). Then there exists an unique representation p
defined by the following;:
o G/H, — GL,(RY)
g — Xj
In particular, for each framed deformation ps : G — GL,(A) together with its restriction p% :
G/H, — GL,(A) to G/H,, there exists a unique map ¢ : R — A
¢:GL(RY) — GL(A)
Xi — p%(gr)
such that p% = ¢ o pS. Thus the pair (R-D, piD) is universal for all . By the profinite structure of

(2
G, we already have an inverse system determined by the index set I of i’s. Thus we may take the

projective limit

(R‘D/]F’p‘D/F) = @(RF’&D)

(]
It is clear that (R‘D/F, p‘D/F) satisfies the desired universal properties. We are left to show that R‘D/IF is

Noetherian. By construction, R‘D/F is a complete local ring. Denote its maximal ideal by m. It suffices
to show that m/(m?,p) is a finite dimensional F-vector space. O

We postpone the proof for (ii) until Section @

4. THE TANGENT SPACE
Let Fle] = F[X]/(X?) be the ring of dual numbers over F.
Definition 4.1. We call Dy, (Fle]) the Zariski tangent space of Dy,. Similarly, we call D‘D,]F (Fle]) the
Zariski tangent space of DEF.
Remark 4.2. By representability from Proposition we have an isomorphism of F-vector spaces
Dy (Fle]) = Homyy g (Rvz, Fle]) = Homr(mg/(p, m%), F) = tg,,
where t Ry, is the tangent space of the local ring Ry.

Lemma 4.3. Denote the G-representation EndpVy by adVy.
(i) There ezists a canonical isomorphism
Dy, (Fle]) = H'(G,adVk)

(i1) If G satisfies @, then Dy, (Fle]) is a finite dimensional F-vector space.
(i4i) dimp D‘D/F (Fle]) = dimp Dy, (Fle]) + n? — h%(G, adVf)
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Proof. (i) Let Wg be any F-module with G-action, then we have isomorphisms functorial in Wy
Endp(Wr)“ — Homp(g)(Wr, W)
Take the first derived functors of Endg(—)¢ and Homg(g(—, —) and we obtain an isomorphim
Extgie) (Ve, Vi) — H' (G, ad V)
Take Vg € Dv;(F[e]). Since Vy/eViiq = Vi, we have an exact sequence
0— eVyg — Vrg — V& — 0

Via € — 1 we have the identification eVgg = Vp. Thus Vg is an extension of Vr by Vg, and
Vi € ExtIIF[G](V]F, Vr) = HY(G,adVg). Conversely, take E € Ext]}[G}(VF, Vi) = HY(G,adVg), we
have an exact sequence equivariant under continuous G-action:

0O0—W—>F—Vg—0

Identify Vi on the left with eVg(q via 1+ e. Thus E is a Fle]-module with continuous G-action,
that reduce to Vg by the map on the right. Hence E € Dy, (F[e]).

(ii) Let G be a profinite group that satisfies ®,, and fix p : G — GL(Vf). Take G’ = ker(p), which
is an open subgroup in G with finite index.

Let r : GL(Vf|q) — GL(Vk) be the reduction morphism. Notice that ker(r) is a pro-p group.
Let (Vi pr(g) be a deformation of p. Then p = r o pg|q and similarly for their restrictions to
G'. Since Im(pp(q|cr) C ker(r), we know that G’ /ker(pp(|cr) is @ pro-p group. Then there exists
a maximal pro-p quotient G'/H of G’, through which prielcr factorizes.

Since G satisfies ®,, G'/H is topologically finitely generated. Thus G/H is topologically
finitely generated. We know that all deformations pp factorizes through G/H, so we may
conclude that Dy, (FF[¢]) is a finite dimensional F-vector space.

An alternate proof for this uses the inflation-restriction exact sequence

0— HY(G/G',adV®) — HY(G,adVg) — H(G',adVe)¥ Y — ...

Now HY(G/G',adVE®") is clearly a finite dimensional Fp-vector space, and H(G’, adVg)%/¢" is
finite dimensional due to G satisfying ®,. Here we use the equivalent condition that Hom(G’, Fp,)
is a finite dimensional IF,-vector space.

(iii) Fix Vg with a fixed basis and a deformation Vgq. The set of F[e]-basis lifting the basis of V& has
F-dimension n?. Let 3, 3’ be two bases of V(g lifting the fixed basis of V. Compare them on
the short exact sequence

0— EV]F[E] — VIE‘[e] -V —0

Let ¢ : (Vgig, 8) — (Virg, B')- Then ¢ mod e is the identity in adVf, and «(8) = B’ corresponds
to elements in (adVy)®. Therefore, dimp D‘D/F (Fle)) = dimp Dy, (Fle]) + n? — h%(G, adVg). Fur-
thermore, we may conclude that fibres of

Dy, (Fle]) — Dy; (Fle])

are adVr/(adVi)%-torsors.
Corollary 4.4. Lemma (ii) shows that in Proposition Ry, and R‘D,IF are Noetherian.

5. TRACES

Theorem 5.1 (Mazur '87, Carayol '91). Suppose that Vi is absolutely irreducible and A € URyy ().
Let V4 and V)i be two deformations such that

tr(o|Va) = tr(a|V})

for all o € G. Then V4 and V) are isomorphic deformations.
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6. REPRESENTABILITY REVISITED

Here we present the proof of Proposition (ii) by Mark Kisin as in [Kis, §3]. See [Kis09, Appendix
A] for more details on the language of groupoids.
Recall that 4Ry (py is the category of finite local Artinian W (F)-algebras with residue field F.

Definition 6.1. We define Dy, as a groupoid over URy r) as follows.

(i) Objects: For all A € URy ), Dv;(A) is a category whose objects are pairs (Va,t) such that
o V4 is a free A-module with a continuous G-action,
o 1: Vp 5 Vi ®4F is a G-equivariant isomorphism of F-vector spaces.
The morphisms in Dy, (A) are A-linear isomorphisms compatible with the G-action and the datum

(VA,LA).
(i) Let A — A’ be a morphism in URy xy. A cover (Va,ua) — (Var,tar) of A — A’ in the 2-

category Dy, consists of an equivalence class [a], where [a] : Va ®4 A’ — Vur is an A-linear
isomorphism, compatible with the G-action as well as the datum (Va,t4) and (Var,tar). Two
morphisms [, [o/] : Va @4 A" == Vi are equivalent if they differ by multiplying an element of
A<,
Now let LTD\QW(F) be the category of complete local Noetherian W (IF)-algebras. The opposite category
(i/li)\%w(m)o is then equivalent to the category of formal spectra of W (IF)-algebras.

Definition 6.2. An equivalence relation R —= X in (gg\{w(y))o consists of a pair of morphisms
R — X and R — X such that

(i) R — X x X is a closed embedding,

(i4) For all T € URyq), R(T) C (X x X)(T) is an equivalence relation.

Consider the W (IF)-group scheme PGL,,. Let id : PGL,, — SpecF be the composition of the reduction
map SpecW (F) — SpecF and the identity section of the counit map e : SpecW (F) — PGL,,. Now

ker(id) is a closed subscheme of PGL,,. Thus we may take the formal completion of the PGL,, /W (FF)
along ker(id). Denote this formal completion by PGL,,, and this is a formal W (F)-scheme. Thus
PGL,, is a group object in the category (LLZRW(]F))O.

Recall from Proposition (i) that D‘D/F is representable by R‘D/F. Take the formal spectrum Xy, :=

Spr‘D/IF, and so D% is representable by Xy;.

Proposition 6.3 (Proposition 3.4). (i4) If Endgic)(Vr) = F, then Dy, is pro-representable by a
complete local Noetherian W (F)-algebra Ry.

Proof of Proposition (ii). For A € URyy (), P/GL\n(A) acts on each deformation V4 via conjugation.

This action is functorial, and so we have a P/an—action on Xy,. We would like to construct the

quotient Xy, /PGL,. To start, we want to consider the equivalence relation on Xy, coming form the

PGL,-action. We have an equivalence relation in (L/IQEW(F))O:

XVFXP/CEL\H :; XV]F
(x,9) — (2, 92)

Indeed, by assumption Endpg(VF) = F, @ acts freely on Xy;. Thus the induced map

XVFxP/an — Xy x Xy
(x,9) — (x,92)

is a closed immersion. Then we apply the theorem from [SGA3| VIIb, Thm 1.4] to the equivalence
relation PGL,, x Xy, == Xy;,. We formulate it for our specific case as below.

d e
Theorem 6.4. Let R ﬁo Xy, be an equivalence relation in (URy r))° such that dy is flat. Then the
di

quotient Xy, /R exists in (@W(F))o, and the canonical projection of Xy, on Xy, /R = Coker(dy, d1)
is surjective and flat. The morphism R — Xy X Xy, /R Xv; induced by do and dy 1s an isomorphism.
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Now we have obtained a quotient Xy / P/an in (@W(F))O, which is the formal spectrum of a ring

Ry, € @W(F). Now it follows from the construction of the quotient that for all A € Ry (), the
category Dy, (A) is determined by the functors Dy, (Ry,) — Dy, (A). Thus the groupoid Dy, is
representable by Ryx. [l
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