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KAY RÜLLING

We report on our joint work with S. Saito [8] in which it is shown that the
theory of reciprocity sheaves gives a unified picture of various classical abelian
ramification phenomena.

1. Reciprocity sheaves, following Kahn-Saito-Yamazaki, see [2], [9]. Let k be
a fixed perfect base field. In the following, a pair (X,D) consists of a separated
finite type k-scheme X and an effective (possibly empty) Cartier divisor D on X ,
such that X \ |D| is smooth. A compactification of (X,D) is a pair (X,D + B),
where X is a proper k-scheme and B and D are effective Cartier divisors such that
X = X \ |B| and D = D|X . Given two pairs X = (X,D) and Y = (Y,E)
we denote by MCor(X ,Y) the free abelian group with generators the integral
closed subschemes V ⊂ X \ |D| × Y \ |E| which are finite and surjective over a
component of X \ |D| satisfying the property that the normalization of the closure
Ṽ → X × Y is proper over X and the inequality D|Ṽ ≥ E|Ṽ holds. We obtain
a category MCor with objects the pairs (X,D) and morphisms as defined above;
the composition is induced by the usual composition of finite correspondences.

Let X = (X,D) be a pair with U = X \ |D| and assume X is proper. For
S ∈ Smk we define

h0(X )(S) := Coker(MCor((P1
S , {∞}S),X )

i∗0−i∗1−−−→ Cor(S,U)).

This defines a presheaf with transfers h0(X ) on Smk. Let F be a presheaf with
transfers on Smk and let X = (X,D) be a pair with U = X \ |D|. Set

F̃ (X ) :=

{
a ∈ F (U)

∣∣∣∣ the Yoneda map Cor(U,−)→ F defined by a factors via
h0(X ), for some compactification X of X

}
.

One can think of this as sections on U with poles on X controlled by D and some
finite poles at infinity. If C is a proper smooth curve over a function field K, then
h0(C,D)(K) = CH0(C,D) is the Chow group with modulus as defined by Serre;
in this case we obtain a pairing

(1) F̃ (C,D)⊗Z CH0(C,D)→ F (K).

The assignment X → F̃ (X ) defines a presheaf on MCor. A reciprocity presheaf
is a presheaf with transfers F on Smk such that for all X ∈ Smk we have

F (X) =
⋃
X

F̃ (X ),
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where the union is over all compactifications of (X, ∅). We say F is a reciprocity
sheaf if it is a sheaf in the Nisnevich topology on Smk.

2. Let F be a reciprocity sheaf. Denote by Φ the set of henselian discrete valua-
tion rings of geometric type over k and by Φ≤n the subset of those L ∈ Φ with
trdeg(L/k) ≤ n. For L ∈ Φ denote by OL and mL the ring of integers and the
maximal ideal, respectively. Set

F̃ (OL,m
−n
L ) := F̃ (SpecOL, n · closed point).

We define the motivic conductor cF = {cFL : F (L)→ N0}L∈Φ by

cFL (a) := min{n ≥ 0 | a ∈ F̃ (OL,m
−n
L )}.

Definition 1 ([8, §4]). We say F has level n ∈ [1,∞] if for all X ∈ Smk and all
a ∈ F (A1

X) the condition cFk(x)(t)∞
(ax) ≤ 1, for all at most (n − 1)-dimensional

points x ∈ X , implies a ∈ F (X). Here k(x)(t)∞ = Frac(Oh
P1
k(x)

,∞) and ax ∈

F̃ (k(x)(t)∞) denotes the pullback of a.

Theorem 1 ([8, Thm 4.15, Thm 4.29]). (1) Let X ∈ Smk be connected, a ∈
F (A1

X), and set K := k(X).

cFK(t)∞
(a) ≤ 1 =⇒ a ∈ F (X).

(2) Assume F has level n ≤ ∞. For a ∈ F (X \ |D|) we have

a ∈ F̃ (X,D)⇐⇒
there exists a compactification (X,D + B) of (X,D) such
that cFL (ρ∗a) ≤ vL(ρ∗(D + B)), for all ρ ∈ X(L) and all
L ∈ Φ≤n.

If F is a homotopy invariant sheaf and a ∈ F (L), then cFL (a) = 0, if a ∈
F (OL), and cFL (a) = 1, else. This implies:

Corollary 1. Denote by h0
A1(F ) the maximal A1-invariant subsheaf of F . Then

h0
A1(F ) = F cF≤1.

We have the following general procedure to compute the motivic conductor: on
any presheaf with transfers we define a general notion of conductor; the motivic
conductor is the minimal conductor; one gets lower bounds for the motivic con-
ductor by local symbol computations. Using this we show:

Theorem 2 ([8, Thm 5.2]). Let G be a smooth commutative k-group. Then G
is a reciprocity sheaf of level 1 and the motivic conductor is determined by the
Rosenlicht-Serre modulus on curves [10, III].

Theorem 3 ([8, Thm 6.4, Cor’s 6.7, 6.8]). Assume char(k) = 0 and q ≥ 0. The
q-th differentials relative to k, Ωq, is a reciprocity sheaf of level q+1 and for L ∈ Φ

with local parameter t we have Ω̃q(OL,m
−n) = 1

tn−1 Ωq
OL

(log); h0
A1(Ωq)(X) =

H0(X,Ωq

X
(logD)), where (X,D) is an SNCD compactification of X; the closed

forms ZΩq have level q.
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Corollary 2. Let Y be a normal affine Cohen-Macaulay k-scheme, dimY = d.
Then Y has rational singularities if and only if there exists an effective Cartier
divisor D on Y whose support contains Ysing such that the sheaf YZar 3 U 7→
Ω̃d(U,D|U ) is (S2).

Theorem 4 ([8, Thm 6.11, Cor 6.12]). Assume char(k) = 0 (as above). Denote by
MIC1(X) the group of isomorphism classes of integrable rank 1 connections on
X . Then X 7→ MIC1(X) is a reciprocity sheaf of level 1; the motivic conductor
of a rank 1 connection on L ∈ Φ is equal to its irregularity as defined in [4] (up to
a shift by +1); h0

A1(MIC1)(X) are the regular singular rank 1 connections on X
in the sense of Deligne.

The pairing (1) for F = MIC1, was constructed before in [1, §4].

Theorem 5 ([8, Thm 8.8, Cor 8.10]). Assume char(k) = p > 0 and ` is a prime
different from p. Let Lisse1(X) be the group of isomorphism classes of Q`-lisse
rank 1 sheaves on X . Then X 7→ Lisse1(X) is a reciprocity sheaf of level 1;
the motivic conductor is equal to the Artin conductor (defined via the Brylinski-
Kato-Matsuda filtration cf. [3], [7]); h0

A1(Lisse1)(X) are the tamely ramified 1-
dimensional Q`-representations of πab

1 (X) (defined using curve-tameness, see [5]).

If we restrict to finite monodromy we obtain the pairing (1) forF = H1
ét(−,Q/Z);

this is the pairing from geometric class field theory in case K is a finite field.
It seems the following motivic conductor was not considered before.

Theorem 6 ([8, Thm 9.12]). Assume char(k) = p > 0. Let G be a commutative
finite k-group. Denote by H1(G)(X) := H1

fppf(X,G) the group of isomorphism
classes of G-torsors on X . Then X 7→ H1(G)(X) is a reciprocity sheaf of level
2; it has level 1 if G has no infinitesimal unipotent part; the motivic conductor
for G = αp or for G without infinitesimal unipotent part is computed explicitly;
if we write G = G′ × Gu with Gu unipotent and G′ without unipotent part, then
h0
A1(H1(G))(X) = H1(G′)(X)⊕H1(Gu)(X), where X is a smooth compactifi-

cation of X .
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[10] J.-P. Serre, Groupes algébriques et corps de classes, second ed., Publications de l’Institut
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