Andreas, Erik, Gaëtan, Ziqian

12 sep 2024

2 Springer correspondence in type A

Motivation

Motivation

Motivation

Flag

Definition

A (full) flag in \mathbb{C}^n is a sequence of subspaces $0 = V_0 \subseteq V_1 \subseteq \ldots \subseteq V_n = \mathbb{C}^n$ with dim $V_i = i$. We denote by $\mathcal{F}\ell(n)$ the set of flags of \mathbb{C}^n .

Example

For n = 2, a flag is just a line in \mathbb{C}^2 . Therefore, $\mathcal{F}\ell(2) = \mathbb{P}^1$.

The set of flags naturally sits inside a product of Grassmanians. It has the structure of a smooth projective algebraic variety.

Springer fibers

Definition

Let $A \in Mat_{n \times n}(\mathbb{C})$. The **Springer fiber** associated to A is the set $\mathcal{F}\ell(n)^A := \{V_{\bullet} \in \mathcal{F}\ell(n) | A(V_i) \subseteq V_i \text{ for all } i\}.$

Examples

• If
$$A = 0$$
 then $\mathcal{F}\ell(n)^A = \mathcal{F}\ell(n)$.
• If $A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & 0 & 1 \end{pmatrix}$ is a single Jordan block, then

 $\begin{array}{ccc} & & & 0 & 1 \\ 0 & \cdots & 0 & 0 \end{array}$ $\mathcal{F}\ell(n)^A$ consists of a single element.

Springer fibers

Fact

Each irreducible component of a Springer fiber has the same dimension d(A).

We consider singular cohomology with rational coefficients, with top non-zero cohomology $H^{2d(A)}(\mathcal{F}\ell(n)^A)$.

Springer correspondence

Theorem (Springer correspondence for type A)

Let $n \in \mathbb{N}^*$.

- Let A ∈ Mat_{n×n}(C) be a nilpotent matrix. The symmetric group S_n acts naturally on the vector space H^{2d(A)}(Fℓ(n)^A). This action gives rise to an irreducible representation of S_n.
- Each irreducible representation of S_n is isomorphic to H^{2d(A)}(Fℓ(n)^A) for some nilpotent matrix A ∈ Mat_{n×n}(ℂ), determined uniquely up to conjugation.

This theorem is particularly interesting since the action of S_n on $H^{2d(A)}(\mathcal{F}\ell(n)^A)$ doesn't come from an action on $\mathcal{F}\ell(n)^A$.

Lie algebras

Definition

A (complex) Lie algebra ${\mathfrak g}$ is a ${\mathbb C}\text{-vector}$ space together with an antisymmetric bilinear map

$$[ullet,ullet]:\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}$$

which satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Lie algebras

Lie algebras

Examples

- Abelian Lie algebras: for any vector space V, define the Lie bracket [x, y] := 0 ∀x, y ∈ V.
- Let A be an associative algebra. Define [x, y] := xy − yx. This gives to A the structure of a Lie algebra.
- If we consider $A = Mat_{n \times n}(\mathbb{C})$ with the Lie bracket previously defined, we get the Lie algebra \mathfrak{gl}_n .

•
$$\mathfrak{sl}_n \coloneqq \{x \in \mathfrak{gl}_n \mid \operatorname{Tr}(x) = 0\} \subseteq \mathfrak{gl}_n$$
.

Springer correspondence via Borel-Moore homology Lie algebras

Simple Lie algebras

Definition

An ideal I of \mathfrak{g} is a subvector space such that $[x, y] \in I$ for all $x \in \mathfrak{g}, y \in I$.

Examples

- $\bullet\,$ The trivial ideals: 0 and $\mathfrak{g}.$
- $\mathfrak{sl}_n \subseteq \mathfrak{gl}_n$ is an ideal.

Definition

A non-abelian Lie algebra ${\mathfrak g}$ is simple if it contains no non-trivial ideal.

Example

The Lie algebra \mathfrak{sl}_n is simple.

Root system and Weyl Group

To a simple Lie algebra, we can attach a geometric object called a *root system*, and a finite group W called the *Weyl group*. In the case of \mathfrak{sl}_n , this group is the symmetric group S_n .

Springer correspondence via Borel-Moore homology Lie algebras

Some subalgebras

Definition

Let $\mathfrak g$ be a simple Lie algebra. A maximal self-normalizing abelian subalgebra $\mathfrak h$ of $\mathfrak g$ is called a Cartan subalgebra.

Definition

The **derived series** of \mathfrak{g} is defined inductively by $D^0 \mathfrak{g} = \mathfrak{g}$ and $D^{n+1} \mathfrak{g} = [D^n \mathfrak{g}, D^n \mathfrak{g}]$. The Lie algebra \mathfrak{g} is **solvable** if $D^n \mathfrak{g} = 0$ for some n.

Definition

A maximal solvable subalgebra \mathfrak{b} of \mathfrak{g} is called a **Borel subalgebra**.

Lie algebras

Some subalgebras

Example

In the case of \mathfrak{sl}_n and \mathfrak{gl}_n , we can take \mathfrak{h} to be the subset of diagonal matrices and \mathfrak{b} to be the subset of upper triangular matrices.

Lie algebras

Simple Lie algebras and algebraic groups

Lie algebras also appears naturally when we study algebraic groups. Given G an algebraic group, the tangent space at the identity as naturally the structure of a Lie algebra \mathfrak{g} . This way, the group G acts naturally on the Lie algebra.

Using this construction, every simple Lie algebra appears as the Lie algebra of a simple algebraic group.

Example

The Lie algebra of GL_n is \mathfrak{gl}_n , the Lie algebra of SL_n is \mathfrak{sl}_n .

The flag variety

Definition

Let \mathfrak{g} be a simple Lie algebra. We define the flag variety

 $\mathcal{F}\ell = \mathcal{F}\ell(\mathfrak{g}) \coloneqq \{\mathfrak{b} \subseteq \mathfrak{g} \mid \mathfrak{b} \text{ is a Borel subalgebra}\}.$

For $\mathfrak{g} = \mathfrak{sl}_n$, observe the bijection between the flags previously defined and the set of Borel subalgebras. The flag variety $\mathcal{F}\ell$ has the structure of a projective complex algebraic variety.

Lie algebras

Grothendieck-Springer space

Definition

Let $\mathfrak g$ be a Lie algebra. The Grothendieck-Springer space is defined as follows:

$$ilde{\mathfrak{g}}\coloneqq \{(x,\mathfrak{b})\in\mathfrak{g} imes\mathcal{F}\ell|\ x\in\mathfrak{b}\}.$$

We have a natural map

$$\pi: \tilde{\mathfrak{g}} \to \mathfrak{g}$$

which forgets the flag, i.e. $\pi(x, \mathfrak{b}) = x$.

Lie algebras

Definition

The fibers $\mathcal{F}\ell^x \coloneqq \pi^{-1}(x)$ are called **Springer fibers**.

The Springer fiber $\mathcal{F}\ell^x$ is the set of Borel subalgebras which contain x:

$$\mathcal{F}\ell^{x} = \{\mathfrak{b} \in \mathcal{F}\ell \mid x \in \mathfrak{b}\}.$$