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Motivation

Let V be a (finite dimensional) real vector space with inner product 〈 · , · 〉 : V × V → R. Then we
can use the inner product to define a norm

‖ · ‖ : V −→ R

v 7−→
√
〈v , v〉.

Moverover, we can reconstruct the inner product from the norm by polarization:

〈v , u〉 = 1
2
(
‖v + u‖2 − ‖v‖2 − ‖u‖2).
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Motivation

Now let K be any field (of charK 6= 2) and let V be a K -vector space with symmetric bilinear form
B : V × V → K . In this case we can still consider

q : V −→ K
v 7−→ B(v , v).

As before we can reconstruct the bilinear from using polarization:

B(v , u) = 1
2
(
q(v + u)− q(v)− q(u)

)
.

Choosing an isomorphism V ∼= Kn we can identify B with a symmetric matrix
A = (aij)i,j ∈ Matn×n(K) via (v , u) 7→ v>Au. Hence q is given by

v 7−→
n∑

i,j=1
ai,j · vi · vj .
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Quadratic Forms

Definition (quadratic form)
Let K be a field of charK 6= 2. An (n-ary) quadratic form over K is a homogeneous polynomial

q =
n∑

i,j=1
aijTiTj ∈ K [T1, . . . ,Tn] with aij = aji

of degree 2.
Denote the corresponding symmetric matrix and bilinear form by Mq = (aij)i,j and Bq respectively.
The number n is called the dimension and is usually denoted by dim q.

Obviously one of q,Mq and Bq uniquely determines the other two. Thus we sometimes identify
quadratic forms with their associated matrix or bilinear form.

Daniel Echtler (HHU) Quadratic Forms Retreat 2024 4 / 19



Quadratic Forms

Definition (nonsingular quadratic form)
A quadratic form q is called nonsingular, if one of the following equivalent statements is true:

Mq is nonsingular, i.e., det(Mq) 6= 0.
Bq is non-degenerate, i.e., radBq = {x ∈ Kn | ∀y∈Kn : B(x , y) = 0} = {0}.

A quadratic form that is not nonsingular is called singular.

Example

q = T 2
1 − T 2

2 is nonsingular as detMq = det

(
1 0
0 −1

)
= −1.

q′ = T 2
1 ± 2T1T2 + T 2

2 is singular as detMq′ = det

(
1 ±1
±1 1

)
= 0.
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Quadratic Forms

Definition (equivalence of quadratic forms)
Two n-ary quadratic forms q, q′ are said to be equivalent if their associated matricies are congruent,
i.e., if there exits an invertible matrix C ∈ GLn(K) such that

Mq = C>Mq′C or equivalently q(x) = q′(Cx) for all x ∈ Kn.

Example
Consider the two quadratic forms q = T 2

1 − T 2
2 and q′ = T1T2. They are equivalent as(

1 0
0 −1

)
=

(
1 1
1 −1

)>
·
(

0 1
2

1
2 0

)
·
(

1 1
1 −1

)
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Invariants of Quadratic Forms

Question
How do we see whether two (nonsingular) quadratic forms are (not) equivalent?

Answer
Invariants!
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Invariants of Quadratic Forms

For two equivalent quadratic forms q, q′ there is C ∈ GLn(K) such that

Mq = C>Mq′C

and thus we have

det(Mq) = det(C>) det(Mq′) det(C) = det(C)2 det(Mq′).

So the determinant of two equivalent quadratic forms only differs by a square.

Definition (determinant)
For a nonsingular quadratic form q we define its determinant (or discriminant) to be

det(q) = det(Mq) · (K∗)2 ∈ K∗/(K∗)2.

For a singular quadratic form q we sometimes use the convention

det(q) = 0.
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Invariants of Quadratic Forms

Example
Consider the two quadratic forms q = T 2

1 + T 2
2 and q′ = T 2

1 − T 2
2 . Then

det(q) = 1 · (K∗)2 and det(q′) = −1 · (K∗)2.

Thus for fields where −1 is not a square (e.g. R) these two quadratic forms are not equivalent. For
fields with i2 = −1 they are, however, equivalent:(

1 0
0 1

)
=

(
1 0
0 i

)>
·
(

1 0
0 −1

)
·
(

1 0
0 i

)
.

Example
The two quadratic forms q = T 2

1 + T 2
2 and q′ = −T 2

1 − T 2
2 have both determinant 1 · (K∗)2.

However, over R they are not equivalent.
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Diagonalization of Quadratic Forms

Theorem
Every n-ary quadratic form q is eqivalent to a diagonal quadratic form, i.e., a quadratic form

〈d1, . . . , dn〉 := d1T 2
1 + · · ·+ dnT 2

n .

Sketch of proof.
By writing Kn = (radBq)⊕ W and restricting q to W we may assume w.l.o.g. that q is nonsingular.
Now let v ∈ Kn such that q(v) = d 6= 0. Then we can decompose

Kn = K · v ⊥ (K · v)⊥ q ∼= 〈d〉 ⊥ q′.

Now precede by induction on (K · v)⊥ and q′.

For diagonal forms it is easy to see that for any ai ∈ K∗ we have

〈a2
1 · d1, . . . , a2

n · dn〉 ∼= 〈d1, . . . , dn〉.
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Isotropic Forms

Definition (isotropic quadratic form)
A quadratic form q is said to be isotropic if there exists a v 6= 0 such that q(v) = 0. If no such v
exists we call q anisotropic. A quadratic form is called totally isotropic if q(v) = 0 for all v 6= 0.

Obviously every singular quadratic form is isotropic. Thus we shall focus on nonsingular isotropic
forms.

Theorem
Let q be a 2-ary quadratic form. The the following are equivalent:

q is nonsingular and isotropic.
q is equivalent to 〈1,−1〉.
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Isotropic Forms

Theorem
Let q be a 2-ary quadratic form. The the following are equivalent:

q is nonsingular and isotropic.
q is equivalent to 〈1,−1〉.

Proof.
If q ∼= 〈1,−1〉 it is obviously nonsingular and isotropic. Conversely, let q ∼= 〈a, b〉 with a, b 6= 0. Then

q ∼= 〈a, b〉 ∼= 〈a,−a〉 ∼= aT1T2 ∼= 〈1, − 1〉.

Definition (hyperbolic form)
A quadratic form is called hyperbolic if it is equivalent to

m · 〈1,−1〉 = (T 2
1 − T 2

2 ) + · · ·+ (T 2
2m−1 − T 2

2m).
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The Cancellation and Decomposition Theorem

Theorem (Witt’s Cancellation Theorem)
Let q, q1, q2 be arbitrary quadratic forms, if q ⊥ q1 ∼= q ⊥ q2, then we already have q1 ∼= q2.

Theorem (Witt’s Decomposition Theorem)
Let q be a quadratic form. Then q split as an orthogonal sum

q ∼= qt ⊥ qh ⊥ qa,

where qt is totally isotropic, qh is hyperbolic, and qa is anisotropic. Moreover, the isometry types of
qt , qh and qa is uniquely determined.

Hence the study of (nonsingular) quadratic forms can be reduced to the study of hyperbolic and
anisotropic forms.
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The Grothendieck-Witt Ring

On the set of equivalence classes of nonsingular quadratic forms M(K) we have two operations:

〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 = 〈a1, . . . , a1, bm, . . . , bm〉
〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, . . . , a1bm . . . , anb1, . . . , anbm〉.

This turns M(K) into a commutative semiring. By applying the Grothendieck group construction
(i.e., adding additive inverses) we obtain a commutative ring.

Definition (Grothendieck-Witt ring)
We define the Grothendieck-Witt ring of K to be the commutative ring

GW(K) = Groth(M(K)).

This ring can be used to study both hyperbolic and anisotropic forms at the same time.
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The Witt Ring

In order to only study the anisotropic forms we define the Witt ring.

Definition (Witt Ring)
The Witt ring of K is defined to be the quotient

W(K) := GW(K)/Z · [〈1,−1〉].

Proposition
The elements of W(K) are in 1-1-correspondence with the isometry classes of all anisotropic
forms.
Two (nonsingular) forms q, q′ represent the same element in W(K) if and only if qa ∼= q′

a.
If dim q = dim q′, then q and q′ represent the same element in W(K) if and only if q ∼= q′.
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Presentation of the Witt Ring

Proposition
As a commutative ring, the Grothendieck-Witt ring has the presentation

GW(K) =
〈
〈a〉, a ∈ K∗

∣∣∣ 〈1〉 = 1,

〈a〉 · 〈b〉 = 〈ab〉,

〈a〉+ 〈b〉 = 〈a + b〉(1 + 〈ab〉)
〉
.

To obtain a presentation for the Witt ring W(K) we add the relation

〈1〉+ 〈−1〉 = 0.

Proof of the third relation.
The quadratic form 〈a〉+ 〈b〉 can be diagonalized to 〈a + b, e〉 for some e ∈ K∗. Applying det gives
(a + b)e ≡ ab ≡ (a + b)2ab mod (K∗)2. Thus

〈a〉+ 〈b〉 ∼= 〈a + b,

e〉

(a + b)ab〉 = 〈a + b〉(1 + 〈ab〉).
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The Fundamental Ideal

As dim: M(K) → N is a semiring homomorphism we can extend it uniquely to dim: GW(K) → Z by
defining

dim(q − q′) := dim(q)− dim(q′).

Because dim(〈1,−1〉) = 2, this induces a morphism dim0 : W(K) → Z/2Z.

Definition (fundamental ideal)
The fundamental ideal in W(K) is defined to be

I(K) := ker(dim0 : W(K) → Z/2Z).

Powers of this ideal are denoted by In(K).

Since dim is surjective we have an induced isomorphism

W (K)/I(K) ∼= Z/2Z.
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Pfister Forms

Let x ∈ I(K). Then there are two quadratic forms q1, q2 with x = q1 − q2. By adding hyperbolic
forms we may assume wlog that dim(q1) = dim(q2). Let q1 = 〈a1, . . . , an〉 and q2 = 〈b1, . . . , bn〉,
then we obtain

x =
n∑

i=1
− 1 + 〈ai〉 −

( n∑
i=1

− 1 + 〈bi〉

)
.

Definition (Pfister form)
A (1-fold) Pfister form is defined to be 〈〈a〉〉 := 〈−1, a〉 ∈ I(K) for some a ∈ K∗.
More generally an n-fold Pfister form is defined to be

〈〈a1, . . . , an〉〉 :=
n⊗

i=1
〈−1, ai〉 for some a1, . . . , an ∈ K∗.

Corollary
The ideal In(K) is additively generated by the n-fold Pfister forms.
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The Hauptsatz

Theorem (Arason-Pfister Hauptsatz)
Let q be a positive-dimensional anisotropic form. If q ∈ In(K), then dim(q) ≥ 2n.
Equivalently, if q ∈ In(K) and dim(q) < 2n, then q is hyperbolic.

Corollary (Krull intersection property)
In the Witt ring W (K) we have

∞⋂
n=0

In(K) = 0.

Application
If we are able to show inductively that a quadratic form is trivial in every quotient

In(K)/In+1(K),

then it is already trivial.
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