Springer correspondence via Borel-Moore homology

Andreas,Erik,Gaëtan,Ziqian

12 sep 2024

1 [Borel-Moore homology](#page-2-0)

- **•** [Definitions](#page-2-0)
- **•** [Properties](#page-7-0)

2 [Convolution and Steinberg variety](#page-16-0)

- [Definitions](#page-16-0)
- [Steinberg variety](#page-18-0)
- [Isomorphisms](#page-20-0)

Let X be a nice space i.e.

- X is a locally compact topological space
- X has the homotopy type of a finite CW -complex
- X admits a closed embedding into a C^{∞} -manifold M (For example, any complex or real algebraic variety is a such nice space).

All ordinary (co)homology is taken with rational coefficients.

Definition :

We define the **Borel-Moore homology** $H_{\bullet}^{BM}(X)$ of X by the following equivalent definitions :

- 1) The Borel-Moore chain is a locally finite sums of singular simplices (i.e. finite sums when intersecting with compact subset).
- 2) Let $X \hookrightarrow M$ an embedding into a closed oriented *n*-manifold,

$$
H_k^{BM}(X):=H^{n-k}(M,M-X)
$$

3) Let $X_+ := X \cup \{\infty\}$ the one-point compacification,

$$
H_k^{BM}(X):=H_k(X_+,\{\infty\})
$$

4) $H^{BM}_{\bullet} (X)$ is the sheaf cohomology of the Verdier dualizing complex ω_X .

Poincaré duality

Theorem :

Let X be a smooth oriented manifold of dimension d . Then

 $H_k^{BM}(X) \simeq H^{d-k}(X)$

Example 1 : Let X be compact. Then

$$
H_k^{BM}(X)\simeq H_k(X)
$$

Example 2 :

$$
H_{k}^{BM}(\mathbb{R}^{n})=\left\{\begin{array}{ll}0 & \text{if }k\neq n\\ \mathbb{Q} & \text{otherwise}\end{array}\right.
$$

Example

Example 3 : Let $X = S^1 \times \mathbb{R}$. Using Kunneth decomposition :

$$
H_0^{BM}(X)\simeq H^2(X)=H^1(S^1)\otimes H^1(\mathbb{R})=0\\ H_1^{BM}(X)\simeq H^1(X)=\mathbb{Q}\\ H_2^{BM}(X)\simeq H^0(X)=\mathbb{Q}
$$

Question : what about $X=S^1\times \mathbb{R}/S^1\times \{0\}$?

Functoriality

Proposition :

Let $f: X \rightarrow Y$ be a map of spaces.

1) If f is proper, then f admits a pushforward :

$$
f_*: H^{BM}_{\bullet}(X) \to H^{BM}_{\bullet}(Y)
$$

2) If f is an open embedding, there is a restriction map :

 $f^!: H^{BM}_\bullet(Y)\to H^{BM}_\bullet(X)$

Functoriality

Proposition :

- Let $f: X \rightarrow Y$ be a map of spaces.
	- 1) If f is an oriented fibration of relative complex dimension d , then f admits a pullback :

$$
f^!: H_k^{BM}(Y) \to H_{k+2d}^{BM}(X)
$$

2) If f is an oriented embedding of manifolds of codimension d , then f admits a pullback :

$$
f^!: H_k^{BM}(Y) \to H_{k-2d}^{BM}(X)
$$

Localization sequence

Let $\iota : Z \hookrightarrow X$ be a closed embedding and $j : U \hookrightarrow X$ the open embedding of the complement of Z. In particular, ι of proper.

We get :

$$
H^{BM}_{\bullet}(Z) \xrightarrow{\iota_*} H^{BM}_{\bullet}(X) \xrightarrow{j^!} H^{BM}_{\bullet}(U)
$$

We would like also to have a long exact sequence as for ordinary homology.

Localization sequence

Let $X \hookrightarrow M$ an closed embedding into a smooth manifold. Then by definition,

$$
H_k^{BM}(X) = H^{n-k}(M, M-X)
$$

and

$$
H_k^{BM}(Z)=H^{n-k}(M,M-Z)
$$

There is also an open subset M' of M such that we have $U \hookrightarrow M'.$ By the excision axiom,

$$
H_k^{BM}(U)=H^{n-k}(M,M-U)
$$

Localization sequence

Using the standard long exact sequence , we get finally :

Proposition :

For an open-closed decomposition $X = U \sqcup Z$,

$$
\cdots \mathsf{H}^{BM}_{k+1}(U) \xrightarrow{\partial} \mathsf{H}^{BM}_k(Z) \xrightarrow{\ast} \mathsf{H}^{BM}_k(X) \xrightarrow{j^!} \mathsf{H}^{BM}_k(U) \xrightarrow{\partial} \mathsf{H}^{BM}_{k-1}(Z) \cdots
$$

Application

Example 4 : Let $X=S^1\times \mathbb{R}/S^1\times \{0\}$ and $Z=\{pt\}.$ Using the previous long exact sequence, we get :

$$
H_0^{BM}(X) = 0
$$

\n
$$
H_1^{BM}(X) = \mathbb{Q}
$$

\n
$$
H_2^{BM}(X) = \mathbb{Q}^2
$$

One can compare with :

$$
H2(X) = 0
$$

H¹(X) = 0
H⁰(X) = \mathbb{Q}

[Properties](#page-7-0)

Fundamental classes

Definition

Let X be a complex algebraic variety of complex dimension d . We call the fundamental class of X , the element

$$
[X] := p^! (\mathbb{Q}) \in H_{2d}^{BM}(X)
$$

where

$$
\rho^!: H_0^{BM}(pt) \to H_{2d}^{BM}(X)
$$

Remark :

If X is an algebraic variety of pure complex dimension d , then the fundamental classes of its irreducible components form a basis of $H_{2d}^{BM}(X)$.

Let X be a smooth d-manifold and $f : X \rightarrow Y$ a proper map. Let $Z := X \times_Y X$. Naturally, we have :

with s oriented embedding of dimension d and r proper.

[Springer correspondence via Borel-Moore homology](#page-0-0) [Convolution and Steinberg variety](#page-16-0) [Definitions](#page-16-0)

Definition

Definition

The convolution on $H_{\bullet}^{BM}(Z)$ is defined by :

$$
*:=r_*s^!:H^{BM}_{\bullet}(Z\times Z)\simeq H^{BM}_{\bullet}(Z)\otimes H^{BM}_{\bullet}(Z)\rightarrow H^{BM}_{\bullet-2d}(Z)
$$

Proposition :

 $H^{BM}_{\bullet-2d}(Z)$ is a graded associative algebra.

In particular, $H_{\bullet-2d}^{BM}(\operatorname{St}(\mathfrak{g}))$ and $H_{\bullet-4m}^{BM}(\operatorname{St}(\mathcal{N}))$ are graded algebras.

Definition

Let's denote :

$$
A(\mathfrak{g}) := H^{BM}_{2d}(\mathrm{St}(\mathfrak{g}))
$$

$$
A(\mathcal{N}) := H^{BM}_{4m}(\text{St}(\mathcal{N}))
$$

Remark :

Under a similair convolution map, $H^{BM}_{2d(x)}(\mathcal{F}\ell^{\times})$ is natually a left (and right) $A(N)$ -module.

[Springer correspondence via Borel-Moore homology](#page-0-0) [Convolution and Steinberg variety](#page-16-0) [Steinberg variety](#page-18-0)

Proposition :

 $St(g)$ and $St(\mathcal{N})$ are equidimensional of dimension d and 2m, their irreducible components are indexed by the Weyl group W .

In particular, we can denote the bases of $A(g)$ and $A(\mathcal{N})$ by :

$$
\Lambda_w := \left[\mathrm{St}_w(\mathfrak{g}) \right]
$$

$$
\mathcal{T}_{w} := \left[\operatorname{St}_{w}(\mathcal{N})\right]
$$

Big Steinberg

Theorem

$$
\begin{array}{ccc} \mathbb{Q}[W] & \longrightarrow & A(\mathfrak{g}) \\ w \in W & \mapsto & \Lambda_w \end{array}
$$

is an isomorphism of algebras.

Problem :

$$
\mathcal{T}_v * \mathcal{T}_w \neq \mathcal{T}_{vw}
$$

in general, so we do not get an isomorphism of algebras by the same way.

Nilpotent Steinberg

Theorem

$$
\mathbb{Q}[W] \simeq A(\mathcal{N})
$$

Consequence

 $A(\mathcal{N})$ is a semi-simple algebra.

Lemma

Let $x \in \mathcal{N}$. Let's write $A_{\mathsf{x}} := \mathsf{H}_{2d(\mathsf{x})}^{\mathsf{BM}}(\mathcal{F}\ell^{\mathsf{x}})$ as $A(\mathcal{N})$ -module,

 $(A_x)_R \simeq (A_x))^{\vee}_L$

Idea :

Involution on St(\mathcal{N}) gives an anti-involution $c \mapsto c^t$ on $A(\mathcal{N})$. Under $\mathbb{Q}[W] \simeq A(\mathcal{N})$, it corresponds to $w \mapsto w^{-1}$. Then

$$
(A_x)^*_R \simeq (A_x)^{t,\vee}_R
$$

Theorem

Let $x \in \mathcal{N}$.

Then

- 1) A_x is a simple $A(x)$ -module.
- 2) A_x and A_y are isomorphic if ans only if x and y are conjugated under $SL_n(\mathbb{C})$.
- 3) $\{A_x \mid \bar{x} \in \mathcal{N}/SL_n(\mathbb{C})\}$ is a coset representative of isomorphism classes of simple $A(N)$ -module.

Idea :

•

•

$$
\mathbb{C} \otimes_{\mathbb{Q}} A(\mathcal{N}) \simeq \mathbb{C}[W] \simeq \bigoplus_{\alpha} \mathrm{End}_{\mathbb{C}}(E_{\alpha})
$$

where E_{α} range over all simple $\mathbb{C}[W]$ -module.

$$
A(\mathcal{N}) \simeq \text{gr} A(\mathcal{N}) = \bigoplus_{\bar{x}} (A_x)_L \otimes (A_x)_R
$$

where \bar{x} range over $\mathcal{N}/SL_n(\mathbb{C})$.

then,

$$
\mathbb{C} \otimes_{\mathbb{Q}} A(\mathcal{N}) \simeq \bigoplus_{\bar{\mathsf{x}}} \mathrm{End}_{\mathbb{C}}(A_{\mathsf{x}})
$$

• let's write
$$
A_x = \sum_{\alpha} n_{\bar{x},\alpha} E_{\alpha}
$$

then,

$$
\bigoplus_{\alpha}\mathrm{End}_{\mathbb{C}}(E_{\alpha})\simeq \bigoplus_{\bar{x}}\bigoplus_{\alpha,\beta}n_{\bar{x},\alpha}n_{\bar{x},\beta}\mathrm{Hom}_{\mathbb{C}}(E_{\alpha},E_{\beta})
$$

Therefore, $n_{\bar{x},\alpha}n_{\bar{x},\beta}=\delta_{\alpha,\beta}$ (the Kronecker symbol).

There is an unique $n_{\bar{x},\alpha} \neq 0$ (and equals to 1) for each \bar{x} , and this α should be different for different \bar{x} .

[Isomorphisms](#page-20-0)

Thanks :)