PAC fields of characteristic zero are C1

after J. Kollár

Dzoara, Vivien, Kay

GRK2240 Retreat, Möhnesee 2024

C1 fields

A field k is C1 iff

every $f \in k[X_0, \ldots, X_n]_d$ has a nontrivial zero in k, for all $d \leq n$,

A field k is C1 iff

every $f \in k[X_0, \ldots, X_n]_d$ has a nontrivial zero in k, for all $d \leq n$,

i.e., every hypersurface $H \subset \mathbb{P}_k^n$ of degree $\leq n$ has a k-rational point

A field k is C1 iff

every $f \in k[X_0, \ldots, X_n]_d$ has a nontrivial zero in k, for all $d \leq n$,

i.e., every hypersurface $H \subset \mathbb{P}_k^n$ of degree $\leq n$ has a k-rational point

• introduced by Emil Artin

A field k is C1 iff

every $f \in k[X_0, \ldots, X_n]_d$ has a nontrivial zero in k, for all $d \leq n$,

i.e., every hypersurface $H \subset \mathbb{P}_k^n$ of degree $\leq n$ has a k-rational point

- introduced by Emil Artin
- C1 = quasi-algebraically closed

• algebraically closed fields

- algebraically closed fields
- K algebraic over C1 field

- algebraically closed fields
- K algebraic over C1 field
- \mathbb{F}_p : Chevalley-Warning

- algebraically closed fields
- K algebraic over C1 field
- \mathbb{F}_p : Chevalley-Warning

 $H \subset \mathbb{P}^n_{\mathbb{F}_p}$ hypersurface of degree $\leq n \Longrightarrow |H(\mathbb{F}_p)| \equiv 1 \mod p$

• k(x) with $k = \overline{k}$ (Tsen)

- algebraically closed fields
- K algebraic over C1 field
- \mathbb{F}_p : Chevalley-Warning

- k(x) with $k = \overline{k}$ (Tsen)
- $\mathbb{Q}_p^{\text{unramif}}$ (Lang)

- algebraically closed fields
- K algebraic over C1 field
- \mathbb{F}_p : Chevalley-Warning

- k(x) with $k = \overline{k}$ (Tsen)
- $\mathbb{Q}_p^{\text{unramif}}$ (Lang)
- Frac(W(k)), with $k = \overline{k}$, char(k) > 0 (Lang)

- algebraically closed fields
- K algebraic over C1 field
- \mathbb{F}_p : Chevalley-Warning

- k(x) with $k = \overline{k}$ (Tsen)
- $\mathbb{Q}_p^{\text{unramif}}$ (Lang)
- Frac(W(k)), with $k = \overline{k}$, char(k) > 0 (Lang)
- more generally: fraction field of excellent henselian DVR's with algebraically closed residue field (Lang)

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

To show:

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

To show:

D = finite division k-algebra with center $k \Longrightarrow D = k$.

• Have: $\dim_k D = n^2$

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

To show:

- Have: $\dim_k D = n^2$
- → reduced norm of *D* of the generic element of *D* $Nrd_{D/k}(X) \in k[X_0, X_1, ..., X_{n^2-1}]_n$ has only the trivial zero

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

To show:

- Have: $\dim_k D = n^2$
- → reduced norm of *D* of the generic element of *D* $\operatorname{Nrd}_{D/k}(X) \in k[X_0, X_1, \dots, X_{n^2-1}]_n$ has only the trivial zero $\implies n > n^2 - 1$ (as *k* is C1)

$$k \operatorname{C1} \Rightarrow \operatorname{Br}(k) = 0$$

To show:

- Have: $\dim_k D = n^2$
- → reduced norm of *D* of the generic element of *D* $\operatorname{Nrd}_{D/k}(X) \in k[X_0, X_1, \dots, X_{n^2-1}]_n$ has only the trivial zero $\implies n > n^2 - 1$ (as *k* is C1) $\implies n = 1$

• \mathbb{R} : consider $X_0^2 + X_1^2 + X_2^2 = 0$

- \mathbb{R} : consider $X_0^2 + X_1^2 + X_2^2 = 0$
- \mathbb{Q}_{p} : Br $(\mathbb{Q}_{p}) = \mathbb{Q}/\mathbb{Z}$ (Hasse)

- \mathbb{R} : consider $X_0^2 + X_1^2 + X_2^2 = 0$
- \mathbb{Q}_p : Br $(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z}$ (Hasse)
- $\mathbb{F}_q((t))$ (same)

- \mathbb{R} : consider $X_0^2 + X_1^2 + X_2^2 = 0$
- \mathbb{Q}_{ρ} : Br $(\mathbb{Q}_{\rho}) = \mathbb{Q}/\mathbb{Z}$ (Hasse)
- $\mathbb{F}_q((t))$ (same)
- Global fields, i.e., finite extensions of 𝔽_q(t) or ℚ:
 Albert-Brauer-Hasse-Noether Theorem

$$0
ightarrow {
m Br}(k)
ightarrow igoplus_{
m v} {
m Br}(k_{
m v})
ightarrow {\mathbb Q}/{\mathbb Z}
ightarrow 0$$

- \mathbb{R} : consider $X_0^2 + X_1^2 + X_2^2 = 0$
- \mathbb{Q}_p : Br $(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z}$ (Hasse)
- $\mathbb{F}_q((t))$ (same)
- Global fields, i.e., finite extensions of $\mathbb{F}_q(t)$ or \mathbb{Q} : Albert-Brauer-Hasse-Noether Theorem

$$0 o \operatorname{Br}(k) o igoplus_{v} \operatorname{Br}(k_{v}) o \mathbb{Q}/\mathbb{Z} o 0$$

• $\exists k : Br(k) = 0$ and k not C1 (Ax, works in any char)

• \mathbb{Q}^{ab} (E. Artin around 1950)

(Note $\mathbb{Q}^{\mathrm{ab}} = \mathbb{Q}(e^{rac{2\pi i}{n}} \mid n \in \mathbb{N})$ by Kronecker-Weber)

• \mathbb{Q}^{ab} (E. Artin around 1950) (Note $\mathbb{Q}^{ab} = \mathbb{Q}(e^{\frac{2\pi i}{n}} \mid n \in \mathbb{N})$ by Kronecker-Weber)

• Frac
$$\left(\frac{\mathbb{R}[X,Y]}{(X^2+Y^2+1)}\right)$$
 (Lang in 1953; it is oddly C1)

• \mathbb{Q}^{ab} (E. Artin around 1950) (Note $\mathbb{Q}^{ab} = \mathbb{Q}(e^{\frac{2\pi i}{n}} \mid n \in \mathbb{N})$ by Kronecker-Weber)

•
$$\operatorname{Frac}\left(\frac{\mathbb{R}[X,Y]}{(X^2+Y^2+1)}\right)$$
 (Lang in 1953; it is oddly C1)

• $\mathbb{Q}_p(\mathsf{FF}\mathsf{-curve}) = \mathbb{Q}_p(B_{\mathrm{cris}}^{\varphi = \mathrm{id}})$ (by Fargues in 2020)

• \mathbb{Q}^{ab} (E. Artin around 1950) (Note $\mathbb{Q}^{ab} = \mathbb{Q}(e^{\frac{2\pi i}{n}} \mid n \in \mathbb{N})$ by Kronecker-Weber)

•
$$\operatorname{Frac}\left(\frac{\mathbb{R}[X,Y]}{(X^2+Y^2+1)}\right)$$
 (Lang in 1953; it is oddly C1)

• $\mathbb{Q}_{p}(\mathsf{FF}\mathsf{-curve}) = \mathbb{Q}_{p}(B_{\mathrm{cris}}^{\varphi=\mathrm{id}})$ (by Fargues in 2020)

Br(k) = 0 in all cases

PAC fields

A field k is PAC iff

```
A field k is PAC iff
```

every geom irred $f \in k[X, Y]$ has a zero.

• f is geom irred iff it is irred in $\bar{k}[X, Y]$, e.g.,

A field k is PAC iff

- f is geom irred iff it is irred in $\bar{k}[X, Y]$, e.g.,
 - $f \in k[X]$ geom irred iff f is linear

A field k is PAC iff

- f is geom irred iff it is irred in $\bar{k}[X, Y]$, e.g.,
 - $f \in k[X]$ geom irred iff f is linear
 - $f = X^2 + Y^2 \in \mathbb{R}[X, Y]$ not geom irred = (X + iY)(X iY)

A field k is PAC iff

- f is geom irred iff it is irred in $\bar{k}[X, Y]$, e.g.,
 - $f \in k[X]$ geom irred iff f is linear
 - $f = X^2 + Y^2 \in \mathbb{R}[X, Y]$ not geom irred = (X + iY)(X iY)
 - $f = X^2 + Y^2 1 \in \mathbb{R}[X, Y]$ geom irred

A field k is PAC iff

- f is geom irred iff it is irred in $\bar{k}[X, Y]$, e.g.,
 - $f \in k[X]$ geom irred iff f is linear
 - $f = X^2 + Y^2 \in \mathbb{R}[X, Y]$ not geom irred = (X + iY)(X iY)
 - $f = X^2 + Y^2 1 \in \mathbb{R}[X, Y]$ geom irred
- PAC = pseudo algebraically closed (Ax in 1968)
Theorem, Kollár, Fried-Jarden

 $k \text{ PAC} \iff \text{every geom integral } k \text{-variety } X \text{ has a } k \text{-rational point}$

Theorem, Kollár, Fried-Jarden

 $k \text{ PAC} \iff$ every geom integral k-variety X has a k-rational point

In particular

$$k \text{ PAC} \implies \text{Br}(k) = 0$$
 (only trivial SBV/k)

• alg/sep closed fields are PAC

- alg/sep closed fields are PAC
- L alg over PAC \Longrightarrow L is PAC

- alg/sep closed fields are PAC
- L alg over PAC $\implies L$ is PAC
- infinite alg over \mathbb{F}_p is PAC (by Weil conj for curves)

- alg/sep closed fields are PAC
- L alg over PAC $\implies L$ is PAC
- infinite alg over \mathbb{F}_p is PAC (by Weil conj for curves)
- Spec(∏_p 𝔽_p) = ∐_p Spec 𝔽_p ⊔ X
 → κ(𝔅) is PAC of char 0, for 𝔅 ∈ X

- alg/sep closed fields are PAC
- L alg over PAC \Longrightarrow L is PAC
- infinite alg over \mathbb{F}_p is PAC (by Weil conj for curves)
- Spec $(\prod_{p} \mathbb{F}_{p}) = \coprod_{p} \operatorname{Spec} \mathbb{F}_{p} \sqcup X$ $\rightsquigarrow \kappa(\mathfrak{p}) \text{ is PAC of char 0, for } \mathfrak{p} \in X$
- same with infinite products of PAC fields

- alg/sep closed fields are PAC
- L alg over PAC \Longrightarrow L is PAC
- infinite alg over \mathbb{F}_p is PAC (by Weil conj for curves)
- Spec $(\prod_{p} \mathbb{F}_{p}) = \coprod_{p} \operatorname{Spec} \mathbb{F}_{p} \sqcup X$ $\rightsquigarrow \kappa(\mathfrak{p}) \text{ is PAC of char 0, for } \mathfrak{p} \in X$
- same with infinite products of PAC fields
- K = function field of a smooth var/Q or F
 _p
 ⇒ (K^{sep})^{<σ1,...,σn>} is PAC for almost all σ_i ∈ Gal(K^{sep}/K)

perfect PAC \implies C1 ?

```
perfect PAC \implies C1 ?
```

OK for perfect PAC fields...

• ...with abelian Galois group (Ax)

```
perfect PAC \implies C1 ?
```

OK for perfect PAC fields...

- ...with abelian Galois group (Ax)
- ...containing an alg. closed field (Fried-Jarden)

```
perfect PAC \implies C1 ?
```

OK for perfect PAC fields...

- ...with abelian Galois group (Ax)
- ...containing an alg. closed field (Fried-Jarden)

wrong without "perfect" (as k C1 implies $[k : k^p] \le p$)

Theorem 1, Kollár 2007

Every PAC field of char 0 is C1

Theorem 1, Kollár 2007

Every PAC field of char 0 is C1

Consequence of:

Theorem 2

k=any field of char 0 \Longrightarrow

every hypersurface $H \subset \mathbb{P}_k^n$ of degree $\leq n$ has a geometrically integral closed subvariety $Y \subset H$

• any H is geom conn! If it is smooth, it is also geom integral

- any H is geom conn! If it is smooth, it is also geom integral
- $H = \{(X_0 + X_1)^2 + X_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ not geom integral:

$$H_{\mathbb{C}} = \{X_0 + X_1 - iX_2 = 0\} \cup \{X_0 + X_1 + iX_2 = 0\}$$

But $(1:-1:0) \in H$ geom int subvar

- any H is geom conn! If it is smooth, it is also geom integral
- $H = \{(X_0 + X_1)^2 + X_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ not geom integral:

$$H_{\mathbb{C}} = \{X_0 + X_1 - iX_2 = 0\} \cup \{X_0 + X_1 + iX_2 = 0\}$$

But $(1:-1:0) \in H$ geom int subvar

• deg $H \leq n$ is necessary:

- any H is geom conn! If it is smooth, it is also geom integral
- $H = \{(X_0 + X_1)^2 + X_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ not geom integral:

$$H_{\mathbb{C}} = \{X_0 + X_1 - iX_2 = 0\} \cup \{X_0 + X_1 + iX_2 = 0\}$$

But $(1:-1:0) \in H$ geom int subvar

- deg $H \le n$ is necessary:
 - take K/\mathbb{Q} with basis e_0, e_1, e_2

- any H is geom conn! If it is smooth, it is also geom integral
- $H = \{(X_0 + X_1)^2 + X_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ not geom integral:

$$H_{\mathbb{C}} = \{X_0 + X_1 - iX_2 = 0\} \cup \{X_0 + X_1 + iX_2 = 0\}$$

But $(1:-1:0) \in H$ geom int subvar

- deg $H \le n$ is necessary:
 - take K/\mathbb{Q} with basis e_0, e_1, e_2

$$f := \operatorname{Nm}_{K/\mathbb{Q}}(X_0e_0 + X_1e_1 + X_2e_2) \in \mathbb{Q}[X_0, X_1, X_2]_3$$

- any H is geom conn! If it is smooth, it is also geom integral
- $H = \{(X_0 + X_1)^2 + X_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ not geom integral:

$$H_{\mathbb{C}} = \{X_0 + X_1 - iX_2 = 0\} \cup \{X_0 + X_1 + iX_2 = 0\}$$

But $(1:-1:0) \in H$ geom int subvar

- $\deg H \leq n$ is necessary:
 - take K/Q with basis e₀, e₁, e₂

$$\begin{split} f &:= \operatorname{Nm}_{K/\mathbb{Q}}(X_0 e_0 + X_1 e_1 + X_2 e_2) \in \mathbb{Q}[X_0, X_1, X_2]_3 \\ \Rightarrow \ \{f = 0\} \subset \mathbb{P}^2_{\mathbb{Q}} \text{ has deg 3 and no geom int subvariety}! \end{split}$$

• k field of char 0

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth
- $V = \{uf + vh = 0\} \subset \mathbb{P}^n_k \times \mathbb{P}^1_k(u, v)$

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth

•
$$V = \{uf + vh = 0\} \subset \mathbb{P}^n_k \times \mathbb{P}^1_k(u, v)$$

• $g: V \to \mathbb{P}^1(u, v)$ (projection)

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth

•
$$V = \{uf + vh = 0\} \subset \mathbb{P}^n_k \times \mathbb{P}^1_k(u, v)$$

- $g: V \to \mathbb{P}^1(u, v)$ (projection)
- Note

$$g^{-1}(\{u=0\}) = H \quad g^{-1}(\{v=0\}) = F$$

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth
- $V = \{uf + vh = 0\} \subset \mathbb{P}^n_k \times \mathbb{P}^1_k(u, v)$
- $g: V \to \mathbb{P}^1(u, v)$ (projection)
- Note

$$g^{-1}(\{u=0\}) = H \quad g^{-1}(\{v=0\}) = F$$

Theorem 3

$$g^{-1}(x) \supset$$
 geom int closed subvar, $\forall x \in \mathbb{P}^1(k)$

- k field of char 0
- $F = \{f = 0\} \subset \mathbb{P}_k^n$ of deg $d \leq n$
- $H = \{h = 0\} \subset \mathbb{P}_k^n$ of deg $d \le n$ and smooth

•
$$V = \{uf + vh = 0\} \subset \mathbb{P}^n_k \times \mathbb{P}^1_k(u, v)$$

• $g: V \to \mathbb{P}^1(u, v)$ (projection)

• Note

$$g^{-1}({u = 0}) = H \quad g^{-1}({v = 0}) = F$$

Theorem 3

$$g^{-1}(x) \supset$$
 geom int closed subvar, $\forall x \in \mathbb{P}^1(k)$

In particular

$$F = g^{-1}(\{v = 0\})$$
 contains geom int subvar \Rightarrow Thm 2 \Rightarrow Thm 1

Proof of Theorem 3

Aim: Proof of Theorem 3

Aim: Proof of Theorem 3

We need:

Aim: Proof of Theorem 3

We need:

- Basics of divisors
- Resolution of singularities
- Connectedness result

Definition

• A prime divisor P is a closed integral codim 1 subvar in X.

Definition

- A prime divisor P is a closed integral codim 1 subvar in X.
- A Q-divisor is $D = \sum a_i P_i, a_i \in \mathbb{Q}$.

Definition

- A prime divisor P is a closed integral codim 1 subvar in X.
- A Q-divisor is $D = \sum a_i P_i, a_i \in \mathbb{Q}$.
- D is sncd if P_i are sm and all intersections are transversal.
X variety /k

Definition

- A prime divisor P is a closed integral codim 1 subvar in X.
- A Q-divisor is $D = \sum a_i P_i, a_i \in \mathbb{Q}$.
- D is sncd if P_i are sm and all intersections are transversal.
- $D_1\sim_{\mathbb{Q}} D_2$ if $\exists m>0$ st $mD_1\sim mD_2$

•
$$D_1 = (xy = 0) \subset \mathbb{A}^2_k$$

- $D_1 = (xy = 0) \subset \mathbb{A}^2_k$
- $D_2 = (x^2 + y^2 = 0) \subset \mathbb{A}^2_{\mathbb{C}}$

- $D_1 = (xy = 0) \subset \mathbb{A}^2_k$
- $D_2 = (x^2 + y^2 = 0) \subset \mathbb{A}^2_{\mathbb{C}}$

Non-Examples of snc

•
$$D_2 = (x^2 + y^2 = 0) \subset \mathbb{A}^2_{\mathbb{R}}$$

- $D_1 = (xy = 0) \subset \mathbb{A}^2_k$
- $D_2 = (x^2 + y^2 = 0) \subset \mathbb{A}^2_{\mathbb{C}}$

Non-Examples of snc

- $D_2 = (x^2 + y^2 = 0) \subset \mathbb{A}^2_{\mathbb{R}}$
- $D_3 = (xy(x+y) = 0) \subset \mathbb{A}^2_k$

• char*k* = 0

- char*k* = 0
- $Z \subset X$ closed

- char*k* = 0
- $Z \subset X$ closed

Theorem (H. Hironaka 1964)

There exists a resolution of singularities, i.e.

$$\pi: X' \longrightarrow X$$

where

- X' sm
- π succ blow-up in $Z \cup X ackslash X_{\mathrm{reg}}$
- $\pi^{-1}(Z \cup X \setminus X_{\operatorname{reg}})_{\operatorname{red}}$ sncd.

• Recall

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}^n_k \times \mathbb{P}^1_k$

• Recall

•
$$V := (uf + vh = 0) \subset \mathbb{P}_k^n \times \mathbb{P}_k^1$$

 $\implies \exists U \subset \mathbb{P}^1_k \ \ \mathsf{st} \ \ V_U \longrightarrow U \ \mathsf{sm}$

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}^n_k \times \mathbb{P}^1_k$

$$\implies \exists U \subset \mathbb{P}^1_k \text{ st } V_U \longrightarrow U \text{ sm}$$

• $Z = \mathbb{P}^1_k - U$

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}^n_k \times \mathbb{P}^1_k$

$$\implies \exists U \subset \mathbb{P}^1_k \text{ st } V_U \longrightarrow U \text{ sm}$$

- $Z = \mathbb{P}^1_k U$
- By Hironaka's Thm.

$$V_1 \xrightarrow{\pi} V \xrightarrow{g} \mathbb{P}^1_k$$

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}^n_k \times \mathbb{P}^1_k$

$$\implies \exists U \subset \mathbb{P}^1_k \text{ st } V_U \longrightarrow U \text{ sm}$$

- $Z = \mathbb{P}^1_k U$
- By Hironaka's Thm.

$$V_1 \xrightarrow{\pi} V \xrightarrow{g} \mathbb{P}^1_k$$

• *V*₁ sm

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}_k^n \times \mathbb{P}_k^1$

$$\implies \exists U \subset \mathbb{P}^1_k \text{ st } V_U \longrightarrow U \text{ sm}$$

- $Z = \mathbb{P}^1_k U$
- By Hironaka's Thm.

$$V_1 \stackrel{\pi}{\longrightarrow} V \stackrel{g}{\longrightarrow} \mathbb{P}^1_k$$

• *V*₁ sm

• $\pi^{-1}(V_Z)_{\mathrm{red}}$ sncd

- Recall
 - $V := (uf + vh = 0) \subset \mathbb{P}_k^n \times \mathbb{P}_k^1$

$$\implies \exists U \subset \mathbb{P}^1_k \text{ st } V_U \longrightarrow U \text{ sm}$$

- $Z = \mathbb{P}^1_k U$
- By Hironaka's Thm.

$$V_1 \xrightarrow{\pi} V \xrightarrow{g} \mathbb{P}^1_k$$

- *V*₁ sm
- $\pi^{-1}(V_Z)_{\mathrm{red}}$ sncd
- π is an iso over V_U

• $L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$ ample $(d \le n)$

• $L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$ ample $(d \le n)$

 $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$

• $L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$ ample $(d \le n)$ $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$ $\rightsquigarrow -K_{V_1}|_{V_U} \sim -K_{V_U} \sim L|_{V_U} \sim M|_{V_U}$ • $L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$ ample $(d \le n)$ $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$ $\rightsquigarrow -K_{V_1}|_{V_U} \sim -K_{V_U} \sim L|_{V_U} \sim M|_{V_U}$ $\implies M \sim_{\mathbb{Q}} - (K_{V_1} + D)$, where $\text{Supp } D \subset \pi^{-1}(V_Z)_{red}$ • $L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$ ample $(d \le n)$ $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$ $\implies -K_{V_1}|_{V_U} \sim -K_{V_U} \sim L|_{V_U} \sim M|_{V_U}$ $\implies M \sim_{\mathbb{Q}} -(K_{V_1} + D)$, where Supp $D \subset \pi^{-1}(V_Z)_{red}$ $\xrightarrow{\text{Thm}} (g \circ \pi)^{-1}(Z) \supset$ irre cpt, which is geom conn

•
$$L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$$
 ample $(d \le n)$
 $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$
 $\rightsquigarrow -K_{V_1}|_{V_U} \sim -K_{V_U} \sim L|_{V_U} \sim M|_{V_U}$
 $\implies M \sim_{\mathbb{Q}} - (K_{V_1} + D)$, where Supp $D \subset \pi^{-1}(V_Z)_{red}$
 $\xrightarrow{\text{Thm 4}} (g \circ \pi)^{-1}(Z) \supset$ irre cpt, which is geom conn

• Since every fiber of $V \longrightarrow \mathbb{P}^1_k$ is dominated by the fiber of $g \circ \pi : V_1 \longrightarrow \mathbb{P}^1_k$

•
$$L := ((n+1-d)p_1^*H_0 + p_2^*Z)|_V$$
 ample $(d \le n)$
 $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$
 $\rightsquigarrow -K_{V_1}|_{V_U} \sim -K_{V_U} \sim L|_{V_U} \sim M|_{V_U}$
 $\implies M \sim_{\mathbb{Q}} - (K_{V_1} + D)$, where Supp $D \subset \pi^{-1}(V_Z)_{red}$
 $\xrightarrow{\text{Thm 4}} (g \circ \pi)^{-1}(Z) \supset$ irre cpt, which is geom conn

• Since every fiber of $V \longrightarrow \mathbb{P}^1_k$ is dominated by the fiber of $g \circ \pi : V_1 \longrightarrow \mathbb{P}^1_k$

 \implies every fiber of $V \longrightarrow \mathbb{P}^1_k$ contains a geom irre subvariety \square

•
$$L := \left((n+1-d)p_1^*H_0 + p_2^*Z \right) \Big|_V$$
 ample $(d \le n)$
 $\implies M := \pi^*(L) - \frac{1}{m}E$ ample $(m \gg 0)$
 $\rightsquigarrow -K_{V_1} \Big|_{V_U} \sim -K_{V_U} \sim L \Big|_{V_U} \sim M \Big|_{V_U}$
 $\implies M \sim_{\mathbb{Q}} - (K_{V_1} + D)$, where Supp $D \subset \pi^{-1}(V_Z)_{red}$
 $\xrightarrow{\text{Thm 4}} (g \circ \pi)^{-1}(Z) \supset$ irre cpt, which is geom conn

• Since every fiber of $V \longrightarrow \mathbb{P}^1_k$ is dominated by the fiber of $g \circ \pi : V_1 \longrightarrow \mathbb{P}^1_k$

 \implies every fiber of $V \longrightarrow \mathbb{P}^1_k$ contains a geom irre subvariety \Box

Theorem 3

$$g^{-1}(x) \supset$$
 geom int closed subvar, $\forall x \in \mathbb{P}^1(k)$

Connectedness result:

- Y sm, proj var /k
- C sm curve, $c \in C(k)$
- $f: Y \longrightarrow C$ dominant with geom conn snc fibers
- D f-vertical \mathbb{Q} -div with $-(K_Y + D)$ ample

Theorem 4

 $f^{-1}(c) \supseteq$ irre cpt, which is geom conn

Proof of Theorem 4

From now fix the situation

- char(k) = 0
- Y sm, proj var/k
- C sm curve, $c \in C(k)$
- $f: Y \to C$ dominant with geom conn snc fibers

• D f-vertical sncd on Y

- D f-vertical sncd on Y
- $-(K_Y + D)$ ample

- D f-vertical sncd on Y
- $-(K_Y + D)$ ample

Connectedness Theorem

 $f^{-1}(c) \cap \operatorname{Supp}(D_{\geq 1})$ is geom conn.

• can assume $k = \overline{k}$

- can assume $k = \bar{k}$
- write D = A − B + Δ, where A, B have positive integer coeff,
 Δ = ∑ a_iP_i with 0 < a_i < 1

- can assume $k = \bar{k}$
- write $D = A B + \Delta$, where A, B have positive integer coeff, $\Delta = \sum a_i P_i$ with $0 < a_i < 1$
- $\rightsquigarrow \mathsf{Supp}(A) = \mathsf{Supp}(D_{\geq 1}) \mathsf{ and } A, B \mathsf{ f-vertical}$

- can assume $k = \bar{k}$
- write $D = A B + \Delta$, where A, B have positive integer coeff, $\Delta = \sum a_i P_i$ with $0 < a_i < 1$
- \rightsquigarrow Supp(A) = Supp(D_{\geq 1}) and A, B f-vertical
 - If A = 0, nothing to show \rightsquigarrow assume $A \neq 0$

Claim

 $f_*\mathcal{O}_Y(B) \twoheadrightarrow f_*\mathcal{O}_A(B|_A)$
$f_*\mathcal{O}_Y(B) \twoheadrightarrow f_*\mathcal{O}_A(B|_A)$

• have a short exact sequence

$$0
ightarrow {\mathcal O}_Y(B-A)
ightarrow {\mathcal O}_Y(B)
ightarrow {\mathcal O}_A(B|_A)
ightarrow 0$$

 $f_*\mathcal{O}_Y(B) \twoheadrightarrow f_*\mathcal{O}_A(B|_A)$

• have a short exact sequence

$$0
ightarrow {\mathcal O}_Y(B-A)
ightarrow {\mathcal O}_Y(B)
ightarrow {\mathcal O}_A(B|_A)
ightarrow 0$$

• apply f_* to get

$$f_*\mathcal{O}_Y(B) \to f_*\mathcal{O}_A(B|_A) \to R^1f_*\mathcal{O}_Y(B-A)$$

 $f_*\mathcal{O}_Y(B) \twoheadrightarrow f_*\mathcal{O}_A(B|_A)$

• have a short exact sequence

$$0
ightarrow {\mathcal O}_Y(B-A)
ightarrow {\mathcal O}_Y(B)
ightarrow {\mathcal O}_A(B|_A)
ightarrow 0$$

• apply f_* to get

$$f_*\mathcal{O}_Y(B) \to f_*\mathcal{O}_A(B|_A) \to R^1f_*\mathcal{O}_Y(B-A)$$

note

$$B - A = -D + \Delta \sim_{\mathbb{Q}} K_Y + (-(K_Y + D)) + \Delta$$

 $f_*\mathcal{O}_Y(B) \twoheadrightarrow f_*\mathcal{O}_A(B|_A)$

have a short exact sequence

$$0
ightarrow {\mathcal O}_Y(B-A)
ightarrow {\mathcal O}_Y(B)
ightarrow {\mathcal O}_A(B|_A)
ightarrow 0$$

• apply f_* to get

$$f_*\mathcal{O}_Y(B) \to f_*\mathcal{O}_A(B|_A) \to R^1f_*\mathcal{O}_Y(B-A)$$

note

$$B - A = -D + \Delta \sim_{\mathbb{Q}} K_Y + (-(K_Y + D)) + \Delta$$

 $\Rightarrow R^1 f_* \mathcal{O}_Y (B - A) = 0$ by Kawamata-Viehweg Vanishing

Theorem (Kawamata-Viehweg Vanishing)

- M ample on Y
- $\Delta = \sum a_i P_i$ sncd on Y, P_i distinct, $0 < a_i < 1$
- L integral divisor on Y with $L \sim_{\mathbb{Q}} M + \Delta$

$$\Rightarrow R^i f_*(\mathcal{O}_Y(K_Y + L)) = 0 \text{ for all } i \geq 1$$

Theorem (Kawamata-Viehweg Vanishing)

- *M* ample on Y
- $\Delta = \sum a_i P_i$ sncd on Y, P_i distinct, $0 < a_i < 1$
- L integral divisor on Y with $L \sim_{\mathbb{Q}} M + \Delta$

$$\Rightarrow R^i f_*(\mathcal{O}_Y(K_Y + L)) = 0 \text{ for all } i \geq 1$$

Note: False in positive characteristic

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

• *B* effective

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

• *B* effective

 $\Rightarrow \ \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

- B effective
- $\Rightarrow \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$ $\Rightarrow \mathcal{O}_C \cong f_*\mathcal{O}_Y \hookrightarrow f_*\mathcal{O}_Y(B)$

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

- B effective
- $\Rightarrow \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$
- $\Rightarrow \mathcal{O}_C \cong f_*\mathcal{O}_Y \hookrightarrow f_*\mathcal{O}_Y(B)$
 - B vertical ⇒ ∃ finite set Σ ⊂ C: B ⊂ f⁻¹(Σ)

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

- B effective
- $\Rightarrow \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$
- $\Rightarrow \mathcal{O}_C \cong f_*\mathcal{O}_Y \hookrightarrow f_*\mathcal{O}_Y(B)$
 - B vertical ⇒ ∃ finite set Σ ⊂ C: B ⊂ f⁻¹(Σ)
 - for $U \subset C \setminus \Sigma$:

 $(f_*\mathcal{O}_Y(B))(U) = \mathcal{O}_Y(B)(f^{-1}(U)) = \mathcal{O}_Y(f^{-1}(U)) = \mathcal{O}_C(U),$

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

- B effective
- $\Rightarrow \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$
- $\Rightarrow \mathcal{O}_C \cong f_*\mathcal{O}_Y \hookrightarrow f_*\mathcal{O}_Y(B)$
 - B vertical ⇒ ∃ finite set Σ ⊂ C: B ⊂ f⁻¹(Σ)
 - for $U \subset C \setminus \Sigma$:

 $(f_*\mathcal{O}_Y(B))(U) = \mathcal{O}_Y(B)(f^{-1}(U)) = \mathcal{O}_Y(f^{-1}(U)) = \mathcal{O}_C(U),$

 $\Rightarrow f_*\mathcal{O}_Y(B)|_{C\setminus\Sigma}\cong \mathcal{O}_C|_{C\setminus\Sigma}, \text{ where } C\setminus\Sigma \text{ is dense in } C$

 $f_*\mathcal{O}_Y(B)$ is a locally free sheaf of rank 1 on C

- B effective
- $\Rightarrow \mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(B)$
- $\Rightarrow \mathcal{O}_C \cong f_*\mathcal{O}_Y \hookrightarrow f_*\mathcal{O}_Y(B)$
 - B vertical ⇒ ∃ finite set Σ ⊂ C: B ⊂ f⁻¹(Σ)
 - for $U \subset C \setminus \Sigma$:

 $(f_*\mathcal{O}_Y(B))(U) = \mathcal{O}_Y(B)(f^{-1}(U)) = \mathcal{O}_Y(f^{-1}(U)) = \mathcal{O}_C(U),$

 $\Rightarrow f_*\mathcal{O}_Y(B)|_{C\setminus\Sigma}\cong \mathcal{O}_C|_{C\setminus\Sigma}, \text{ where } C\setminus\Sigma \text{ is dense in } C$

 $\Rightarrow f_* \mathcal{O}_Y(B)$ locally free of rank 1

 $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

 $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

• A, B eff divisor with integral coeff, no common irred comp

 $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

• A, B eff divisor with integral coeff, no common irred comp

 $\Rightarrow B|_A$ eff divisor with integral coeff on A

 $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

• A, B eff divisor with integral coeff, no common irred comp

 $\Rightarrow B|_A$ eff divisor with integral coeff on A

 $\Rightarrow \mathcal{O}_A \hookrightarrow \mathcal{O}_A(B|_A)$

 $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

• A, B eff divisor with integral coeff, no common irred comp

 $\Rightarrow B|_A$ eff divisor with integral coeff on A

 $\Rightarrow \mathcal{O}_A \hookrightarrow \mathcal{O}_A(B|_A)$

• apply f_* to get $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

 $f^{-1}(c) \cap A$ is conn

 $f^{-1}(c) \cap A$ is conn

 $f^{-1}(c) \cap A$ is conn

For this, put the claims together:

• $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A)$

 $f^{-1}(c) \cap A$ is conn

•
$$f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B)$$

 $f^{-1}(c) \cap A$ is conn

For this, put the claims together:

• $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B) \leftarrow \text{locally free of rank } 1$

 $f^{-1}(c) \cap A$ is conn

For this, put the claims together:

• $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B) \leftarrow \text{locally free of rank } 1$

 $\Rightarrow \exists$ subsheaf $M \subset f_*\mathcal{O}_Y(B)$: $M \twoheadrightarrow f_*\mathcal{O}_A$

 $f^{-1}(c) \cap A$ is conn

- $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B) \leftarrow \text{locally free of rank } 1$
- $\Rightarrow \exists$ subsheaf $M \subset f_*\mathcal{O}_Y(B)$: $M \twoheadrightarrow f_*\mathcal{O}_A$
 - C smooth curve \Rightarrow M also locally free of rank 1

 $f^{-1}(c) \cap A$ is conn

- $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B) \leftarrow \text{locally free of rank } 1$
- $\Rightarrow \exists$ subsheaf $M \subset f_*\mathcal{O}_Y(B)$: $M \twoheadrightarrow f_*\mathcal{O}_A$
 - C smooth curve \Rightarrow M also locally free of rank 1
 - A vertical $\Rightarrow \exists c_1, ..., c_r \in C$:

$$egin{aligned} &A = \prod_{i=1}^r f^{-1}(c_i) \cap A =: \prod_{i=1}^r A(c_i) \ & \leadsto \mathcal{O}_A = igoplus_{i=1}^r \mathcal{O}_{A(c_i)} \end{aligned}$$

 $f^{-1}(c) \cap A$ is conn

- $f_*\mathcal{O}_A \hookrightarrow f_*\mathcal{O}_A(B|_A) \twoheadleftarrow f_*\mathcal{O}_Y(B) \leftarrow \text{locally free of rank } 1$
- $\Rightarrow \exists$ subsheaf $M \subset f_*\mathcal{O}_Y(B)$: $M \twoheadrightarrow f_*\mathcal{O}_A$
 - C smooth curve \Rightarrow M also locally free of rank 1
 - A vertical $\Rightarrow \exists c_1, ..., c_r \in C$:

$$egin{aligned} &A = \coprod_{i=1}^r f^{-1}(c_i) \cap A =: \coprod_{i=1}^r A(c_i) \ & \leadsto \mathcal{O}_A = igoplus_{i=1}^r \mathcal{O}_{A(c_i)} \end{aligned}$$

• If
$$f^{-1}(c) \cap A = \emptyset \rightsquigarrow$$
 ok, because connected

• Otherwise: $c = c_i$ for some i

- Otherwise: $c = c_i$ for some i
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits

- Otherwise: $c = c_i$ for some i
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits
- $\Rightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$ is surjective

- Otherwise: $c = c_i$ for some i
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits
- $\Rightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$ is surjective
- \Rightarrow get surjection $M \twoheadrightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$

- Otherwise: $c = c_i$ for some i
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits
- $\Rightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$ is surjective
- \Rightarrow get surjection $M \twoheadrightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$
 - $A(c) = A(c)_1 \cup ... \cup A(c)_m$ conn comp of A(c)

- Otherwise: $c = c_i$ for some *i*
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits
- $\Rightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$ is surjective
- \Rightarrow get surjection $M \twoheadrightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$
 - $A(c) = A(c)_1 \cup ... \cup A(c)_m$ conn comp of A(c)
 - get surjections

$$\mathcal{O}_{C,c} \twoheadrightarrow (f_*\mathcal{O}_{A(c)})_c = H^0(A(c), \mathcal{O}_{A(c)}) = \sum_{j=1}^m H^0(A(c)_j, \mathcal{O}_{A(c)_j}) = k^n$$

with $n \ge m$

- Otherwise: $c = c_i$ for some *i*
- $\Rightarrow \mathcal{O}_A \twoheadrightarrow \mathcal{O}_{A(c)}$ splits
- $\Rightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)} \text{ is surjective}$
- \Rightarrow get surjection $M \twoheadrightarrow f_*\mathcal{O}_A \twoheadrightarrow f_*\mathcal{O}_{A(c)}$
 - $A(c) = A(c)_1 \cup ... \cup A(c)_m$ conn comp of A(c)
 - get surjections

$$\mathcal{O}_{C,c} \twoheadrightarrow (f_*\mathcal{O}_{A(c)})_c = H^0(A(c), \mathcal{O}_{A(c)}) = \sum_{j=1}^m H^0(A(c)_j, \mathcal{O}_{A(c)_j}) = k^n$$

with $n \ge m$

 \Rightarrow $m = n = 1 \Rightarrow A(c)$ is connected \Box

Theorem 4

 $D = \sum a_i P_i$ *f*-vertical \mathbb{Q} -divisor with $-(K_Y + D)$ ample. $\Rightarrow f^{-1}(c) \supseteq$ irred comp, which is geom conn over *k*
Proof: $c \in C(k)$

- $c \in C(k)$
 - let $G \sim 0$ on C such that $c \in \text{Supp}(G)$

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is *f*-vertical and $f^*G \sim 0$

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is *f*-vertical and $f^*G \sim 0$
- $\Rightarrow D + \lambda f^*G \text{ } f$ -vertical $\forall \lambda \in \mathbb{Q} \Rightarrow \mathsf{sncd}$

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is *f*-vertical and $f^*G \sim 0$
- $\Rightarrow D + \lambda f^*G \text{ } f\text{-vertical } \forall \lambda \in \mathbb{Q} \Rightarrow \mathsf{sncd}$
- $\Rightarrow D + \lambda f^*G$ satisfies assumptions of Connectedness Theorem

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is f-vertical and $f^*G \sim 0$
- $\Rightarrow D + \lambda f^*G \text{ } f\text{-vertical } \forall \lambda \in \mathbb{Q} \Rightarrow \mathsf{sncd}$
- $\Rightarrow D + \lambda f^*G$ satisfies assumptions of Connectedness Theorem

• set
$$D' := D + \lambda_0 f^* G$$
, where $\lambda_0 := \min \left\{ \frac{1-a_i}{e_i} \mid f(P_i) = c \right\}$

 $c \in C(k)$

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is *f*-vertical and $f^*G \sim 0$
- $\Rightarrow D + \lambda f^*G \text{ } f\text{-vertical } \forall \lambda \in \mathbb{Q} \Rightarrow \mathsf{sncd}$
- $\Rightarrow D + \lambda f^*G$ satisfies assumptions of Connectedness Theorem
- set $D' := D + \lambda_0 f^* G$, where $\lambda_0 := \min\left\{\frac{1-a_i}{e_i} \mid f(P_i) = c\right\}$

 \rightsquigarrow in a nbhd of $f^{-1}(c)$: every irred comp of D' has coeff ≤ 1

 $c \in C(k)$

- let $G \sim 0$ on C such that $c \in \text{Supp}(G)$
- $\Rightarrow f^*G = \sum e_i P_i$ is *f*-vertical and $f^*G \sim 0$
- $\Rightarrow D + \lambda f^*G \text{ } f$ -vertical $\forall \lambda \in \mathbb{Q} \Rightarrow \mathsf{sncd}$
- $\Rightarrow D + \lambda f^*G$ satisfies assumptions of Connectedness Theorem
- set $D' := D + \lambda_0 f^* G$, where $\lambda_0 := \min \left\{ \frac{1-a_i}{e_i} \mid f(P_i) = c \right\}$

 \rightsquigarrow in a nbhd of $f^{-1}(c)$: every irred comp of D' has coeff ≤ 1 \Rightarrow ∃ an irred comp E with coeff 1 in D'

The fiber $E \cap f^{-1}(c)$ is geom conn

The fiber $E \cap f^{-1}(c)$ is geom conn

• m := multiplicity of E in f^*G , consider

$$D'' := D' - \frac{\varepsilon}{m} f^* G + \varepsilon E$$

The fiber $E \cap f^{-1}(c)$ is geom conn

• m := multiplicity of E in f^*G , consider

$$D'' := D' - \frac{\varepsilon}{m} f^* G + \varepsilon E$$

for $0 < \varepsilon \ll 1$

 \rightsquigarrow in a neighborhood of $f^{-1}(c)$: every irreducible component of D'' has coefficient ≤ 1

The fiber $E \cap f^{-1}(c)$ is geom conn

• m := multiplicity of E in f^*G , consider

$$D'' := D' - \frac{\varepsilon}{m} f^* G + \varepsilon E$$

- → in a neighborhood of $f^{-1}(c)$: every irreducible component of D'' has coefficient ≤ 1
- \rightsquigarrow there is only the component $E\subset f^{-1}(c)$ having coefficient 1 in D''

The fiber $E \cap f^{-1}(c)$ is geom conn

• m := multiplicity of E in f^*G , consider

$$D'' := D' - \frac{\varepsilon}{m} f^* G + \varepsilon E$$

- →→ in a neighborhood of $f^{-1}(c)$: every irreducible component of D'' has coefficient ≤ 1
- \rightsquigarrow there is only the component $E\subset f^{-1}(c)$ having coefficient 1 in D''
- $\rightsquigarrow -(K_Y+D'')\sim_\mathbb{Q} -(K_Y+D)-\varepsilon E \text{ is ample for } 0<\varepsilon\ll 1 \text{ by}$ Kleiman

The fiber $E \cap f^{-1}(c)$ is geom conn

• m := multiplicity of E in f^*G , consider

$$D'' := D' - \frac{\varepsilon}{m} f^* G + \varepsilon E$$

- →→ in a neighborhood of $f^{-1}(c)$: every irreducible component of D'' has coefficient ≤ 1
- \rightsquigarrow there is only the component $E\subset f^{-1}(c)$ having coefficient 1 in D''
- $\rightsquigarrow -(K_Y+D'')\sim_\mathbb{Q} -(K_Y+D)-\varepsilon E \text{ is ample for } 0<\varepsilon\ll 1 \text{ by}$ Kleiman
- \Rightarrow fiber of $E=D_{\geq 1}''$ over c is geom conn by the Connectedness Theorem \Box

Theorem 4

D f-vertical \mathbb{Q} -divisor with −($K_Y + D$) ample $\Rightarrow f^{-1}(c) \supseteq$ irred comp, which is geom conn over *k*

\Downarrow

Theorem 3

$$\begin{array}{l} g: V = \{uf + vh = 0\} \subset \mathbb{P}_k^n \times \mathbb{P}_k^1 \to \mathbb{P}_k^1 \\ \Rightarrow g^{-1}(x) \supset \text{geom int closed subvar}, \quad \forall x \in \mathbb{P}^1(k) \end{array}$$

\Downarrow

Theorem 2

every hypersurface $H \subset \mathbb{P}_k^n$ of degree $\leq n$ has a geometrically integral closed subvariety $Y \subset H$

Theorem 1, Kollár 2007

Every PAC field of char 0 is C1