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A field k is C1 iff

every f € k[Xo, ..., Xp]a has a nontrivial zero in k, for all d < n,

i.e., every hypersurface H C P} of degree < n has a k-rational point

e introduced by Emil Artin

e C1 = quasi-algebraically closed
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Examples of C1 fields

e algebraically closed fields
e K algebraic over Cl1 field
e [, Chevalley-Warning

H C Pg hypersurface of degree < n=> |H(F,)| =1 mod p

e k(x) with k = k (Tsen)
° Qlujnramif (Lang)
e Frac(W(k)), with k = k, char(k) > 0 (Lang)

e more generally: fraction field of excellent henselian DVR's with
algebraically closed residue field (Lang)
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Fundamental Property

kC1 = Br(k) =0

To show:
D = finite division k-algebra with center k = D = k.

e Have: dimy D = n?
~~ reduced norm of D of the generic element of D
Nrdp,«(X) € k[Xo, X1, ..., Xp_1]n has only the trivial zero
= n>n?—1(as k is C1)

= p= il



Non-Examples

e R: consider XZ + X? + X7 =0



Non-Examples
e R: consider XZ + X? + X7 =0
o Qp: Br(Q,) = Q/Z (Hasse)



Non-Examples
e R: consider XZ + X? + X7 =0
o Qp: Br(Q,) = Q/Z (Hasse)
o Fo((1)) (same)



Non-Examples
e R: consider on + X12 + X22 =0
o Qp: Br(Q,) = Q/Z (Hasse)

o Fo((t)) (same)

e Global fields, i.e., finite extensions of Fy(t) or Q:
Albert-Brauer-Hasse-Noether Theorem

0 — Br(k) - @ Br(k,) = Q/Z — 0



Non-Examples

e R: consider on + X12 + X22 =0
Qp: Br(Qp) = Q/Z (Hasse)

Fq((t)) (same)

Global fields, i.e., finite extensions of Fq(t) or Q:
Albert-Brauer-Hasse-Noether Theorem

0 — Br(k) - @ Br(k,) = Q/Z — 0

e J k: Br(k) =0 and k not C1 (Ax, works in any char)
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Conjectured to be C1:

e Q% (E. Artin around 1950)

2mi

(Note Q** = Q(e™ | n € N) by Kronecker-Weber)
ol Eac (M) (Lang in 1953; it is oddly C1)

XF+Y740)

o Q,(FF-curve) = Q,(BZ.") (by Fargues in 2020)

cris

Br(k) = 0 in all cases
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Definition
A field k is PAC iff

every geom irred f € k[X, Y] has a zero.

e fis geom irred iff it is irred in l;[X, Y], esg.,
o f € k[X] geom irred iff f is linear
o f=X>+Y?€R[X, Y] not geom irred = (X + iY)(X —iY)
o f=X>+Y?-1€R[X, Y] geom irred

e PAC = pseudo algebraically closed (Ax in 1968)
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Theorem, Kollar, Fried-Jarden

k PAC <= every geom integral k-variety X has a k-rational point

In particular

k PAC = Br(k)=0 (only trivial SBV/k)
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Examples and properties (e.g. Fried-Jarden)

e alg/sep closed fields are PAC
e [ alg over PAC = L is PAC
e infinite alg over I, is PAC (by Weil conj for curves)
e Spec([[,Fp) =[], SpecF, U X
~ £(p) is PAC of char 0, for p € X
e same with infinite products of PAC fields
e K = function field of a smooth var/Q or F,,

= (K®°P)<91-»92> s PAC for almost all o; € Gal(K™P/K)
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Conjecture, Ax 1968

perfect PAC — C1 ?

OK for perfect PAC fields...

e ..with abelian Galois group (Ax)

e ...containing an alg. closed field (Fried-Jarden)

wrong without " perfect” (as k C1 implies [k : kP] < p)
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Theorem 1, Kollar 2007

Every PAC field of char 0 is C1

Consequence of:

Theorem 2
k=any field of char 0 =

every hypersurface H C P} of degree < n has a geometrically integral
closed subvariety Y ¢ H
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Remarks:

e any H is geom conn! If it is smooth, it is also geom integral

o H={(Xo+ X1)?>+ X7 =0} C P§ not geom integral:
H(C:{X0+X1—iX2:O}U{X0+X1+iX2 :0}
But (1: —1:0) € H geom int subvar

e deg H < n is necessary:
e take K/Q with basis e, e1, &

f = Nmg, o(Xoeo + Xie1 + X2e2) € Q[Xo, X1, X2]3
= {f =0} C P has deg 3 and no geom int subvariety!
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Thm 2 is a consequence of the following Thm:

k field of char 0
F={f=0}CP]ofdegd<n

H={h =0} C P} of deg d < n and smooth
V = {uf +vh =0} C P} x Pi(u,v)

g:V — PY(u,v) (projection)

e Note
g {u=0))=H gl'({v=0}=F
Theorem 3
g (x) D geom int closed subvar, Vx € P(k)
In particular

F = g }({v = 0}) contains geom int subvar = Thm 2= Thm 1
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Aim: Proof of Theorem 3

We need:

e Basics of divisors
e Resolution of singularities

e Connectedness result
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X variety /k

Definition
e A prime divisor P is a closed integral codim 1 subvar in X.
e A Q-divisoris D =Y a;P;, a; € Q.
e D is sncd if P; are sm and all intersections are transversal.

° DlNQDz if dm>0 st mD; ~ mD,
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Examples of snc

e Dy =(xy=0)CA?

e D)= (x*+y?=0)C A2
Non-Examples of snc

e D)= (x*+y?=0)C A2
e D3 = (xy(x+y)=0)CA?



e chark=0



e chark=0
e 7 C X closed



e chark=0
e 7 C X closed

Theorem (H. Hironaka 1964)

There exists a resolution of singularities, i.e.
m: X — X
where

e X' sm
e 7 succ blow-up in Z U X\ X;eg
° 7'('_1(2 U X\Xreg)red sncd.
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Proof Theorem 3
o Recall

o V.= (uf + vh=0) C P} x P}

— JUCP} st Vy— Usm
° Z:Pi—U

e By Hironaka's Thm.
Vi = v £, pl
° V1 sm

o 7 1(Vz)ea sncd
e 7 is an iso over Vi
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oL::((n+1—d)pi‘Ho—|—p§Z)|V ample (d <n)

= M:=7"(L)— LE ample (m>0)

~ 7KV1’VU ~ =Ky, ~ L’vu ~ M’vu
— M ~g —(Ky, + D), where Supp D C 77 (Vz) e
Thm 4

== (gom)~}(Z) D irre cpt, which is geom conn

e Since every fiber of V — P} is dominated by the fiber of
gom:Vj — Pi

— every fiber of V — PP} contains a geom irre subvariety [J

Theorem 3

g 1(x) D geom int closed subvar, Vx € P*(k)



Connectedness result:

e Y sm, proj var /k
e Csmcurve, ce C(k)
e f:Y — C dominant with geom conn snc fibers

e D f—vertical Q-div with —(Ky + D) ample
Theorem 4

f~1(c) D irre cpt, which is geom conn
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From now fix the situation
e char(k) =0
e Y sm, proj var/k
e C sm curve, ¢ € C(k)

e f:Y — C dominant with geom conn snc fibers
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e D f-vertical sncd on Y

e —(Ky + D) ample

Connectedness Theorem

f=1(c) N Supp(D>1) is geom conn.
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Proof of Connectedness Theorem:

e can assume k = k

e write D =A— B+ A, where A, B have positive integer coeff,
A:ZQ;P; with 0 < a; < 1

~> Supp(A) = Supp(D>1) and A, B f-vertical
e If A= 0, nothing to show ~» assume A # 0
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Claim
f.Oy(B) —» £.0a(B|a)

e have a short exact sequence

0— Oy(B—A)— Oy(B) = Oa(Bla) =0
e apply £, to get

f.Oy(B) = f.Oa(B|a) — R',Oy(B — A)

e note
B—A=-D+A~gKy+(—(Ky+D))+A

= RY,Oy(B — A) = 0 by Kawamata-Viehweg Vanishing
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Theorem (Kawamata-Viehweg Vanishing)

e M ampleonY
e A=> 2a;P;sncd on Y, P; distinct, 0 < a; < 1
e [ integral divisor on Y with L ~g M + A

= RIf(Oy(Ky + L)) =0forall i >1

Note: False in positive characteristic
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Claim
f.Oy(B) is a locally free sheaf of rank 1 on C

e B effective

Oy <= Oy(B)

Oc 2,0y <= £.0y(B)

e B vertical = 3 finite set ¥ C C: B C f~1(¥)
e for UC C\ X:

¢l

(£.Oy(B))(U) = Oy(B)(fTH(U)) = Oy (f~}()) = Oc(U),

= f.0y(B)lc\z = Oc|c\x, where C\ X is dense in C
= £.0y(B) locally free of rank 1
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Claim
f*OA > f*OA(B|A)

o A, B eff divisor with integral coeff, no common irred comp
= B|a eff divisor with integral coeff on A
= Oa = Oa(Bla)

e apply £, to get £,Oa — £.Oa(B|a)
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Recall: want to show
f~1(c)N A'is conn

For this, put the claims together:

o £,0p < f.Oa(B|a) « f,Oy(B) < locally free of rank 1
= I subsheaf M C f,Oy(B): M — .04
e C smooth curve = M also locally free of rank 1

e A vertical = dcy, ..., ¢, € C:
A=]]f N e)nA=TJA()
i=1 j

~ Op = @ Oae)

=}

o If f~1(c)NA =0 ~ ok, because connected
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e Otherwise: ¢ = ¢; for some |
= Oa = Og(c) splits
= £.0a — £.O0x() is surjective
= get surjection M — .04 — f*OA(C)
e A(c) = A(c)1 U ... UA(c)m conn comp of A(c)
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Otherwise: ¢ = ¢; for some |

Oa — Oy (c) splits

£.Oa — £.O0p(c) is surjective

get surjection M — .04 — f*OA(C)

A(c) = A(c)1 U ... U A(€)m conn comp of A(c)
get surjections

m

Oc,c = (£0a))c = H(A(c), On(e)) Z

with n > m

j?OA(C ) = k"
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Otherwise: ¢ = ¢; for some |

Oa — Oy (c) splits

£.Oa — £.O0p(c) is surjective

get surjection M — .04 — f*OA(C)

A(c) = A(c)1 U ... U A(€)m conn comp of A(c)
get surjections

m

Oc,c = (£0a))c = H(A(c), On(e)) Z

with n > m

m=n=1= A(c) is connected [J

j?OA(C ) = k"



Theorem 4
D =" a;P; f-vertical Q-divisor with —(Ky + D) ample.
= f~1(c) D irred comp, which is geom conn over k



Proof:
ce C(k)



Proof:
ce C(k)

e let G ~ 0 on C such that ¢ € Supp(G)



Proof:
ce C(k)

e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0



Proof:
ce C(k)
e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0
= D+ Mf*G f-vertical VA € Q = sncd



Proof:
ce C(k)

e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0
= D+ Mf*G f-vertical VA € Q = sncd

= D + A\f*G satisfies assumptions of Connectedness Theorem



Proof:
ce C(k)
e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0
= D+ Mf*G f-vertical VA € Q = sncd
= D + A\f*G satisfies assumptions of Connectedness Theorem

e set D' := D + \of*G, where \g := min {1;—"3 | f(P;) = c}



Proof:
ce C(k)
e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0
= D+ Mf*G f-vertical VA € Q = sncd
= D + A\f*G satisfies assumptions of Connectedness Theorem
e set D' := D + \of*G, where \g := min {1;—"3 | f(P;) = c}

~ in a nbhd of f~1(c): every irred comp of D’ has coeff < 1



Proof:
ce C(k)
e let G ~ 0 on C such that ¢ € Supp(G)
= f*G =) ¢P;is f-vertical and f*G ~ 0
= D+ Mf*G f-vertical VA € Q = sncd
= D + A\f*G satisfies assumptions of Connectedness Theorem
e set D' := D + \of*G, where \g := min {1;—"3 | f(P;) = c}

~ in a nbhd of f~1(c): every irred comp of D’ has coeff < 1
~» 3 an irred comp E with coeff 1 in D’
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Claim
The fiber EN f~1(c) is geom conn

e m := multiplicity of E in f*G, consider
D" =D — SfG+eE
m

for0<ex1
~ in a neighborhood of f~1(c): every irreducible component of
D" has coefficient < 1
~ there is only the component E C f~1(c) having coefficient 1 in
D//
~ —(Ky + D") ~g —(Ky + D) — €E is ample for 0 < ¢ < 1 by
Kleiman

= fiber of E = D’_>’1 over c is geom conn by the Connectedness
Theorem [



Theorem 4
D f-vertical Q-divisor with —(Ky + D) ample
= f~1(c) D irred comp, which is geom conn over k

Theorem 3
g:V={uf+vh=0} CPI xP} - P}
= g 1(x) D geom int closed subvar, Vx € P!(k)

Theorem 2
every hypersurface H C P} of degree < n has a geometrically integral
closed subvariety Y C H



Theorem 1, Kollar 2007

Every PAC field of char 0 is C1
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