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C1 fields



Definition

A field k is C1 iff

every f ∈ k[X0, . . . ,Xn]d has a nontrivial zero in k , for all d ≤ n,

i.e., every hypersurface H ⊂ Pn
k of degree ≤ n has a k-rational point

� introduced by Emil Artin

� C1 = quasi-algebraically closed
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Examples of C1 fields

� algebraically closed fields

� K algebraic over C1 field

� Fp: Chevalley-Warning

H ⊂ Pn
Fp
hypersurface of degree ≤ n =⇒ |H(Fp)| ≡ 1 mod p

� k(x) with k = k̄ (Tsen)

� Qunramif
p (Lang)

� Frac(W (k)), with k = k̄, char(k) > 0 (Lang)

� more generally: fraction field of excellent henselian DVR’s with

algebraically closed residue field (Lang)
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Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Fundamental Property

k C1 ⇒ Br(k) = 0

To show:

D = finite division k-algebra with center k =⇒ D = k.

� Have: dimk D = n2

⇝ reduced norm of D of the generic element of D

NrdD/k(X ) ∈ k[X0,X1, . . . ,Xn2−1]n has only the trivial zero

=⇒ n > n2 − 1 (as k is C1)

=⇒ n = 1



Non-Examples

� R: consider X 2
0 + X 2

1 + X 2
2 = 0

� Qp: Br(Qp) = Q/Z (Hasse)

� Fq((t)) (same)

� Global fields, i.e., finite extensions of Fq(t) or Q:

Albert-Brauer-Hasse-Noether Theorem

0→ Br(k)→
⊕
v

Br(kv )→ Q/Z→ 0

� ∃ k : Br(k) = 0 and k not C1 (Ax, works in any char)
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Conjectured to be C1:

� Qab (E. Artin around 1950)

(Note Qab = Q(e
2πi
n | n ∈ N) by Kronecker-Weber)

� Frac
(

R[X ,Y ]
(X 2+Y 2+1)

)
(Lang in 1953; it is oddly C1)

� Qp(FF-curve) = Qp(B
φ=id
cris ) (by Fargues in 2020)

Br(k) = 0 in all cases
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PAC fields



Definition

A field k is PAC iff

every geom irred f ∈ k[X ,Y ] has a zero.

� f is geom irred iff it is irred in k̄[X ,Y ], e.g.,

� f ∈ k[X ] geom irred iff f is linear

� f = X 2 + Y 2 ∈ R[X ,Y ] not geom irred = (X + iY )(X − iY )

� f = X 2 + Y 2 − 1 ∈ R[X ,Y ] geom irred

� PAC = pseudo algebraically closed (Ax in 1968)
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Theorem, Kollár, Fried-Jarden

k PAC ⇐⇒ every geom integral k-variety X has a k-rational point

In particular

k PAC =⇒ Br(k) = 0 (only trivial SBV/k)
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Examples and properties (e.g. Fried-Jarden)

� alg/sep closed fields are PAC

� L alg over PAC =⇒ L is PAC

� infinite alg over Fp is PAC (by Weil conj for curves)

� Spec(
∏

p Fp) =
∐

p SpecFp ⊔ X

⇝ κ(p) is PAC of char 0, for p ∈ X

� same with infinite products of PAC fields

� K = function field of a smooth var/Q or F̄p

=⇒ (K sep)<σ1,...,σn> is PAC for almost all σi ∈ Gal(K sep/K )
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Conjecture, Ax 1968

perfect PAC =⇒ C1 ?

OK for perfect PAC fields...

� ...with abelian Galois group (Ax)

� ...containing an alg. closed field (Fried-Jarden)

wrong without ”perfect” (as k C1 implies [k : kp] ≤ p)
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Theorem 1, Kollár 2007

Every PAC field of char 0 is C1

Consequence of:

Theorem 2

k=any field of char 0 =⇒

every hypersurface H ⊂ Pn
k of degree ≤ n has a geometrically integral

closed subvariety Y ⊂ H
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Remarks:

� any H is geom conn! If it is smooth, it is also geom integral

� H = {(X0 + X1)
2 + X 2

2 = 0} ⊂ P2
R not geom integral:

HC = {X0 + X1 − iX2 = 0} ∪ {X0 + X1 + iX2 = 0}

But (1 : −1 : 0) ∈ H geom int subvar

� degH ≤ n is necessary:

� take K/Q with basis e0, e1, e2

f := NmK/Q(X0e0 + X1e1 + X2e2) ∈ Q[X0,X1,X2]3

⇒ {f = 0} ⊂ P2
Q has deg 3 and no geom int subvariety!
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Thm 2 is a consequence of the following Thm:

� k field of char 0

� F = {f = 0} ⊂ Pn
k of deg d ≤ n

� H = {h = 0} ⊂ Pn
k of deg d ≤ n and smooth

� V = {uf + vh = 0} ⊂ Pn
k × P1

k(u, v)

� g : V → P1(u, v) (projection)

� Note

g−1({u = 0}) = H g−1({v = 0}) = F

Theorem 3

g−1(x) ⊃ geom int closed subvar, ∀ x ∈ P1(k)

In particular

F = g−1({v = 0}) contains geom int subvar ⇒ Thm 2⇒ Thm 1
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� Z ⊂ X closed

Theorem (H. Hironaka 1964)
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π : X ′ −→ X

where

� X ′ sm

� π succ blow-up in Z ∪ X\Xreg

� π−1(Z ∪ X\Xreg)red sncd.
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� L := ((n + 1− d)p∗1H0 + p∗2Z )
∣∣
V

ample (d ≤ n)

=⇒ M := π∗(L)− 1
m
E ample (m ≫ 0)

⇝ −KV1

∣∣
VU

∼ −KVU ∼ L
∣∣
VU

∼ M
∣∣
VU

=⇒ M ∼Q −(KV1 + D), where Supp D ⊂ π−1(VZ )red
Thm 4
=⇒ (g ◦ π)−1(Z) ⊃ irre cpt, which is geom conn

� Since every fiber of V −→ P1
k is dominated by the fiber of

g ◦ π : V1 −→ P1
k

=⇒ every fiber of V −→ P1
k contains a geom irre subvariety □

Theorem 3

g−1(x) ⊃ geom int closed subvar, ∀ x ∈ P1(k)
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Connectedness result:

� Y sm, proj var /k

� C sm curve, c ∈ C (k)

� f : Y −→ C dominant with geom conn snc fibers

� D f−vertical Q-div with −(KY + D) ample

Theorem 4

f −1(c) ⊇ irre cpt, which is geom conn
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� can assume k = k̄

� write D = A− B +∆, where A,B have positive integer coeff,

∆ =
∑

aiPi with 0 < ai < 1

⇝ Supp(A) = Supp(D≥1) and A,B f -vertical

� If A = 0, nothing to show ⇝ assume A ̸= 0
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Claim

f∗OY (B)↠ f∗OA(B|A)

� have a short exact sequence

0→ OY (B − A)→ OY (B)→ OA(B|A)→ 0

� apply f∗ to get

f∗OY (B)→ f∗OA(B|A)→ R1f∗OY (B − A)

� note

B − A = −D +∆ ∼Q KY + (−(KY + D)) + ∆

⇒ R1f∗OY (B − A) = 0 by Kawamata-Viehweg Vanishing
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Theorem (Kawamata-Viehweg Vanishing)

� M ample on Y

� ∆ =
∑

aiPi sncd on Y, Pi distinct, 0 < ai < 1

� L integral divisor on Y with L ∼Q M +∆

⇒ R i f∗(OY (KY + L)) = 0 for all i ≥ 1

Note: False in positive characteristic
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Claim

f∗OY (B) is a locally free sheaf of rank 1 on C

� B effective

⇒ OY ↪→ OY (B)

⇒ OC
∼= f∗OY ↪→ f∗OY (B)

� B vertical ⇒ ∃ finite set Σ ⊂ C : B ⊂ f −1(Σ)

� for U ⊂ C \ Σ:

(f∗OY (B))(U) = OY (B)(f
−1(U)) = OY (f

−1(U)) = OC (U),

⇒ f∗OY (B)|C\Σ ∼= OC |C\Σ, where C \ Σ is dense in C

⇒ f∗OY (B) locally free of rank 1
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Claim

f∗OA ↪→ f∗OA(B|A)
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⇒ B|A eff divisor with integral coeff on A

⇒ OA ↪→ OA(B|A)
� apply f∗ to get f∗OA ↪→ f∗OA(B|A)
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� If f −1(c) ∩ A = ∅ ⇝ ok, because connected
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� Otherwise: c = ci for some i

⇒ OA ↠ OA(c) splits

⇒ f∗OA ↠ f∗OA(c) is surjective

⇒ get surjection M ↠ f∗OA ↠ f∗OA(c)

� A(c) = A(c)1 ∪ ... ∪ A(c)m conn comp of A(c)

� get surjections

OC ,c ↠ (f∗OA(c))c = H0(A(c),OA(c)) =
m∑
j=1

H0(A(c)j ,OA(c)j ) = kn

with n ≥ m

⇒ m = n = 1 ⇒ A(c) is connected □
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Theorem 4

D =
∑

aiPi f -vertical Q-divisor with −(KY + D) ample.

⇒ f −1(c) ⊇ irred comp, which is geom conn over k



Proof:

c ∈ C (k)

� let G ∼ 0 on C such that c ∈ Supp(G )

⇒ f ∗G =
∑

eiPi is f -vertical and f ∗G ∼ 0

⇒ D + λf ∗G f -vertical ∀λ ∈ Q ⇒ sncd

⇒ D + λf ∗G satisfies assumptions of Connectedness Theorem

� set D ′ := D + λ0f
∗G , where λ0 := min

{
1−ai
ei
| f (Pi ) = c

}

⇝ in a nbhd of f −1(c): every irred comp of D ′ has coeff ≤ 1

⇝ ∃ an irred comp E with coeff 1 in D ′
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Claim

The fiber E ∩ f −1(c) is geom conn

� m := multiplicity of E in f ∗G , consider

D ′′ := D ′ − ε

m
f ∗G + εE

for 0 < ε≪ 1

⇝ in a neighborhood of f −1(c): every irreducible component of

D ′′ has coefficient ≤ 1

⇝ there is only the component E ⊂ f −1(c) having coefficient 1 in

D ′′

⇝ −(KY + D ′′) ∼Q −(KY + D)− εE is ample for 0 < ε≪ 1 by

Kleiman

⇒ fiber of E = D ′′
≥1 over c is geom conn by the Connectedness

Theorem □
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Theorem 4

D f -vertical Q-divisor with −(KY + D) ample

⇒ f −1(c) ⊇ irred comp, which is geom conn over k

⇓

Theorem 3

g : V = {uf + vh = 0} ⊂ Pn
k × P1

k → P1
k

⇒ g−1(x) ⊃ geom int closed subvar, ∀ x ∈ P1(k)

⇓

Theorem 2

every hypersurface H ⊂ Pn
k of degree ≤ n has a geometrically integral

closed subvariety Y ⊂ H



Theorem 1, Kollár 2007

Every PAC field of char 0 is C1
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